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Abstract This paper presents a novel Differential Evo-

lution algorithm for protein folding optimization that

is applied to a three-dimensional AB off-lattice model.

The proposed algorithm includes two new mechanisms.

A local search is used to improve convergence speed and

to reduce the runtime complexity of the energy calcula-

tion. For this purpose, a local movement is introduced

within the local search. The designed evolutionary algo-

rithm has fast convergence speed and, therefore, when

it is trapped into the local optimum or a relatively good

solution is located, it is hard to locate a better similar

solution. The similar solution is different from the good

solution in only a few components. A component reini-

tialization method is designed to mitigate this problem.

Both the new mechanisms and the proposed algorithm

were analyzed on well-known amino acid sequences that

are used frequently in the literature. Experimental re-

sults show that the employed new mechanisms improve

the efficiency of our algorithm and that the proposed al-

gorithm is superior to other state-of-the-art algorithms.

It obtained a hit ratio of 100% for sequences up to 18

monomers, within a budget of 1011 solution evaluations.

New best-known solutions were obtained for most of the

sequences. The existence of the symmetric best-known

solutions is also demonstrated in the paper.
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1 Introduction

The protein structure prediction represents the prob-

lem of how to predict the native structure of a pro-

tein from its amino acid sequence. This problem is one

of the more important challenges of this century [17]

and, because of its nature, it attracts scientists from

different fields, such as Physics, Chemistry, Biology,

Mathematics, and Computer Science. Within the pro-

tein structure prediction, the Protein Folding Optimiza-

tion (PFO) represents a computational problem for sim-

ulating the protein folding process and finding a native

structure. Most proteins must fold into a unique three-

dimensional structure, known as a native structure, to

perform their biological function [2]. A protein’s func-

tion is determined by its structure. The inability of a

protein to form its native structure prevents a protein

from fulfilling its function correctly, and this may be

the basis of various human diseases [24].

The PFO belongs to the class of NP-hard prob-

lems [11] and, with current algorithms and computa-

tional resources, it is possible to predict the native struc-

tures of relatively small proteins. The reason for that is

the huge and multimodal search space. For example, a

polypeptide that has only 18 amino acids, will have 31

angles within a simplified AB model (see Section 3). Us-

ing uniform discretization with only 10 values for each

angle, there would be 1031 possible configurations. To

evaluate and select the correctly folded conformation

among all these conformations in the time elapsed since

the Big Bang, we need the huge computational speed

of 1031/(4.32 · 1017) = 2.31 · 1013 conformation evalu-

ations per second. This is much faster than the speed

obtained within our experiment, where we can evaluate

only 5.73 · 105 conformations per second. From these

numbers, we can see that the search space is huge, even
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in the simplified model, which makes this problem very

hard. However, in reality, the proteins fold into their

native conformation on a time scale of seconds, and

this contradiction is known as Levinthal’s paradox [7].

An optimization algorithm can give good results of a

PFO problem only if it can locate good solutions and

evaluate solutions efficiently. Here, the approximation

techniques, such as heuristic and metaheuristic, with

efficient data structures, become the only viable alter-

natives as the problem size increases.

Some simplified protein models exist, such as HP

models within different lattices [5] and the AB off-lattice

model [28]. Simplified protein models were designed for

development, testing, and comparison of different ap-

proaches. The AB off-lattice model was used in the pa-

per for demonstrating the efficiency of the proposed al-

gorithm. This model takes into account the hydropho-

bic interactions which represent the main driving forces

of a protein structure formation and, as such, still im-

itates its main features realistically [14]. Although this

model is incomplete, it allows the development, test-

ing, and comparison of various search algorithms, and

offers a global perspective of protein structures. It can

be helpful in confirming or questioning important the-

ories [3].

Our algorithm is based on the Differential Evolu-

tion (DE) algorithm that was proposed by Storn and

Price [29]. It is a powerful stochastic population-based

algorithm. Three simple operators, mutation, crossover,

and selection, were used inside the DE algorithm to

transform real-coded individuals with the purpose to

locate optimal or sub-optimal solutions. Because of its

simplicity and efficiency, it was used in various numer-

ical optimization problems, such as an animated trees

reconstruction [36], an intrusion detection [1], and an

image thresholding [25]. An advanced DE variant, such

as L-SHADE [30] was also the winner of the recent CEC

(IEEE Congress on Evolutionary Computation) compe-

titions. For more details about DE, we refer the reader

to [27] and to survey [10].

It has been shown that the PFO has a highly rugged

landscape structure containing many local optima and

needle-like funnels [16], and, therefore, the algorithms

that follow more attractors simultaneously are ineffec-

tive. In our recent work [4], to overcome this weakness,

we proposed a Differential Evolution (DE) algorithm

that uses the DE/best/1/bin strategy. With this strat-

egy, our algorithm follows only one attractor. The tem-

poral locality mechanism [35] and self-adaptive mecha-

nism [6] of the main control parameters were used addi-

tionally to speed up the convergence speed. When the

algorithm was trapped in a local optimum, then ran-

dom reinitialization was used. This algorithm belongs

to the ab-initio PFO methods, which optimize struc-

tures from scratch, and do not require any information

about related sequences. It showed a very fast conver-

gence speed, and it was capable of obtaining signifi-

cantly better results than other state-of-the-art algo-

rithms.

Taking into account the finding of the previous para-

graph, we propose two new mechanisms, that, addition-

ally, improve the efficiency of our algorithm. A new lo-

cal search mechanism was designed in order to improve

convergence speed and to reduce the runtime complex-

ity of the algorithm. A similar idea was already used

within the HP model [5], where it is applied to the cubic

lattice. Using a simple local search mechanism, where

only one solution’s component is changed, can produce

a structure whereby a lot of monomers are moved. This

means their positions must be recalculated and effi-

cient energy calculation is not possible. In contrast to

simple local search, our mechanism improves the qual-

ity of conformations using the local movements within

the three-dimensional AB off-lattice model. We define

a local movement as a transformation of conformation,

whereby only two consecutive monomers are moved lo-

cally in such a way that the remaining monomers re-

main in their positions. The described local movement

allows efficient evaluation of neighborhood solutions and

faster convergence speed.

With the fast convergence speed the algorithm can

locate good solutions quickly, but it has a problem lo-

cating good similar solutions. For example, if an al-

gorithm locates a good solution that is different from

the global best solution in only one or few components,

then the random restart, that was used in our previ-

ous work, is not an efficient solution. For that purpose,

a component reinitialization was designed and incor-

porated within our algorithm. This mechanism is em-

ployed when the local best solution is detected. Instead

of the random restart, it produces similar solutions that

are different from the local best solution in only a few

components.

We called the proposed algorithm DElscr and it was

tested on two sets of amino acid sequences that were

used frequently in the literature. The first set included

18 real peptide sequences, and the second set included

4 well-known artificial Fibonacci sequences with differ-

ent lengths. Experimental results show that the pro-

posed mechanisms improve the efficiency of the algo-

rithm, and the algorithm is superior to other state-

of-the-art algorithms. Its superiority is especially ev-

ident for longer sequences. With the proposed algo-

rithm, that is stochastic, we cannot prove the optimal-

ity of the obtained conformations. However, we can in-

fer about them according to the observed hit ratio. The
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experimental results show that our algorithm obtained

a hit ratio of 100% for sequences that contain up to

18 monomers. For all longer sequences, we can only

report the best-known conformations that are almost

surely not optimal. Based on these observations, the

main contributions of this paper are:

1. The proposed new DE algorithm for the PFO on a

three-dimensional AB off-lattice model.

2. The local search mechanism that improves conver-

gence speed and reduces runtime complexity of so-

lution evaluations within the neighborhood.

3. The component reinitialization, which increases the

likelihood of finding a good similar solution.

4. With the observed hit ratios, we show how difficult

the PFO is, even in a simplified model, and that,

with the current algorithm, we can confirm solutions

with a hit ratio of 100% only for sequences that have

up to 18 monomers.

5. An approach for determining the algorithm’s asymp-

totic average-case performances.

6. The existence of two best-known (potentially global

best) structures that are symmetrical for all sequences

with up to 25 monomers.

7. The new best-known conformations for most of the

sequences.

The remainder of this paper is organized as follows.

A related work for the PFO on a three-dimensional AB

off-lattice model is described in Section 2. The three-

dimensional AB off-lattice model is described in Sec-

tion 3. A description of the introduced algorithm, with

the emphasis on new mechanisms is given in Section 4.

The experimental setup and numerical results are pre-

sented in Section 5. Section 6 concludes this paper.

2 Related work

Over the years, different algorithms have been applied

successfully to the PFO on a three-dimensional AB off-

lattice model. In [12], the low energy configurations

are optimized using the Pruned-Enriched-Rosenbluth

Method (PERM). This method was also applied to the

lattice model quite successfully [31]. Its improved vari-

ants are still state-of-the-art for the lattice model. Al-

though PERM showed potential, it was not success-

ful for more realistic models such as the AB off-lattice

model. The conformational space annealing was studied

using Fibonacci sequences in [20] and compared with

nPERMis (new PERM with importance sampling) [13].

Next, an algorithm that outperforms PERM was pro-

posed in [8]. In this work, the problem is converted from

a nonlinear constraint-satisfied problem to an uncon-

strained optimization problem which can be solved by

the well-known gradient method. The statistical tem-

perature molecular dynamics based algorithm “statisti-

cal temperature annealing” was applied to an AB model

in [18]. This algorithm shows the ability to find better

conformations in comparison to previous algorithms.

The efficiency of an improved tabu search algorithm

was analyzed in [37]. According to the characteristics

of PFO, the following improved strategies were incor-

porated into the tabu search: (1) A heuristic method

of generating an initial solution. Within these initial

solutions, hydrophobic monomers are located in the

core, whereas hydrophilic monomers are located out-

side of the core of the conformation, (2) A method for

neighborhood generation that is based on the muta-

tion method from genetic algorithms, (3) Selection of a

candidate set that specifies the subset of the neighbor-

hood of the current solution. The purpose of a can-

didate set was to provide solutions that can replace

the current solution, and (4) A mechanism for avoiding

stagnation within local optima. The following hybrid

algorithms were also developed for the AB model: A hy-

brid algorithm that combines the genetic algorithm and

tabu search algorithm [33], particle swarm optimization

and levy flight [9], the particle swarm optimization, ge-

netic algorithm, and tabu search algorithm [38], and

improved genetic algorithm and particle swarm opti-

mization algorithm with multiple populations [39]. An

improved harmony search algorithm, that is combined

with dimensional mean based perturbation strategy [15]

and an artificial bee colony algorithm [22] were also

applied to PFO on the AB off-lattice model. A Bal-

ance Evolution Artificial Bee Colony (BE-ABC) algo-

rithm outperforms all predecessors significantly. This

algorithm is featured by the adaptive adjustment of

search intensity to cater for the varying needs during

the entire optimization process.

The authors in [16] determined the structural fea-

tures of the PFO using Fitness Landscape Analysis

(FLA) techniques based on the generated landscape

path. From the results of FLA, it has been shown that

the PFO has a highly rugged landscape structure con-

taining many local optima and needle-like funnels, with

no global structure that characterizes the PFO com-

plexity. The obtained results also show that the arti-

ficial bee colony algorithm outperforms all other algo-

rithms significantly in all instances for the three-dimen-

sional AB off-lattice model.

In our recent work [4], we proposed a Differential

Evolution algorithm that is adapted to PFO on a three-

dimensional AB off-lattice model. In contrast to pre-

vious population-based algorithms for PFO, this algo-

rithm was designed to follow only one attractor. Within

this algorithm, we incorporated a self-adaptive mech-



4 Borko Bošković, Janez Brest

(a) (b)

Fig. 1 A schematic diagram of the sequence ABAB. (a) Projection of a structure with θ1 = 30, θ2 = −60 and β1 = 0 onto
the XY-plane. (b) Projection of a structure with θ1 = 30, θ2 = −60 and β1 = 45 onto the ZY-plane.

anism, a mutation strategy for the fast convergence

speed and a temporal locality. The obtained results of

this algorithm show that it is superior to the algorithms

from the literature, including the artificial bee colony

algorithm, and significantly lower free energy values

were obtained for longer AB sequences.

3 Three-dimensional AB off-lattice model

The basic building blocks of proteins are amino acids.

The linear chain of amino acids is a polypeptide, and

a protein contains at least one long polypeptide. Each

polypeptide can be represented with a unique amino

acid sequence. The polypeptide must fold into a spe-

cific three-dimensional native structure before it can

perform its biological function(s) [26]. Thus, all infor-

mation necessary for folding must be contained in the

amino acid sequence, and this is known as the Anfinsen-

hypothesis [7].

From the amino acid sequence, it is possible to gen-

erate different conformations, which is also dependent

on the used model. In general, two types of simpli-

fied models exist: Off-lattice and lattice. The lattice

model maps each position of amino acid to a point

on a discrete lattice. In contrast to the lattice model,

the off-lattice model allows any position and, as such,

is more accurate. The simplified three-dimensional AB

off-lattice model was proposed in [28]. Instead of 20

standard amino acids, this model uses only two differ-

ent types of amino acids: A – hydrophobic and B – hy-

drophilic. Thus, an amino acid sequence is represented

as a string s = {s1, s2, ..., sL}, si ∈ {A,B}, where A

represents a hydrophobic, B a hydrophilic amino acid

and L the length of the sequence. The three-dimensional

structure of an AB sequence is defined by bond angles

θ = {θ1, θ2, ..., θL−2}, torsional angles β = {β1, β2, ...,

βL−3} and the unit-length chemical bond between two

consecutive amino acids (see Fig. 1).

Different energy calculations can be used within dif-

ferent models. Within an AB model, the free energy

value is calculated using a simple trigonometric form of

backbone bend potentials E1(θ) and a species-dependent

Lennard-Jones 12,6 form of non-bonded interactions

E2(s,θ,β) as shown in the following equation [28]:

E(s, θ,β) = E1(θ) + E2(s, θ,β)

E1(θ) =
1

4

L−2∑
i=1

[1 − cos(θi)] (1)

E2(s, θ,β) = 4
L−2∑
i=1

L∑
j=i+2

[d(pi,pj)–12–c(si, sj) · d(pi,pj)–6]

where pi = {xi, yi, zi} represents the position of the i-th

amino acid within the three-dimensional space. These

positions are determined as shown in Fig. 1 and by the
following equation:

pi =



{0, 0, 0} if i = 1,

{0, 1, 0} if i = 2,

{cos(θ1), 1 + sin(θ1), 0} if i = 3,

{xi−1 + cos(θi−2) · cos(βi−3),

yi−1 + sin(θi−2) · cos(βi−3), if 4 ≤ i ≤ L.
zi−1 + sin(βi−3)}

(2)

In Eq. (1) d(pi,pj) denotes the Euclidean distance be-

tween positions pi and pj , while c(si, sj) determines

the attractive, weak attractive or weak repulsive non-

bonded interaction for the pair si and sj , as shown in

the following equation:

c(si, sj) =


1 if si = A and sj = A,

0.5 if si = B and sj = B,

−0.5 if si 6= sj .



Protein Folding Optimization using DE with Local Search and Component Reinitialization 5

The objective of PFO within the context of an AB off-

lattice model is to simulate the folding process and to

find the angles’ vector or conformation that minimizes

the free-energy value:

{θ∗,β∗} = arg minE(s,θ,β).

4 Method

In this paper, we extend our Differential Evolution al-

gorithm [4] with two new mechanisms. The first mecha-

nism is a local search that improves convergence speed

and reduces runtime complexity for solution evaluation

within a specific neighborhood. The second mechanism

is component reinitialization, which allows the algo-

rithm to locate good similar conformations according

to the local best solution.

4.1 Proposed algorithm

Hereinafter, we will describe briefly the DElscr algo-

rithm that is shown in Fig. 2. The lines that repre-

sent improvements according to the previous version are

highlighted with a gray background. The optimization

process begins with initialization (line 2). Each itera-

tion of the while loop (line 3) represents one generation

of the evolutionary process. Mutation, crossover, and

selection are performed for each population’s individual

{x1,x2, ...,xNp} within one generation. The DE/best/1

mutation strategy and binary crossover (lines 7 – 18)

are used for creating a trial individual u. The values

of mutation F , and crossover Cr control parameters

are set with the self-adaptive jDE mechanism (lines 5

and 6) [6]. The trial individual is evaluated in line 19

using Eq. (1). From this line, we can see that the in-

dividuals are D-dimensional vectors that contain real

coded bond θ and torsional β angles:

xi = {xi,1, xi,2, ..., xi,D} =

= {θ1, θ2, ..., θL−2, β1, β2, ..., βL−3}
xi,j ∈ [−π, π]; D = 2 · L− 5

i = 1, 2, ...,Np; j = 1, 2, ..., D.

The selection mechanism, temporal locality and lo-

cal search are shown in lines 20 – 40. If the trial vector

is better than the corresponding vector from the pop-

ulation (eu < ei), then the second trial vector u∗ is

generated using temporal locality [35], and the better

vector replaces population vector xi. The next mecha-

nism is a local search. Within this mechanism, a local

1: procedure DElscr(s,Np)
2: Initialize a population P

{xi, Fi = 0.5, Cri = 0.9, ei =E(s,xi)} ∈ P
xi,j = −π + 2 · π · rand [0,1]

i = 1, 2, ...,Np; j = 1, 2, ..., D; D = 2· length(s)−5
{xb, eb} = {xl

b, e
l
b} = {xp

b , e
p
b} = BEST(P)

3: while stopping criteria is not met do
4: for i = 1 to Np do
5: if rand [0,1] < 0.1 then F = 0.1 + 0.9 · rand [0,1]

else F = Fi end if
6: if rand [0,1] < 0.1 then Cr = rand [0,1]

else Cr = Cri end if
7: do r1=rand{1,Np} while r1=i end do
8: do r2=rand{1,Np} while r

2
=i or r

2
=r

1
end do

9: jrand = rand{1,D}
10: for j = 1 to D do
11: if rand [0,1] < Cr or j = jrand then
12: uj = xb,j + F · (xr1,j − xr2,j)
13: if uj ≤ -π then uj =2 · π + uj end if
14: if uj > π then uj =2 · (-π) + uj end if
15: else
16: uj = xi,j

17: end if
18: end for
19: eu =E(s,u) // Energy calculation
20: if eu ≤ ei then
21: // Temporal locality
22: for j = 1 to D do
23: u∗j = xb,j + 0.5 · (uj − xi,j)

24: if u∗j ≤ -π then u∗j =2 · π + u∗j end if

25: if u∗j > π then u∗j =2 · (-π) + u∗j end if
26: end for
27: e∗u =E(s,u∗)
28: if e∗u ≤ eu then
29: {xi, Fi,Cri , ei} = {u∗, F,Cr , e∗u}
30: else
31: {xi, Fi,Cri , ei} = {u, F,Cr , eu}
32: end if
33: // Local Search

34: for n = 2 to L− 1 do

35: θn-1 = rand [0,1] · (xp
b,n-1 − xi,n-1)

36: βn-2 = rand [0,1] · (xp
b,n+(L-4)

− xi,n+(L-4))

37: {v, ev} = LOCAL MOVEMENT(xp
b , n, θn-1, βn-2)

38: if ev ≤ eb then {xp
b , e

p
i } = {v, ev} end if

39: end for
40: end if
41: end for
42: {xp

b , e
p
b} = BEST(P)

43: if epb ≤ eb then {xb, eb} = {xp
b , e

p
b} end if

44: REINITIALIZATION({xp
b , e

p
b},{x

l
b, e

l
b},P)

45: end while
46: return {xb, eb}
47: end procedure

Fig. 2 The proposed DElscr algorithm.

movement is used for improving the best population

individual xpb according to each pair {θn−1, βn−2}. The

values of {θn−1, βn−2} represent the angles that specify

the position of the (n + 1)-th monomer according to

the position of the n-th monomer. After each genera-

tion, either random or component reinitialization will

be performed if the reinitialization criteria are satisfied

(line 44). At the end of the evolutionary process, the

algorithm returns the best obtained solution xb and its

energy value eb, as shown in line 46. The local search

and reinitialization are described in more detail in the

following subsections. For a detailed description of the
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Fig. 3 A schematic diagram of a local movement. The polygon P1, P2, P3, P4 is transformed to polygon P1, X2, X3, P4 in
such a way that only the two consecutive points P2 and P3 are moved to points X2 and X3, while the remaining points P1

and P4 stay unchanged in their positions.

rest mechanisms that were described briefly within this

paragraph, we refer readers to [4].

4.2 Local search

The temporal locality and local search are performed if

the trial vector is better than the corresponding popu-

lation vector. The local search calculates the values of

pair {θn−1, βn−2} for each monomer, with the exception

of the first two monomers. The positions of these two

monomers are fixed within the AB-model, see Eq. (2).

For the rest of the monomers, the angle values are de-

fined with a randomly scaled difference between the

best population individual xpb and current individual

xi, as shown in the following equation:

θn−1 = rand [0,1] · (xpb,n−1 − xi,n−1)

βn−2 = rand [0,1] · (xpb,n+(L−4) − xi,n+(L−4))

i = 1, ...,Np; n = 2, ..., L− 1;

A meticulous reader may notice that the θ has index

n − 1, while β has index n − 2. This means that, for

n = 2, the value of β0 is calculated using the values of

θ components. The reason for that is in the position of

the third monomer, which is dependent only on the θ1,

see Eq. (2). Therefore, within the local movement for

n = 2, the value of β0 is ignored, and local movement

takes into account only the value of θ1.

The local movement is a transformation of confor-

mation whereby only two consecutive monomers are

moved locally in such a way that the remaining mono-

mers remain in their positions. There is only one excep-

tion, for the last monomer only one monomer is moved,

while all the remaining monomers remain in their posi-

tions. Fig. 3 shows an example of two monomers’ local

movement. The polygon that is defined with points P1,

P2, P3, P4 represents the section of original confor-

mation where points represent the monomer positions.

The local movement moves the point P2 to the point

X2 according to the pair {θn−1, βn−2} while the posi-

tion of point X3 is calculated using Eqs. (3) – (6). In

these calculations, the point X3 is the nearest to the

point P3 in such a way that the new polygon P1, X2,

X3, P4 must end at the point P4.

The calculation begins with the determination of

point C, whose position is in the middle of points P4

and X2:

C = X2 +
P4 −X2

2
. (3)

The length L between points C and X3 is calculated

by using the triangle P4, C, X3 and Pythagoras’s the-

orem:

L =

√
1− ‖P4 −X2‖2

4
. (4)

The vector projection of (P3 −C) onto line X2, P4 is

calculated with the following equation:

CN = (P3 −C) · P4 −X2

‖P4 −X2‖
. (5)

At the end, point X3 is calculated by scaling of vector

(P3 −C)−CN as follows:

X3 = C +
(P3 −C)−CN

‖(P3 −C)−CN‖
· L. (6)

The created polygon contains unchanged points P1 and

P4, which means only monomersX2 andX3 are moved

locally, while the remaining monomers stay in their

unchanged positions. This feature allows us to design

the fast conformation evaluation within the local move-

ment. Two additional data structures, E1 and E2, were

used for this purpose. The values of elements within
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these data structures are determined according to Eq. (1),

as follows:

E1i = 1− cos(θi)
E2i,j = d(pi,pj)

−12 − c(si, sj) · d(pi,pj)
−6

i ∈ {1, ..., L− 2}; j ∈ {i+ 2, ..., L}.

Using these data structures for the best population in-

dividual and its energy value, we can calculate the en-

ergy of the conformation created by local movement

efficiently, as is shown in Eqs. (7) – (9), where n repre-

sents the variable that was sent to the local movement

procedure, as shown in Fig. 2 (see line 37).

∆e1 = E1n−1 − (1− cos(θn−1)) +

E1n − (1− cos(θn)) + (7)

E1n+1 − (1− cos(θn+1))

∆e2 =

n+3∑
i=n+1

L∑
j=n+2

[
E2i,j −

(
d(pi,pj)

−12 − c(si, sj) · d(pi,pj)
−6)]+

n+3∑
i=n+1

i∑
j=1

[
E2j,i − (8)

(
d(pi,pj)

−12 − c(si, sj) · d(pi,pj)
−6)]

ev = epb − (
∆e1

4
+ 4 ·∆e2) (9)

From Eqs. (7) – (9) we can observe that the time com-

plexity of energy calculation is reduced from L2

2 to 2L.

In this way, the designed local movement allows faster

evaluation of neighborhood solutions, and its usage wit-

hin local search improves convergence speed.

4.3 Reinitialization

After each generation, reinitialization will be performed

if the reinitialization criteria are satisfied. In our previ-

ous work, random reinitialization was performed if the

best population individual stayed unchanged within the

evolution process for more than 105 evaluations. This

number includes the number of evaluations for all indi-

viduals until the best population individual stayed un-

changed. Its value was determined in a way to prevent

premature restarts, and to ensure some likelihood that

the algorithm cannot improve the best population in-

dividual by using the current population. In this work,

we design a new reinitialization mechanism which has

some advantages over our previous work. For that pur-

pose, the algorithm includes three types of the best in-

dividuals and three new control parameters, as shown

1: procedure REINITIALIZATION({xp
b , e

p
b},{x

l
b, e

l
b},P)

2: if xp
b is unchanged for at least Pb ·D evaluations then

3: if epb ≤ e
l
b then {xl

b, e
l
b} = {xp

b , e
p
b} end if

4: if xl
b is unchanged for Lb ·D reinitializations then

5: // Random reinitialization
6: xi = RANDOM() ; i = 1, 2, ...,Np
7: {xl

b, e
l
b} = {xp

b , e
p
b} = BEST(P)

8: else
9: // Component reinitialization

10: xi = RANDOM(xl
b, C); i = 1, 2, ...,Np

11: {xp
b , e

p
b} = BEST(P)

12: end if
13: end if
14: end procedure

Fig. 4 The reinitialization mechanism.

in Fig. 4. The individuals xpb ,x
l
b,xb represent the

best population, local best and global best in-

dividuals. The best population individual is the

best individual in the current population, the lo-

cal best individual is the best individual among

all similar individuals, and the global best in-

dividual is the best individual obtained within

the evolutionary process. From this description of

the best individuals, we can see that the main advan-

tages of the proposed reinitialization are to allow the

following:

• Locate the best individual by using the current pop-

ulation,

• Locate the best similar individual by using compo-

nent reinitialization, and

• Locate the global best individual by using random

reinitialization.

The following new control parameters are introduced

to the reinitialization mechanism: Pb, Lb, and C. In

our previous work, the reinitialization was defined with

a constant number of evaluations (105). In this work,

restarts are dependent on the values of parameters Pb,

Lb and the dimension of the problem. The Pb defines

how long the best population individual can stay un-

changed within the evolutionary process (line 2). For

example, with Pb = 100 and dimension 21, the reini-

tialization is performed if the best population individ-

ual would stay unchanged in the evolutionary process

for at least Pb ·D = 100 · 21 = 2100 evaluations. When

this condition is satisfied, the algorithm performs ran-

dom or component reinitialization according to the pa-

rameter Lb. If the local best individual is not changed

for Lb ·D reinitializations, then random reinitialization

is performed, and component reinitialization otherwise

(line 4). The last parameter C determines the num-

ber of components that are different between the local

best individual and individuals generated by compo-

nent reinitialization (line 10). Within the component

reinitialization, the C components of each population

individual xi are selected randomly, and their values
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Table 1 Details of amino acid sequences used in experiments.

Label Length D Sequence
1BXP 13 21 ABBBBBBABBBAB
1CB3 13 21 BABBBAABBAAAB
1BXL 16 27 ABAABBAAAAABBABB
1EDP 17 29 ABABBAABBBAABBABA
2ZNF 18 31 ABABBAABBABAABBABA
1EDN 21 37 ABABBAABBBAABBABABAAB
2H3S 25 45 AABBAABBBBBABBBABAABBBBBB

1ARE 29 53 BBBAABAABBABABBBAABBBBBBBBBBB
2KGU 34 63 ABAABBAABABBABAABAABABABABABAAABBB
1TZ4 37 69 BABBABBAABBAAABBAABBAABABBBABAABBBBBB
1TZ5 37 69 AAABAABAABBABABBAABBBBAABBBABAABBABBB

1AGT 38 71 AAAABABABABABAABAABBAAABBABAABBBABABAB
1CRN 46 87 BBAAABAAABBBBBAABAAABABAAAABBBAAAAAAAABAAABBAB
2KAP 60 115 BBAABBABABABABBABABBBBABAABABAABBBBBBABBBAABAAABBABBABBAAAAB
1HVV 75 145 BAABBABBBBBBAABABBBABBABBABABAAAAABBBABAABBABBBABBAABBABBAABBBB

BAABBBBBABBB
1GK4 84 163 ABABAABABBBBABBBABBABBBBAABAABBBBBAABABBBABBABBBAABBABBBBBAABAB

AAABABAABBBBAABABBBBA
1PCH 88 171 ABBBAAABBBAAABABAABAAABBABBBBBABAAABBBBABABBAABAAAAAABBABBABABA

BABBABBAABAABBBAABBAAABA
2EWH 98 191 AABABAAAAAAABBBAAAAAABAABAABBAABABAAABBBAAAABABAAABABBAAABAAABA

AABAABBAABAAAAABAAABABBBABBAAABAABA
F13 13 21 ABBABBABABBAB
F21 21 37 BABABBABABBABBABABBAB
F34 34 63 ABBABBABABBABBABABBABABBABBABABBAB
F55 55 105 BABABBABABBABBABABBABABBABBABABBABBABABBABABBABBABABBAB
F89 89 173 ABBABBABABBABBABABBABABBABBABABBABBABABBABABBABBABABBABABBABBAB

ABBABBABABBABABBABBABABBAB

are replaced with random values on the interval [−π, π],

while all the remaining components get the values from

the local best individual.

5 Experiments

The DElscr algorithm was compiled with a GNU C++

compiler 4.6.3 and executed using an Intel Core i7 com-
puter with 2.93 GHz CPU and 8 GB RAM under Linux

Mint 13 Maya and a grid environment (Slovenian Ini-

tiative for National Grid1). In order to evaluate the

efficiency of the proposed algorithm, we used a set of

amino acid sequences as shown in Table 1. This set

includes 5 Fibonacci sequences and 18 real peptide se-

quences from the Protein Data Bank database2. The

K-D method is used to transform real peptide sequences

to the AB sequences. In this method, the amino acids I,

V, P, L, C, M, A, and G are transformed to hydropho-

bic ones (A) and amino acids D, E, H, F, K, N, Q, R,

S, T, W, and Y to hydrophilic ones (B). The selected

sequences have different lengths, which enabled us to

analyze the algorithm according to different problem

dimensions and, because they were used frequently in

literature, they enabled us to compare the proposed al-

gorithm with different algorithms. In order to analyze

1 Available at http://www.sling.si/sling/
2 Available at https://www.rcsb.org/pdb/home/home.do

the efficiency of the introduced mechanisms and algo-

rithm, we measured the following statistics:

• The mean obtained energy value for all runs:

Emean =

∑N
i=1Ei
N

where Ei denotes the obtained energy value for the

i-th run and N is the number of runs.

• The best obtained energy value among all runs:

Ebest = max{E1, E2, ..., EN}.

Note that all energy values within our experiments

are multiplied by −1, which means that all energy

values are positive and higher values are better.

• The standard deviation of energy values for all runs:

Estd =

√∑N
i=1 (Ei − Emean)

2

N − 1

• The hit ratio or percentage of runs during which

the best solution has equal or better energy value

according to the target value (target):

hitr =
Nh
N

whereNh denotes the number of runs where the best

obtained solution has good enough energy value eb
according to the target value (eb ≥ target).

http://www.sling.si/sling/
https://www.rcsb.org/pdb/home/home.do
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• The mean number of solution evaluation for all Nh
runs:

NSEmean =

∑Nh

i=1 NSE i

Nh

where NSE i represents the number of solution eval-

uations for the i-th run.

• The standard deviation of solution evaluations for

all Nh runs:

NSE std =

√∑Nh

i=1 (NSE i −NSEmean)
2

Nh − 1

• The mean runtime for all runs:

tmean =

∑N
i=1 ti
N

where ti represents the runtime of the i-th run.

• The mean speed for all runs:

vmean =

∑N
i=1 vi
N

where vi represents the speed (the number of solu-

tion evaluations per second) of the i-th run.

The listed statistics were measured within the context

of the following stopping conditions:

• The maximum number of solution evaluations

NSElmt : NSE i ≥ NSE lmt.

• The runtime limit tlmt : ti ≥ tlmt.
• The energy value of the best obtained solution

target : eb ≥ target .

Our algorithm belongs to stochastic algorithms, there-

fore, all the reported results of the proposed algorithm

within this work are based on N = 100 independent

runs. The described statistics, the defined stopping cri-

teria and the determined number of independent runs

were used to analyze the influence of new parameters

and mechanisms on the algorithm’s efficiency. The al-

gorithm was also compared with the state-of-the art

algorithms. The asymptotic average-case performances

were determined for the 6 shortest sequences, and an

analysis of the obtained conformations was also per-

formed and will be given in the continuation of the pa-

per.

5.1 Parameter settings

The influence of the new control parameters (Pb, Lb, C)

on the algorithm’s efficiency was analyzed by using Fi-

bonacci sequences. In this analysis, the stopping condi-

tion was the maximum number of solution evaluations

NSElmt = 1010. For each sequence, we started with the

following setting: Pb = 50, Lb = 10, and C = 5. Us-

ing 6 settings, where only one value of each setting was

changed to the nearest higher or lower value, we tried

to get better settings. The parameter values are used

from the following sets:

Pb ∈ {10, 25, 50, 100}
Lb ∈ {1, 2, 5, 10, 20, 50}
C ∈ {2, 5, 10, 20}

For the started setting the following 6 settings were

used:

{ Pb = 10, Lb = 10, C = 5}, {Pb = 25, Lb = 10, C = 5},
{ Pb = 50,Lb = 5, C = 5}, {Pb = 50,Lb = 20, C = 5},
{ Pb = 50, Lb = 10,C = 2}, {Pb = 50, Lb = 10,C = 10}.

We repeated this process until a new better setting

was found. The results of the least iterations, together

with recommended settings, are shown in Table 2. For

clarity, the recommended settings and their results are

shown in bold typeface. The displayed results show that

each sequence has its own optimal setting, but it is still

possible to select settings that can be used for any un-

known sequence. We define these settings according to

the dimension of the problem, as follows:

{Pb, Lb, C} =

{
{50, 10, 5} if n < 45

{25, 5, 10} otherwise.

These settings are used in all the following experiments,

because they can provide a good hit ratio for short se-

quences and good energy values for longer sequences.

The search space for longer sequences is huge, which

means the algorithm almost surely cannot reach opti-

mal solutions in a reasonable runtime e.g. 4 days. There-

fore, for these sequences, the algorithm has to perform

more reinitializations, and the component reinitializa-

tion has to change more components randomly.

The displayed results confirm, additionally, that the

variable NSE have near-exponential or near-geometric

distribution (NSEmean ≈ NSE std). Under such distri-

butions, given the Nh = 100 runs in all of our experi-

ments, a reliable rule-of-thumb estimates a 95% confi-

dence interval:

CI 95 ≈ [(1− 1.96√
Nh

) ·NSEmean , (1 +
1.96√
Nh

) ·NSEmean ]

≈ [0.8 ·NSEmean , 1.2 ·NSEmean ].

5.2 Local search

The local search within our algorithm was designed to

increase the speed of algorithm convergence and speed

of neighborhood solution evaluations. In order to demon-

strate these advantages, the algorithm was analyzed
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Table 2 The analysis of the new control parameters (Pb, Lb, C). N = 100 independent runs were performed for each setting
and the stopping conditions were the maximum number of solution evaluations NSElmt = 1010 and target value.

Pb Lb C Emean Estd hitr NSEmean NSE std

50 2 5 6.9961 0.00 100 6.41E+07 5.59E+07
100 2 5 6.9961 0.00 100 6.88E+07 5.96E+07
25 2 5 6.9961 0.00 100 7.52E+07 7.01E+07
50 5 5 6.9961 0.00 100 9.07E+07 8.06E+07
50 2 10 6.9961 0.00 100 9.52E+07 9.67E+07
50 1 5 6.9961 0.00 100 9.59E+07 9.55E+07
50 10 5 6.9961 0.00 100 9.77E+07 9.48E+07
50 2 2 6.9847 0.03 90 3.15E+09 2.67E+09

(a) F13, target = 6.9961

Pb Lb C Emean Estd hitr NSEmean NSE std

25 20 5 16.4500 0.09 21 4.91E+09 2.75E+09
25 10 5 16.4492 0.08 19 4.89E+09 2.81E+09
50 10 5 16.4432 0.08 17 3.92E+09 2.98E+09
50 20 5 16.4415 0.10 22 4.86E+09 3.17E+09
10 20 5 16.4307 0.09 15 3.93E+09 2.51E+09
25 50 5 16.4254 0.12 33 4.84E+09 2.85E+09
25 20 10 16.4037 0.08 2 7.94E+09 2.53E+09
25 20 2 15.4393 0.45 0 - -

(b) F21, target = 16.5544

Pb Lb C Emean Estd

50 10 5 30.0670 0.45
50 20 5 30.0596 0.40
25 10 5 30.0519 0.47
50 5 5 29.9108 0.38

100 10 5 29.9034 0.47
50 10 10 29.3722 0.35
50 10 2 24.2650 1.94

(c) F34

Pb Lb C Emean Estd

25 5 10 49.0262 0.78
25 10 10 49.0233 1.26
10 5 10 49.0148 1.05
50 5 10 48.9379 1.19
25 2 10 48.9192 1.03
25 5 5 47.8458 1.74
25 5 20 47.4250 0.88

(d) F55

Pb Lb C Emean Estd

50 2 10 76.8608 1.64
25 2 10 76.6879 1.89
50 5 10 76.5090 1.88
25 5 10 76.4541 1.93
50 1 10 76.3478 1.40

100 2 10 76.3275 1.71
50 2 5 75.1975 2.62
50 2 20 75.0143 1.52

(e) F89

Table 3 The influence of the local search to the algorithm’s efficiency according to two algorithms: DElscr - with local
search and DEcr - without local search. Two different comparisons were made according to two different stopping conditions:
NSE lmt = 107 and tlmt = tmean(DEcr). The reported mean speed vmean represents the mean number of function evaluations
per second, cv represents the speed up factor vmean(DElscr)/vmean(DEcr) and the mean runtime tmean is given in seconds.

Label
NSE lmt = 107 tlmt = tmean(DEcr)

DElscr DEcr DElscr

tmean vmean Emean Estd tmean vmean Emean Estd tmean vmean cv Emean Estd

1BXP 12.54 7.98E+05 4.7280 0.24 18.35 5.45E+05 4.6772 0.26 18.35 7.98E+05 1.46 4.7831 0.26
1CB3 12.18 8.22E+05 7.9643 1.02 18.00 5.56E+05 8.1511 0.65 18.00 8.22E+05 1.48 8.1340 0.92
1BXL 15.02 6.67E+05 16.2149 0.51 24.81 4.03E+05 16.2338 0.66 24.81 6.72E+05 1.66 16.3452 0.48
1EDP 16.00 6.25E+05 13.7281 1.07 27.39 3.65E+05 13.3930 1.80 27.39 6.07E+05 1.66 14.1388 0.54
2ZNF 17.44 5.74E+05 16.1670 1.86 29.78 3.36E+05 14.4350 3.01 29.78 5.73E+05 1.70 16.7171 1.24
1EDN 20.27 4.94E+05 17.9565 2.51 38.05 2.63E+05 16.5951 3.10 38.05 4.97E+05 1.89 18.9328 1.85
2H3S 24.85 4.03E+05 15.1685 2.36 50.64 1.98E+05 15.1545 2.79 50.64 4.06E+05 2.06 16.1873 2.34

1ARE 29.37 3.41E+05 19.3024 1.92 63.85 1.57E+05 18.6434 2.48 63.85 3.44E+05 2.20 20.2815 1.80
2KGU 34.89 2.87E+05 43.6622 3.46 84.42 1.19E+05 40.6789 4.66 84.42 2.92E+05 2.46 46.1607 2.28
1TZ4 37.47 2.68E+05 28.7054 4.77 95.07 1.05E+05 25.3528 5.30 95.07 2.74E+05 2.61 31.7309 4.26
1TZ5 36.66 2.73E+05 34.3793 4.36 95.11 1.05E+05 32.9423 5.08 95.11 2.81E+05 2.67 36.7141 4.66

1AGT 38.81 2.58E+05 52.9353 4.99 100.39 9.97E+04 47.6395 5.86 100.39 2.66E+05 2.67 56.5688 3.80
1CRN 51.66 1.94E+05 78.8070 4.74 139.22 7.19E+04 78.8601 5.69 139.22 2.02E+05 2.82 82.8484 2.14
2KAP 76.79 1.31E+05 54.6804 6.60 220.23 4.54E+04 55.3668 6.08 220.23 1.37E+05 3.01 59.9772 5.93
1HVV 104.64 9.62E+04 57.5815 6.55 320.20 3.12E+04 57.3717 6.56 320.20 1.03E+05 3.29 63.5027 6.29
1GK4 122.54 8.23E+04 72.3524 7.15 394.79 2.53E+04 72.8575 7.87 394.79 9.10E+04 3.59 78.8594 6.17
1PCH 130.19 7.76E+04 103.4913 13.35 438.63 2.28E+04 101.7607 11.42 438.63 8.71E+04 3.82 116.0248 11.99

2EWH 162.03 6.24E+04 189.5316 14.33 546.97 1.83E+04 182.2880 16.48 546.97 7.14E+04 3.91 205.3507 10.62
F13 12.42 8.05E+05 6.0591 0.94 18.08 5.53E+05 6.0951 1.09 18.08 8.07E+05 1.46 6.3373 0.83
F21 20.90 4.79E+05 12.0495 1.66 37.84 2.64E+05 11.3298 1.75 37.84 4.82E+05 1.82 12.8967 1.70
F34 35.89 2.79E+05 20.0652 2.59 82.90 1.21E+05 18.3942 2.29 82.90 2.87E+05 2.38 21.4521 2.62
F55 71.27 1.41E+05 35.2611 3.55 191.88 5.21E+04 35.3539 3.02 191.88 1.46E+05 2.80 37.9751 2.44
F89 140.58 7.19E+04 55.4025 5.06 455.38 2.20E+04 55.0803 5.55 455.38 7.92E+04 3.61 59.1793 4.40

with (DElscr) and without (DEcr) local search. Within

this analysis, the algorithms were compared using the

following stopping conditions: NSE lmt = 107 and tlmt =

tmean(DEcr), as shown in Table 3. With the first stop-

ping condition, we show that the local search improves

mean energy value Emean on 16 out of 23 sequences

and reduces the mean runtime tmean for all sequences.

For the longest sequence 2EWH, Emean was improved

from 182.2880 to 189.5316, or by 7.2436, and for this

improvement, the runtime was reduced from 546.97 to

162.03 seconds, or by factor 3.376. Using the second

stopping condition, both algorithms were limited with

the same runtime and, in this case, local search im-

proved Emean in 22 out of 23 sequences. These values
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Table 4 The influence of the component reinitialization to the algorithm’s efficiency according to two algorithms: DElscr - with
component reinitialization and DEls - without component reinitialization. Two stopping conditions were used: NSE lmt = 1011

and target values that were set to the best-known energy values (see Table 8). The shown CNSE represents the reduction of
NSEmean : NSEmean(DElscr) / NSEmean(DEls).

Label Length D target
DElscr DEls

NSEmean CNSE NSE std hitr NSEmean NSE std hitr
1BXP 13 21 5.6104 1.56E+09 0.38 1.68E+09 100 4.07E+09 4.20E+09 100
1CB3 13 21 8.4589 3.61E+07 0.18 4.26E+07 100 1.99E+08 1.77E+08 100
1BXL 16 27 17.3962 1.24E+10 < 0.37 1.24E+10 100 3.36E+10 2.71E+10 32
1EDP 17 29 15.0092 4.58E+09 < 0.22 4.21E+09 100 2.14E+10 2.10E+10 96
2ZNF 18 31 18.3402 2.10E+09 < 0.05 1.92E+09 100 4.31E+10 2.75E+10 50

F13 13 21 6.9961 8.92E+07 0.08 8.52E+07 100 1.14E+09 1.27E+09 100

are marked in bold typeface within the table. The value

205.3507 was shown in bold typeface for the sequence

2EWH. This means that, by using the local search and

tlmt = 546.97 seconds, Emean was improved by 23.0627.

Results also show that the speed up factor cv was 1.46

for the shortest sequences (F13 and 1BXP) and 3.91 for

the longest sequence 2EWH, while the Emean is worse

by 0.0171 for sequence 1CB3 and better for all other

sequences.

From the obtained results, we can conclude that the

local search improves the convergence speed of the al-

gorithm for most of the sequences, while the speed of

solution evaluation is increased for all sequences. Some-

body would expect better speed up factors, but note

that some conditions must be satisfied for local search

and, therefore, the speed up factor is dependent on

the relationship between the number of solution evalua-

tions inside and outside the local search. However, using

the local search, the algorithm is capable of obtaining

better energy values for almost all sequences, and this

improvement of energy values increases for longer se-

quences.

5.3 Component reinitialization

The main goal of the component reinitialization is to

redirect the evolutionary process in such a way that a

similar good solution can be located according to the

local best solution. To demonstrate the influence of this

mechanism on the algorithm’s efficiency, the algorithm

was analyzed with (DElscr) and without (DEls) com-

ponent reinitialization. Within this analysis, the algo-

rithms were compared using the target values of the

best-known energy values and NSE lmt = 1011, as shown

in Table 4. The best values of NSEmean and hitr are

marked in bold typeface. From the results, we can see

that the algorithm that uses component reinitialization

is capable of reaching the best-known energy value in

all runs, and for that it required significantly less so-

lution evaluations (NSE ). For example, NSEmean was

reduced from 1.14E+09 to 8.92E+07 for sequence F13.

On the other hand, the algorithm without component

reinitialization was not capable of reaching hitr = 100

within the budget of NSE lmt = 1011 for sequences

1BXL, 1EDP and 2ZNF. From these observations, we

can conclude that the proposed component reinitializa-

tion allows the algorithm to locate good similar solu-

tions and to reach the best-known energy values. This

is shown clearly in Table 4 with CNSE which repre-

sents the relationship between the obtained values of

NSEmean for both algorithms. The component reini-

tialization reduces the NSEmean from 0.38 for sequence

1BXP to less than 0.05 for sequence 2ZNF. Finally, it is

obvious that the reinitialization mechanism is respon-

sible for the DElscr obtaining hitr = 100 for all the

sequences shown in Table 4. The convergence curves

of 5 randomly chosen runs per sequence are shown in

Fig. 5. As we can see, the best-known energy value was

reached in all the runs. It is shown with the energy er-

ror of 0.1. The energy error represents the difference

between the best-known energy value (E∗) and the en-

ergy value (E) of the global best individual. Note that,

both axes are shown on a logarithmic scale, therefore a

small value of 0.1 was added to the energy error.

Results show additionally that the value of NSEmean

is not only dependent on the sequence length or prob-

lem dimension, but also on the sequence itself. For ex-

ample, for DElscr the value of NSEmean is 5.9 times

smaller for sequence 2ZNF in comparison with sequence

1BXL, although the dimension of the first sequence is

greater than the dimension of the second sequence.

5.4 Asymptotic average-case performance

In this section, we introduce an approach to determine

asymptotic average-case performance of the algorithm

for short sequences. The condition for this is the abil-

ity of the algorithm to obtain the best-known solution

with hitr = 100. Until now, only our algorithm has been

able to fulfill this condition for the 6 shortest sequences.

Six subsequences are generated for each of these se-

quences. The first subsequence has removed the last
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(a) 1BXP (b) 1CB3

(c) 1BXL (d) 1EDP

(e) 2ZNF (f) F13

Fig. 5 The convergence graphs of the evolutionary process for 5 randomly chosen runs. The error represents the difference
between the best-known energy value (E∗) and the energy value (E) of the global best individual within the evolutionary
process. A small value of 0.1 was added to the error because of the logarithmic scale.
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Table 5 Asymptotic average-case performances for DElscr. Values marked with the * are obtained by using the grid environ-
ment. In these cases tmean is calculated as follows: tmean = NSEmean

vmean
, where vmean represents the obtained mean speed of three

independent runs on our test computer in a given period of time (tlmt = 3600 seconds). All other results are obtained on our
test computer.

Label 1 2 3 4 5 6 7 Asymptotic model

1BXP
target 1.8013 2.0063 2.6838 3.1846 4.0191 4.9321 5.6104
tmean 0.16 10.52 395.94 1349.36 12.39 125.70 1965.08 0.0015 · 2.8911L

NSEmean 2.45E+05 1.38E+07 4.62E+08 1.42E+09 1.17E+07 1.09E+08 1.56E+09 4589.5644 · 2.5970L

1CB3
target 1.9174 1.9786 2.3884 4.0429 6.0209 8.4088 8.4589
tmean 0.06 1.01 1.67 4.22 4.70 80.85 44.47 0.0001 · 2.8662L

NSEmean 1.03E+05 1.41E+06 2.06E+06 4.82E+06 4.52E+06 7.11E+07 3.61E+07 344.4917 · 2.5502L

1BXL
target 11.1862 13.8397 13.6386 14.0105 16.8991 16.9404 17.3962
tmean 167.93 1472.79 611.86 508.47 25965.63 * 113126.9 * 39706.68 * 0.0030 · 2.7931L

NSEmean 8.96E+07 7.07E+08 2.68E+08 2.14E+08 9.93E+09 * 4.05E+10 * 1.24E+10 * 6240.7027 · 2.5976L

1EDP
target 6.3823 8.9122 8.7042 9.1152 11.5309 11.7522 15.0092
tmean 677.33 437.82 1280.42 776.01 3494.96 922.22 7272.60 10.7641 · 1.4097L

NSEmean 6.74E+08 3.88E+08 1.04E+09 5.97E+08 2.47E+09 6.27E+08 4.58E+09 2.32E+07 · 1.3103L

2ZNF
target 9.3228 12.1166 11.9772 12.3307 14.6296 14.6733 18.3402
tmean 4153.21 270.26 488.05 755.42 562.56 41844.24 * 7437.15 16.6030 · 1.3505L

NSEmean 3.67E+09 2.18E+08 3.65E+08 5.50E+08 3.77E+08 1.32E+10 * 2.10E+09 3.19E+07·1.2642L

F13
target 1.8225 2.0453 4.6082 4.6858 5.0428 6.8092 6.9961
tmean 0.42 3.34 4.48 8.03 10.47 70.98 110.54 0.0019 · 2.3266L

NSEmean 6.62E+05 4.52E+06 5.20E+06 8.43E+06 9.74E+06 6.19E+07 8.92E+07 6138.4492 · 2.0846L

monomer, the second subsequence has removed the last

two monomers, etc. This means that the length of each

next subsequence is decreased by 1. For example, for se-

quence 1CB3 (BABBBAABBAAAB) the following six

subsequences are generated:

1. BABBBAABBAAA (L = 12, target = 8.4088),

2. BABBBAABBAA (L = 11, target = 6.0209),

3. BABBBAABBA (L = 10, target = 4.0429),

4. BABBBAABB (L = 9, target = 2.3884),

5. BABBBAAB (L = 8, target = 1.9786),

6. BABBBAA (L = 7, target = 1.9174).

We determined the best-known or target values for

all subsequences. For this purpose, we performed one

run for each subsequence with tlmt = 4 days, and the

best reached energy value is used as a target value. Us-

ing these target values as a stopping condition, it is pos-

sible to calculate asymptotic average-case performance.

The original sequence is also included within this cal-

culation. This means the asymptotic average-case per-

formance is determined by using 7 sequences.

Table 5 and Figure 6 display the target values, ob-

tained mean values and asymptotic average-case perfor-

mances for DElscr. From the results, we observe that the

best runtime asymptotic average-case performance was

obtained for sequence 2ZNF (16.603·1.3505L), while the

worst for sequence 1BXP (0.0015 · 2.8911L). Similarly,

the best NSE asymptotic average-case performance was

obtained for sequence 2ZNF (3.19E+07·1.2642L), while

the worst for sequence 1BXL (6240.7027 · 2.5976L). We

can again observe that the value of NSEmean and tmean

are not only dependent on the sequence length. Only

one monomer can influence these values significantly.

For example, DElscr requires less solution evaluations

(NSE ) and runtime (t) to reach the target value for

the subsequence of sequence 1EDP that has a length

of 16 in comparison with a subsequence of length 13.

From these results, we can conclude that the structure

of the sequence has a big influence on the difficulty of

the problem.

5.5 Comparison with other algorithms

In this section, our algorithm is compared with other al-

gorithms according to two stopping conditions NSElmt

and tlmt , and according to the best obtained energy

values.

The obtained results for stopping conditions NSElmt ,

that were set according to the literature [4,22] and three

algorithms DElscr, DEpfo and BE-ABC, are shown in

Table 6. The best obtained energy values are marked in

bold typeface. It can be observed that DElscr and DEpfo

are comparable, and both outperformed BE-ABC. Re-

sults that take into account speed up factor, that are

shown in Table 3, are shown in the last column of Ta-

ble 6. In this case, both algorithms DElscr and DEpfo

spend approximately the same amount of runtime, and

DElscr outperformed DEpfo on most sequences. For the

sequence 2EWH, the obtained values of Emean were

94.5785, 144.906, 162.3482 and 181.5912 for BE-ABC,

DEpfo, DElscr, and DElscr that take into account speed

up factor. From these values, it is evident that the pro-

posed algorithm is superior in comparison with BE-

ABC and DEpfo.

Within this comparison, the value of NSElmt was

relatively small. This means the reinitialization mecha-

nism did not have a significant impact on the obtained
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Fig. 6 Asymptotic average-case performances for DElscr.
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Table 6 Comparison of the DElscr algorithm with state-of-the-art algorithms. Entries that are shown as ‘-’ imply that no
‘best energy values’ have been reported in the literature.

Label M
NSElmt = M · 104 NSElmt = M · 104 · cv

DElscr DEpfo [4] BE-ABC [21,22] DElscr

Ebest Emean Estd Ebest Emean Estd Ebest Emean Estd Ebest Emean Estd

1CB3 20 7.7450 4.5108 2.13 8.3690 5.5884 1.96 – 5.9417 0.78 7.7450 4.5929 2.16
1BXL 20 16.2618 12.5045 2.17 16.3443 12.6104 2.53 – 11.6942 1.13 16.7137 13.1940 2.22
1EDP 20 13.1764 8.1986 2.78 13.5620 8.6666 2.56 – 8.0500 0.93 13.1895 8.5313 2.81
2H3S 20 17.1724 11.5310 2.45 16.5030 10.6767 2.75 – 10.4618 1.13 17.4858 11.9565 2.48

2KGU 20 41.0221 33.6539 3.99 44.3369 35.3850 4.70 – 22.7195 2.01 44.0110 36.4642 4.39
1TZ4 20 34.5265 21.6863 3.62 30.9211 20.4361 5.28 – 14.9436 2.22 35.3505 24.9569 4.55
1TZ5 20 37.8896 25.9996 4.12 38.1868 27.3412 4.08 – 17.4859 1.37 40.0161 28.9335 3.60

1AGT 20 49.9861 39.1897 5.21 50.6311 39.0268 5.34 – 25.6024 2.34 54.0897 43.4210 5.45
1CRN 20 74.7849 62.2668 7.60 74.4068 60.2444 7.58 – 42.3083 2.96 82.5999 68.3890 7.28
1HVV 20 45.0054 35.9335 4.92 44.7264 34.8059 5.29 – 21.5386 3.53 57.1990 46.3685 5.61
1GK4 20 49.9316 42.0261 4.77 52.0651 44.8591 4.72 – 27.0410 3.24 69.5798 56.6853 5.16
1PCH 80 121.0579 87.5748 11.42 103.1776 79.4878 8.85 – 51.6674 3.50 128.4882 99.3441 14.52

2EWH 80 193.8143 162.3482 16.60 171.6390 144.9060 12.84 – 94.5785 5.70 210.7021 181.5912 17.49
F13 4 4.9533 3.0907 0.78 5.7290 3.6040 0.66 3.3945 2.8196 0.38 4.9704 3.1977 0.79
F21 4 11.1304 6.5538 1.53 11.2211 7.9567 1.53 6.9065 5.2674 0.76 11.7522 7.6885 1.75
F34 12 19.9550 13.3057 2.47 19.3529 14.0749 2.09 10.4224 8.3239 0.92 21.0345 15.4491 2.85
F55 20 29.5163 22.4019 3.58 31.9554 24.6243 3.57 18.8385 14.4556 1.56 33.1788 26.8111 3.34

Table 7 The obtained results for DElscr and DEpfowithin a runtime limit of 4 days. Entries that are shown as ‘-’ imply that
no results have been reported in the literature.

Label L
DElscr, number of independent runs N=100 DEpfo [4], number of independent runs N=30

Ebest Emean Estd hitr Ebest Emean Estd hitr
1BXP 13 5.6104 5.6104 0.0000 100.00 – – – –
1CB3 13 8.4589 8.4589 0.0000 100.00 8.4589 8.4589 0.0000 100.00
1BXL 16 17.3962 17.3962 0.0000 100.00 17.3962 17.1916 0.0878 6.67
1EDP 17 15.0092 15.0092 0.0000 100.00 15.0092 14.9423 0.0471 13.33
2ZNF 18 18.3402 18.3402 0.0000 100.00 – – – –
1EDN 21 21.4703 21.3669 0.0431 7.00 – – – –
2H3S 25 21.1519 20.9956 0.0995 19.00 20.0979 19.6147 0.2699 0.00

1ARE 29 25.2800 24.5444 0.1718 1.00 – – – –
2KGU 34 52.7165 51.7233 0.3829 1.00 50.2960 49.1661 0.6334 0.00
1TZ4 37 43.0229 41.8734 0.4285 1.00 39.7340 37.8329 0.9983 0.00
1TZ5 37 49.3868 48.6399 0.3292 1.00 47.1513 43.9959 1.4087 0.00

1AGT 38 65.1990 64.1285 0.4173 1.00 62.8951 60.4175 1.0439 0.00
1CRN 46 92.9853 89.8223 0.6514 1.00 89.2001 86.0390 1.4529 0.00
2KAP 60 85.5099 83.1503 1.0041 1.00 – – – –
1HVV 75 95.4475 91.4531 1.9215 1.00 82.1427 68.8332 4.0852 0.00
1GK4 84 106.4190 99.6704 3.0377 1.00 90.9140 84.6836 3.3356 0.00
1PCH 88 156.5250 153.1003 2.7117 1.00 131.7787 117.7603 6.2617 0.00

2EWH 98 245.5190 240.2247 2.1421 1.00 225.0968 203.6813 7.1844 0.00
F13 13 6.9961 6.9961 0.0000 100.00 6.9961 6.9961 0.0000 100.00
F21 21 16.5544 16.5304 0.0329 65.00 16.2250 15.8894 0.1849 0.00
F34 34 31.3455 30.4913 0.3458 1.00 28.2509 25.6602 1.0523 0.00
F55 55 51.9030 49.5009 0.8817 1.00 45.0942 41.8670 1.4693 0.00
F89 89 81.5297 76.4804 2.0603 1.00 – – – –

results. Therefore, DEpfo and DElscr were also com-

pared according to the tlmt that was set to 4 days. A

grid environment was used within this comparison and

results are shown in Table 7. In this comparison, DElscr

obtained better values of Emean , Ebest and hitr in most

sequences, and equal values for the shortest sequences.

DElscr obtained hitr of 100, 100, 19 and 65 for shorter

sequences 1BXL, 1EDP, 2H3S and F21. For the same

sequences, DEpfo obtained hitr of 6.67, 13.33, 0 and 0,

respectively. Significant improvement was obtained for

longer sequences too. For example, the best energy val-

ues were improved from 90.914, 131.7787 and 225.0968

to 106.419, 156.525 and 245.519 for sequences 1GK4,

1PCH and 2EWH, respectively. The energy values were

improved by 15.505, 24.7463 and 20.4222. Note that

DElscr obtained the new best-known solutions for all

sequences with L ≥ 18, the hitr = 100 for 6 shortest se-

quences, and hitr > 1 for 9 sequences by using tlmt = 4

days.

The most important results in this paper are shown

in Table 8, which collects the best energy values from all

experiments that were described in previous sections,

and the best-known energy values from the literature. It

is evident that DElscr confirmed the best-known energy
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Table 8 Comparisons of the best energy values reported in the literature and the best energy values obtained by DElscr. The
solution vectors obtained by DElscr are shown in Tables 9 and 10. Entries that shown as ‘-’ imply that no ‘best energy values’
have been reported in the literature.

Label DElscr
DEpfo ImHS BE-ABC I-PSO PGATS MPGPSO ABC GATS C-ABC
[4] [15] [21,22] [9] [38] [39] [23] [32,33] [34]

1BXP 5.6104 – 4.498 2.8930 – – – – – –
1CB3 8.4589 8.4589 – 8.4580 – – – – 8.2515 –
1BXL 17.3962 17.3962 15.200 15.9261 – – – – 15.8246 –
1EDP 15.0092 15.0092 – 13.9276 – – – – 13.7769 –
2ZNF 18.3402 – 15.056 5.8150 – – – – – –
1EDN 21.4703 – 17.721 7.6890 – – – – – –
2H3S 21.1519 20.0979 15.340 18.3299 – – – – 18.1640 –

1ARE 25.2800 – 17.416 10.2580 – – – – – –
2KGU 52.7165 50.2960 40.696 28.1423 20.9633 32.2599 – 31.9480 – –
1TZ4 43.0229 39.7340 – 39.4901 – – – – 39.3444 –
1TZ5 49.3868 47.1513 – 45.3233 – – – – 45.3019 –

1AGT 65.1990 62.8951 40.300 51.8019 – – – – 46.0842 –
1CRN 92.9853 89.2001 61.426 54.7253 28.7591 49.6487 43.9339 52.3249 – –
2KAP 85.5099 – 44.972 27.1400 15.9988 28.1052 18.9513 30.3643 25.1003 –
1HVV 95.4475 82.1427 – 47.4484 – – – – – –
1GK4 106.4193 90.9140 – 49.4871 – – – – – –
1PCH 156.5252 131.779 – 91.3508 46.4964 49.5729 38.2766 63.4272 – –

2EWH 245.5193 225.097 – 146.8231 – – – – – –
F13 6.9961 6.9961 – 6.9961 – – – – 6.9539 7.0025
F21 16.5544 16.2250 – 15.6258 – – – – 14.7974 14.9570
F34 31.3459 28.2509 – 28.0516 – – – – 27.9897 28.0055
F55 52.0558 45.0942 – 42.5814 – – – – 42.4746 42.2769
F89 83.5761 – – – – – – – – –

values for the 3 shortest sequences, and reached the

new best-known energy values for all other sequences,

except for sequence F13. Solutions for the best energy

values reached by DElscr are shown in Tables 9 and 10.

In [19] an efficient global optimization method is

applied to the sequence F89. Within this work, 32,200

distinct conformations were obtained, and the best ob-

tained energy was 73.1065. DElscr improves this energy

by 10.4695, as shown in Table 8.

5.6 Analysis of the obtained structures

For most of the sequences, the best conformations were

obtained by using tlmt = 4 days. Within this experi-

ment, 100 solutions were generated with 100 indepen-

dent runs. Distribution of the Root-Mean-Square Error

(RMSE) values as a function of energy for all these so-

lutions according to the best-known conformation for

selected sequences is shown in Fig. 7. Note that the

RMSE is calculated by using the superposition between

matched pairs. From Fig. 7a, we can see that only two

different solutions were reached for sequence 2ZNF. Sim-

ilar graphs with only two different solutions were ob-

tained for 6 sequences where hitr = 100 (see Table 7).

Three-dimensional representations of these solutions are

displayed in Fig. 8. As is shown, for each of these se-

quences, two solutions are symmetrical according to the

XY-plane. This can also be seen from Tables 9 and 10.

Two reported solutions for one sequence are very simi-

lar. They are different in some components that belong

to β torsional angles (marked in bold typeface), and

their values represent angles with opposite directions.

For a little bit longer sequences more different solutions

were reached with different energy values, as shown in

Figs. 7b and 7c while, for the longest sequences, all

100 solutions are different with different energy values.

For example, this is illustrated in Fig. 7d for sequence
2EWH. From these results, we can conclude that all

reported symmetrical solutions could be optimal, es-

pecially those obtained with hitr = 100, and all other

solutions with hitr = 1 are almost surely not optimal.

6 Conclusions

In this paper, we presented a novel Differential Evo-

lution algorithm for protein folding optimization. To

improve its efficiency, the algorithm is extended with

a component reinitialization and local search that in-

cludes a local movement. The component reinitializa-

tion is designed to redirect the search process to similar

solutions that are different from the already found good

solution in only a few components. Thus, the search

space around good solutions is explored thoroughly and,

consequently, the algorithm can find better solutions.

We also designed the local movement for a three-dimen-

sional AB off-lattice model in such a way that only a two
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Fig. 7 Distribution of the Root-Mean-Square Error (RMSE) values as a function of energy for all 100 obtained conformations
within a runtime limit of 4 days, calculated from the best-known conformation.

consecutive monomers are moved locally, while all the

remaining monomers remain in their positions. With

additional data structure this type of movement allows

us to reduce the runtime complexity of the energy cal-

culation within the local search from L2

2 to 2L.

The 23 sequences are used in the experiments to

analyze the proposed algorithm and its mechanisms.

From the results of the algorithms with and without

local search, it is evident that the local movement with

additional data structure reduces the runtime complex-

ity of the energy calculation, or increases the number of

function evaluations per second by factor 1.46 for the

shortest sequences, and by factor 3.91 for the longest se-

quence. This speed up is dependent on sequence length

and the relationship between the number of solution

evaluations inside and outside the local search. The lo-

cal search also improves the algorithm’s convergence

speed for most of the sequences. Because of both ad-

vantages, the local search improves the efficiency of the

algorithm, and this improvement is greater for longer

sequences.

Using the best-known energy values as a stopping

condition, we demonstrated the usefulness of compo-

nent reinitialization. It reduces the required mean num-

ber of solution evaluations to reach the best-known en-

ergy value from 0.38 to less than 0.05. This indicates
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(a) 1BXP (b) 1BXP (c) 1CB3 (d) 1CB3

(e) 1BXL (f) 1BXL (g) 1EDP (h) 1EDP

(i) 2ZNF (j) 2ZNF (k) 1EDN (l) 1EDN

(m) 2H3S (n) 2H3S (o) F13 (p) F13

(q) F21 (r) F21

Fig. 8 The best obtained conformations that could be optimal.
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that the component reinitialization redirects the search

process successfully to similar solutions, and allows the

algorithm to locate the best-known solutions efficiently.

Our algorithm is the first algorithm that is capa-

ble of obtaining a hit ratio of 100% for 6 shorter se-

quences within the budget of 1011 function evaluations.

Therefore, we introduce an approach for determining

asymptotic average-case performances. Our algorithm

obtained the best runtime asymptotic average-case per-

formance for sequence 2ZNF (16.6030 · 1.3505L) and

the worst for 1BXP (0.0015 · 2.8911L). This approach

shows additionally that the difficulty of the problem is

not only dependent on sequence length, but also on the

sequence itself.

The proposed algorithm was also compared with re-

cently published state-of-the-art algorithms for PFO. It

outperforms all competitors, and the obtained energy

values improve the best-known energy values from the

literature for all sequences with L ≥ 18. For example,

the best energy value of sequence 1PCH was improved

from 131.7787 to 156.5250 or by 24.7463.

The structure of the best obtained solutions was

also analyzed. We figured out that two symmetric best-

known solutions exist for sequences with L ≤ 25. For

these sequences, our algorithm obtained a hit ratio equal

to or greater than 7%. The solutions of these sequences

could be optimal, especially those with a hit ratio of

100%, and solutions for all other sequences are almost

surely not optimal.

In the future work we will try to improve the al-

gorithm further by using knowledge about symmetric

solutions. This knowledge can be integrated within the

evaluation function, or used to reduce the size of the

search space. Additionally, we will try to design an algo-
rithm that will reduce the likelihood of the exploration

of already explored search space.
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Table 9 The best solutions obtained by the DElscr algorithm.

Label Solution vector in degrees
1BXP 43.2915, 2.88166, -48.728, 0.0655009, 12.6242, 66.0927, -6.40805, 8.96332, 8.80015, 2.23544, 74.0763, -6.62061, 1.31798, -104.099, 160.341,

-177.384, -20.6892, 26.8003, 127.789, 166.27, 10.2979
1BXP 43.2915, 2.88166, -48.728, 0.0654961, 12.6242, 66.0927, -6.40805, 8.96332, 8.80016, 2.23544, 74.0763, 6.62061, -1.31798, 104.099, -160.341,

177.384, 20.6892, −26.8003, -127.789, -166.27, -10.2979

1CB3 -14.0758, 25.2546, -38.7359, -9.58086, 21.0366, 14.7617, -0.998265, 21.5393, 71.2738, -27.6012, -5.16526, -19.1483, -149.775, 172.54, 178.086,
178.164, 91.6772, 4.85452, -31.1093, 28.9806, 3.41538

1CB3 -14.0758, 25.2546, -38.7359, -9.58086, 21.0366, 14.7617, -0.998265, 21.5393, 71.2738, -27.6012, -5.16526, 19.1483, 149.775, -172.54, -178.086,
-178.164, -91.6772, -4.85451, 31.1093, -28.9806, -3.41538

1BXL -22.4292, -32.2737, -16.9254, 5.81295, 15.6175, 26.9979, -38.2372, 52.8361, -48.2442, -24.0736, 49.3335, -36.1178, 13.9215, 12.5486, 1.91872,
55.1452, 147.302, -127.63, 168.592, -62.9624, -27.0891, 28.7221, 27.4283, 152.122, -177.152, 67.7357, -5.21217

1BXL -22.4292, -32.2737, -16.9254, 5.81296, 15.6175, 26.9979, -38.2372, 52.8361, -48.2442, -24.0736, 49.3335, -36.1178, 13.9215, 12.5486, -1.91872,
-55.1452, -147.302, 127.63, -168.592, 62.9624, 27.0891, -28.7221, -27.4283, -152.122, 177.152, -67.7357, 5.21217

1EDP -22.6336, 7.26974, 60.7674, 23.936, -50.4261, 4.41672, 11.4886, 46.499, 13.2306, −12.2668, 22.7087, 4.07035, 30.6245, -69.1251, 16.9542, 26.0209,
124.911, −155.575, -61.088, 1.55078, 53.7379, 159.421, -162.592, -156.44, -170.499, -85.1224, 2.36332, -25.7677, 67.3571

1EDP -22.6336, 7.26974, 60.7674, 23.9359, -50.4261, 4.41671, 11.4886, 46.499, 13.2306, −12.2668, 22.7087, 4.07036, 30.6245, -69.1251, 16.9542, -
26.0209, -124.911, 155.575, 61.088, -1.55077, -53.7379, -159.421, 162.592, 156.44, 170.499, 85.1224, -2.36333, 25.7677, -67.3571

2ZNF -22.512, 7.71692, -75.1038, 26.0695, 35.539, 19.645, 6.73951, 21.8104, -57.4641, 1.6924, 6.15567, 3.08902, 9.89786, 23.8155, -48.9192, -4.31387,
78.7078, 2.66583, -114.943, -148.187, -162.564, -79.1176, 8.87759, -178.428, 42.9368, 15.8392, -18.6691, -104.193, 166.46, 12.876,
140.107

2ZNF -22.512 7.71691, -75.1038, 26.0694, 35.539, 19.645, 6.73952, 21.8104, -57.4641, 1.6924, 6.15567, 3.08903, 9.89787, 23.8155, -48.9192, -4.31386, -
78.7078, -2.66582, 114.943, 148.187, 162.564, 79.1176, -8.87759, 178.428, -42.9368, -15.8392, 18.6691, 104.193, -166.46, -12.876,
-140.107

1EDN -23.2048, 31.2208, 46.764, 48.9339, -43.6867, -28.0164, -17.6723, -38.3711, -25.1772, 10.6263, 9.07757, 33.5364, -4.83762, -6.09916, 25.0581, -81.151,
15.5944, -3.62479, −36.6783, 41.0025, 127.461, -147.732, -53.6249, -22.4102, -68.6344, -166.972, 147.028, -171.451, -155.381, 121.71,
29.6786, 131.144, 15.2983, 24.5428, −54.7787, -83.2637, -29.6805

1EDN -23.2048, 31.2207, 46.764, 48.9338, -43.6867, -28.0164, -17.6723, -38.3711, -25.1772, 10.6262, 9.07754, 33.5364, -4.83764, -6.09917, 25.058, -81.151,
15.5944, -3.62479, -36.6783, -41.0025, -127.461, 147.732, 53.6249, 22.4102, 68.6344, 166.972, -147.028, 171.451, 155.381, -121.71,
-29.6786, -131.144, -15.2983, -24.5428, 54.7786, 83.2637, 29.6805

2H3S 30.6395, -51.1361, 34.4028, -0.410148, -32.439, -10.4102, -2.09416, 12.4798, -5.74202, -60.0842, 12.6704, -8.68551, -36.5963, -14.4828, -17.9172,
13.0794, 0.148026, 17.7335, -6.06512, 1.46386, -69.7022, 3.0363, 36.2347, -57.1061, -174.679, 173.256, -170.68, -156.724, 142.58, 40.6316,
22.5668, -1.4454, 175.849, -114.818, -61.1893, -4.11275, -27.6809, 84.4735, 144.867, 176.731, 161.605, -97.3254, -158.173,
113.225, 54.3451

2H3S 30.6395, -51.1361, 34.4028, -0.410146, -32.439, -10.4102, -2.09415, 12.4798, -5.74202, -60.0842, 12.6704, -8.68551, -36.5963, -14.4828, -17.9172,
13.0794, 0.148029, 17.7335, -6.06512, 1.46387, -69.7022, 3.0363, 36.2347, 57.1061, 174.679, -173.256, 170.68, 156.724, -142.58, -40.6317,
-22.5668, 1.44539, -175.849, 114.818, 61.1893, 4.11273, 27.6808, -84.4735, -144.867, -176.731, -161.605, 97.3254, 158.173, -
113.225, -54.3451

1ARE -11.5547, -1.31888, -15.2569, -42.6589, 17.4763, 5.06218, 14.6442, 24.251, 2.4936, -13.6942, 28.8183, -37.0023, -1.8785, -0.867767, -5.02831, 35.1061,
-45.2208, -7.89329, 3.88011, -1.06756, -41.5237, 42.6134, 14.078, 1.71866, -70.4096, 19.7351, 23.088, -23.8173, -48.341, -27.8178, -175.825, 102.429,
138.697, -140.149, -46.4258, -148.917, -22.129, -165.228, 134.775, 48.8091, -12.7742, -50.1159, -163.389, 154.413, 126.397, -131.045, -60.8471,
167.884, 102.299, 52.433, -15.9838, -113.979, -58.9094

2KGU -156.228, 84.3317, -1.89424, -22.9614, 4.96104, -10.8986, 42.0037, -54.9878, -4.36371, -80.394, 6.84565, -4.01855, -29.0786, 38.404, -24.9304,
51.317, -53.2373, 15.7134, -51.9703, 1.34405, 37.6371, 36.5939, 35.6007, -52.9444, 32.6405, -108.259, -56.7621, 71.7249, 5.9403, 4.99762, 0.0626093,
8.48403, -161.728, -140.31, 137.06, 46.113, 21.1367, 45.0214, -27.4148, 37.097, -8.18763, -148.71, 107.671, -141.471, -176.445, 152.171, -23.7168,
-63.0744, -154.472, 9.04166, -89.3673, 21.6149, -71.4051, 41.2427, -22.0274, 113.616, 22.7052, 159.166, -13.0884, -8.78814, 19.7018, 51.7085,
100.664

1TZ4 -13.2782, 2.2117, -21.4873, 13.5614, -50.9456, -18.6314, 58.273, 35.906, -51.557, 43.4606, 14.4093, 26.9361, -9.90087, 51.937, 12.5408, -12.0182,
-39.4559, -3.12819, -37.7837, 39.5619, 14.5525, -105.659, -2.39298, 23.2026, 13.2624, 7.00485, -63.913, 21.5608, -2.32347, -4.49988, 14.2846, -
2.28795, 25.5405, -52.7743, -3.52791, 88.4618, 172.62, 63.4655, 167.01, -112.19, -129.059, 165.903, 161.114, -13.1829, -29.6599, -142.278, -118.354,
-17.9561, 62.8846, 132.227, 150.392, 59.2519, -21.0203, -51.4332, 27.3873, 6.73164, 10.4224, -36.4599, -134.654, -177.842, -46.6888, 152.495,
60.1706, -2.02398, -21.7416, 80.9012, 145.281, -5.47398, -93.0592

1TZ5 19.2916, -25.4743, 37.9748, -2.24909, -71.5607, -62.5534, -1.20914, 60.5119, -37.8385, 56.051, -23.4795, 88.5824, -23.4208, 9.88257, -27.3279,
2.64366, 4.72144, -32.8121, -37.9781, 28.6777, -1.79099, -1.45295, -1.55722, -28.7841, 53.5811, -7.1834, 28.1114, -34.8815, -63.6796, -10.3914,
19.0723, -11.8679, -27.892, -37.0612, 62.2441, 52.8494, -172.157, 163.821, 57.7857, -56.1207, -158.293, 168.377, -23.9122, -20.1987, 4.84453, -
2.90382, -36.4027, -130.461, 158.501, 160.429, -146.987, -129.731, 128.236, 34.5188, 28.0746, -55.2047, -137.136, -167.33, 32.699, 35.1309, -64.3505,
35.5609, 22.6136, -27.8717, -112.09, 160.134, -131.465, -173.819, -165.595

1AGT 26.1664, -11.7847, -37.6783, -3.62257, 75.6542, -40.6386, 24.7245, -92.2268, -13.2317, 23.7859, -94.496, -2.2422, 17.0125, 1.77619, -39.6216, 113.613,
89.2441, -4.72246, -98.3805, -65.8427, 44.1904, -17.7537, -84.2295, -2.33273, -55.9952, -46.6065, -1.4073, 40.7682, -24.0458, 37.5641, 44.8005, -
1.59772, 9.28805, 12.0621, -52.5228, 21.2213, 120.34, -179.746, -63.7778, 18.8875, 10.4973, -6.76493, -21.1687, 57.2819, 176.355, 27.0186, -122.011,
-33.6896, -59.127, -178.6, 14.4172, -4.50249, -165.323, -6.2693, 12.6379, -54.0356, -62.0563, 7.63468, 127.685, 19.1897, 133.256, -157.687, -140.601,
-147.971, -19.8046, 48.3979, 166.316, 54.8275, 156.099, 3.00416, -140.869

1CRN 36.2044, -2.8726, -58.3456, -109.168, 67.0176, 63.8303, -34.4202, -9.13991, 27.0952, 6.87578, -175.904, -10.0323, -14.0642, 169.202, 139.54, 37.4324,
-30.2161, 3.47033, 120.567, 8.05841, 74.7893, -51.1755, -78.2244, -6.56336, -37.0077, -0.404044, 22.8391, -11.2627, -2.90337, -113.857, -122.645,
-5.62342, 80.5936, -19.4761, 87.9704, 12.3212, -4.15216, 3.25955, 39.0676, 30.3454, 61.9086, 12.9802, -97.5976, 8.44839, -76.9107, 30.3312, 41.3065,
24.8161, -34.1801, 20.2024, 33.4227, -14.1966, 80.1988, 28.2782, -166.287, -129.879, -11.8488, 19.3045, -66.9439, -48.3743, -164.938, -12.7803,
7.1584, 29.2233, 12.4003, 39.0045, -58.1443, 52.0717, 43.5443, -0.577219, -103.851, -146.583, -9.20535, -12.6377, -128.769, 27.4049, -32.4672,
16.7912, -135.646, -149.836, 98.1608, 22.2995, 23.6538, 11.9513, 104.699, -3.17593, 35.9215

2KAP 46.469, 9.17062, -12.987, -39.265, -23.0536, 170.718, 7.46538, -139.561, 9.6654, -109.874, 39.7501, -77.1224, -8.16555, 82.4941, -21.6873, 93.4429,
-10.6347, 10.7423, 20.8323, -4.45369, -11.4409, -5.20606, 147.482, 172.455, -52.8927, 8.19366, 92.0005, -44.9143, -45.2074, -1.91882, -16.8158,
4.77317, 17.6662, 124.018, 11.9037, -1.64667, 74.9571, 15.2233, -5.48327, -140.99, 19.2716, 15.4203, -48.7429, -34.6525, 5.87344, -6.16017, 41.6324,
-16.8426, 49.2516, -28.6507, 29.562, -13.1308, 17.3443, -61.6342, 8.11077, -104.361, 26.4602, 4.19116, 18.9505, 67.8863, 154.188, -116.346, 19.3865, -
84.7317, -27.0054, -31.7152, -24.4805, -34.1621, -13.632, 63.0618, 8.2678, -2.60225, 37.1772, -9.33353, -46.953, -117.05, -167.457, 155.733, -103.59,
35.8403, 44.471, -168.41, -18.09, 28.324, 22.7177, -44.4081, -37.3318, -3.25116, 42.16, 57.0729, -4.27289, -157.026, 158.794, -19.8247, 37.3666,
142.492, -5.84281, 168.076, -163.22, -4.06088, -38.3009, 6.22285, -20.4278, 52.41, 156.856, 11.6928, 124.907, -164.531, 100.594, -172.86, -66.3312,
-55.802, 13.087, 38.8668, 61.5511
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Table 10 The best solutions obtained by the DElscr algorithm.

Label Solution vector in degrees
1HVV 123.296, 175.071, -104.639, -8.91165, 17.898, 3.71452, 16.7371, -6.98533, -76.7403, -9.21776, 75.2042, 124.487, 46.9457, 18.594, -46.3806, 145.54,

124.742, -1.01034, 2.75056, 10.5349, -7.0204, 118.317, 75.4052, -30.5719, 69.7023, -72.9042, 176.87, -87.9407, -48.7546, 88.4046, -11.7349, 44.1027,
-5.14578, -65.6298, 20.3053, -20.9559, -72.1726, 94.427, 45.6623, -45.1943, 55.0226, 121.96, 34.0003, 6.44231, 140.467, 17.4955, 85.266, -21.9109,
-95.2265, -24.295, 2.64738, -17.4667, 155.115, -5.99421, -158.933, -6.23019, -43.4673, -28.7354, -11.6413, -19.2361, -10.0374, 34.4593, -178.973, -
160.129, -42.443, 5.40211, -87.2981, -36.4155, 10.9084, 64.5935, -5.14139, 28.5554, -18.3091, -3.52734, 45.1155, 9.74914, 114.875, 75.0862, 26.4021,
22.7921, -63.2735, -138.233, -64.6958, -1.96622, 99.8458, -16.8097, 71.6329, 28.1128, -43.4581, -82.0519, 173.534, -96.2117, -16.7565, -32.4898,
48.5607, 11.8749, -64.2088, 1.38784, -57.9374, 25.3469, 54.5768, 34.603, -28.9913, -102.93, -64.0207, -23.3654, 157.688, 118.979, 5.08255, 61.9001,
-18.6156, -45.7361, -10.7387, 47.8304, -26.517, -104.738, 22.5679, 115.444, -6.44774, 116.951, 14.5305, -0.364305, 25.7291, 114.23, -22.2869,
97.1472, 0.163606, -93.1095, -14.0922, 67.6929, 103.708, 12.5582, -62.8467, -103.687, -55.8599, 11.7904, 63.4791, 74.9204, 26.812, -72.0632, -
116.517, -46.752, 39.4218, 63.2466, 101.367

1GK4 -156.276, -11.1754, -77.6765, -33.983, -9.25845, 27.2496, -22.3371, 55.198, -12.6002, 30.4017, 35.9669, -18.5758, -87.0091, 63.2376, 163.731, -
40.6359, 102.397, 146.119, -16.2788, 0.676412, 169.967, -18.769, -43.9974, -62.1645, -51.3378, -148.518, 144.287, -170.774, -25.6785, -22.1326,
27.6078, -8.93322, -75.4448, -68.3403, -16.5373, -128.752, 53.7389, -140.548, -115.598, -1.7515, -106.07, -14.6299, 82.7281, -28.3651, 36.138,
37.748, -23.152, -11.6747, 20.0652, -55.0055, -150.457, -49.5769, 23.078, 65.4316, 111.217, 34.2085, 8.50149, 21.775, -107.598, 139.532, -69.7933,
68.8643, 88.8784, -166.542, -174.708, 31.9934, 137.315, -3.2063, -88.0773, -6.44718, 23.1364, 95.4164, -34.9923, 2.63385, 13.9679, -23.3478, -
54.8455, 43.5591, -4.20436, -43.6293, -144.761, 18.6453, 179.845, -29.3419, 34.6059, 116.989, -2.74396, 108.058, 157.394, 13.5671, -34.673, -71.5358,
29.1635, -12.3351, -58.4977, -28.7525, -42.495, -47.6578, 29.0888, -101.645, -92.0769, 10.8024, 101.05, 70.2237, 17.3966, -48.5046, 27.4408, 61.4589,
71.0815, 77.6142, 36.2921, -18.009, -121.503, -122.087, -32.2391, 9.22399, 11.065, 70.686, 48.1796, -38.5792, -91.5736, 15.5793, -173.479, -25.563,
108.153, 54.9784, -50.888, -86.9754, -52.2761, -23.2842, 20.5012, 16.6481, -23.1703, -40.3118, -64.6739, 26.9541, 177.66, 154.029, 125.888, 2.61904,
-11.91, -67.2757, 7.45577, 48.5355, -2.84037, -62.5508, -1.94643, 7.24978, 48.2981, 62.3802, 127.482, 80.9534, -6.93496, -105.181, -59.8353, -45.6067,
-113.32, 1.58149, -33.4263, -8.31888, 28.5097, -8.75938, 151.901

1PCH 41.1106, -75.4478, -108.35, -88.2808, 52.6905, 63.9346, 98.575, -146.011, -103.251, -81.3915, -7.97873, -5.67391, -138.034, 77.0572, -3.43666,
-168.458, -44.1355, -51.9614, -0.548426, -11.6916, -13.85, -90.7331, 162.157, -85.119, -80.3963, 2.41355, -4.42424, 54.2753, 89.5966, -147.035,
78.814, 99.0202, -89.7149, -126.891, -85.1937, 16.9404, -73.4292, 66.5445, 160.832, 40.1368, 145.935, 17.6023, -17.2377, 45.6224, 136.733, -49.815,
-43.4151, -102.65, 8.11703, -109.171, -24.407, -47.2699, -132.484, -42.5279, -119.761, 147.911, 73.3968, 3.65598, 74.2541, 19.778, -2.2315, -111.056,
-25.0304, -86.2442, 0.146651, 83.5428, -29.3382, 64.0093, 147.03, 73.9582, 29.3652, 154.906, 6.25221, 112.96, 165.03, 11.5624, -48.3887, -130.92,
158.099, -6.47314, -26.6561, -18.5458, -79.5949, 16.5753, 68.4287, 54.4969, 8.59587, -21.8077, -38.0325, -14.1827, -48.149, -7.71342, 5.32628,
34.3591, 4.97453, -19.9588, -29.6581, -39.8474, 152.45, -7.02004, -71.166, 40.6025, 90.9133, 41.1172, 10.2277, -41.2978, -21.4705, -9.53513, 33.3237,
-170.287, -147.144, -21.8209, 27.7537, 19.2982, 29.7286, -13.7392, -55.8712, -28.3766, -8.00291, 125.209, 161.205, 19.9805, -46.2199, -2.73427, -
12.1052, 106.535, 20.4942, -28.1138, 4.59628, 62.9273, -0.534962, 6.33028, -7.44623, 29.7984, -42.8088, 5.32914, 17.9307, 174.593, -36.0277,
3.2934, 24.3011, 174.231, -1.94325, 107.108, -4.82491, 44.1005, -38.1958, 47.1931, 0.689977, -48.5599, -2.29967, -16.9223, -9.36993, -13.2723,
23.7414, 17.0389, 157.955, 52.6113, 14.0859, -100.053, -42.2958, -9.25703, 37.9416, 58.9846, -28.9415, -56.1025, 37.1207, 50.4847, -55.062

2EWH 151.436, -92.5903, -3.75076, -9.668, -0.975246, 10.9844, 84.1865, -57.1686, 38.7048, 72.7755, 64.7086, 50.2283, 29.5956, -111.649, 163.46, -92.508, -
148.929, 61.6607, 124.085, 171.298, -75.5506, -52.2331, -1.37142, -19.9511, 67.108, 14.27, -1.03143, 0.0222875, -116.144, -32.3217, -125.421, -102.86,
145.85, 108.298, -60.4006, -54.4374, -88.1894, -14.6692, 121.958, 125.926, 167.02, -74.5737, -130.938, 62.1354, 106.58, 35.1401, 93.7873, 162.441,
14.5873, -4.93593, 6.27325, -7.31527, 10.8045, -53.8271, -132.021, -37.8517, 30.6805, -89.4307, -61.2859, -31.1104, 90.5217, 118.145, -4.46292,
-52.5412, 113.612, 159.141, -3.43442, 62.945, 12.7417, -19.7111, -15.1737, 30.368, -27.5934, -138.544, 7.81197, -59.2248, 9.7981, 122.127, -164.755,
36.2949, 27.611, -37.779, 39.5707, -22.2883, 38.9922, 4.30684, 71.8969, -21.7556, -128.587, -76.5211, -0.480596, 65.3271, 8.48192, 158.34, 107.055,
-66.142, 18.5806, -129.465, -18.4294, -11.7806, 50.9098, 132.39, 101.434, 0.100595, -28.2695, 0.622333, 52.5959, 150.715, -11.0556, -45.8273,
-39.1155, 8.30602, 56.8165, -46.0845, 17.9186, 11.1667, 19.5044, 89.7449, -23.746, -0.808862, 84.8186, 0.457484, -89.925, -21.9539, 26.9255, -
59.9087, 45.3057, -9.74849, -70.462, -14.0544, 18.7807, 59.6121, -176.746, -30.6629, -54.0245, -8.68261, -14.3952, 43.302, 23.9289, 59.5115, -35.76,
-58.2711, 2.27009, -152.857, -35.6967, -137.17, -49.407, 36.9083, 58.3246, -26.7135, -71.9911, 26.5305, 53.0114, 52.0147, -21.6699, -14.1031, 12.009,
-63.6288, -54.0997, -10.6967, 5.20745, -124.069, -19.2082, 55.6145, -3.07942, 12.0508, 131.359, -177.867, 32.7929, 24.0475, 25.0758, -0.0780254,
5.44473, 36.0356, 28.5948, 22.5261, -174.132, -3.91424, -11.5903, -132.095, -172.313, -25.055, -156.073, 11.1264, 29.3397, -64.3192, -38.8408,
-177.009, 22.2676, 11.9142, 56.3727

F13 7.66522, -83.448, 13.0886, 0.55134, 29.1616, -47.908, 2.75327, -31.0327, -31.3119, -46.3918, 0.276218, 9.04884, -29.5745, -116.199, 160.508,
0.890189, 129.381, 24.5074, 113.38, -161.672, 98.7127

F13 7.66522, -83.448, 13.0886, 0.551338, 29.1616, -47.908, 2.75327, -31.0327, -31.3119, -46.3918, 0.276222, -9.04884, 29.5745, 116.199, -160.508,
-0.890189, -129.381, -24.5074, -113.38, 161.672, -98.7127

F21 -5.70817, -70.6345, 12.6013, -78.4561, 5.14012, 2.49148, 57.5974, -25.416, 27.2287, -35.8677, -5.33428, -13.9895, 3.02158, 19.9054, 74.4006, -
31.0707, 4.76465, -19.1022, -32.9492, 155.506, -16.0013, -169.101, 162.893, -94.9124, 155.503, -140.891, 153.332, 40.6752, 137.563,
48.1957, -35.2245, 66.7533, -37.5734, 137.909, -144.521, -52.7295, -156.871

F21 -5.70816, -70.6345, 12.6014, -78.4561, 5.14014, 2.49149, 57.5974, -25.416, 27.2287, -35.8677, -5.33427, -13.9895, 3.0216, 19.9055, 74.4006, -
31.0707, 4.76466, -19.1022, -32.9492, -155.506, 16.0013, 169.101, -162.893, 94.9124, -155.503, 140.891, -153.332, -40.6752, -137.563,
-48.1957, 35.2245, -66.7533, 37.5734, -137.909, 144.521, 52.7295, 156.871

F34 12.3298, -83.1718, 20.1532, 8.42606, 37.8998, -37.8448, 9.33408, -77.8143, 7.4245, -73.1774, 26.15, -80.0668, 46.3843, 6.49943, -29.8816, 51.2622,
-33.6564, 38.6885, -67.9543, 46.7986, -10.4886, -27.9647, -10.0583, -39.8364, -49.6972, -25.641, 44.7456, -59.6061, 18.6305, -20.9127, 25.4877,
13.4228, 1.77009, 42.1284, 129.207, -149.941, 1.89517, -120.166, 18.4003, 159.01, -168.548, 143.358, 151.62, -49.9323, -164.471, -44.6816, 177.501,
-32.6178, 2.86468, -2.00479, -22.1516, -57.0231, -143.09, 131.37, -127.956, 147.157, 57.657, -21.2642, 27.2822, -52.9505, 17.7835, 119.254, 18.7327

F55 -15.6437, 97.9193, 1.00666, 95.3815, 1.86855, -64.0331, -141.452, -2.83476, 104.146, 8.21281, -162.93, -74.3953, 1.96392, 7.65968, -29.2495, 52.5953,
52.8264, -0.624594, 137.07, -4.89079, 0.957561, 150.771, 19.388, 7.34186, 59.4269, 8.22775, -64.6383, -54.8633, -8.8461, 59.752, 162.033, 13.6066,
-78.2664, 13.0242, 102.375, 3.23899, -2.60196, -16.3626, 36.9652, -37.8734, 30.0569, 3.86882, -34.6667, -22.5344, 25.3408, 89.0776, 16.5037, -
17.6911, -91.108, 4.84917, -9.27247, -4.88184, 6.63221, 4.31554, -28.558, -8.46761, 171.776, -66.1542, 29.7446, -114.307, -0.574113, 83.8969,
-5.34284, 64.1091, 6.16523, 112.965, -5.20239, 68.6776, -17.6844, -113.527, 31.5684, -100.963, 152.521, -49.1181, -26.2181, -129.399, -24.1061,
42.4841, -45.0845, 67.3054, -35.1296, 15.741, 34.8919, 33.4461, 7.88754, 179.833, 41.9367, -135.639, 118.444, -156.824, -55.2589, 169.967, 0.172651,
91.1955, -4.02574, -81.307, 23.9152, -29.0528, -154.072, -133.971, 16.3457, -93.6495, -5.71876, 80.2119, -21.5927

F89 179.886, -95.54, -17.2583, -27.4664, -23.3,38.1298, 19.5766, 34.4132, 8.84695, -117.344, -20.5596, -131.943, -11.8962, -48.6976, 129.133, -107.932,
7.29644, 89.0642, 21.8161, 56.2631, -33.6006, -22.3247, -47.5945, -48.8527, -51.6802, 36.4829, 85.1461, 3.54137, 107.149, -0.955333, -51.2341,
65.8004, 13.8676, -69.7918, -0.860014, -134.319, -37.8356, -2.74527, -12.5366, -93.6285, -28.5384, -105.157, 19.0699, 81.6706, 6.93831, 0.887398,
116.484, 23.1153, 132.738, 10.4558, 73.2237, -15.4114, 6.88586, -109.859, -3.3155, -82.7065, 2.76043, -42.4804, 82.5479, -18.3209, -29.9615, -
74.7318, -24.0277, 60.1736, -26.3071, -15.531, -14.9412, -79.5093, -1.99245, -48.5295, -70.5006, 58.6443, -42.9465, 50.0326, -70.0616, -9.55698,
-109.482, -2.75044, -87.6997, -8.8569, 86.5537, -22.4479, 72.1052, 14.0501, -27.4652, -8.8744, 56.3962, 0.863411, -142.989, -54.5377, 29.0611, -
61.1795, 50.3774, -12.8387, 73.4752, 12.0947, -39.6898, -28.42, 143.035, 28.1471, 39.6651, 10.0519, -140.34, -2.35037, 123.344, 3.62448, 125.741,
132.141, 71.1956, -36.3432, -36.7204, -39.5973, 57.8245, -31.8281, 13.6268, -143.946, -36.4178, -6.53297, 34.1645, 12.4669, -82.0619, 14.2377, -
32.9623, 49.1945, 137.212, -16.0272, -178.526, 12.3581,69.7334, -1.88293, 147.327, 145.168, 27.4845, -35.3688, 8.48146, -81.2594, -5.25881, 119.388,
-139.654, 57.454, 159.88, 27.509, -0.616009, 114.258, -13.2053, -39.494, 65.2585, -42.1881, 0.311959, -22.2436, -162.899, -54.8573, -20.7022, -
14.7214, 128.993, 5.42026, 114.069, -21.3562, -46.7891, 18.6434, 15.3431, 121.287, -3.95967, -82.6683, -9.4711, -120.912, -1.33882, -28.956, 43.9338,
-42.9642, -139.445, 137.938, 4.62324
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