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Abstract: A weak linear bilevel programming (WLBP) problem often models problems involving 

hierarchy structure in expert and intelligent systems under the pessimistic point. In the paper, we 

deal with such a problem. Using the duality theory of linear programming, the WLBP problem is 

first equivalently transformed into a jointly constrained bilinear programming problem. Then, we 

show that the resolution of the jointly constrained bilinear programming problem is equivalent to 

the resolution of a disjoint bilinear programming problem under appropriate assumptions. This 

may give a possibility to solve the WLBP problem via a single-level disjoint bilinear programming 

problem. Furthermore, some examples illustrate the solution process and feasibility of the 

proposed method. Finally, the WLBP problem models a principal-agent problem under the 

pessimistic point that is also compared with a principal-agent problem under the optimistic point. 
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1. Introduction  

Bilevel programming problems are hierarchical optimization problems in which their 

constraints are defined in part by another parametric optimization problem, and have been 

investigated by many authors. The reader can refer to the monographs and surveys 

[9,13,15,16,26,34,35,45,46]. 
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As is well-known, bilevel programming plays an exceedingly important role in a variety of 

fields, such as transportation [10], electricity markets [44], supply chain [22], product distribution 

[39], economics [8], ecology [23] and engineering [25]. When the set of solutions of the lower 

level problem is not a singleton, however, it is difficult for the leaders to optimize his/her choice 

unless he knows the follower's reaction to his/her choice. In this situation, it is rational that the 

leader guards against the possible worst choice of the follower. This leads to a weak bilevel 

programming   problem, see [29,32,48] and the references therein. 

The weak bilevel programming problem, also called a pessimistic formulation of bilevel 

programming or a weak Stackelberg problem [32,36], has been studied for decades. For example, 

Refs. [1-3,33] presented sufficient conditions for guaranteeing that solutions to such a problem 

exist; Refs. [28,30,31,36] discussed the stability behavior of perturbed weak bilevel programming 

problems; and Refs. [14,17] dealt with optimality conditions. In addition, the weak bilevel 

programming model has been widely applied to various real-world problems, such as risk averse 

second best toll pricing [8], production planing [40] and principal-agent problem [40]. 

A limited number of papers have been contributed to solution algorithms for the weak bilevel 

programming problems. For example, Loridan and Morgan [32] presented an approximation 

method indirectly through a sequence of optimistic bilevel programming problems. Wiesemann et 

al. [43] presented a solvable  -approximation algorithm for an independent pessimistic bilevel 

programming problem in which the feasible region of the lower level problem does not depend on 

the upper level decision variable. Cervinka et al. [11] proposed a new numerical method to 

compute approximate and relaxed pessimistic solutions to a mathematical program with 

equilibrium constraints which is a generalized bilevel programming problem. 

Note that, weak bilevel programming problem even in its simplest form, i.e. in which both 

objective functions of leader and follower are linear and the constraint region is a polyhedron, is 

NP-hard [43]. Such a problem is called weak linear bilevel programming (WLBP) problem. There 

are two main methods to solve WLBP problems: penalty method and Kth-Best algorithm. 

In a penalty method, a penalized problem is obtained by using the strong duality theory of linear 

programming to solve a WLBP problem. In fact, it is a disjoint bilinear programming problem (for 

details, see Section 2) but its objective function or constraint region depends on a penalty 

parameter [1,47]. In general, penalty parameters may be very large and lead to computational 



instabilities. 

  In the Kth-Best algorithm, the advantages are that such a algorithm can obtain a global solution 

of WLBP problems and terminates after the finite number of iterations [49]. However, the prior 

condition of its implement is generating all vertices of the constraint region of WLBP problems. It 

is not an easy work although there are many methods proposed to obtain all vertices of a 

polyhedron. 

  In this paper, we present a reducibility method for a WLBP problem which is different from the 

related papers [1,47,49], and has the following features: 

  (i) in our paper, the WLBP problem is reduced to disjoint bilinear programming problems in 

which the objective function and the constraint region do not involve penalty parameters. 

 (ii) to obtain a solution of the WLBP problem, the proposed reducibility method is finite, that is, 

it only requires solving two disjoint bilinear programming problems and a linear programming 

problem. 

(iii) the proposed method is only applied to solving the WLBP problem at present. That is, it 

depends on the structure of the targeted problem which shows a disadvantage of the proposed 

method. 

The contributions of the paper are as follows. 

 (i) In fact, the WLBP problem is a three layered structural optimization problem. An advantage 

of the proposed reducibility method is that the WLBP problem is reduced to a single-level scalar 

optimization problem (i.e. disjoint bilinear programming problem) which is easier in the model 

structure, theoretical analysis  and algorithm design  than that of the WBLP problem. 

(ii) We show that the resolution of the resulting jointly constrained bilinear programming 

problem via transforming the WLBP problem is equivalent to the resolution of a disjoint bilinear 

programming problem. This may give a possibility to solve indirectly the WLBP problem via a  

disjoint bilinear programming problem. 

(iii) Indeed, the proposed method is a method for solving the disjoint bilinear programming 

problem. Other methods solve such a problem but depend on the penalty parameters, for example, 

in [1,47]. A comparison is made with these penalty methods in Section 5.2. It is demonstrated that  

in most cases the proposed method can obtain the same solutions as that of penalty methods in 

[1,47]. However, these penalty methods lead to computational instabilities when penalty 



parameters are very large. 

(iv) To the author's knowledge, most studies ten years ago were focused on theory analysis of 

weak bilevel programming problems (e.g. existence results of solutions, stability behavior and 

optimality condition). Not so much has been discussed about the solution algorithms. The 

proposed reducibility method in this paper not only enriches the research WLBP problems, but 

also provides a way to study the weak bilevel programming problems with special structures. 

  The remainder of this paper is organized as follows. In the next section, we recall the bilinear 

programming and WLBP problems. In Section 3, we present a duality transformation model, and 

reduce the WLBP problem to a disjoint bilinear programming problem in Section 4. Section 5 

presents some numerical examples to illustrate the proposed method. Section 6 develops an 

example of principal-agent problem to describe the application of the proposed method. Finally, 

concluding remarks are summarized in Section 7. 

 

2. Formulation and basic definitions  

In this section, we first review the bilinear programming problem in detail and then give the 

formulation and basic definitions of the WLBP problem. 

2.1 Bilinear programming problem  

In general, the bilinear programming problem is formulated as follows: 

,
min [ ] 

x y
c x y Qx d y
• • •  

s.t. ( , ) : {( , ) : , , },  x y x y Cx Dy q x y 0S „ …                                       (1) 

where , nx c ¡ , , my d ¡ , p nC ¡ , 
p mD ¡ , pq ¡  , and •  stands for transpose. 

In problem (1), the objective function is called bilinear if it reduces to a linear one by fixing the 

vector x or y to a particular value. The bilinear programming problem (1) is said to be jointly 

constrained bilinear programming problem [5,24,41]. 

A number of authors have investigated special cases of problem (1). Most of the effort has 

focused on the following bilinear programming problem: 

,
min [ ] 

x y
c x y Qx d y
• • •  

s.t. ,X Y x y ,                                                             (2) 

where X and Y are given polyhedra. The variables x and y participating in the bilinear term of the 



objective function in problem (2) are independently constrained. Problem (2) is said to be disjoint 

bilinear programming problem [4,7]. It is also called separably constrained bilinear programming 

problem [41]. 

Problem (2) can be solved by the cutting plane method of Ritter [37]. Konno [27] modified this 

method to solve problem (2) but failed to guarantee convergence to a global solution. Very similar 

to that of [27], Vaish and Shetty [42] proposed a cutting plane method which has not guarantee of 

finite convergence. To avoid constructing expensive disjunctive facial cuts and achieve fast 

convergence, Ding and Al-Khayyal [18] presented two linear cutting plane method which 

combines the generation of polar cuts with the computation of lower bounds. Using the duality 

theory of linear programming, Falk [20] developed a finite branch-and-bound algorithm; Gallo 

and Ulkucu [21] presented a new variant of cutting plane method. Audet et al. [7] developed an 

exact method without any assumptions regarding boundedness of the feasible region or of the 

optimal objective value. Alarie et al. [4] proposed a new algorithm which combines concavity cuts 

and branch-and-bound for problem (2). More recently, Effati, Mansoori and Eshaghnezhad [19] 

applied the projection neural network to solving problem (2). 

The reader interested in a more detailed overview of the different methods of problems (1) and 

(2) can be referred to the surveys [5,6]. 

2.2 WLBP problem 

In this paper, we consider the following WLBP problem: 

( )

min sup [ ]
X 


1

x y x

c x d y
• •                                                         (3) 

where ( ) x  is the set of solutions to the lower level problem 

min
2

y 0
d y
•

…
 

s.t. .Ax By b„                                                             (4) 

Here, , nx c ¡ , , , m
1 2

y d d ¡ , 
p nA ¡ , 

p mB ¡ , pb ¡ , and X is a closed subset of 
n¡ . 

Definition 2.1. (a) Constraint region of problem (3): 

: {( , ) : , , }.W X  x y x Ax By b y 0„ …  

(b) Projection of W onto the leader's decision space: 

( ) : { : ,such that ( , ) }.W X X W   x y x y  

(c) Feasible set for the follower ( )W X x : 



( ) : { : , }.Y  x y By b Ax y 0„ …  

(d) The follower's rational reaction set for ( )W Xx : 

 

(e) Inducible region or feasible region of the leader: 

IR : {( , ) : ( , ) , ( )}.W  x y x y y x  

 To introduce the concept of a solution to problem (3) (also called pessimistic solution), one 

usually employs the following value function ( ) x : 

( )

( ) : sup .


 
1

y x

x c x d y
• •  

Definition 2.2. A point ( * *,x y ) IR  is called a pessimistic solution to problem (3), if 

* * *( ) ,  
1

x c x d y
• •  

*( ) ( ), ( , ) IR.   x x x y„  

 

3. Duality transformation   

In this section, using the duality theory of linear programming, we will transform the WLBP 

problem into an equivalent single-level nonconvex optimization problem. To ensure the existence 

of solutions of the WLBP problem, we first introduce the following two assumptions which are 

from [1]: 

(A1) For any Xx , ( )Y x , and there exists a compact subset Z of 
m¡ such that 

( )Y Zx . 

(A2) The set X is a nonempty polytope. 

Then, we have the following result. 

Theorem 3.1. Under assumptions (A1) and (A2), the WLBP problem has at least one solution. 

Proof. It follows immediately from Theorem 3.3 in [1] or Theorem 4.1 in [33].  

Obviously, the dual problem of (4) is written as: 

max ( ) 
z 0

b Ax z
•

…
 

s.t. ,
2

B z d
• „                                                               (5) 

where p
z ¡ . 

( ) : { : arg min[ : ( )]}.Y   
2

x y y d y y x
•



Denote the feasible region by 1 : { : }Z  
2

z 0 B z d
•… „ , and the duality gap between problems 

(4) and (5) by ( , , ) : ( )   
2

x y z d y b Ax z
• • . 

By the strong duality theorem of linear programming, we have ( )y x  if and only if 

( )Yy x and there exists 
1Zz  such that ( , , ) 0 x y z . 

Since ( , , ) 0 x y z …  is always true, ( , , ) 0 x y z  can be replaced by 

( , , ) 0. x y z „  

Based on the above results, we find that 

( )
max


1
y x

d y
•  

is equivalent to the following problem: 

,
( ) maxP

1
y z

x d y
•

 

s.t. ( ) 0, 
2

d y b Ax z
• • „  

,By b Ax„  

,
2

B z d
• „  

, .y z 0…                                                         (6) 

Denote 

2 ( ) : {( , ) : ( ) 0, , , , }.    
2 2

x y z d y b Ax z By b Ax B z d y z 0
• • •Z „ „ „ …  

Moreover, we denote by ( )V A  the set of vertices of a polyhedron A . 

For each Xx , the dual problem of (6) is: 

, ,
min ( )
u

 
2

v w
b Ax v d w

• •  

s.t. ,u  
2 1

d B v d
• „  

( ) ,u  b Ax Bw 0„  

, , ,u v w 0…                                                              (7) 

where u ¡ , pv ¡  and mw ¡ . 

Since both problems (6) and (7) have the same optimal value, the WLBP problem can be 

equivalently transformed into a jointly constrained bilinear programming problem as follows: 

, , ,
min ( )
u

  
2

x v w
c x b Ax v d w
• • •  



s.t. ,u  
2 1

d B v d
• „  

( ) ,u  b Ax Bw 0„  

, , , .X ux v w 0…                                                       (8) 

 Clearly, the feasible region of problem (8) has a bilinear inequality which may lead to 

computational complexity. So, in the following, we try to avoid this bilinear term. 

 

4. Reduction of (8) to a single-level disjoint bilinear programming problem 

In this section, exploiting the particular form of the nonconvex optimization problem (8), we 

will show that the resolution of the problem (8) is equivalent to the resolution of the following 

disjoint bilinear programming problems (9) and (10). 

Consider the following two disjoint bilinear programming problems: 

, , ,
min ( )
u

  
2

x v w
c x b Ax v d w
• • •  

s.t. , 
1

B v d
• „   

,Bw 0„   

0,u   

, , ,Xx v w 0…                                                            (9) 

and 

µ

µ
, , ,
min ( )
u

u  
2

x v w

c x b Ax v d w
• • •  

s.t. ,u  
2 1

d B v d
• „  

µ ,Ax Bw b„  

µ, 0, , .X ux v w 0… …                                                     (10) 

Before giving the relationships among problems (8)-(10), we first present some notations and 

lemmas. Denote the feasible regions of problems (8)-(10) respectively by 

: {( , , , ) : , ( ) , , 0, , },u u u X u        
2 1

x v w d B v d b Ax Bw 0 x v w 0
• „ „ … …  

: {( , , , ) : , , 0, , , },D u u X    
1

x v w B v d Bw 0 x v w 0
• „ „ …  

µ µ µ: {( , , , ) : , , , 0, , }.u u X u     
2 1

x v w d B v d Ax Bw b x v w 0
•E „ „ … …  



 Furthermore, we split   into two sets: 

 
1 : {( , , , ) : ( , , , ) , 0},u u u   x v w x v w  

2 : {( , , , ) : ( , , , ) , 0}.u u u   x v w x v w  

It is easy to verify that 
1 D  . 

Also, we split E  into two sets: 

µ µ
1 : {( , , , ) : ( , , , ) , 0},E u u E u  x v w x v w   

µ µ
2 : {( , , , ) : ( , , , ) , 0}.E u u E u  x v w x v w  

The following three lemmas give the relationships among the feasible regions of problems 

(8)-(10). 

Lemma 4.1. There is a one-one correspondence between 
2  and 

2E . 

Proof. It is easy to verify that there is a one-one correspondence between 
2  and 

2E by 

2 2( , , , ) ( , , , ) ,u u E
u

  
w

x v w x v                                             (11) 

µ µ
2 2( , , , ) ( , , , ) .u E u u  x v w x v w                                            (12) 

This completes the proof. 

Lemma 4.2. µ µ
2{( , , , ) : ( , , , ) }D u u u E   x v w x v w . 

Proof. The result follows immediately from Lemma 4.1. 

Lemma 4.3. If assumptions (A1) and (A2) are satisfied, then  E . 

Proof. For each Xx , it is easy to check that 
2 ( ) xZ  under assumption (A1). Then, it 

follows from Theorem 1 in [12] that    . 

Now, we prove E    by contradiction. Suppose that E , then 2E   and 2  . 

Furthermore, the set 

 : { : , }Q   
1

v B v d v 0
• „ …   

is also empty, which implies that D   . 

Thus, we have 

1 2 2D      



which contradicts    . 

Hence,  E . This completes the proof.  

The following two lemmas can guarantee the existence of solutions of problems (9) and (10) 

respectively. 

Lemma 4.4. Under assumptions (A1) and (A2), if D   , then problem (9) has at least one 

solution in  V D . 

Proof. For simplicity, we denote 

3 : {( , ) : , , , }.Z   
1

v w B v d Bw 0 v w 0
• „ „ …  

For each Xx , consider the following linear programming problem: 

3( , )
min [( ) ]

Z
 

2
v w

b Ax v d w
• •                                                    (13) 

and its dual problem is: 

,
max

1
y z

d y
•

 

s.t. ,By b Ax„  

,
2

B z d
• „  

, .y z 0…                                                                (14) 

Let 
1( )   be the marginal function defined on X by 

3
1

( , )
( ) : inf [ ( ) ].

Z



   

2
v w

x c x b Ax v d w
• • •  

It is easy to check that 
1( )   is a concave function, and we have 

1inf ( )
X


x
x  

3( , )
inf inf [ ( ) ]

X Z 
   

2
x v w

c x b Ax v d w
• • •  

1( , ) ( )

inf { sup }
X Y Z  

 
1

x y z x

c x d y
• •  

, ( )
inf [ ].

X Y 


1
x y x

c x d y
• •…                                                       (15) 

It follows from assumptions (A1) and (A2) that 

, ( )
inf [ ]

X Y 


1
x y x

c x d y
• •  

is attained, and denote the optimal value by 
*

F . Thus, the objective function 1( ) x  of problem  



(15) is bounded from below (e.g. 
*

F ). Using the result of Corollary 32.3.4 in [38], we can obtain 

that problem (15) has at least one solution in  V X . 

Without loss of generality, suppose that 
*

x  is a solution to problem (15). Substituting x with  

*
x  in problem 13), we have 

3

*

( , )
min [( ) ].

Z
 

2
v w

b Ax v d w
• •                                                   (16) 

Note that, the feasible region of problem (16) is not empty because of the result of Theorem 1 in 

[12] and the fact that the feasible region of problem (14) is not empty. 

Moreover, the objective function of problem (16) is bounded from below (e.g. * *
F c x

• ). 

Thus, there exists a solution * *

3( , ) ( )V Zv w to the linear programming problem (16). 

Hence, problem (9) has at least one solution * * *( ,0, , )x v w  in  V D . This completes the 

proof.  

Lemma 4.5. Under assumptions (A1) and (A2), problem (10) has at least one solution in ( )V E . 

Proof. Firstly, we introduce some notations: 

4 : {( , ) : , 0, },Z u u u   
2 1

v d B v d v 0
• „ … …  

µ µ µ
5 : {( , ) : , , }.Z b X  x w Ax Bw x w 0„ …  

For each µ
5( , ) Zx w , consider the following linear programming problem: 

µ
4( , )

min [( ) ]
u Z

u


 
2

v
b Ax v d w

• •  

and its dual problem is: 

max
1

y
d y
•

 

s.t. ,By b Ax„  

µ,
2 2

d y d w
• •„  

.y 0…                                                                  (17) 

Denote the feasible region of problem (17) by µ( , )Y x w% . 

Let 
2 ( )   be the marginal function defined on 

5Z  by 

µ µ
4

2
( , )

( , ) : inf [ ( ) ].
u Z

u


   
2

v
x w c x b Ax v d w

• • •  



Similar to the second part of the proof of Lemma 4.4, we can prove that problem (10) has at 

least one solution in ( )V E . 

Now, we have the following result which shows the relationships among problems (8)-(10). 

Theorem 4.1. Let assumptions (A1) and (A2) be satisfied. If µ( , , , )u


  
x v w  solves problem (10), 

then either µ( , , , )u u


   
x v w is a solution to problem (8) or problem (8) is solved by a solution to 

problem (9). 

Proof. To prove this result, we consider the following two cases: 

Case 1: 0u
  . 

Since µ( , , , )u


  
x v w  is a solution to problem (10), we have 

 µ( ) ( ) u


           
2

c x b Ax v c x b Ax v d w
• • • • •  

µ µ
2( ) , ( , , , ) .u u E    

2
c x b Ax v d w x v w
• • •„  

Using the relationships between 
2  and 

2E , i.e. (11) and (12), 
2( , , , )u x v w , we have 

( ) ( ) .      
2

c x b Ax v c x b Ax v d w
• • • • •„                                    (18) 

It is easy to check that ( ,0, , ) 
x v 0  is a feasible point of problem (9). Thus, D   , and it 

follows from Lemma 4.4 that problem (9) has at least one solution. Without loss of generality,  

assume that * * * *( , , , )ux v w  is a solution to problem (9). Then, we have 

 * * * *( ) ( ) .      
2

c x b Ax v d w c x b Ax v
• • • • •„                                  (19) 

Combining (18) and (19), ( , , , )u x v w , we can obtain that 

* * * *( ) ( ) ,     
2 2

c x b Ax v d w c x b Ax v d w
• • • • • •„  

which implies that 
* * * *( , , , )ux v w  is also a solution to problem (8). 

Case 2: 0u
  . 

µ
2( , , , )u E x v w , it follows from the definition of µ( , , , )u


  

x v w  that 

 µ µ( ) ( ) .u u


        
2 2

c x b Ax v d w c x b Ax v d w
• • • • • •„  

Using the relationships between 2  and 2E , i.e. (11) and (12), 2( , , , )u x v w , we have 



µ( ) ( ) ( ) .u


        
2 2

c x b Ax v d w c x b Ax v d w
• • • • • •„                          (20) 

Since we cannot determine whether the set 
1  is empty, we consider the following two cases: 

Case 2.1: 
1  . It follows from (20) that µ( , , , )u u


   

x v w  is a solution to problem (8). 

Case 2.2: 
1  . Then we have D   , and   assume that * * * *( , , , )ux v w  is a solution to 

problem (9). Furthermore, 
1( , , , )u x v w , we find that 

 * * * *( ) ( ) .     
2 2

c x b Ax v d w c x b Ax v d w
• • • • • •„                             (21) 

Eqs. (20) and (21) yield that problem (8) has at least a solution °( , , , )ux v w% %%  which is chosen 

from the set µ * * * *: {( , , , ),( , , , )}S u u u


    x v w x v w  such that 

°
( , , , )

( ) min [ ( ) ].
u S

      
2 2

x v w
c x b Ax v d w c x b Ax v d w% % %• • • • • •  

This completes the proof.  

Furthermore, it follows from Theorem 4.1 and its proof that we can easily obtain the following 

result. 

Theorem 4.2. Under assumptions (A1) and (A2), let * * * *( , , , )ux v w  (if it exists) and 

µ( , , , )u


  
x v w be solutions to problems (9) and (10) respectively. Then, the resolution of problem 

(8) is equivalent to the two disjoint bilinear programming problems (9) and (10) in the sense that 

1) If 0u
  , then * * * *( , , , )ux v w  is a solution to problem (8). 

2) If 0u
   and the solution of problem (9) does not exist, then µ( , , , )u u


   

x v w  is a solution 

to problem (8). 

3) If 0u
   and problem (9) has a solution, then °( , , , )u Sx v w% %% satisfying (22) is a solution to 

problem (8). 

Consequently, the resolution of problem (8) is equivalent to the resolution of the disjoint 

bilinear programming problems (9) and (10). Therefore, the WLBP problem is reduced to a  

disjoint bilinear programming problem. 

 

 



5. Experiment results 

In this section, we provide two examples to illustrate solution process and feasibility of the 

proposed method. 

Example 1: 

1 2 1 2
( )

min max 8 10 2
X

x x y y
 

   
x y x

 

where 1 2 1 2 1 2: { : ( , ) : 10, , 0}X x x x x x x  x
• „ … , and ( ) x  is the set of solutions to the lower 

level problem, 

1 2min y y 
y

 

1 2 1 2s.t. 20 ,y y x x  „  

1 2: ( , ) .y yy 0
• …  

Example 2: 

1 2 1 2 3 4
( )

min max 8 6 25 30 2 16
X

x x y y y y
 

     
x y x

 

where 1 2 1 2 1 2: { : ( , ) : 10, , 0}X x x x x x x  x
• „ … , and ( ) x  is the set of solutions of the lower 

level problem, 

1 2 3 4min 10 10 10 10y y y y   
y

 

1 2 3 4 1 2s.t. 10 ,y y y y x x    „  

1 4 1 20.8 0.8 ,y y x x  „  

  
2 4 24 ,y y x „  

1 2 3 4: ( , , , ) .y y y yy 0
• …  

5.1 Solution process of Example 1  

To better illustrate the proposed method in this paper, we explain definitions and theorems 

within the content of Example 1, and present a detailed solution process as follows. 

For Example 1, the constraint region is: 

1 2 1 2 1 2 1 2 1 2: {( , ) : 10, 20 , , , , 0}.W x x y y x x x x y y    x y „ „ …  

Projection of W onto the leader's decision space: 



( ) : { : ,such that ( , ) }.W X X W   x y x y  

The feasible set for the follower is: 

1 2 1 2 1 2( ) : { : 20 , , 0}.Y y y x x y y   x y „ …  

The follower's rational reaction set for ( )W Xx : 

1 2 1 2 1 2( ) : { : 20 , , 0}.y y x x y y     x y …  

Inducible region or feasible region of the leader: 

1 2 1 2 1 2 1 2 1 2IR : {( , ) : 10, 20 , , , , 0}.x x y y x x x x y y     x y „ …  

In fact, this example has a unique solution ( , ) : (0,10,0,10)x y%% . Let us verify this by using our 

method. Using problem (9), this example can be transformed as follows: 

1 2 1 2
1 2 1 2 1 2

, , , , ,
min 8 10 (20 )

x x u v w w
x x x x v w w        

s.t. 2,v„  

  1,v „  

1 2 0,w w „  

 0,u   

1 2 10,x x „   

1 2 1 2, , , , 0,x x v w w …  

and a solution to problem (23) is 

 * * * * * * * * * *

1 2 1 2( , , , ) : ( , , , , , ) (0,10,0,1,0,0).u x x u v w w x v w  

On the other hand, this example can be written as follows via problem (10): 

 
1 2 1 2

1 2 1 2 2
ˆ ˆ, , , , ,

ˆ ˆmin 8 10 (20 )
x x u v w w

x x x x v uw uw      
1  

s.t. 2,u v „  

1,u v „  

1 2 1 2
ˆ ˆ 20,x x w w    „  

1 2 10,x x „  

1 2 1 2
ˆ ˆ, , , , , 0.x x u v w w …  



A solution to problem (24) is 

µ
1 2 1 2

ˆ ˆ( , , , ) : ( , , , , , ) (0,10,0,1,0,0).u x x u v w w


         x v w  

It follows from the first result in Theorem 4.2 that 

° * * * *( , , , ) : ( , , , ) (0,10,0,1,0,0)u u x v w x v w% %%  

is a solution to problem (8) since 0u
  . 

 Furthermore, we solve the following linear programming problem ( )P x% : 

 
1 2

1 2
, ,

min 2
y y z

y y   

1 2s.t. 10 0,y y z   „  

1 2 10,y y „  

1,z „  

1 2, , 0,y y z…  

and a solution is ( , ) (0,10,1)y z%% . 

 Therefore, ( , ) (0,10,0,10)x y%%  is a solution to Example 1, and the leader's optimal objective  

function value is -90. 

Similar as above, we can obtain that : (10,0)x%  with : (0,0,0,0)y%  is a solution of Example 

2 whose optimal objective function value of the leader is -80. 

5.2. Comparison results   

Using penalty method and duality theory of linear programming, Aboussoror and Mansouri [1] 

transformed WLBP into a disjoint bilinear programming problem with a penalty parameter. Very 

similar to that of [1], Zheng et al. [47] presented another disjoint bilinear programming problem. 

However, in our paper, the WLBP problem is reduced to two disjoint bilinear programming 

problems without penalty parameters. In this section, so we describe some comparison results for 

these disjoint bilinear programming problems. 

To solve Example 2, using problems (9) and (10), we consider the following two disjoint 

bilinear programming problems: 

1 2 1 2 3 1 2 3 4
1 2 1 2 1 1 2 2

, , , , , , , , ,
min 6 8 (10 ) (0.8 0.8 )

x x u v v v w w w w
x x x x v x x v        



 2 3 1 2 3 44 10x v w w w w      

1 2s.t. 10,x x „   

1 2 25,v v  „  

1 3 30,v v  „  

1 2,v „  

1 2 3 16,v v v   „  

0,u   

1 2 3 4 0,w w w w   „  

1 4 0,w w  „  

2 4 0,w w „  

1 2 1 2 3 1 2 3 4, , , , , , , , 0,x x v v v w w w w …                                (25) 

and 

1 2 1 2 3 1 2 3 4
1 2 1 2 1 1 2 2

ˆ ˆ ˆ ˆ, , , , , , , , ,
min 6 8 (10 ) (0.8 0.8 )

x x u v v v w w w w
x x x x v x x v        

2 3 1 2 3 4
ˆ ˆ ˆ ˆ4 10 ( )x v u w w w w      

1 2s.t. 10,x x „  

1 210 25,u v v  „  

1 310 30,u v v  „  

110 2,u v „   

1 2 310 16,u v v v   „  

1 2 3 4 1 2
ˆ ˆ ˆ ˆ 10,w w w w x x     „  

1 2 1 4
ˆ ˆ0.8 0.8 0,x x w w    „  

2 2 4
ˆ ˆ4 0,x w w   „  

1 2 1 2 3 1 2 3 4
ˆ ˆ ˆ ˆ, , , , , , , , , 0.x x u v v v w w w w …                               (26) 



Table 1 Comparison results for Example 1 

Method   *
x  *

f  Time(s) 

The proposed method Problem (23) (0, 10) -90 0.001 

 Problem (24) (0, 10) -90 0.001 

Penalty method in [1] k=1 (0, 10) -90 0.001 

 k=10 (0, 10) -90 0.001 

 k=100 (0, 10) -90 0.001 

 k=1000 (0, 10) -90 0.001 

Penalty method in [47] k=1 (0, 10) -90 0.001 

 k=10 (0, 10) -90 0.001 

 k=100 (0, 10) -90 0.001 

 k=1000 (0, 10) -90 0.001 

 

Table 2 Comparison results for Example 2 

Method   *
x  *

f  Time(s) 

The proposed method Problem (25) (10, 0) -80 0.001 

 Problem (26) (10, 0) -80 0.001 

Penalty method in [1] k=1 (10, 0) -80 0.001 

 k=10 (10, 0) -80 0.001 

 k=100 (10, 0) -80 0.001 

 k=1000 (10, 0) -80 0.001 

Penalty method in [47] k=1 (10, 0) -80 0.001 

 k=10 (10, 0) -80 0.001 

 k=100 (10, 0) -80 0.001 

 k=1000 (10, 0) -80 0.001 

 

In our experiments, the numerical tests were run on a PC (1.3GHz Inter Core i5, 4GB 1600 

MHz DDR3). All disjoint bilinear programming problems are solved by NEOS GAMS/SCIP (for 

details, see https://neos-server.org/neos/solvers/go:scip/GAMS.html). SCIP is one of the recently 



updated solvers on the NEOS server which is commonly used for the global solution of  

nonlinear programming problems. 

We first solve problems (23)-(26), and report the numerical results in Tables 1 and 2 where *
x , 

*
f  and Time(s) are projection of solutions onto the leader's decision space, the leader's optimal 

objective function value and execution time of the associated problems respectively. Furthermore, 

for comparison purposes, we respectively choose penalty parameters 1,  10,  100k   and 1000 to 

solve the resulting disjoint bilinear programming problems in [1,47]. The results of these penalty 

methods are given in Tables 1 and 2 as well. 

As shown in Tables 1 and 2, the solutions of the proposed method are the same as that of the 

methods developed in [1,47]. So is the execution time. Unfortunately, when the penalty 

parameters are increased to very large (e.g. 109 in Examples 1 and 2), these penalty methods lead 

to computational instabilities. Therefore, we consider the proposed reducibility method as a 

feasible and an effective approach for solving WLBP problems. 

 

6. A case-based example and analysis  

In this section, a case study on a principal-agent (PA) problem is presented to demonstrate the 

applicability of the proposed model and method. Note that, it is not the first time that weak 

(pessimistic) bilevel optimization is applied to the PA problem. As far as known, Tsoukalas, 

Wiesemann and Rustem [40] first present a PA problem based on the pessimistic bilevel 

programming. The problem analyzed in their paper is an independent pessimistic bilevel problem. 

In other words, the feasible region of the agent does not depend on the decision variables of the 

principal. In our paper, a class of PA problem where the feasible region of the agent depends on 

the decision variables of the principal is considered. 

6.1. An example 

In game theory, a PA problem is one in which the principal delegates a task to the agent in 

exchange for a wage. The PA problem can be described as follows. Suppose that the principal 

determines a contract x. The agent then selects an effort or an action y to perform the task for the 

principal. The agent selects a y to maximize his/her utility function ( )A y , and the principal 

wishes to maximize his/her utility function ( , )P x y . 



In the following, assume that 1 2( , )x xx
• , 

1 2 1 2{ : 6, , 0}X x x x x  x x „ … ,  1 2( , )y yy
•  

and 
1 2 1 2 1 2( ) { : 12 2 , , 0}Y y y x x y y    y x y „ … . The utility function of the agent is 

determined by 
1 2( )A y y y , and the utility function of the principal generated by the contract x 

and the effort y is determined by 
1 2 1 2( , ) 5 8 4P x x y y   x y . 

  In general, the principal cannot observe y. When designing a contract, he may be risk averse 

(pessimistic) or risk prone (optimistic). 

  With the risk prone principal, an optimistic PA (OPA) problem can be written as follows: 

1 2 1 2
,

max 5 8 4x x y y  
x y

 

1 2 1 2s.t. { : 6, , 0},X x x x x  x x „ …  

1 2max y y
y

 

1 2 1 2s.t. 12 2 ,y y x x  „  

1 2, 0.y y …  

Note that OPA problem is an optimistic bilevel programming problem [15]. 

 With the risk averse principal, a pessimistic PA (PPA) problem can be described as follows: 

1 2 1 2max min [5 8 4 ]x x y y  
yx

 

1 2 1 2s.t. { : 6, , 0},X x x x x  x x „ …  

1 2max y y
y

 

1 2 1 2s.t. 12 2 ,y y x x  „  

1 2, 0.y y …  

In fact, PPA problem is a WLBP problem discussed in this paper. 

6.2. Results analysis 

Many existing methods (e.g. penalty function method, Kth-Best algorithm and 

branch-and-bound algorithm) can solve the OPA problem. It has a global solution 

( , ) (6,0,9,0)
o o

x y  and the associated objective function value of the principal is 66
o

P  . Note 



that the agent's rational reaction set with (6,0)
o

 x x  is  

1 2 1 2 1 2( ) {( , ) : 9, , 0}.
o

y y y y y y   x …  

 Clearly, the element of the set ( )
o

 x  is not unique. As y varies in ( )
o

 x , the objective 

function values of the principal vary from 66 to 21. It is easy to check that the objective function 

value of the principal is equal to ˆ 21
o

P   when (0,9) ( )
o

 y x . Here ˆ 21
o

P  can be referred 

to as the value of the worst case by the OPA method with (6,0)x . 

Using the proposed method in this paper, we can solve the PPA problem whose solution is 

( , ) (0,6,0,3)
p p

x y  and the associated objective function value of the principal is 45
p

P  . This 

value is less than that of the OPA model (i.e. 66) and is greater than that of the worst case by the 

OPA method (i.e. 21). Note that the agent's rational reaction set with (0,6)
p

 x x  is 

1 2 1 2 1 2( ) {( , ) : 3, , 0}.
p

y y y y y y   x …  

 Clearly, the element of the set ( )
p

 x  is not unique. As y varies in ( )
p

 x , the objective 

function values of the principal vary from 60 to 45. It is easy to very that the objective function 

value of the principal is ˆ 60
p

P   when (3,0) ( )
p

 y x . Here ˆ 60
p

P   can be referred to as 

the value of the best case by the PPA model with (0,6)x . 

To further compare the performance of the OPA and the PPA methods, we compute the average 

and variation of the principal's objective function value for a given contract. Here the average is 

defined as the average between the best and worst cases, and the variation as the difference  

between the best and worst cases of the principal's objective function values. Clearly, the average 

value of the PPA method  (i.e. 52.5) is greater  than that of the OPA method (i.e. 43.5). 

Moreover, the variation for the OPA method is ˆ| | 45
o o

P P   which is higher than that of the 

PPA method ( ˆ| | 15
p p

P P  ). This suggests (0,6)x  generates the agent's rational reaction set 

whose average of the principal's objective function value is greater than that by (0,6)x  and 

with a smaller variation. In other words, a contract designed by the risk averse principal is superior 

to that by the risk prone principal at least for this example. 

As shown in the above results analysis, using the pessimistic (weak) bilevel programming to 



model the PA problem is of practical significance. Therefore, researches on how to solve weak 

bilevel programming problem is still attractive. 

 

7. Conclusions and further study  

In this paper, we consider a weak linear bilevel programming (WLBP) problem which is 

NP-hard. Using the duality theory of linear programming, the WLBP problem is equivalently 

transformed into a jointly constrained bilinear programming problem which is then reduced to a 

disjoint bilinear programming problem. Finally, in Theorem 4.2, we have shown that the 

resolution of this jointly constrained bilinear programming problem is equivalent to the resolution 

of a disjoint bilinear programming problem. Therefore, this may provide a possibility to solve the 

WLBP problem via a disjoint bilinear programming problem. For future research, it is interesting 

to discuss the weak nonlinear bilevel programming problems. 
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