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Abstract: In this paper, the problem of event-triggered consensus for linear continuous-time multi-agent systems is investigated. A
new event-triggered consensus protocol based on a predictor is proposed to achieve consensus without continuous communication
among agents. In the proposed consensus protocol, each agent only needs to monitor its states to determine its event-triggered instants.
When an event is triggered, the agent will update its consensus protocol and sent its state information to its neighbors. In addition, the
agent will also update its consensus protocol and the predictor when it receives the state information from its neighbors. A necessary
and sufficient condition that the consensus problem can be solved is derived. Moreover, it is proved that Zeno behavior does not exist.
Finally, a numerical example is given to illustrate that the protocol proposed in this paper can make the multi-agent systems achieve
consensus through much fewer event-triggered times.
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1 Introduction

In the 1970s, the definition of agent was proposed in the

field of intelligence[1]. Then more and more researchers be-

gan to pay their attention to agents and rich results have been

obtain. To mention a few, the consensus problem of multi-

agent systems with the directed communication topology and

the one-order integrator dynamics was investigated and the the-

oretical framework for the consensus problem of multi-agent

systems was built in [2]. The consensus problem of multi-

agent systems with one-order integrator dynamics, active lead-

ers and variable interconnection topologies was considered in

[3]. For the multi-agent systems with second-order integrator

dynamics, an necessary and sufficient condition for the con-

sensus was proposed in [4]. The leader-following consensus

problem of second-order nonlinear multi-agent systems with

general topologies was studied without assuming that the in-

teraction diagraph was strongly connected or contained a di-

rected spanning tree in [5]. And for the multi-agent system

with high-order integrator dynamics, a necessary and sufficient

condition was proposed for the consensus problem in [6]. The

consensus for high-order linear multi-agent systems with time

delays in both the communication channel and control inputs

was investigated in [7]. The consensus problem of multi-agent

systems with fixed/switching communication topology was in-

vestigated in [8] using the Lyapunov method. The existence of

consensus protocols for linear continuous-time/discrete-time

multi-agent systems with fixed communication topology was

proved in [9] and [10]. And other results about multi-agent

systems can be seen in [11, 12] and references therein.

It should be noticed that all the above publications assumed

that there exists continuous communication between agents

to implement the consensus protocol. However, it was well

known that the continuous communication between agents was

impossible in practice since the network bandwidth and the en-

ergy of agents were limited. And the continuous communica-

tion between agents would also result in the waste of commu-

nication resources [13–16]. In order to avoid continuous com-

munication and save the communication resources, the event-

triggered strategy has received more and more attention. The

consensus protocol was designed for multi-agent systems with

the one-order integrator dynamics based on a self-triggered

strategy in [17]. Event-triggered consensus protocols were

designed for multi-agent systems with the one-order/second-

order integrator dynamics in [18]. Two event-triggered con-

sensus protocols were designed for multi-agent systems with

the general linear dynamics in [19], but both the protocols were

only effective for the undirected communication topology. For

multi-agent systems with the general linear dynamics and the

directed communication topology, the event-triggered consen-

sus problem was investigated in [20]. The consensus proto-

col in [20] could make multi-agent systems achieve consensus

without continuous communication, but the state differences

between agents would merely converge to the neighbourhood

of 0. In [21] a distributed consensus protocol was designed

to make the state differences between agents converge to 0 ul-

timately based on an event-triggered strategy and a necessary

and sufficient condition was proposed for the consensus.

In this paper, a new event-triggered consensus protocol

is proposed for the multi-agent systems with general linear

continuous-time dynamics based on a predictor. The com-

munication topology among agents is assumed to be general

directed. Under the consensus protocol and the triggering

function proposed in this paper, the multi-agent systems can

achieve consensus without continuous communication. Then,

the Zeno behavior is proved to be nonexistent. In addition,

the method proposed in this paper can make the multi-agent

systems achieve consensus with much fewer event-triggering

times than the existing methods.

The rest of this paper is organized as follow. Some useful

notations and the graph theory are introduced in Section 2. The
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design of the consensus protocol based on the event-triggered

strategy is given in Section 3. In Section 4, the analysis of the

consensus protocol is presented. A numerical example is given

in Section 5 to illustrate the efficiency and the advantage of the

event-triggered consensus protocol presented in this paper. At

last, Section 6 concludes the paper.

2 Notation and graph theory

The notation and the graph theory used in this paper are in-

troduced in this section. Let Rm×n denote the set of m × n

real matrices. 0m×n denotes the m × n matrix with all ze-

ros. Im×n and In denote the m × n and n × n identity ma-

trix respectively. 1n denotes the n × 1 column vector of all

ones. A diagonal matrix with xi(i = 1, 2, · · · , n) is denoted

by diag(x1, x2, · · · , xn). A⊗B denotes the Kronecker prod-

uct of matrices A and B. Let ‖ ∗ ‖ denote the Euclidean norm

for vectors and the induced 2-norm for matrices, respectively.

Re(∗) denotes the real part of a complex number and λi(∗)
denotes the ith eigenvalue of a matrix.

The communication topology among the N agents is rep-

resented by a weighted graph G = (V , ε,A). N agents in a

multi-agent system are regarded as nodes V = 1, 2, · · · , N of

the graph G. A directed graph contains a directed spanning tree

if there are directed paths from one node to every other ones.

The adjacency matrix is defined as A = [aij ] ∈ RN×N asso-

ciated with the directed graph G. Assume that for all i ∈ V ,

aii = 0, aij > 0 if eij ∈ ε and aij = 0 otherwise. The

directed edge eij ∈ ε denotes that agent i can receive infor-

mation from agent j. So agent i can be called as agent j’s

in-neighbor agent and agent j can be called as agent i’s out-

neighbor agent. L = [lij ] ∈ RN×N denotes the Laplacian

matrix of the directed graph G, where lii =
∑N

j=1 aij and

lij = −aij(i 6= j).

3 Design of the event-triggered consensus protocol

A linear continuous-time multi-agent system is consisted of

N agents, where the dynamics of agent i is described by

ẋi(t) = Axi(t) +Bui(t) (1)

where xi(t) ∈ Rn×1 and ui(t) ∈ Rm×1 are the state and

the control input, respectively. A ∈ Rn×n, B ∈ Rn×m are

constant matrices. The communication topology among the

N agents can be described by a directed weighted graph G.

Assumption 1 is necessary to obtain the main result.

Assumption 1 The matrix pair (A,B) in (1) is stabilizable

and the graph G contains a directed spanning tree.

The well-known consensus protocol for the multi-agent system

(1) is

ui(t) = K

N
∑

j=1

aij
[

xi(t)− xj(t)
]

(2)

In order to apply the protocol (2), a continuous communication

between agent i and j is needed. For the purpose of saving the

communication costs among agents, the event-triggered strat-

egy is applied to design the consensus protocol. Under the

event-triggered strategy, an event is designed for each agent in

the multi-agent system. And the agent broadcasts its current

information to its out-neighbor agents only when its event is

triggered. The following consensus protocol is designed

ui(t) = K

N
∑

j=1

aij
[

x̂i(t)− x̂j(t)
]

= K

N
∑

j=1

aij
[(

e
A(t−tiki

)
xi(t

i
ki
)

+

∫ t

ti
ki

eA(t−s)Bûi(s)ds
)

−
(

e
A(t−t

j

kj
)
xj(t

j
kj
) +

∫ t

t
j

kj

eA(t−s)Bûj(s)ds
)]

(3)

where K ∈ Rm×n is the feedback controlled gain matrix to be

determined. tiki
is the most recent triggering instant of agent

i, ki = 1, 2, 3, · · · represents the sequence number of the trig-

gering instant of the agent i. xi(t
i
ki
) is the last broadcast state

of agent i. x̂i(t) and ûi(t) represent the estimation of the state

and the control input of the agent i, respectively.

Then the measurement error is defined as

ei(t) = e
A(t−tiki

)
xi(t

i
ki
)+

∫ t

ti
ki

eA(t−s)Bûi(s)ds−xi(t) (4)

And the triggering function is defined as

fi(t) =
∥

∥ei(t)
∥

∥− c1e
−αt (5)

where c1 > 0, 0 < α < −maxRe(λi(Π)) and Π is defined

after (20).

From the triggering function (5), it can be seen that when

the triggering function fi(t) ≥ 0, agent i’s event is triggered.

Then agent i sends its current information including its state

and state differences between agent i and its in-neighbor agents

to its out-neighbor agents and updates its consensus protocol.

At the same time, the measurement error ei(t) is reset to 0. If

the triggering function fi(t) < 0, it means that the communi-

cation from agent i to its out-neighbor agents is unnecessary

until the next event is triggered. On the other hand, agent i

will update its consensus protocol as soon as it receives the in-

formation from its in-neighbor agents. And the events of all

agents are assumed to be triggered at the initial instant.

From (3), it can be seen that the main challenge of the event-

triggered consensus protocol proposed in this paper is how to

obtain the estimation of the control input. Next, a method of

estimating the control input is presented.

Define θip(t) = xi(t)− xp(t) and θi = [θTi1(t), θ
T
i2(t),

· · · , θT
i(i−1)(t), θ

T
i(i+1)(t), · · · , θTiN (t)]T , and (2) can be

rewritten as

ui(t) = K(a∗i ⊗ In)θi(t) (6)



If applying the protocol (2) to system (1), it is clear that

θ̇ip(t) =ẋi(t)− ẋp(t)

=A(xi(t)− xp(t)) +BK(a∗i ⊗ In)θi(t)

−BK(a∗p ⊗ In)θp(t)

(7)

where a∗i = [ai1, ai2, · · · , ai(i−1), ai(i+1), · · · , aiN ].
Then (7) can be rewritten as

θ̇i(t) = Ωiθi(t) (i = 1, 2, · · · , N) (8)

where
Ωi = IN−1 ⊗A+ (di + 1N−1a

∗
i −A∗

i )⊗BK

di = diag(l11, l22, · · · , l(i−1)(i−1), l(i+1)(i+1), · · · , lNN)

A∗
i =















a11 a12 ··· a1(i−1) a1(i+1) ··· a1N

a21 a22 ··· a2(i−1) a2(i+1) ··· a2N

...
...

...
...

...
a(i−1)1 a(i−1)2 ··· a(i−1)(i−1) a(i−1)(i+1) ··· a(i−1)N
a(i+1)1 a(i+1)2 ··· a(i+1)(i−1) a(i+1)(i+1) ··· a(i+1)N

...
...

...
...

...
aN1 aN2 ··· aN(i−1) aN(i+1) ··· aNN















And from (6), it can be known that the estimation problem

of agent i’s control input can be transformed into the estima-

tion problem of the state differences between agent i and its

neighbor agents. On the basis of (8), the following predictor is

designed to estimate the state difference between agent i and

its neighbor agents.

θ̂i(t) = e
Ωi(t−t

j

kj
)
θ̂i(t

j
kj
), t ≥ t

j
kj

(9)

where θ̂i(t
j
kj
) = [θ̂Ti1(t

j
kj
), θ̂Ti2(t

j
kj
), · · · , (xi(t

j
kj
) −

xj(t
j
kj
))T , · · · , θ̂TiN (tjkj

)]T , t
j
kj

is the most recent triggering

instant of agent i’s in-neighbor agent j.

Remark 1 It should be noted that (9) utilizes the artificial

closed-loop system (7) to predict the future state. Such a kind

of predictor was first proposed in our previous work [22] and

got further studied in [23, 24].

From (3) and (9), it can be seen that if agent j is triggered, then

agent j will send its current state xj(t
j
kj
) and state difference

θ̂j(t
j
kj
) to agent i at the triggering instant t

j
kj

. At the same

time, agent i updates the state difference between itself and

agent j using the state information xj(t
j
kj
). So θ̂i(t)(t ≥ t

j
kj
)

can be obtained based on the updated θ̂i(t
j
kj
) and the triggering

instant t
j
kj

. The estimation of the control input ûi(t) and ûj(t)
in (3) can be obtained

ûi(t) = K(a∗i ⊗ In)e
Ωi(t−tiki

)
θ̂i(t

i
ki
), t ≥ tiki

(10)

ûj(t) = K(a∗j ⊗ In)e
Ωj(t−t

j

kj
)
θ̂j(t

j
kj
), t ≥ t

j
kj

(11)

where tiki
and t

j
kj

are the most recent triggering instants of

agent i and agent j respectively.

Definition 1 For the linear continuous-time multi-agent sys-

tem (1), if limt→∞ ‖xi(t) − xj(t)‖ = 0 holds, it can be said

that the protocol (3) can solve the consensus problem or the

multi-agent system (1) can achieve consensus under the proto-

col (3).

Lemma 1 [25] If the graph G contains a directed spanning

tree, zero is the simple eigenvalue of the Laplacian matrix L
and all the other eigenvalues have positive real parts. Other-

wise, 1N is a right eigenvector associated with the zero eigen-

value.

Lemma 2 [26] For the Hurwitz matrix M ∈ Rn×n, when t ≥
0, there exist a cM > 0 such that

∥

∥eMt
∥

∥ ≤ cMeµM t holds,

where max{Re(λi(M))} < µM < 0.

Lemma 3 For the linear continuous-time multi-agent system

(1) with the event-triggered consensus protocol (3) and the

triggering function (5), if all the matrices A + λs(L)BK

(s = 2, 3, · · · , N) are Hurwitz, then all the matrices Ωi =
IN−1 ⊗ A + (di + 1N−1a

∗
i − A∗

i ) ⊗ BK (i = 1, 2, · · · , N)
are also Hurwitz.

Proof An invertible matrix can be taken as S−1
i =

[

Pi

Qi

]

,

where Pi = [1, 0, 0, · · · , 0] ∈ R1×N , Qi ∈ R(N−1)×N is a

matrice which is derived by inserting −1N−1 before the ith

column or after the i−1th column of the identity matrix IN−1,

i.e.

Qi =















1 0 · · · −1 · · · 0 0
0 1 · · · −1 · · · 0 0
...

...
...

...
...

0 0 · · · −1 · · · 1 0
0 0 · · · −1 · · · 0 1















.

By the definition of the Laplacian matrix L, it is clear that

S−1
i LSi =

[

0 li1
0 di + 1N−1a

∗
i −A∗

i

]

(12)

where li1 = [l11, l12, · · · , l1(i−1), l1(i+1), · · · , l1N ].
It is assumed that λ1(L) = 0, λ2(L), · · · , λN (L) are the

eigenvalues of the Laplacian matrix L. From (12), it can be

seen that λs(L)(s = 2, 3, · · · , N) are the eigenvalues of di +
1N−1a

∗
i − A∗

i . Therefore, there exists an invertible matrix Ti

such that di + 1N−1a
∗
i −A∗

i is similar to a Jordan canonical

matrix.

T−1
i (di + 1N−1a

∗
i −A∗

i )Ti = Ji = diag(J i
1, J

i
2, · · · , J i

mi
)

(13)

where J i
k(k = 1, 2, · · · ,mi) are upper triangular Jordan

blocks. And the principal diagonal elements of J i
k are

λs(L)(s = 2, 3, · · · , N).
Therefore, the following equation can be obtained

(Ti ⊗ In)
−1(IN−1 ⊗A+ (di + 1N−1a

∗
i −A∗

i )⊗BK)×
(Ti ⊗ In) = IN−1 ⊗A+ Ji ⊗BK

(14)

where IN−1 ⊗ A + Ji ⊗ BK is an upper triangular block

matrix.

According to the properties of Kronecker product[27], it can

be known that the eigenvalues of IN−1 ⊗ A + Ji ⊗ BK are



given by the eigenvalues of A + λs(L)BK(s = 2, 3, · · · , N),
i.e. the eigenvalues of the matrix Ωi are the same as the ones

of A + λs(L)BK(s = 2, 3, · · · , N). As a result, if all the

matrices A + λs(L)BK(s = 2, 3, · · · , N) are Hurwitz, the

matrice Ωi is surely Hurwitz. The proof is completed.

4 Analysis of the event-triggered consensus protocol

The following theorem presents the main results of this pa-

per.

Theorem 1 Under the event-triggered consensus protocol (3)

and the triggering function (5), the consensus problem of the

linear continuous-time multi-agent system (1) with a directed

topology G can be solved without continuous communication

if and only if all the matrices A+λi(L)BK (i = 2, 3, · · · , N)
are Hurwitz, where λi(L) 6= 0. In addition, the Zeno behavior

does not exist.

Proof (Sufficiency) From the measurement error (4), it is clear

that

e
A(t−tiki

)
xi(t

i
ki
)+

∫ t

ti
ki

eA(t−s)Bûi(s)ds = xi(t)+ei(t) (15)

Substituting (15) into (3) yields

ui(t) = K

N
∑

j=1

aij [xi(t) + ei(t)− xj(t)− ej(t)]

= K[lix(t) + lie(t)]

(16)

where li = [li1, li2, · · · , liN ] represents the ith row of the

Laplacian matrix L, x(t) = [xT
1 (t), x

T
2 (t), · · · , xT

N (t)]T and

e(t) = [eT1 (t), e
T
2 (t), · · · , eTN(t)]T .

Then substituting (16) into (1) yields

ẋi(t) = Axi(t) +BK[lix(t) + lie(t)] (17)

Define δi(t) = xi(t) − x1(t), then it can be known

that the multi-agent system (1) will achieve consensus when

limt→∞ ‖δi(t)‖ = 0 holds. On the basis of (17), one can ob-

tain that

δ̇i(t) = ẋi(t)− ẋ1(t)

= Aδi(t)

+BK

N
∑

j=1

aij
[

xi(t) + ei(t)− xj(t)− ej(t)
]

−BK

N
∑

j=1

a1j
[

x1(t) + e1(t)− xj(t)− ej(t)
]

(18)

And (18) can be transformed into the following form.

δ̇(t) =[IN−1 ⊗A+ (L22 + 1N−1a
∗
1)⊗BK]δ(t)

+ [(A22 + 1N−1a1 +M)⊗BK]e(t)
(19)

where δ(t) =[δT2 (t), δ
T
3 (t), · · · , δTN(t)]T ,

e(t) =[eT1 (t), e
T
2 (t), · · · , eTN(t)]T ,

a∗1 =[a12, a13, · · · , a1N ],

ai =[ai1, ai2, · · · , aiN ],

M =











l11 0 · · · 0
l11 0 · · · 0
...

...
...

l11 0 · · · 0











∈ R(N−1)×N

L22 =











l22 −a23 · · · −a2N
−a32 l33 · · · −a3N

...
...

. . .
...

−aN2 −aN3 · · · lNN











A22 =











−a21 −a22 · · · −a2N
−a31 −a32 · · · −a3N

...
...

...

−aN1 −aN2 · · · −aNN











Then (19) can be rewritten as

δ̇(t) = Πδ(t) +We(t) (20)

where Π = IN−1⊗A+(L22+1N−1a
∗
1)⊗BK , W = (A22+

1N−1a1 +M)⊗BK .

If agent i is triggered, i.e. fi(t) ≥ 0, then its measurement

error ei(t) will be reset to 0. It means that fi(t) will not cross

0 and the measurement ei(t) satisfies
∥

∥ei(t)
∥

∥ ≤ c1e
−αt be-

fore agent i is triggered. Clearly,
∥

∥e(t)
∥

∥ ≤
√
Nc1e

−αt and

limt→∞

∥

∥e(t)
∥

∥ = 0 holds. Therefore, it can be seen that if the

matrix Π is Hurwitz, then the system (20) can asymptotically

converge to 0 as t → ∞, i.e. the multi-agent system (1) can

achieve consensus under the consensus protocol (3) and the

triggering function (5).

Following Lemma 3, an invertible matrix can be taken as

S−1 =

[

1 0
−1N−1 IN−1

]

, then it has that S−1LS =
[

0 −a∗1
0 L22 + 1N−1a

∗
1

]

. Therefore, it can be proved as like

Lemma 3 that the eigenvalues of the matrix Π are the same as

the ones of A+ λi(L)BK(i = 2, 3, · · · , N). As a result, if all

the matrices A+λi(L)BK(i = 2, 3, · · · , N) are Hurwitz, the

matrice Π is surely Hurwitz. Then the system (20) can asymp-

totically converge to 0 as t → ∞, i.e. the multi-agent system

(1) can achieve consensus under the consensus protocol (3)

and the triggering function (5).

(Necessity)It is assumed that not all the matrices A +
λi(L)BK(i = 2, 3, · · · , N) are Hurwitz, so it is clear that

the matrice Π is not Hurwitz. If the initial value of δ(t) is not

0, then δ(t) will go to infinity as t → ∞. So the multi-agent

system (1) can not achieve consensus under the consensus pro-

tocol (3) and the triggering function (5).



Next, the nonexistence of the Zeno behavior in the control

process will be proved. From (4), it can be derived that

ėi(t) =Ae
A(t−tiki

)
xi(t

i
ki
) +Bûi(t)

+

∫ t

ti
ki

AeA(t−s)Bûi(s)ds− ẋi(t)

=A
[

eA(t−tiki
)xi(t

i
ki
) +

∫ t

ti
ki

eA(t−s)Bûi(s)ds
]

+Bûi(t)−Axi(t)−Bui(t)

=Aei(t) +BK(a∗i ⊗ In)e
Ωi(t−tiki

)
θ̂i(t

i
ki
)−Bui(t)

(21)

And (16) can be rewritten as

ui(t) = K(l∗i ⊗ In)δ(t) +K(li ⊗ In)e(t) (22)

where l∗i = [li2, li3, · · · , liN ].
Then substituting (22) into (21) yields

ėi(t) =Aei(t) +BK(a∗i ⊗ In)e
Ωi(t−tiki

)
θ̂i(t

i
ki
)

−BK(l∗i ⊗ In)δ(t)−BK(li ⊗ In)e(t)
(23)

From the triggering function (5), it can be known that
∥

∥ei(t)
∥

∥ ≤ c1e
−αt. Then it can be obtained that

‖ėi(t)‖
≤ ‖A‖‖ei(t)‖ + ‖BK‖‖a∗i ⊗ In‖‖eΩi(t−tiki

)‖‖θ̂i(tiki
)‖

+‖BK‖‖l∗i ⊗ In‖‖δ(t)‖+ ‖BK‖‖li ⊗ In‖‖e(t)‖
≤ ‖A‖c1e−αt + ‖BK‖‖a∗i ⊗ In‖‖eΩi(t−tiki

)‖‖θ̂i(tiki
)‖

+‖BK‖‖l∗i ⊗ In‖‖δ(t)‖+ ‖BK‖‖li ⊗ In‖
√
Nc1e

−αt

(24)

From Lemma 3, it can be known that if all the matrices

A + λi(L)BK (i = 2, 3, · · · , N) are Hurwitz, then all

the matrices Ωi(i = 1, 2, · · · , N) and Π are also Hurwitz.

Then it follows from Lemma 2 that ‖eΠ(t−s)‖ ≤ cΠe
µΠ(t−s)

and ‖eΩi(t−tiki
)‖ ≤ cΩi

e
µΩi

(t−tiki
)
, where µΩi

< 0, µΠ <

0, cΩi
> 0, cΠ > 0. The solution of (20) can be obtained.

δ(t) = eΠtδ(0) +

∫ t

0

eΠ(t−s)We(s)ds (25)

According to Lemma 2, it has that

‖eΠ(t−s)We(s)‖ ≤β2e
µΠ(t−s)e−αs (26)

where β2 = c1cΠ
√
N‖W‖. So it can be derived that

‖δ(t)‖ =‖eΠtδ(0) +

∫ t

0

eΠ(t−s)We(s)ds‖

≤β1e
µΠt +

∫ t

0

β2e
µΠ(t−s)e−αsds

=η1e
µΠt + η2e

−αt

(27)

where β1 = cΠ‖δ(0)‖, η1 = β1 + β2

|µΠ+α| , η2 = β2

|µΠ+α| .

Substituting (27) into (24) yields

‖ėi(t)‖ ≤ ϕie
−αt+φie

µΠt +ωie
µΩi

(t−tiki
)‖θ̂i(tiki

)‖ (28)

where

ϕi = ‖A‖c1 + ‖BK‖‖l∗i ⊗ In‖η2 + ‖BK‖‖li ⊗ In‖
√
Nc1

φi = ‖BK‖‖l∗i ⊗ In‖η1
ωi = ‖BK‖‖a∗i ⊗ In‖cΩi

From the triggering function (5), it can be seen that when

‖
∫ t

ti
ki

ėi(s)ds‖ = c1e
−αt holds, the events will be triggered.

From (28), it can be known that

∥

∥

∥

∫ t

ti
ki

ėi(s)ds
∥

∥

∥
≤

∫ t

ti
ki

‖ėi(s)‖ds

≤
∫ t

ti
ki

(ϕie
−αs + φie

µΠs + ωie
µΩi

(s−tiki
)‖θ̂i(tiki

)‖)ds (29)

where 0 < tiki
< t.

So it can be seen that the event of agent i will

not be triggered before
∫ t

ti
ki

(ϕie
−αs + φie

µΠs +

ωie
µΩi

(s−tiki
)‖θ̂i(tiki

)‖)ds = c1e
−αt holds. Define ti1

and ti2 are the two neighbouring triggering instants of the

agent i satisfying 0 < ti1 < ti2. Let τ = ti2 − ti1 denote the

interval between the two neighbouring triggering instants,

and it has been known that −α, µΠ, µΩi
< 0, so there exists

e−αs, eµΠs, eµΩi
(s−ti1) ≤ 1. So it has that

∫ t

ti1

(ϕie
−αs + φie

µΠs + ωie
µΩi

(s−ti1)‖θ̂i(ti1)‖)ds

≤
∫ t

ti1
(ϕi + φi + ωi‖θ̂i(ti1)‖)ds (30)

And it can be known from the triggering function that τ is

the solution of the function ‖
∫ ti1+τ

ti1
ėi(s)ds‖ = c1e

−α(ti1+τ).

Therefore, the value of τ must be greater than or equal to the

solution of the following function, i.e. τ ≥ τ∗.

(ϕi + φi + ωi‖θ̂i(ti1)‖)τ∗ = c1e
−α(ti1+τ∗) (31)

Thus there must be a positive lower bound on interval between

any two neighbouring event-triggered instants. The Zeno be-

havior is proved nonexistent. The proof is completed.

For the linear continuous-time multi-agent system (1) with

the event-triggered consensus protocol (3) and the triggering

function (5), an appropriate K can be chosen to ensure that all

the matrices A+ λi(L)BK (i = 2, 3, · · · , N) are Hurwitz by

the following steps.

Step 1 It has been assumed that (A,B) in (1) is stabiliz-

able in Assumption 1,thus the Riccati equation ATP + PA−
PBBTP + In = 0 has a unique nonnegative definite solution

P , and all the eigenvalues of A − BBTP are in the open left

half plane[28].



Step 2 For any σ ≥ 1 and ω ∈ R, all the eigenvalues of A −
(σ+jω)BBTP (j2 = −1) are in the open left half plane[29].

Step 3 Select K = −cBTP , where c > 1
min(Re(λi(L))) ,

where λi(L) 6= 0 (i = 2, 3, · · · , N).

5 Simulation

In this section, a numerical examples is given to illustrate

the effectiveness and the advantage of the method proposed in

this paper.

Consider a linear continuous-time multi-agent system consists

of six agents. The dynamics model of agent i is described by

the system (1) with

A =

[

0 1
−1 0

]

, B =

[

1
1

]

The communication topology among the six agents is de-

scribed by a weighted graph as shown in Figure 1. Let the

initial state of the system be x1(0) = [0.4 0.3]T , x2(0) =
[0.5 0.2]T , x3(0) = [0.6 0.1]T , x4(0) = [0.7 0]T , x5(0) =
[0.8 − 0.1]T , x6(0) = [0.4 − 0.2]T . The feedback gain

matrix is designed as K = [−2.2 − 1.1]. And the other pa-

rameters are c1 = 0.6 and α = 0.4. The Laplacian matrix of

the weighted graph is

L =

















3 0 0 − 1 − 1 − 1
−1 1 0 0 0 0
−1 − 1 2 0 0 0
−1 0 0 1 0 0
0 0 0 − 1 1 0
0 0 0 0 − 1 1

















Fig. 1: Communication topology among the six agents

Fig 2 shows the state trajectories of all the six agents. It

can be seen that the linear continuous-time multi-agent system

can achieve consensus, which means the event-triggered con-

sensus protocol proposed in this paper can solve the consen-

sus problem of multi-agent systems effectively. In Fig 3, the

measurement error of each agent and the threshold of errors

are presented. It can be seen that when the measurement error

reaches the threshold, the event is triggered, then the measure-

ment error is reset to zero.

Table 1 lists comparisons between the methods in [20] [21]

and the method this paper in terms of event-triggered times of

each agent. It can be seen that the event-triggered times using

the method in this paper is much fewer than using the methods

in [20] and [21].
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Fig. 2: State trajectories of all the agents
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Fig. 3: Measurement errors and the threshold of errors by

using the method in this paper

Table 1: The event-triggered times using different methods

agent [20] [21] our method

1 25 38 18

2 12 16 3

3 19 24 5

4 12 11 3

5 12 12 2

6 11 16 5



6 Conclusion

This paper has investigated the event-triggered consensus

for linear continuous-time multi-agent systems under the di-

rected communication topology based on a predictor. A new

event-triggered protocol has been designed based on a state

predictor for the linear continuous-time multi-agent systems

to achieve consensus without continuous communication. The

consensus protocol provided in this paper only requires each

agent to monitor its state to determine the event-triggered in-

stants. And the Zeno behavior has been proved to be nonex-

istent. On the other hand, an advantage of the method pro-

posed in this paper is that it can make the multi-agent systems

achieve consensus with much fewer event-triggered times. So

the method in this paper can reduce the unnecessary communi-

cation among agents more effectively and save more commu-

nication costs.
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