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ABSTRACT 

Background: Hemodynamic instability and cardiovascular events heavily affect the 

prognosis of traumatic brain injury (TBI). Physiological signals are monitored to detect these 

events. However, the signals are often riddled with faulty readings, which jeopardize the 

reliability of the clinical parameters obtained from the signals. A machine learning model for 

the elimination of artifactual events shows promising results for improving signal quality. 

However, the actual impact of the improvements on the performance of the clinical 

parameters after the elimination of the artifacts is not well studied. 

Methods: The arterial blood pressure of 99 subjects with TBI was continuously measured for 

five consecutive days, beginning on the day of admission. The machine learning deep belief 

network (DBN) was constructed to automatically identify and remove false incidences of 

hypotension, hypertension, bradycardia, tachycardia, and alterations in cerebral perfusion 

pressure (CPP). 

Results: The prevalences of hypotension and tachycardia were significantly reduced by 

47.5% and 13.1%, respectively, after suppressing false incidents (p = 0.01). Hypotension was 

particularly effective at predicting outcome favorability and mortality after artifact 

elimination (p = 0.015 and 0.027, respectively). In addition, increased CPP was also 

statistically significant in predicting outcomes (p = 0.02). 

Conclusions: The prevalence of false incidents due to signal artifacts can be significantly 

reduced using machine learning. Some clinical events, such as hypotension and alterations in 

CPP, gain particularly high predictive capacity for patient outcomes after artifacts are 

eliminated from physiological signals. 
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INTRODUCTION 

Traumatic brain injury (TBI) continues to be one of the leading causes of mortality and 

morbidity worldwide.1,2 Hypotension, hypertension, bradycardia and tachycardia are all 

critical for the prognosis of TBI; thus, they should be swiftly and accurately recognized. 

Various physiological signals are measured to detect such clinical events, including the 

arterial blood pressure (ABP). However, the measured ABP signals are often unstable and 

riddled with signal artifacts. Clinical parameters derived from artifact-contaminated signals 

can easily induce erroneous recognition of clinical events;3,4 clinicians may either apply 

excessively aggressive therapy or avoid necessary treatment because of the inaccurately 

assessed patient’s pathological status, resulting in a worse clinical outcome. Thus, 

suppressing the false incidences of clinical events by improving signal quality is substantially 

important to better manage the patient’s condition.5 Given that the continuous monitoring of 

physiological signals is a hallmark of critical care units, problems due to poor signal quality 

are the most severe in critical care units, which manage TBI cases. 

Many studies have attempted to eliminate signal artifacts measured in critical care 

units.6,7 The algorithms for suppressing false incidences can be categorized into two 

approaches: statistical approaches, such as time-series analyses,8 and artificial intelligence 

approaches using machine learning techniques.9,10 In particular, rapid improvements in 

machine learning techniques show promising results in the online, real-time detection of 

signal artifacts.10,11 

Artificial intelligence also plays a key role in the application of clinical decision 

systems, which often comprise the algorithms for the computerized derivation of clinical 

parameters and clinical event detection from continuously measured physiological signals. 

The quality of physiological signals should be within an acceptable range to ensure the 

reliability of such systems.12 Despite its importance, the literature regarding the impact of 



 

signal qualities on the performance of derived clinical parameters is insufficient.6 In this 

study, a deep belief network (DBN), which is a machine learning model, was applied to 

continuously measure ABP signals in TBI patients to detect false incidences of hemodynamic 

instability (i.e., hypotension and hypertension) and cardiovascular events (i.e., tachycardia 

and bradycardia). The prevalence of incidences and their predictive capacity on patient 

outcomes were compared before and after the signal quality control. 

 

MATERIALS AND METHODS 

This study assumed that the false incidence reduction will significantly affect the predictive 

power of the hemodynamic and cardiovascular parameters for patient outcome, measured by 

the mortality and six-month Glasgow Outcome Scale. Thereby, the prevalence of 

hypotension, hypertension, bradycardia and tachycardia were calculated from the continuous 

recordings of ABP signals. The change in the mean cerebral perfusion pressure (CPP; 

calculated as ABP – intracranial pressure (ICP)) after improving the signal quality was also 

assessed. The study involved detailed analyses of continuously measured ABP signals (i.e., 

identification of individual ABP pulses) to allow the automated detection of signal artifacts 

by the DBN, a machine learning algorithm. A significant portion of the available data set was 

used to construct, train and validate the DBN. Measuring the efficacy of the constructed DBN 

by mere accuracy was not deemed feasible, due to the possible bias in data distribution. Such 

bias could be better addressed via utilizing net prediction rate, defined as (sensitivity + 

specificity)/2 13; thus, the efficacy of constructed DBN was considered as acceptable if the net 

prediction rate was satisfactory (higher than 95%) for classifying signal artifacts. The model 

was then applied to the total data set to automatically eliminate the signal artifacts. The use of 

the collected data (ABP and ICP signals), included in an anonymized database for research 

purposes, was approved by the local ethics committee (29 REC 97/291). 



 

 

Data acquisition 

The data from a total of 99 subjects were selected from an anonymized database of TBI 

patients admitted to the Neurocritical Care Unit of Addenbrooke’s Hospital (2004-2010). The 

following inclusion criteria were applied: 1) patients had severe TBI only; 2) the ABP signal 

was consecutively recorded with simultaneously measured ICP; and 3) the computer-

supported recordings started within 24 hours of admission. Considering the variability in the 

recording duration among the patients, the recordings from a maximum of five consecutive 

days were analyzed; five days of monitoring for 82 subjects (82.8%), four days for four 

subjects (4.0%), three days for six subjects (6.1%), two days for six subjects (6.1%) and one 

day for one subject (1.0%). Accordingly, 9,150 hours of ABP recordings were subjected to 

the analysis. The proportion of signal artifact was 12.39% of the total recording time. 

The ABP signals were acquired directly from the radial artery (System 8000, S&W 

Vickers Ltd., Sidcup, UK; Solar 6000 System, Marquette, USA). The ICP was recorded using 

an intra-parenchymal probe (Codman ICP MicroSensors, Johnson & Johnson, Raynham, 

USA). The subjects underwent intensive care to maintain a CPP between 65 and 75 mm Hg 

and an ICP under 25 mm Hg by mild hypocapnia (PaCO2, range 4-4.5 kPa), moderate 

hypothermia, boluses of mannitol (200 mL of 20% over a period of 2 min or longer) and 

hyperventilation induced by thiopentone. 

 

Signal pre-processing 

To derive the heart rate and systolic or diastolic blood pressure from the ABP, the following 

preprocesses were sequentially performed by two experts: 1) systolic peak detection, 2) pulse 

onset estimation, and 3) pulse identification. The detailed processes of the systolic peak and 

pulse onset detection are described elsewhere.14 The pulse length and systolic/diastolic 



 

pressure were calculated from the segmented pulses. The pulses were interpolated using the 

cubic spline method because the input layer of the DBN receives inputs with a fixed number 

(1,024) of features. Finally, the pulses were normalized for a probabilistic representation; the 

normalized pulses were used as the inputs of the DBN for automated artifact elimination. 

Determining the proper sizes of training and validation data is an important and 

delicate matter. Ideally, the sizes should be determined as sufficiently large to construct an 

effective algorithm (i.e., DBN) yet also sufficiently small to avoid the excessive use of 

computational power, and in the case of this study, to minimize the burden of the experts who 

conducted and oversaw the labeling of ABP pulses. Thus, in determining the size of the 

training data set for DBN, this study started with small-sized training data and then gradually 

increased the size of the data until satisfactory results were achieved. The target net 

prediction rate of the DBN for detecting signal artifacts was set at 95%, which was achieved 

using a randomly selected 30% (n=30) of the total subjects; 20% of those (n=6) were used to 

construct the DBN, and an independent set of data from the rest (80%, n=24) was used for 

validation of the DBN. This involved the binary labeling of 465,635 ABP pulse waveforms 

from 6 subjects, and 2,493,095 pulse waveforms from 24 subjects. 

The DBN has 6 different layers for processing the input data: 1) the visual layer, 

which has 1,024 units representing the features of ABP pulses; 2) 4 hidden layers that 

comprise 128, 50, 10 and 10 units; and finally, 3) an output layer with 2 units, representing 

the normality of the input data (Figure A2, Supplemental Digital Content 1). The learning 

rate, momentum and weight decay parameters, which are known to be suitable for classifying 

the signal data, were set at 0.1, 0.9, and 0.001, respectively.15,16 With the model constructed 

via training dataset from 6 patients and test dataset from 24 patients, the DBN achieved a 

sensitivity of 96.3% and a specificity of 95.4% for classifying normal and artifactual pulses. 

Further details on the DBN utilized in this study can be found in the Supplemental Digital 



 

Content 1. 

 

Criteria for clinical event detection 

Four clinical events (i.e., hypotension, hypertension, bradycardia and tachycardia) were 

identified from the ABP signals. Systolic pressure < 90 mm Hg was defined as hypotension; 

because all the subjects suffered from severe TBI, systolic pressure < 110 mm Hg was also 

defined as revised hypotension, as per the instructions from the Brain Trauma Foundation.17 

Systolic pressure > 140 mm Hg or diastolic pressure > 90 mm Hg was defined as 

hypertension. The algorithm would detect hypotensive or hypertensive incidences if the 

duration of such events exceeded 15 seconds.18 As per the ANSI/AAMI EC13 cardiac 

monitor standards, bpm < 40 was defined as extreme bradycardia, whereas bpm > 140 was 

defined as extreme tachycardia. The algorithm would identify the incidence of bradycardia if 

extreme bradycardia exceeds 5 seconds or extreme tachycardia continues for > 6 seconds. 

 

Statistical analyses 

The median value or the interquartile range of every parameter was calculated. The Mann-

Whitney U test was used to compare the parameter values according to the patient outcomes 

and artifact elimination. The diagnostic odds ratio (DOC)19 in the maximum of Youden's 

index20 was derived from the parameters of p < 0.05, which resulted from the Mann-Whitney 

U test and assessed the prediction of performance. All statistical analyses were performed 

using SPSS statistical software version 23 (SPSS IBM Corp, Chicago, USA), and the 

standard of statistical significance used was set at p = 0.05. 

 

RESULTS 

Observations 



 

The mean age of the subjects was 35.8 years (range, 16-74 years), and 71 subjects were male 

(71.7%). The mortality rate was 28.3%, and 45.5% (n = 45) of the subjects showed a 

favorable outcome (Glasgow Outcome Scale = 4–5). The median Glasgow Coma Scale at 

admission was 6 (range = 3–15). 

Typical artifact-related false incidences of hypertension are shown in Fig. 1A. The 

artifacts led to a rapid increase in ABP, reaching approximately 200 mm Hg. The artifacts 

caused by the transducer flushing can demonstrate an episode of false hypotension (Fig. 1B). 

Distortions in the ABP signals can result in false arrhythmias: false tachycardia can originate 

from significant noise in the ABP signal with extremely shortened pulse lengths (Fig. 1C), 

whereas false bradycardia may occur due to a few stretched pulses (Fig. 1D). 

 

Prevalence of clinical events after suppressing false incidents 

The prevalence of hypotension, hypertension, bradycardia and tachycardia was evaluated 

based on the count, duration time and proportion across the entire five-day recordings. 

Although all hemodynamic instability and cardiovascular events were reduced, only the 

decreased prevalence of hypotension and tachycardia showed statistical significance (p < 

0.05). 

When assessing the prevalence by count, the bradycardia was the most frequent 

incidence (Fig. 2A). However, the duration and proportions of hypertensive events exceeded 

those of bradycardia (Fig. 2B and C). This difference between the count-based and duration-

based prevalence was induced by the variation in the duration criteria for detecting each event 

(over 151.5 seconds for hypertension and 5 seconds for bradycardia). In contrast to the 

incidence of hypertension, that of hypotension was relatively uncommon (mean count = 2.98, 

duration time = 217.3 seconds, proportion = 0.07%). 

Although all the subjects appeared to have hemodynamic instability and 



 

cardiovascular events from the raw signals, the incidences among the subjects were decreased 

by improving the signal quality (Fig. 2D). Specifically, the number of patients with 

hypotensive events was significantly decreased by 47.5%; 52 subjects had a strictly artifact-

induced false incidence of hypotension. The numbers of subjects with one or more incidences 

of redefined hypotension and tachycardia were reduced by 12.5% and 13.1%, respectively. In 

contrast, the incidences of hypertension and bradycardia decreased only slightly (1%). 

The prevalence of hypotension and tachycardia were significantly reduced (p = 0.01) 

after suppressing the false incidences. The incidences of hypertension and bradycardia were 

also decreased, but this decrease did not reach statistical significance. 

The statistical analyses indicated that only the incidence of hypotension was 

significant in predicting the outcome favorability and mortality; other hemodynamic 

instability and cardiovascular events were not predictive of patient outcomes. The prevalence 

of hypotension, including the count, duration and proportion, showed significant prognostic 

capacity (Table 1). Overall, the hypotensive incidence gained significance in discriminating 

the patient outcome after suppressing false incidences. The conventional threshold of systolic 

pressure = 90 mm Hg showed strength in predicting mortality, whereas the redefined 

threshold was significant in predicting outcome favorability. For both thresholds, the duration 

of incidence exhibited the best predictive power. 

The mean CPP values were significantly underestimated before artifact elimination, 

and this underestimation caused a detrimental impact on the prognostic value of CPP. The 

mean CPP values of the favorable and unfavorable outcomes were 75.2 and 71.7 mm Hg, 

respectively, when calculated using raw ABP and ICP signals (Fig. 3). Consequently, the 

discriminating ability of the CPP did not show statistical significance (p = 0.07). After artifact 

elimination, the CPP was slightly increased in patients with both favorable and unfavorable 

outcomes (76.8 and 73.1 mm Hg, respectively) and showed a significant difference between 



 

the favorable and unfavorable outcomes (p = 0.02). 

 

DISCUSSION 

Continuous monitoring of physiological signals enables the recognition of trends, dynamics 

and other important characteristics of a patient’s pathologic prognosis. Artifact-free signals 

may enhance the reliability and accuracy of pathophysiologic event detection as well as 

patient outcomes.6 In this study, a machine learning model (i.e., the DBN) was proposed to 

substantially minimize artifacts from ABP signals. Consequently, this effectively reduces the 

degree of false incidences of hypotension, hypertension, bradycardia and tachycardia. The 

results showed that the prevalence of the two cardiovascular incidents were reduced and was 

not predictive of the patient outcome, regardless of the signal quality. 

 

Prevalence of hemodynamic instability in predicting outcomes 

Hypertension after TBI can increase the blood flow and consequently increase the intracranial 

blood volume, which can induce vasogenic cerebral edema and intracranial hypertension.21,22 

Thus, the prevention of prolonged hypertension is one of the important therapeutic goals in 

TBI.23 Indeed, the prevalence of hypertension exhibited predictive power for mortality. 

Nonetheless, the hypotensive incidence showed the most powerful capacity in predicting a 

patient’s outcome. 

Hypotension is a frequent phenomenon in TBI and is associated with a worse 

outcome and a mortality of up to 65%.24 Hypotension can decrease cerebral perfusion and 

oxygenation, which could lead to disruption of ionic homeostasis and the development of an 

intra- or extracellular osmotic gradient, which results in cytotoxic and vasogenic edema. 

Swollen parenchymal cells might begin to compress capillaries, hence aggravating symptoms 

by further decreasing the cerebral blood flow.25-27 Thus, the ‘vicious cycle’ in TBI, which is 



 

critical to secondary injuries that affect the outcome, is more prone to develop under 

hypotension. 

Hypotension has traditionally been defined as systolic pressure < 90 mm Hg; 

however, recent studies have suggested that a systolic pressure of 110 mm Hg should be the 

threshold for hypotension in severe TBI patients.28,29 The studies concluded that hypotension, 

redefined as a systolic pressure < 110 mm Hg, is highly associated with mortality. However, 

the findings of this study suggest otherwise; the redefined hypotension was significantly 

associated with higher morbidity (Table 1). This contradiction may have arisen by chance 

such that the effects of signal quality were not considered in prior studies. Our findings 

suggest that the conventional threshold of hypotension (systolic pressure = 90 mm Hg) has 

better predictive power for mortality than the redefined threshold (110 mm Hg) after 

eliminating false incidences of hypotension. 

After suppressing false incidences, hypotension showed the lowest incidence, which 

can be explained by the fact that the subjects with TBI underwent intensive management to 

maintain the CPP level above 65-70 mm Hg and to avoid systemic hypotension by fluid 

loading and vasoactive drugs, such as dopamine (2-15 μg·kg-1·min-1) or norepinephrine (0.5 

μg·kg-1·min-1). Despite such management, the hypotensive events still showed a significant 

association with a worse outcome. Moreover, the predictive power of the hypotension on 

patient outcome was obscured by the overwhelming number of artifacts. These results 

strongly suggest that the quality of the signal can affect the clinical decision and alter the 

predictive capacity of clinical events and derived parameters. 

Although not directly associated with hypoxia, as hypotension is, the lowered CPP 

can also be responsible for the progression of secondary ischemic injury. CPP lower than 70 

mm Hg is known to be associated with cerebral hypoxia, and although CPP is maintained at a 

higher level than the threshold, hypoxia may still occur.30 Although the incidence of 



 

hypotension is typically temporal, the decreased CPP can continuously affect the brain 

oxygenation, whether the underlying cause is increased ICP or decreased ABP. In this sense, 

the monitoring of CPP would be beneficial in avoiding sustained hypoxic-ischemic damage 

in severe TBI. 

 

Technical implications 

The classifier for true and false incidences was chosen as the DBN. A recent study utilized 

neurophysiological signals, namely, electroencephalography (EEG), and compared the 

performance of the DBN to other classifiers such as the decision tree, support vector 

machines, and k-nearest neighbors.31 The study concluded that DBN outperformed other 

classifiers. Compared with EEG signals, the ABP is a significantly stable and 

morphologically simple signal, thus enabling the classification of the artifacts with relative 

ease using the DBN. 

One major advantage of the DBN is its low dependency on data dimensionality. 

Although not tested in this study, the independence on input data dimensionality can be a 

significant advantage in patient monitoring at critical care units, which often involves 4 or 

more types of physiological signals. Considering the trends toward multimodal monitoring in 

TBI, the use of the DBN over other types of machine learning-based classifiers seems 

feasible for accurate clinical event detection. Another advantage of DBN is its rapidness of 

execution,31,32 due to its the relatively simple structure compared to that of other deep 

learning algorithms. Training the DBN may require computational complexity, yet testing the 

use of the DBN is extremely fast.33 With its rapid response to input data, the DBN can detect 

various types of artifacts in ABP signals in the online environment. Provided with automated 

and fast-pulse segmentation preprocess, the communication delay between the DBN and real-

time signal is nearly absent. In this study, a time buffer of 10 seconds was sufficient to 



 

conduct real-time analysis. 

 

Limitations and suggestions 

The detection of arrhythmias (i.e., bradycardia and tachycardia) utilized the pulse onset in the 

ABP signal, not the QRS complex in the electrocardiogram signals. Thus, the situation 

detected from clean electrocardiogram signals was not considered with the simultaneously 

measured ABP artifact. Further study is required to increase the reliability of detecting 

arrhythmia incidences by applying deep learning to ABP and the electrocardiogram signal 

concurrently. Future studies could also attempt to identify and differentiate various types of 

signal artifacts. This study encourages the use of machine learning in clinical environments, 

particularly in (neuro)intensive care units, for analyzing vast amounts of continuously 

measured physiological signals. 

 

Concluding remarks 

The prevalence of both hemodynamic instability and cardiovascular events becomes 

significantly reduced after improving the signal quality. The incidents of hemodynamic 

instability (i.e., hypertension and hypotension) gained significant predictive capacity for 

patient mortality. The prevalence of hypotension was particularly effective in predicting a 

favorable outcome. The use of the DBN upon ABP allows for rapid artifact elimination and 

may contribute to clinical decision, patient care, and the effectiveness of clinical parameters. 

 

ABBREVIATIONS 

ABP: arterial blood pressure; CPP: cerebral perfusion pressure; DBN: deep belief network; 

DOC: diagnostic odds ratio; EEG: electroencephalography; ICP: intracranial pressure; TBI: 

traumatic brain injury. 
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FIGURE 1. A binary classification model based on the DBN is applied to ABP recordings to 

differentiate artifactual signals. Experimental results (see Supplemental Digital Content 1) 

and observations (Fig. 1) show that the model classified normal and artifactual signals 

effectively in various cases, with an accuracy above 96%. Examples of reduced pulse 

pressure artifacts are given in Figs. 1A and 1B. This type of artifact causes a misinterpretation 

of mean pressure, owing to damping caused by a thrombus in the arterial line. Artifacts 

resulting from motion or patient movement are shown in Figs. 1C-H. The signal corrupted by 

these artifacts was falsely considered bradycardia or tachycardia. Figure 1I-L describes 

typical artifact cases caused by transducer flushing or patient movement. These types of 

artifacts are misinterpreted as hypotension or hypertension. 



 

 

FIGURE 2. Bar graphs showing the incidences of conventional and revised hypotension, 

hypertension, bradycardia and tachycardia within the five-day recordings, measured as the 

counts (A), duration time (B) and proportions of the entire recordings (C). The black bars 

show the mean prevalence detected from the raw signals, whereas the gray bars show the 

mean prevalence detected from the clean signals. The number of subjects with one or more 

incidences during the recording times was also compared (D). The stars above the bars 

indicate statistical significance; one star for p < 0.05 and two stars for p < 0.01. 



 

 

FIGURE 3. Differences in the mean CPP between patients with favorable and unfavorable 

outcomes before and after artifact elimination. 

 



 

TABLE 1. Comparison of hypotensive incidences between the survived and deceased subjects. 

Artifact 

elimination 

Hypotensive 

incidence 

Median (IQR) 

OR 

(95% CI)* 

P-

value 

Median (IQR) 

OR (95% 

CI)* 

P-

value Survival 

(N = 71) 

Dead 

(N = 28) 

Favourable outcome 

(N = 45) 

Unfavourable 

outcome 

 (N = 44) 

B
ef

o
re

 

Conventional†         

Count [n] 
11 

(7-18.25) 

12 

(6.5-18.25) 

 
0.85 

10.5 

(6.25-18) 

12 

(8-19) 

 
0.617 

Time [min] 
86.82 

(15.43-201.62) 

62.65 

(12.14-258.33) 

 
0.80 

67.75 

(13.57-222.08) 

87.21 

(15.04-214.41) 

 
0.597 

Proportion [%] 
1.67 

(0.33-4.37) 

1.45 

(0.08-5.98) 

 
0.86 

1.26 

(0.21-4.41) 

1.69 

(0.3-4.67) 

 
0.726 

Redefined§         

Count [n] 
45 

(15-125.75) 

50 

(26.75-72.25) 

 
0.83 

24.5 

(11-78) 

64 

(25.5-100.25) 

 
0.01 

Time [min] 
175.79 

(63.07-415.19) 

153.12 

(81.54-313.28) 

 
0.96 

142.51 

(42.63-412.42) 

182.4 

(96.53-355.4) 

 
0.217 

Proportion [%] 2.63 (1.08-5.82) 
2.13 

(1.13-6.24) 

 
0.96 

2.3 

(0.63-5.8) 

2.64 

(1.37-6.51) 

 
0.239 

A
ft

er
 

Conventional†         

Count [n] 
0 

(0-2) 

1.5 

(0-7) 

2.70 

(1.08-6.70) 
0.03 

0 

(0-2) 

1 

(0-7) 

2.61 

(1.14-5.94)  
0.02 

Time [min] 
0 

(0-1.79) 

1.18 

(0-7.5) 

3.24 

(1.30-8.09)  
0.02 

0 

(0-1.54) 

0.47 

(0-5.76) 

2.61 

(1.14-5.94) 
0.03 

Proportion [%] 
0 

(0-0.03) 

0.02 

(0-0.12) 

2.96 

(1.20-7.32)  
0.02 

0 

(0-0.03) 

0.01 

(0-0.1) 

2.61 

(1.14-5.94) 
0.04 

Redefined§         

Count [n] 
28.5 

(5-104.5) 

40.5 

(11-65) 

2.23 

(0.87- 5.74)  
0.66 

13 

(1-70.5) 

51.5 

(11-94) 

3.95 

(1.69-9.19)  
0.005 

Time [min] 
30.96 

(5.23-117.97) 

48.9 

(17.45-97.09) 

3.36 

(1.27-8.92)  
0.22 

12.14 

(0.99-56.01) 

66.99 

(13.24-149.18) 

5.52 

(2.31-13.20) 

< 

0.001 

Proportion [%] 
0.43 

(0.07-1.64) 

0.72 

(0.27-1.39) 

3.36 

(1.27-8.92)  
0.24 

0.19 

(0.01-1.17) 

0.93 

(0.2-2.07) 

5.52 

(2.31-13.20) 
0.003 

†systolic pressure < 90 mm Hg; §systolic pressure < 110 mm Hg; *odds ratio. Statistical significance (p-value < 0.05) is indicated in bold 

character. 



 

Supplemental Digital Content 1 

Deep belief network; performance optimization 

To eliminate artifacts from continuously measured arterial blood pressure (ABP) 

signals, a deep belief network (DBN) model was constructed that can distinguish between 

normal and artifactual signals by the following sequences: 1) labeling procedure, 2) pulse 

interpolation and normalization, and 3) model construction (training and testing). In this 

endeavor, the ABP pulses were first segmented by analyzing basic morphological features of 

pulse waveforms (e.g., onset, peaks, troughs, and flats)1,2.  

Among the cohort of patients with traumatic brain injury (TBI), ABP recordings of 30 

subjects were randomly selected (mean recording times = 23.7±3.1 hours). The continuous 

ABP signals were segmented into pulses and were labeled normal or artifact by two experts 

using in-house software developed in C# (Fig. A1). Consequently, a total of 2,958,739 pulses 

were binary labeled. 

 

 

FIGURE A1. Brief description of the labeling segmented ABP pulses 

 

The number of data points in the segmented pulses varies according to the pulse 

length and sampling frequencies. Because the input layer of the DBN receives inputs with a 



 

fixed number of features, all pulses should be interpolated to have the same number of data 

points as the number of units in the input layer. Accordingly, the varying numbers of data 

points among the pulse segments were adjusted to have exactly the same number of data 

points (1,024) via the cubic spline interpolation method, which is commonly used for signal 

interpolation.3 Finally, the segmented pulses with constant data points were normalized to the 

range of [0, 1] in dimension for a probabilistic representation according to the normalization 

function. The normalization was intended to minimize the effects of features other than the 

morphology of the ABP pulse segments (e.g., trends in ABP pulse) in the learning capacity of 

the DBN, which would allow better learning of signal morphology for the DBN. 

The upper and lower bounds were the maximum and minimum pressure values of 

each pulse, respectively. By normalizing the pressure value of each data point, the ABP signal 

could be fed into the input layer of the DBN. 

 

 

FIGURE A2. DBN construction procedure with training (n = 6) and testing data (n = 24). 

 

To train the DBN, 6 subjects (20% of 30 subjects) were randomly selected, and 20% 

of ABP pulses were randomly extracted from the recordings of each subject to construct a 

training data set (Fig. A2). The structure of the DBN comprises 5 hidden layers with 128, 50, 

10, 10 and 2 units. The hyper-parameters of the DBN, namely, the learning rate, momentum 



 

and weight decay, were set as 0.1, 0.9 and 0.001, respectively, which are values known to be 

suitable for classifying the signal data.4-6 The major components of the DBN, such as the 

joint distribution and energy function, were the same as those in the conventional DBN 

models.7-9 

 

The number of optimal iterations for training was investigated from 10 to 50, 100, 500 

and 1,000 times. The performance of the constructed model was analyzed with the remaining 

ABP recordings of 24 subjects (80%), which were clearly distinguished from the training 

data. The sensitivity (recall), specificity, positive likelihood ratio (LR+), negative LR (LR-), 

accuracy and net prediction were calculated to assess the classification performances for 

classifying normal and artifact signals. 

A true positive was defined as the proportion of artifact signals that were correctly 

classified using the DBN model, whereas a true negative was the proportion of normal 

signals that were correctly classified using the model. In addition, the proportion of artifact 

signals classified as normal was false negatives, and the proportion of normal signals 

classified as artifacts was false positives in the same way. 

 

FIGURE A3. Net prediction for artifact detection according to the number of training 



 

iterations. 

 

The performance of artifact detection according to the number of training iterations 

increased logarithmically (Fig. A3). In 1,000 training iterations, the networks were judged to 

be well-learned; therefore, these networks were called optimized networks. The optimized 

network of the DBN, built with training data set from 6 patients and test dataset from 24 

patients, exhibited a sensitivity of 96.3%, a specificity of 95.4%, an LR+ of 21.05, an LR- of 

0.04, an accuracy of 95.5% and a net prediction of 95.9% for classifying normal and 

artifactual pulses. 
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