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Abstract

Active learning is a promising machine learning paradigm for querying oracles and obtaining actual labels for

particular examples. Its goal is to decrease the number of labels needed, in order to learn a predictive model

able to achieve a high level of accuracy. It may turn out to be advantageous in several regression problems

where scarce labels can be acquired. A novel active learning algorithm for regression problems in network

data is defined. This algorithm performs active learning by taking into account explicitly the correlation

property of network data, which makes the labels of linked nodes related to each other. Specifically it resorts

to collective inference, in order to accommodate the data correlation in the active selection of the network

nodes labeled by oracles. The empirical study proves that the proposed combination of active learning and

collective inference can actually boost regression performances in various network domains.
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1. Introduction

Artificial intelligence (AI) has been considerably developed during the last thirty years. Thus far, a

wide number of artificial intelligence systems has provided various machine learning algorithms for accurate

predictive modeling (e.g. [2, 3, 22, 33]). They commonly find a model in data and predict unseen values

using that model. As computer systems continue to become more and more powerful and complex by

collecting huge volumes of data - often with a complex structure - the capabilities of artificial intelligences

will also increase. Network data (e.g. sensor networks, communication and financial networks, web and

social networks) are becoming an increasingly important challenge in AI [37]. Regardless of where we

encounter them in day-to-day life, network data consist of nodes, which may be connected to each other

by edges. The nodes of a network arising from a peculiar domain are, generally, of the same type, i.e.

they are described by a vector of fixed properties. The nodes of networks arising from different domains,

however, may be associated with different properties. For example, the nodes of a social network (e.g.
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Twitter) are associated with social properties (e.g. number of tweets, number of followers), while the nodes

of a spatial network (e.g. a solar photovoltaic grid) are associated with geospatial properties (e.g. solar

radiation, temperature). The edges between the nodes may express an explicit relation, which reflects the

dependence between the properties of the nodes. Friendship is an example of relation in social networks,

while geographical closeness is an example of relation in spatial networks. This study proposes a machine

learning algorithm for predictive modeling in a data network. The model found in a training data network

can be used to predict unseen data of a new testing network that arises from the same training domain

(i.e. both training and testing nodes are described by a vector with the same properties; they are linked

according to the same type of relation).

Predictive modeling of network data is made complex due to the presence of correlation. This is a

deterministic or probabilistic dependence between the values of a property on linked nodes [18]. It is

apparent in the positive form in a wide variety of network domains like social and spatial domains [29, 49].

In social data analysis, correlation can be recognized in the homophily principle, that is, the tendency of

nodes with similar values to be linked with each other [32]. In spatial data analysis, correlation can be

recognized in Tobler’s first law of geography, that is, the tendency of a geophysical attribute to take a value

at a given location that may be similar to the values of that attribute in nearby locations [27]. Recent

studies [6, 12, 30, 36, 45, 49] have shown that taking label correlations into account may contribute to

improving the accuracy of predictive inferences in network data domains [36, 49]. In this context, collective

inference algorithms, that reason collectively by predicting labels of linked examples simultaneously, offer a

unique opportunity to accommodate label correlations in the learned models [36]. Although most work on

collective inference is defined for classification problems, a few collective inference algorithms have recently

been proposed for regression problems [6, 29]. In any case, these studies do not pay any attention to the

procedure to acquire a representative labeled set from the data network, while this is often the first step

towards performing accurate predictive inference, even when few labels are acquired [20].

The widely-used paradigm for label collection is called passive learning, where training samples are

randomly selected from the underlying distribution and manually annotated by an oracle (e.g. human

experts). However, due to the high cost associated with the above label collection process, it often happens

that there are not enough labeled samples to train a high quality predictive model. An important research

question is to develop algorithms that learn an accurate model with minimal labeling effort required in

such tasks. One promising learning strategy is to use active learning. In this strategy, rather than being

presented with a labeled training set from the start, the learner is allowed to request labels for particular

examples, with the goal of decreasing the number of labels needed to achieve the desired level of accuracy.

At present, various active learning algorithms have been investigated for network classification [7, 26, 31, 53].

Few active learning algorithms have already been developed for regression [9–11, 16, 39]. A seminal study

[25] combines active learning and correlation analysis of univariate linked numeric data. However, to the

best of our knowledge, active learners that take direct advantage of correlation in linked multivariate data

have still not been considered for network regression problems.

2



The main contribution of this study is the description of a novel holistic strategy, where collective

inference is used to drive the active learning for network regression. A novel algorithm, called CoNeRa

(Collective Network Regression via Active learning) is described. It performs predictive modeling for a

numeric target (also called label) in an initially unlabeled training data network. Specifically it iteratively

selects a budget of training nodes to be labeled by the oracle, so that a final accurate regression model can

be learned from this partially oracle-labeled network. This model can be used to predict unseen data in a

testing data network that is acquired in the same domain condition of training.1 This algorithm uses both

the descriptive information (node properties) and the network structure (correlation property) during the

training procedure. According to the collective inference theory, the algorithm learns a collective regression

model by accounting for descriptive data associated with nodes, as well as collective data yielded by handling

the property of label correlation throughout the network. According to the active learning theory, the

algorithm requests labels for particular examples, which are selected based upon a disagreement measure.

Specifically, the disagreement quantifies the correlation of the (potential) labels surrounding a (potential)

target value. It is noteworthy that this algorithm is based on regression, as the final goal is performing

predictive modeling of a numeric target. However, it implements an active learning procedure that also

uses clustering, that is a form of unsupervised classification. Specifically, the active learning component

integrates a new constraint-based clustering solution. This component is able to discover a cluster structure

that depicts the correlation observed throughout the network in the descriptive data (i.e. each cluster

represents a region of connected nodes associated with similar descriptive data). Assuming a dependence

between the descriptive variables and the target variable, this cluster knowledge, discovered as a model of

the descriptive data correlation, should implicitly provide some information on the correlation property of

the target. Under this assumption, the active learning procedure considers this cluster knowledge, in order

to guarantee diversity in the label acquisition and avoid over-investing in descriptive areas of the training

data, which have already been explored. Finally, the collective regression model, induced from the final set

of examples labeled by the active learning, can be used in a testing procedure involving unseen nodes.

The paper is organized as follows. Section 2 summarizes the main research contribution of this study,

while Section 3 reports relevant related work. Section 4 illustrates the proposed collective active learning

algorithm and its time complexity. Section 5 describes the datasets, the experimental methodology and

reports the results. Finally, in Section 6 some conclusions are drawn and future work is outlined.

2. Research Contribution

The idea of combining collective inference with active learning is not new in machine learning research;

indeed, it has already been used for the classification of network data [7]. Theoretically, the collective active

1The presented algorithm is formulated, in order to process data acquired at a specific time without accounting for mech-

anisms of incremental modeling of historical data. This is now out of the scope of this paper, although it may represent an

interesting future direction of investigations.

3



learning strategy defined for the classification can also be adapted to the regression of network data by

learning a regression model instead of a classification model, synthesizing collective information on numeric

labels instead of collective information on categorical labels, defining disagreement in the numeric domain

instead of disagreement in the categorical domain. In any case, apart from the innate difference between

learning a regression model (with a numeric target) and learning a classification model (with a categorical

variable), this study extends this state-of-the-art in machine learning in several directions. Specifically, it

gives the following research contributions.

First, a collective active learning strategy is fully defined for network regression problems. This formal-

ization describes mechanisms which synthesize collective information on numeric labels. It also defines a

disagreement measure working in the regression scenario. Second, a contiguity constraint clustering algo-

rithm is illustrated, in order to learn a model of the correlation property throughout the network. Clustering

is simultaneously performed both in the (descriptive) data space and in the (edge) network structure. It

partitions network nodes in clusters, where each cluster depicts a connected region of correlated data. The

active learning mechanism accounts for this cluster knowledge to guarantee the diversity of the active sam-

ple. In particular, the active examples for the oracle labeling are selected cluster per cluster. Under the

assumption that similar nodes are grouped in the same cluster, while different nodes are grouped in sep-

arate clusters, this cluster-based selection of active examples will avoid the problem of selecting “similar”

examples for labeling and contribute to diminishing the loss in the generalization of the learned model.

Third, a new disagreement measure is formulated, in order to select optimal unlabeled nodes whose labels

will be acquired by the oracle. This measure quantifies the scarcity of correlation among the target values

over linked nodes. For every unlabeled node, it measures the average deviation between labels associated

with neighbor (linked) nodes and the label associated with the node under consideration. To perform this

analysis, the target values, which are currently unknown in the training data network, are predicted by the

currently learned collective regression model. The scarcity of the target correlation suggests the existence of

a high number of errors in the predicted labels and the opportunity of acquiring ground truth of these labels,

in order to appropriately correct the induced regression model. This approach using correlation of numeric

labels in the active selection phase is novel for regression. As an additional contribution, the formulation

of the presented correlation-aware disagreement measure is appropriately strengthened by the consideration

of the knowledge enclosed in the cluster structure of the network. Fourth, an extensive evaluation of the

effectiveness of the proposed algorithm is performed; indeed, regression problems in real network data from

various social and spatial domains are being considered. The evaluation also includes the investigation of

the correlation property of the target data, in order to support the decision of performing collective infer-

ence. The experimental results show that the presented algorithm generally outperforms several regression

baselines defined in active learning that disregard the network structure of data, as well as collective active

state-of-the-art learning algorithms, that account for the label correlation through the induction of a collec-

tive regression model (Section 5.4.1). This algorithm also proves that all the components of our proposal

contribute to its efficacy (Section 5.4.2). It analyzes the sensitivity of the performance to the parameter
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set-up (Section 5.4.3) and confirms the effectiveness of the suggested clustering solution along its peculiar

algorithmic aspects (Section 5.4.4). Fifth, a preliminary investigation of the impact of the temporal dimen-

sion on the viability of the regression model learned by the proposed algorithm is illustrated (Section 5.5).

This analysis highlights that models learned from historical data can sometimes be performed appropriately

in the future when training and testing data behave similarly. Finally, results recently reported in the active

learning literature and achieved by addressing a few network regression problems are discussed (Section 5.6).

Before detailing these contributions through the illustration of both the proposed strategy (Section 4)

and its empirical evaluation (Section 5), the state-of-the-art will be described (Section 3), in order to clarify

the research gap identified by this study with respect to the current related literature.

3. Related work

This Section presents a state-of-the-art review in active learning for regression (see Section 3.1) and

network data (see Section 3.2): they are the key elements of the algorithm presented in this study.

3.1. Active learning for regression

The active learning strategy is mainly investigated for classification problems (see [20] for a survey).

However, few active learning algorithms are defined for regression problems.

Cai et al. [10] propose a regression algorithm that bases active learning on Stochastic Gradient Descent.

It estimates the expected regression model change, in order to select the active examples that lead to the

largest changes of the parameters of the learned model. Ceperic et al. [11] define a similar approach for

a multi-kernel support vector regression (SVR) algorithm. The labeled training data set is incrementally

built, based on the influence of each new labeled example on the accuracy of the learned regression model.

Burbidge et al. [9], Pasolli et al. [39] and Douaka et al. [16] define regression algorithms that apply a query-

by-committee mechanism [19], in order to select examples for labeling. This mechanism uses a committee

of regression models and selects the active examples that achieve the maximal disagreement among labels

predicted by the committee. The regression committee includes several regression models computed from

subsets of the training data. Pasolli et al. [39] and Douaka et al. [16] also describe algorithms that account

for the hidden resemblance between labeled and unlabeled examples. They use the covariance measure to

select the active examples that are the most dissimilar from the current labeled training data.

Demir and Bruzzone [15] illustrate a two-stepped cluster-based algorithm that selects active examples

for a Support Vector regression learner. In the first step, a clustering algorithm is applied to the training set

composed of both unlabeled and labeled examples, which are not support vectors (SVs). Clusters that have

non-SVs inside are filtered out, whereas all the unlabeled examples of the remaining clusters are taken as

the most relevant examples. In the second step, the clusters with the highest example density are considered

and one example is selected per cluster for the label request. This idea of a cluster-based sample selection
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criterion is oriented to avoid the problem of selecting “similar” examples for the labeling. In fact, over-

investing on similar examples would cause a loss in the generalization of the learned models. This problem

may occur especially when the “best” examples are naively selected. The sample diversity is a crucial aspect

in active learning. Reitmaier and Sick [44] describe a sophisticated sampling selection criterion to guarantee

the sample diversity in a generative active learner. This criterion is based on the data properties and the

distance of the examples from the decision boundary. It also depends on the density throughout the regions,

where the examples are selected, as well as the diversity of the examples in the query set chosen for labeling

the unknown label distribution of the examples. Reitmaier et al. [43] extend this study by exploring the

use of a probabilistic generative model. Therefore, both these two studies formulate solutions dealing with

sample diversity in classification problems, without exploring the same problem in the regression scenario.

Son and Lee [47] focus on the formulation of a sample selection criterion that is based on uncertainty

sampling. In particular, they integrate the uncertainty sampling mechanism into a Bayesian-inspired re-

gression approach, by accounting for the relevance vector machine regression algorithm. Their proposal is

based on the rationale that the relevance vectors are located at the local maximal points of the predictive

variance. These maximal points would correspond to the examples with maximum uncertainty.

The afore-mentioned studies describe various regression algorithms for performing active learning in

independent and identically distributed data. They all apply active learning mechanisms without explicitly

accounting for the correlation property of data connected throughout the network.

3.2. Active learning for network data

Regardless of the peculiar learning paradigm, networks are inherently complex data; indeed, they are

characterized by a structure that makes the examples (nodes) dependent on each other. This phenomenon

is a violation of the assumption that data are independently and identically distributed and makes the

traditional learning algorithms poorly accurate when applied to network data [35]. The ubiquity of network

data in day-to-day life is the new emergent challenge for developing novel machine learning approaches

capable of exploiting the network information and improving accuracy of inferences about linked examples.

Concentrating on active learning paradigm, the challenge of dealing with network information has received

little attention for classification problems. To the best of our knowledge, the state-of-the-art of current

research in machine learning has not investigated active learning for network regression problems in depth.

Macskassy [31] authors a seminal study that embeds the network structure in the sample selection

criterion of an active classification learner. He uses graph-based metrics (e.g., clustering coefficient and

betweenness centrality), in order to identify a pool of informative examples and applies an empirical risk

minimization technique to select the most informative example from the pool. However, in this study, the

predictive model is still learned neglecting the correlation property of data.

Bilgic et al. [7] propose a classification algorithm that accounts for the network structure through node

communities, built as graph-based clusters. They rely on collective inference and perform active learning

via query-by-committee. Collective inference [36, 45] accounts for the presence of label correlations in
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network data. In particular, descriptive properties associated with network nodes are augmented with new

collective properties, which are constructed by summarizing label values in a neighborhood. The committee

is composed of three classifiers induced from the labeled nodes: the classifier spanned on the descriptive

properties, the classifier spanned on the collective and descriptive properties and the majority label associated

with a cluster. Procedurally, the algorithm initially derives a network structure by performing graph-based

clustering, in order to partition the network into communities. The nodes for the initial labeled set are

picked from these communities. Then, the algorithm iteratively computes the entropy of the committee of

three classifiers for each unlabeled node and selects examples with the highest entropy from the clusters with

the highest average entropy. Labels are acquired for these selected examples. The classifiers are, therefore,

trained on the augmented labeled set, in order to perform new inferences on unlabeled nodes linked to

labeled nodes. It is noteworthy that the kind of strategy presented in [7] takes inspiration from the same

elements (collective inference, cluster knowledge in the active learning mechanism) as the ones used in the

strategy presented in this study. However, there are crucial differences to be highlighted: first, strategy in [7]

is defined for classification and some effort is requested to extend it, in order to address regression;2 second,

the graph-based clustering step performed in [7] applies a modularity clustering solution that accounts

for edge information, whereas it neglects descriptive information. This means that it is able to discover

clusters of highly connected nodes without paying attention to verifying the actual degree of the correlation

(similarity) in the data associated with linked nodes grouped in the same cluster. This limit is overcome

in the presented study by resorting to a contiguity constraint algorithm that derives clusters of correlated

data over connected nodes by accounting for information in both the (descriptive) data space and the (edge)

network structure; third, a new disagreement measure is proposed in our study: it applies to numeric targets

and combines cluster knowledge and correlation-aware analysis of collective predictions.

Kuwadekar and Neville [26] presents a different strategy: the committee of classifiers is learned from

descriptive data of various labeled sets. These sets are generated from the labeled part of the network by

a subgraph resampling algorithm. The committee is used to predict the unlabeled nodes. A network-based

score is computed, in order to choose to label nodes with low variance and low disagreement among their

neighbors. This criterion is based on the idea that the most valuable unlabeled examples lie in high-density

(unlabeled) regions and their predictions disagree the least with their immediate neighborhood and disagree

the most with the common prediction of the committee. This algorithm both admits collective inference and

accounts for the network information in the active example selection. However, it performs active learning

differently from our algorithm, because it neglects the cluster structure of the network. Instead, the cluster

knowledge represents an effective component of our solution, in order to guarantee the diversity of selected

active examples and deal with slowly progressive network variation in the data.

2In the empirical study, a formulation of the collective active learning algorithm described in [7] is appropriately extended

to be applied to regression problems. This is one of the competitor of the empirical evaluation. The accuracy results show that

our algorithm generally outperforms this competitor.
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(a) Block diagram (b) Neighbourhood

Figure 1: Figure 1(a): The block diagram of the collective active learning strategy performed by CoNeRA includes: (1) the

initialization phase (see the description in Section 4.2.1), (2) the iterative learning phase (see the description in Section 4.2.2) and

(3) the final regression model learning phase (see the description in Section 4.2.3). Figure 1(b): Cluster-aware neighborhoods.

Table 1: Symbols. Description of the frequently used symbols.

symbol meaning symbol meaning symbol meaning

N Network node set E Network edge set X Descriptive variable space

Xc Collective variable space Y Target (numeric) variable L Labeled node set

U Unlabeled node set l Initial labeled set size t Sample pool size

B Budget O Oracle

Komurlu and Bilgic [25] formulate an active learning strategy to update the Dynamic Gaussian Bayesian

model (DGBm) of the numeric univariate sensor readings of a wireless network. The DGBm models spatio-

temporal correlations of sensor readings. Active learning uses an impact-based selection criterion, in order

to dynamically choose sensors for the future observations, based on their impact on predicting others.

4. Collective Network Regression via Active Learning

CoNeRa is a novel collective active learning algorithm for network regression. It combines active learning,

clustering and collective inference for regression in network data. The list of frequently used symbols is

reported in Table 1, while the infographic of the implemented strategy is reported in Figure 1(a). Before

starting the illustration in detail, the learning task is formally introduced.

4.1. Learning problem statement

The network regression problem is here formulated by considering: (1) A (directed, weighted) training

data network (N ,X ,Y, E) collected from a regression problem domain. Specifically, N is a node set. X is

a vector of m descriptive variables (X1, X2, . . . , Xm), so that a vector of descriptive values (x1, x2, . . . , xm)

is associated with a node n ∈ N . Y denotes a numeric target variable, so that each y ∈ Y is a (initially

unknown) numeric label for n. E is a weighted edge set that describes the network structure of N . It is

defined as follows: E = {(ni, nj , dij)|(ni, nj) ∈ N × N , dij ∈ <+
0 }. dij is a numeric, positive dissimilarity.
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The lower dij , the higher the dependence of nj on ni throughout the network.3 (2) A training set U ⊆ N
that is the set of unlabeled nodes considered for the training procedure. (3) An oracle O that provides

the ground truth labels for Y. (4) An initial labeled set size l and a sample pool size t. (5) A budget B

that is the maximum number of nodes that can be labeled by the oracle. The considered task is to query

the oracle, in order to acquire the ground truth labels of B nodes from U and learn a collective regression

model accounting for the acquired labels. The strategy formulated to address this task starts assuming

an empty labeled node set L . It initially selects a sample of l nodes from U to be labeled by the oracle

and moved from U to L. It iterates a series of node selections from U for the oracle labeling (i.e. at each

iterate a pool of t unlabeled nodes is selected, labeled by the oracle and moved from U to L), so that the

accuracy of the collective regression model on unseen data is maximized, after training it on current L. This

regression model is induced accounting for both descriptive information and collective knowledge on labeled

nodes. During the iterative phase, collective knowledge is yielded from labels acquired by the oracle and

labels predicted by the regression model. At each iteration, this regression model changes, as new labels are

acquired and the collected knowledge is updated accordingly. The collective regression model for the testing

procedure is the one learned from final L once the iterative phase stops (i.e. when |L| = B).

4.2. Collective network active regression strategy

A top-level description of the collective active regression strategy is reported in Algorithm 1. The

algorithm comprises an initialization phase, an iterative phase and a final regression model induction phase.

A cluster structure of the network is learned during the initialization phase. This cluster structure is data-

driven by a contiguity constraint on edge set E . Each cluster collects nodes, whose descriptive data are

correlated across E . This cluster structure is used to select initial examples, whose labels can be acquired

by querying oracle O. These examples are randomly sampled per cluster. The number of examples sampled

per cluster is proportional to the cluster size. In the iterative active learning phase, a collective regression

model is learned from labeled part L of the training set (the set of nodes, whose labels have been provided

by the oracle). A pool of unlabeled examples, which are unreliably predicted by the collective regression

model, are selected per cluster. Their labels are acquired by querying the oracle. The new labeled examples

augment L of the training set. In the final inductive phase, the collective regression model is learned from

the labeled part of the training data constructed by fully using budget B. Hopefully, this regression model

will be used to predict labels of testing nodes. A description of the three phases is reported in the following.

4.2.1. Initialization phase (Algorithm 20, lines 1-5)

There are various studies on active learning, which compute clustered data. They are mainly for classifi-

cation problems. They perform either clustering, based only on the descriptive data [13], or clustering based

only on the network structure (edge information) [7]. In the strategy illustrated here, clustering is performed

3It is assumed that every node is linked to itself in a network with dissimilarity 0 (i.e. ∀ni ∈ N : (ni, ni, 0) ∈ E).
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Input: N : node set; U ⊆ N : unlabeled node set E : edge set; X : vector of descriptive variables;

Y : target variable; B : budget, l : initial labeled set size; t query pool size; O : oracle;

Output: (CoNeRa−D,CoNeRa− C) : regression model

// initialization phase

1 L ← �

2 C ←clustering(U , E)

3 L ←clusterBasedSampling(U , C, l)

4 Y ←oracle(L,O)

5 U ← U − L

// iterative phase

6 repeat

7 CoNeRa−D ←regressionModelLearning(L,X ,Y)

8 ŶD ←labeling(U ,X , CoNeRa−D)

9 Xc←collectiveVariableConstructing(L,Y,U , ŶD, E)

10 CoNeRa− C ←regressionModelLearning(L,X ,Xc,Y)

11 ŶC ←labeling(U ,X , CoNeRa− C)

12 Q ← activeNodeSelecting(U ,Y,L, ŶC , E , C, t)

13 U ← U −Q

14 Y ←oracle(Q,O)

15 L ← L ∪ (Q,Y)

16 until (size(L) = B);

// inducing the final collective regression model by fully using budget B

17 CoNeRa−D ←regressionModelLearning(L,X ,Y)

18 ŶD ←labeling(U ,X , CoNeRa−D)

19 Xc←collectiveVariableConstructing(L,Y,U , ŶD, E)

20 CoNeRa− C ←regressionModelLearning(L,X ,Xc,Y)

Algorithm 1: Collective network active regression

in the descriptive space and in the network structure, simultaneously. The goal is to determine a cluster

structure that depicts network regions, where the distribution of descriptive data is smoothly continuous,

with boundaries possibly marked by sharp discontinuities, observable in the descriptive data correlation.

This cluster structure is used to initialize the sample for querying the oracle. This clustering step is done by

a contiguity constrained clustering algorithm that evaluates the similarity of the descriptive data at linked

nodes. The justification of this constraint-based solution is that it can fit requirements of learning under

correlation and take advantage of a network contiguity constraint between nodes to reduce the number
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of possible solutions. It can also force the clustering algorithm to converge fast onto largely similar areal

boundaries. This point of view, originally investigated for clustering in geophysical networks [4, 5], is here

investigated in the contest of an active learning strategy applied to various kinds of networks. Clustering

algorithm and the cluster-based labeled set initialization are described in the following.

Contiguity constraint clustering (Algorithm 20, line 2). The computation starts with U assigning k = 1,

where k enumerates the computed clusters. The construction of a new cluster Ck starts with a seed un-

clustered node ni. This seed is randomly chosen from unlabeled nodes (ni ∈ U), which are still un-assigned

to any cluster. Then ni is added to Ck, while Ck is expanded by using ni as the seed of the expansion process.

Ck is added to the cluster structure C. k is incremented by one and the clustering process is iteratively

repeated until all the nodes are assigned to a cluster. The expansion of Ck is driven by a seed node ni and

it is recursively defined. First, the neighborhood η(ni) having a seed ni is constructed by considering the

unclustered nodes nj , which are directly reachable from ni in E . Formally,

η(ni) = {nj ∈ U|(ni, nj , dij) ∈ E}. (1)

Then candidate cluster tempC = Ck ∪ η(ni) is computed. The cluster homogeneity property h(tempC) is

evaluated on candidate cluster tempC spanned on the descriptive space X . Formally,

h(tempC) =


true if max

ni∈tempC,nj∈tempC
scaledDistance(ni, nj) ≤ ψ

false otherwise

, (2)

where ψ is a user-defined threshold (ψ ∈ [0, 1]), the scaledDistance(ni, nj) is the Euclidean distance com-

puted between vectors (x̃1(ni), x̃2(ni), . . . , x̃m(ni)) and (x̃1(nj), x̃2(nj), . . . , x̃m(nj)) associated with ni and

nj , respectively. In particular, x̃(n) denotes the value of a descriptive variable X ∈ X , associated with node

n ∈ U and scaled between 0 and 1, according to x̃(n) =
x(n)−min

n∈U
x(n)

max
n∈U

x(n)−min
n∈U

x(n)
. Two cases are distinguished:

in the former case, tempC satisfies the homogeneity property and then, nodes of η(ni) are clustered into Ck.

In the latter case, tempC does not satisfy the homogeneity property and the addition of each node of η(ni)

to Ck is evaluated node-by-node. In both cases, nodes newly clustered in Ck are iteratively chosen as seeds

to continue the expansion process. The expansion process stops, if no new node is added to the cluster.

Labeled set initialization (Algorithm 20, lines 3-5). The initialization phase is performed for three reasons:

(1) to identify an initial sample of nodes from U , (2) to require the ground-truth labels of sampled nodes to

oracle O and (3) to move definitely sampled nodes with their labels from U to L. A cluster-based sampling

procedure [40] is employed, in order to take into account cluster structure C for network. Procedurally,

the simple random sampling is used separately in every cluster with the numbers of nodes selected from

different clusters proportional to the cluster size. Let l be the total number of nodes to be sampled for

the initialization phase, Ck be a cluster (Ck ∈ C) that groups |Ck| nodes, n be the total number of nodes
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actually distributed across clusters of C ( i.e. n =
∑
Ck∈C

|Ck|), the number of nodes sampled from Ck via

simple random sampling is |Ck|×l
n . The simple random sampling is done without replacement, that is, one

deliberately avoids choosing any nodes of every cluster more than once.

4.2.2. Iterative phase (Algorithm 20, lines 6-16)

This phase iteratively induces a collective regression model from L and queries U , in order to augment L.

At each iteration, the output of the active learning query is a pool of t unlabeled nodes which are labeled by

the oracle and moved from U to L. The iterative phase stops when budget B is fully used so that |L| = B.

Collective regression model induction (Algorithm 20, lines 7-11). The induction of a collective regression

model is three-stepped: (1) a descriptive regression model (CoNeRa − D) is induced from L spanned on

X × Y and used to predict descriptive-aware labels ŶD of nodes in U ; (2) labels acquired by querying the

oracle and labels predicted by the descriptive regression model feed the inference to construct a vector of

collective variables Xc and (3) a collective regression model (CoNeRa−C) is finally induced from L spanned

on X ×Xc×Y, and used to predict collective-aware labels ŶC of nodes in U . Any regression algorithm can

be selected as a base learner of both the descriptive and collective regression model.

The vector of collective variables is synthesized by taking into account the results of recent studies

[38, 41], which investigate the computation of various summarizarization statistics to handle the correlation

property of the numeric target over local neighborhoods of the network data. These statistics are formulated

assuming a weakly stationary model of neighborhood data. They correspond to second order characteristics

of the underlying data, averaged over linked nodes (in accordance with the hypothesis that labels which

are linked manifest a coherent correlation). In particular, computed collective variables describe the typical

value of the target variable (i.e. mean - µ and weighted mean - ω), as well as the variability of the variable

(deviation - σ) within the neighborhood. Procedurally, for each node ni ∈ L ∪ U), the vector of collective

variables Xc(ni) = (µ(ni), ω(ni), σ(ni)) is computed as follows. Let η(ni) be the neighborhood with seed ni

determined according to Formula 1), |η(ni)| be the size of η(ni), y
′(ni) be the label acquired by the oracle

if ni is an active example (i.e. y′(ni) = y(ni) if ni ∈ L) and the label predicted by CoNeRa−D otherwise

(i.e. y′(ni) = ŷD(ni) if ni ∈ U), the following calculations are performed:

• Mean variable µ(ni) is computed as the average value of the labels grouped in the neighborhood. It is

computed by the Distance Interpolate µ4 so that µ(ni) = 1
|η(ni)|

∑
nj∈η(ni)

y′(ni).

• Weighted mean variable ω(ni) is computed as the weighted average of the labels grouped in the neigh-

borhood. It is computed by the Inverse Distance Weighted Interpolate ω. This is a variant of the

4 Distance Interpolate is a form of Nearest Neighboring predictive modeling that is here used as a mechanism to construct

collective variables. These variables will be subsequently processed, in order to learn the collective regression models which are

actually used to predict unseen data.
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Distance Interpolate, which weights the contribution of the neighbors by the weights derived from dis-

similarities associated with the neighborhood edges. Formally, ω(ni) = 1∑
nj∈η(ni)

wij

∑
nj∈η(ni)

wijy
′(ni).

Similarly to the Distance Interpolate, the Inverse Distance Weighted Interpolate explicitly makes the

assumption that target values on nodes that are close (linked) to ni are more alike than those that

are farther apart. However, the Distance Interpolate considers that all neighbors contribute equally to

the measure of the target correlation summary around ni. Differently, the Inverse Distance Weighted

Interpolate assumes that each target value has a local influence that diminishes with the link dissim-

ilarity. It gives greater weights to nodes closest to ni and the weights diminish as a function of link

dissimilarity. A popular choice is to use the Inverse power function as a weighting function [28, 29, 41]:

weights are proportional to the inverse of the dissimilarity (between the linked nodes) raised to a

power value (2 by default).5 In this study, weights are computed proportionally to the dissimilarities,

enclosed in the edge structure of the network. Formally, every weight wij is computed as follows:

wij =
1

(dij + 1)2
, (3)

where dij is the dissimilarity associated with the edge from ni to nj in E . Correction (dij + 1) is done

as dissimilarities may also be zero valued, in order to avoid division by zero.

• Deviation variable σ(ni) is computed, in order to capture the notion of the spread of the labels within

a neighborhood. It is calculated as follows: σ(ni) =

√
1

|η(ni)|

∑
nj∈η(ni)

(y′(ni)− y′(nj))2.

Disagreement measurement and labeled set augmentation (Algorithm 20, lines 12-15). The unlabeled nodes

are selected for labeling and this choice is based on a disagreement analysis that looks for the scarcity

of correlation among linked labels. The disagreement measure is computed for each node of U . This

computation is performed by taking into account: (1) labels ŶC of the nodes of U predicted by collective

regression model CoNeRA − C induced in the current iteration; (2) ground truth labels Y of the nodes

of L acquired by the oracle along both the initialization and the already performed iterations; (3) cluster

structure C of the network data computed in the initialization phase. Let ni ∈ U be an unlabeled node,

η(ni) be the neighborhood with seed ni, C|ni be a subset of the cluster structure (C|ni ⊆ C), defined

so that every cluster C ∈ C|ni
groups at least one node of neighborhood η(ni) (i.e. ∀C ∈ C|ni

: ∃nj ∈
η(ni), nj ∈ C). Neighborhood η(ni) is projected onto clusters of C|ni , in order to associate a node

with its cluster-aware neighborhoods (see Figure 1(b)), that is: ni 7→ η(ni) 7→ {η(ni, C)}C∈C|ni
, where

η(ni, C) = {ni} ∪ {nj ∈ η(ni)|nj ∈ C}. This cluster-aware projection of a neighborhood is interesting along

5Several weighting functions (e.g. Gaussian-like similarity measure or the Bisquare density function [50]) can be considered

as an alternative to the Inverse power distance. All follow the same rationale: as the dissimilarities increase, the weights

decrease and the influences of the neighbor labels diminish as well.
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the boundary between clusters, where linked nodes, which express a significant variability in correlation

dependencies, are grouped in separate clusters. In these network areas, a neighborhood will group linked

nodes that describe separate local correlation phenomena simultaneously. As the disagreement of a node is

here measured, in order to quantify the correlation of the labels surrounding a target label. The disagreement

is actually computed on the cluster-aware neighborhoods of a node. This allows us to define a disagreement

measure that naturally fits variability in correlation dependencies along the cluster boundary. Formally,

disagreement(ni) = min
C∈C|ni

disagreement(η(ni, C)) , where disagreement(η(ni, C)) measures the spread of

labels associated with neighbors that belong to cluster C with respect to the label of seed ni. Formally:

disagreement(η(ni, C)) =
1∑

nj∈η(ni,C))

wij

∑
nj∈η(ni,C))

wij |y′(ni)− y′(nj)|, (4)

where y′(ni) is acquired by the oracle if ni ∈ L (i.e. y′(ni) = y(ni)), while y′(ni) is predicted by the collective

regression model induced from current L, if ni ∈ U (i.e. y′(ni) = ŷC(ni)). wij is computed with Formula 3.

By taking into account the disagreement information, the pool of unlabeled nodes whose labels will be

acquired by the oracle are finally selected cluster by cluster. Procedurally, all clusters in C are initially

sorted in descending order, according to a cluster disagreement score, that is, the average disagreement

score in the cluster divided by the number of already labeled examples from the cluster. This cluster sorting

criterion follows the rationale behind the sorting criterion described in [7], although the two strategies use a

different formulation of the cluster structure and of the disagreement measure. Specifically, it allows us to

avoid over-investing in the clusters that have already been explored for the label acquisition.6 The clusters

associated with equal disagreement scores are sorted randomly. Subsequently, for each cluster Ck ∈ C ,

the unlabeled nodes currently grouped in Ck are sorted in descending order according to their disagreement

value (computed with Formula 4). Again, two nodes with equal disagreement within a cluster are considered

equally useful for the labeling phase, so they are randomly sorted. The clusters are repeatedly visited with

the defined order. At each iteration of the visit, the unlabeled node with the highest disagreement in the

cluster is selected, it is then marked as visited (so that it cannot be selected in the subsequent iterations

of the visiting procedure), removed from U and temporally put into a temporary pool set Q. The visiting

procedure is repeated until t distinct unlabeled nodes have been added to Q. Finally, the oracle is queried

so that it can yield a label for each node in Q. Once Q is fully labeled, the newly labeled nodes of Q are

definitely added to labeled set L. It is noteworthy that according to the illustrated procedure, labels of

the entire pool set are acquired in one query only after the pool set is fully populated (i.e. Q contains t

unlabeled nodes). This avoids the following case: if one unlabeled node gets labeled, it will produce changes

in the neighborhood variation and lead to erroneous selection of nodes to be labeled. In particular, Q will be

6The cluster ordering is crucial when the number of nodes t to be sampled at each iterative phase is lower than the number

of clusters in the cluster structure: only t top-ranked clusters will contribute to the sample pool with one unlabeled node

selected per cluster.
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fully populated without any change in the neighborhood structure. The neighborhood structure effectively

changes only after that target values are acquired for all nodes in current pool set Q.

4.2.3. Final regression model induction phase (Algorithm 20, lines 17-20)

Let us consider a final labeled set L as it is populated with labels acquired by the oracle during the

initialization and iterative phases. The final descriptive regression model CoNeRa−D is induced from L
as it is spanned over a descriptive space X and a target variable Y. It is used to predict labels ŶD, which

are still unknown in a current unlabeled set U . Using ground truth labels, acquired by the oracle for L and

labels predicted by CoNeRa −D for U , the collective variables (mean µ , weighted mean ω and deviation

σ) are synthesized over the entire training network. A collective regression model CoNeRa− C is finally

induced from L as it is spanned on the descriptive space X , the collective space Xc and the target variable

Y. Regression models CoNeRa −D and CoNeRa − C produced in this final phase can then be used to

predict unseen target values of any new testing data network that is acquired in the same domain condition

as the training network (i.e. every node of the testing network is associated with a vector of variables in X ).

A three-stepped prediction methodology is used: first, every node of the testing data network is initially

associated with the descriptive-aware label that can be predicted by CoNeRa−D using only the descriptive

information associated with each node; second, the descriptive-aware predicted labels are considered to

construct the variables of a collective space Xc over the testing data network. Finally, the collective-aware

labels are predicted by CoNeRa− C using both descriptive and collective information.

4.3. Time complexity

Basics. Let U be the number of nodes in the training set, m be the number of descriptive variables, E be

the number of edges, ε be the average size of a neighborhood, K be the number of clusters in the cluster

structure, l be the number of nodes in the labeled set populated in the initialization phase, t be the number

of nodes in the sample pool populated at each iteration of the iterative phase, B be the budget, IT be the

number of iterations performed in the iterative phase (i.e. IT = (B − l)/t) and λ(·) be the time complexity

of the base regression learner. It is noteworthy that λ(·) is a function of both the labeled set size and the

variable space size processed by the learner to build the regression model.

Initialization phase. The time cost of the contiguity constrained clustering is Uεm, that is, the cost of

evaluating the homogeneity property on each neighborhood along the cluster construction. The cost of

sorting clusters by the descending order with respect to the cluster size is K logK, while the cost of selecting

l samples from the cluster-based representation of the training set is l. Therefore, the total cost of the

initialization phase is Uεm+K logK + l, that is, O(Uεm+K logK), by considering that l ≤ U .

Iterative phase. The time cost of learning the collective regression model depends on the cost of: (1) inducing

the descriptive regression model (that is, λ(B,m) in the worst case , i.e. the labeled set contains the full

budget of examples), (2) constructing the collective variables (that is, Uε for each collective variable) and (3)
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Table 2: Data description. For each dataset, the data domain, the number of nodes - N , the number of edges - E, the

number of descriptive attributes - m, as well as the target attribute are reported.

Data Domain N E m Data Domain N E m

Irs spatial-remote sensing 2830 766827 28 Mf spatial-agriculture 817 31995 4

Movies social 415 123163 12 Ms spatial-agriculture 817 31995 4

NCEP spatial-environmental 2376 378276 9 PubmedMellitus social 6170 64055 19

SCH spatial-census 7229 21690311 6 SOILmoisture spatial-environmental 3888 827100 33

Twitter social 55 253 3 Vegetation spatial-environmental 3888 827100 33

YouTube social 13723 180976 3

inducing the collective regression model (that is, λ(B,m+3)) . The total cost is asymptotically λ(B,m)+Uε.

The time cost of the disagreement measurement is UεK in the worst case, that is, each neighborhood is

projected on K clusters. The time cost of the labeled set augmentation depends on the cost of: (1) sorting

the clusters of C according to the cluster disagreement score (that is, UK+K logK in the worst case, i.e. the

cluster size is less than U ), (2) sorting the unlabeled nodes per cluster according to the node disagreement

(that is KU logU in the worst case, i.e. the cluster size is less than U ), (3) selecting t examples for labeling

(that is, t). Therefore, the total cost of an iteration is λ(B,m) +Uε+UεK+UK+K logK+KU logU + t,

that is, O(λ(B,m)+UεK+KU logU), by considering that K ≤ U and t ≤ U . The total cost of the iterative

phase is O(IT · (λ(B,m) + UεK +KU logU)).

Final regression model induction phase. The time cost of learning the collective regression model from the

final labeled set is O(λ(B,m) + Uε).

Total time complexity. The total time cost of the presented collective active learning strategy is:

Uεm+K logK︸ ︷︷ ︸
initialization phase

+ IT · (λ(B,m) + UεK +KU logU)︸ ︷︷ ︸
iterative phase

+ λ(B,m) + Uε︸ ︷︷ ︸
final model induction

,

that is, O(Uεm+K logK + IT · (λ(B,m) + UεK +KU logU)).

5. Experimental evaluation and discussion

The efficacy of CoNeRa is initially investigated considering several network regression datasets, collected

at a specific time point. A brief description of these network data is reported in Section 5.1. The experimental

methodology is presented in Section 5.2, the compared algorithms and their parameters are illustrated in

Section 5.3, while the empirical results are discussed in Section 5.4. Subsequently, the performance of

CoNeRa is explored over time (see Section 5.5), as well as on a few network regression problems considered

in the recent active learning literature (see Section 5.6). All experiments are run on ReCaS cloud, CPU 1:8

@ 2Ghz 2,16.0 GB RAM, running Ubuntu 14.04.4 (GNULinux 3.13.0-39-generic x86 64).

5.1. Datasets

Eleven social and spatial network data collections are used. The characteristics of these data sets are

summarized in Table 2. In each data collection, a number of descriptive attributes, as well as the numeric
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label are associated with the nodes. The nodes are linked by weighted edges. Weights represent dissimilarities

between nodes. A brief description of both social and spatial networks is reported in Sections 5.1.1 and

5.1.2. For each data network, the correlation property of the target variable is analyzed in Section 5.1.3.

5.1.1. Social network data

Movies dataset contains ratings, collected during the period 1997-1998, given to movies by users of

the online movie recommender service Movielens [29, 49]. Each movie is described by the critics’ rating

(target variable), as well as the all/top/audience critics’s ratings (average scores, numbers of reviews/fresh

scores/rotten scores) from the Rotten Tomatoes film review aggregator. The selected users had rated at

least 20 movies. Only pairs of movies ranked together by a single user are considered. The nodes represent

the movies whereas the weighted edges represent the dissimilarity of the ratings given by the users.

Twitter Maternal Health dataset contains the top Twitter users who mentioned maternal mortality on

August 25, 2010 [49]. It also includes the number of posts (tweets) of a user (target variable), the user’s

registration date on Twitter and its time zone, the number of tweets (posted by other users) that the user

marked as “favorites”, as well as the number of “following” and “followed” on Twitter. Only pairs of users

having a “following” relation are considered. The nodes are the users, whereas the weighted edges are the

“following” relation between the Twitter users. Edges are associated with 1-valued weights.

YouTube dataset refers to the set of user profiles crawled on December, 2008 from YouTube [52]. Each

user is described by count of the subscribers (target variable) the count of contacts, count of the subscriptions

and count of favorite videos. The nodes are the users, whereas the weighted edges represent the existence

of interactions between two user profiles. Edges are associated with 1-valued weights.

PubmedMellitus dataset contains scientific publications of the collection PubMed Diabetes [45], which

contain the word “mellitus”. Each publication is described by a TF/IDF weighted word vector from a

dictionary that consists of 20 unique stemmed words and that has no stop-word. The target is the TF/IDF

value of the word “mellitus”. In this study, the nodes are the scientific publications. An edge connects node

ni to node nj , if publication ni cites publication nj . Edges are associated with 1-valued weights.

5.1.2. Spatial network data

Irs dataset comprises multi-temporal remote sensing data of the Kras region in Western Slovenia obtained

from EEA Corine Image 2006 [48]. The target variable is the forest standing height. The descriptive variables

are the minimum reflectance, the maximum reflectance, the average reflectance and the standard deviation

of reflectance for each IRS sensor channel, aggregated over fine and coarse image segments. The coordinates

of the centroids of the image segments are assigned to the nodes of the network structure.

Mf and Ms datasets contain measurements of pollen dispersal (crossover) rates from two lines of plants

(target variables), that is, the transgenic male-fertile (MF) and the non-transgenic male-sterile (MS) line of

oilseed rape [29, 49]. The coordinates of each sample point are collected. The descriptive variables are the

following: the cardinal direction and the distance of the sample point from the center of the donor field,
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the visual angle between the sample plot and the donor field, and the shortest distance between the plot

and the nearest edge of the donor field. The nodes in the network structures of both Mf and Ms are the

sampling points.

NCEP dataset refers to data collected by the NCEP/NCAR Reanalysis Project [23]. Data were recorded

daily from December, 1, 2015 to March,1 2016 by 2376 sensors. Each sensor recorded the following mea-

surements: the precipitable water content (target), the air temperature, the surface lifted index, the best

lifted index, the surface pressure, the potential temperature, the relative humidity, the sea level pressure,

the eastward wind and the northward wind. The sensors represent the nodes and the descriptive variables

associated with the nodes are computed as the average of the geophysical measurements recorded in the

period of observation.

SCH dataset concerns Southern California Housing (SCH) census data, provided by the 1990 Census and

aggregated at the level of block groups that, on average, include 1425.5 individuals living in a geographically

compact area [24]. The target variable is the median house value, while the descriptive variables are the

median income, housing median age, total rooms, total bedrooms, population and households in a neigh-

borhood. The coordinates of the centroids of the block groups are collected in the dataset and associated

with the nodes of the neighborhood structures.

SOILmoisture and Vegetation datasets contain data studied by the Real Time Ocean Forecasting System

Project [46]. The data were recorded on September, 17 2014 by 3888 sensors. Each sensor measured the

values of 34 properties in the various categories (Land Surface, Oceanography, Meteorology and Hydrology).

For both datasets, the nodes are the sensors. In SOILmoisture the target is “Soil moisture parameter in

canopy conductance surface numeric”, while in Vegetation the target is “Vegetation surface”.

As suggested in [50], the edges of the network structure of these datasets are defined by assuming that

every node is actually linked to the nodes falling in an influence sphere, having a radius b. In particular, node

ni is linked to node nj , if EuclideanDistance(ni, nj) ≤ b. The edge weight is the Euclidean distance between

the linked nodes’ spatial coordinates. The neighborhood radius is defined according to the considerations

reported in [4, 6]. Specifically, radius b is fixed as b = .1× max
ni,nj∈N

EuclideanDistance(ni, nj).

5.1.3. Target correlation analysis

The correlation analysis is performed, in order to quantify whether the linked nodes tend to have corre-

lated values of the target variable throughout the network. The Global Moran’s I [34] is computed, in order

to summarize the overall pattern of network dependence of target data into a single indicator (see results in

Table 3). This measure is borrowed from spatial data analysis, but also fits the general structure of network

data [49]. It uses the weight matrix that reflects the strength of the connection between linked nodes. The

Global Moran’s I is defined as IY = 1

W

∑
ni

(y(ni)− Y )2
N

∑
ni

∑
nj

wij(y(ni)− Y )(y(nj)− Y ), where N is the

number of nodes indexed by i and j; Y is the variable of interest; y(ni) and y(nj) are the values of the

variable Y for the nodes ni and nj , respectively; Y is the overall average of Y in the entire network; and
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Table 3: Target data correlation analysis. For each dataset, both the Global Moran’s I and the expected value of Moran’s

I - E(I) under the null hypothesis of no network correlation are reported for the target. Values I ≥ E(I) confirm the presence

of positive in-network correlation of the target.

Data I E(I) Data I E(I) Data I E(I)

Irs 0.543455 -0.0003533 Mf 0.255617 -0.0012254 Movies -0.078004 -0.0024154

Ms 0.347508 -0.0012254 NCEP 0.949875 -0.0004210 PubmedMellitus 0.253763 -0.0001621

SCH 0.104382 -0.0001383 SOILmoisture 0.766608 -0.0002572 Twitter 0.067496 -0.0185185

Vegetation 0.704051 -0.0002572 YouTube 0.078236 -0.0000728

W =
∑
i,j

wij is the sum of weights, where the higher each weight wij , the closer the nodes ni and nj across

the network. The dissimilarity decay function considered for assigning weights during collective inference is

used to define the weighting matrix (i.e. wij is computed according to Formula 3). The values of the Global

Moran’s I generally range from -1 to +1.7 The expected value of the Global Moran’s I (calculated assuming

the values of Y distributed randomly) is E(IY ) = −1
N−1 . Dubin [17] highlights that I ≥ E(I) indicates

positive correlation (i.e. similar values measured at linked nodes). Based on this theory, the values of both I

and E(I), reported in Table 3, confirm the validity of the collective hypothesis concerning the positive cor-

relation of the target data throughout a network. Although the correlation property is, generally, observed

both in social and spatial networks, the degree of correlation is higher in spatial networks (see IRS, NCEP,

SOILmoisture and Vegetation) than in social networks. In spatial networks, this quantitative analysis can

also be supported by a visual inspection of the correlation property. Figures 2(a)-2(c) show the target values

measured for NCEP, Vegetation and SCH, plotted along the spatial coordinates of the network nodes. The

maps show that the target values that are close to each other in space tend to have similar values. When

plotted on a map, they form a nice smooth continuous surface without sharp edges and discontinuities.This

phenomenon is stronger in NCEP and Vegetation, where I is 0.949875 and 0.704051 and is, respectively,

weaker (but still visible) in SCH where I is 0.104382.

5.2. Experimental methodology

This experimental study is carried out adopting the evaluation methodology that is introduced in [7].

For each dataset, the five-fold cross validation (5-CV) is performed, by randomly partitioning the dataset

into five folds. During each learning phase, one fold of the cross-validation is used as a testing set (20% of

dataset), while the hold-out folds are used as a training set (80% of dataset). The regression model learned

from the training set is used to predict the testing set. As promoted in [7], the training phase process is

performed after removing the edges from the nodes in the testing fold, in order to avoid a contamination

of the training phase. The samples from the remaining four folds (training set) have their labels initially

hidden. They are treated as the unlabeled set U from which the active learner selects l samples, which

7This case can be guaranteed by resorting to the row-standardization of the weights during the calculus of the Global

Moran’s I[17].
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(a) NCEP (b) SCH (c) Vegetation

Figure 2: Target data visualized along the spatial coordinates (axis X and axis Y) of the nodes.

are labeled by the oracle, in order to initialize the labeled set L. During the iterative learning process, a

regression model is learned from the labeled set constructed at each iteration. This regression model can

be used to predict labels of the testing set. As promoted in [7], data labeled during the learning phase are

available during testing. However, to ensure that all algorithms are tested on the same set of samples, they

are evaluated only on the held-out test set after the edges between the testing nodes and the rest of the

data are restored. As the cluster-based sampling procedure employed during the initialization phase of the

collective active learning strategy resorts to a simple random sampling algorithm, clustering may output

different initializations of L. This may happen due to the random selection also even if several trials are

repeated with identical training set and identical cluster structure. To account for this, the experiment is

repeated five times, for each algorithm, for each fold (by changing the initialization of L);8 thus each point

of the learning curves described in this study is an average on 25 runs. In particular, the active learning

strategy is analyzed along its error curve. Each point of the accuracy curve is the average of the Root Mean

Squared Error (RMSE) computed on testing sets at each iteration of the active learning process.

5.3. Compared algorithms and parameters

The algorithms used for the comparison are here listed. (1) Random, DAL [16, 39] and PAL [16, 39] which

consider node information, but disregard edge information. They use ad-hoc defined sampling criteria, which

abstain from computing collective information. (2) ALFNET-R, which accounts for network-aware collective

information. It modifies the active learning strategy presented in [7] for network classification problems, in

order to comply with network regression problems. (3) CoNeRa, which includes network-aware collective

information. It implements the active learning strategy illustrated in Section 4. Specifically, Random, DAL

and PAL resort to a random selection of the initial l−sized labeled set, while ALFNET-R and CoNeRa resort

8There is no special restriction imposed on the sampling procedure so it may also happen that few examples are shared be-

tween two distinct initializations of the same training set. In any case, the random selection contributes to output initializations

which should differ in the most part of the examples.
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to a cluster-based definition of the initial labeled set. In particular, ALFNET-R uses the graph-clustering

model of the network, as described in [7], while CoNeRa uses the constraint-clustering model of the network,

as described in Section 4.2. Random is the naive baseline competitor that randomly selects each sample pool

from the training data. DAL [16, 39] and PAL [16, 39] are two state-of-the-art active learners, designed for

regression problems without a network structure. In DAL, the sample selection criterion identifies the pool of

unlabeled examples, which are the farthest from the examples in the current labeled set. These distances are

computed in the descriptive variable space (see details in Section 3). In PAL, the sample selection criterion

identifies the pool of unlabeled examples, which are characterized by the greatest disagreements among the

pool of the regression hypotheses learned from the datasets, obtained by sampling the labeled set regularly

(see details in Section 3). ALFNET-R is a variant of ALFNET[7] (see details in Section 3). It uses a base

regressor instead of a base classifier. It computes the collective variables of a numeric target, instead of

the collective variables of a categorical target. It computes the standard deviation, instead of the entropy,

in order to measure the disagreement among labels predicted by the collective regressor, the descriptive

regressor and the graph-based clustering model. Finally, Random, DAL and PAL use a regression model

learned from labeled data spanned on the descriptive space, in order to predict labels of testing sets, while

ALFNET-R and CoNeRa use a regression model learned from labeled data, spanned on both the descriptive

and collective space, in order to predict labels of testing sets.

The compared algorithms are run with l = 50, t = 10 and B = 190 on Irs, Mf, Ms, Movies, NCEP/NCAR,

SOILmoisture and Vegetation; l = 10, t = 3 and B = 50 on Twitter; l = 500, t = 50 and B = 1200 on

SCH and PubmedMellitus; l = 1000, t = 100 and B = 2400 on YouTube. For SCH, SOILmoisture and

YouTube, the sensitivity of both accuracy and scalability of CoNeRa is evaluated, by varying l between 300,

400, 500, 600 and 700 and t between 25, 50 and 100 in SCH, l between 10, 30, 50, 70 and 90 and t between

5, 10 and 20 in SOILmoisture. An experiment is also performed by varying l between 600, 800, 1000, 1200

and 1400 and t between 50, 100 and 200 in YouTube.9 The contiguity constraint clustering is run with

ψ = 0.3. The inductive M5’ [51]10 is used as a base regressor of the compared active learning strategies.

This choice is motivated by several studies reported in the literature (e.g. [1]), which show that M5’ can be

applied to several regression problems with great success, outperforming several other inductive regression

algorithms, in terms of accuracy and efficiency. However, this choice does not exclude the possibility of using

any other regression algorithm as a base learner of our algorithm. Software and network data used in the

experimental study are available for download at http://www.di.uniba.it/~appice/software/CoNeRa/

index.htm. The implementation of CoNeRa, as well as of its competitors, is written in Java except for the

clustering step of ALFNET-R that is written in R.

9For scalability investigation, the considered datasets are: SCH, that is, the network with the highest number of edges,

SOILmoisture, that is, the network with the highest number of descriptive variables and YouTube, that is, the network with

the highest number of nodes in this study.
10The Java implementation of M5’ included in the WEKA toolkit [51] is used. The default configuration setup is considered

together with the pruning option enabled.
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5.4. Results and discussion

The experimental study is structured as follows. First, CoNeRa is compared to various competitive

baselines. Second, an ablation study is performed, in order to test the importance of different aspects

of CoNeRa (i.e. collective inference, clustering and disagreement). Third, the performance of CoNeRa is

analyzed along the query pool size and the initial labeled set size. Fourth, the contiguity-constraint cluster

model is evaluated along the selection of the initial labeled set, the seed selection and the distance measure.

5.4.1. Comparative study

In this set of experiments, the error curve of CoNeRa is compared to that of four baselines, namely,

Random, DAL, PAL and ALFNET-R. The error curves for all the datasets are shown in Figures 3(a)-3(k). They

demonstrate that CoNeRa has an often better performance than its baselines, although certain particular

results can be observed. For example, the error curve of CoNeRa indicates several fluctuations in SCH

(see Figure 3(g). They may originate from the presence of several target outliers in this data network

(see box plot of SCH labels in Figure 4(a)). This interpretation is also supported by the verification that

CoNeRa has a constantly better performance than its baselines when the labels are distributed without

significant outliers (see, for example, the error curves of SOILMoisture in Figure 3(h) with respect to the

box plot of SOILMoisture targets in Figure 4(b)). This behavior may indicate that the proposed contiguity

constraint clustering procedure is not sufficiently robust for the presence of outliers thus, suggesting further

investigations in this direction. Beyond these considerations, the general trend highlighted by these results

shows that the collective strategy, described in this study, basically has a positive impact on the error

curves. Indeed, CoNeRa commonly gains accuracy with respect to the naive random strategy (Random),

as well as the state-of-the-art active regression algorithms that neglect the network structure (DAL and

PAL), and the baseline collective active learning strategy that is already defined in the literature (ALFNET-

R). The performance of CoNeRa can be ascribed to its peculiar components, namely collective inference,

the contiguity constraint clustering solution and the cluster-based correlation-aware disagreement measure.

The actual impact of each component on the accuracy of the active learning strategy is investigated in the

ablation study (see Section 5.4.2). The conclusions of this comparative analysis can be strengthened by

the results of a statistical pairwise comparison of the error curves. The performed test is the two-sided

Wilcoxon signed rank test [21]. Given two populations x and y (here the error curve of CoNeRa - x and the

error curve of a baseline - y), the test returns the p-value of a paired, two-sided test for the null hypothesis

that x − y comes from a distribution with median zero. This is tested against the left-tailed alternative

hypothesis stating that the data in x− y come from a distribution with the median less than 0 (i.e. there is

enough statistical evidence to assess that the median error applying CoNeRa is less than the median error

applying the considered baseline). The p−values of the Wilcoxon rank sum tests are collected in Table 4

for each baseline in this study. The null hypothesis is commonly rejected with p ≤ 0.05. Therefore, this

statistical analysis shows that the error curve of CoNeRa is “statistically” better than the curve of Random

in 8 out of 11 datasets, the curve of DAL in 9 out of 11 datasets, the curve of PAL in 6 out of 11 datasets
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and the curve of ALFNET-R in 10 out of 11 datasets. Based on this analysis, the collective active strategy

implemented by CoNeRa commonly results in a statistically significant error improvement (at p-value 0.05)

observable in several datasets. This comparative study is completed by analyzing the average learning

time (in milliseconds) spent performing the initial clustering step (contiguity constraint clustering - CC for

CoNeRa and graph clustering - GC for ALFNET-R), as well as completing the iterative active learning step

in CoNeRa, ALFNET-R, Random, DAL and PAL. The analysis of the times, reported in Table 5, deserves

several considerations. First, CC is more time-consuming than GC. This is coherent with the fact that CC

uses both the network structure and the descriptive data, while GC considers the network structure only.

In any case, the ablation study (see Section 5.4.2) will prove that the additional complexity of CC will

be counter-balanced by the observed gain in accuracy. Second, the active learning process with collective

inference (CoNeRa and ALFNET-R) is more complex than the active learning step of PAL that bases the active

example selection on the decision of an ensemble of descriptive regressors learned from various subsets of the

training data. However, it is not necessarily more complex than the active learning step of DAL that bases

the active example selection on the distance of each unlabeled example from labeled ones. The cost of the

distance computation depends on the descriptive vector size m. This explains the verification that CoNeRa

and ALFNET-R are less time-consuming than DAL in datasets with high size m (e.g. see the learning times

with Irs where m=28, Vegetation and SOIL moisture where m=33, PubMellitus where m=19). Finally, the

learning times of CoNeRa and ALFNET-R have roughly the same order of magnitude, although a deeper

analysis shows that CoNeRa is slightly less efficient than ALFNET-R. This mainly depends on the active

selection criterion adopted by CoNeRa that looks for the disagreement among linked labels. As this criterion

explores the network structure, it appears less efficient (even if commonly more accurate) than the criterion

adopted by ALFNET-R that looks for the disagreement among labels predicted by the collective, descriptive

and graph-based clustering models. This interpretation is supported by the observation that the gap between

the computation times of CoNeRa and ALFNET-R augments as the complexity (number of nodes and edges)

of the network increases (see the learning times with Irs, SCH and YouTube).

5.4.2. Ablation study

The contribution of each of CoNeRa’s components is tested by: studying the collective and descriptive

regressors; investigating the constraint and graph clustering; exploring the cluster-based disagreement.

Collective regression model vs Descriptive regression model. An analysis is performed on the actual contribu-

tion of the collective knowledge to the accuracy of the regression models used to predict the labels of testing

sets. To this aim, the error curve of the regression models learned from the variable space, composed of

both descriptive and collective variables (collective regression model - CoNeRa-C), is compared to the curve

of the regression models learned from the variable space, composed of descriptive variables only (collective

regression model - CoNeRa-D). The error curves are shown in Figures 5(a)-5(k). These results show that

CoNeRa-C is stacked stably on top of CoNeRa-D in six out of eleven datasets, namely in Irs, Ms, NCEP,
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(a) Irs (b) Mf (c) Movies (d) Ms

(e) NCEP (f) PubmedMellitus (g) SCH (h) SOILmoisture

(i) Twitter (j) Vegetation (k) YouTube

Figure 3: Error curves (RMSE (axis Y) computed on the testing data along the labeled set size at consecutive iterations (axis

X)): Random, DAL, PAL, ALFNET-R and CoNeRa

(a) SCH (b) SOILMoisture

Figure 4: Box plot of the target data: SCH and SOILMoisture.

PubMedMellitus, SCH and YouTube. This also confirms that the injection of collective knowledge into the

regression model used, in the end, for the testing procedure, clearly stands out as the winning strategy in

the majority of the datasets which have been considered. On the other hand, the error curve of CoNeRa-C is

approximately close to the error curve of CoNeRa-D in three out of eleven datasets, namely in Movies, Twit-

ter and Vegetation. This verification can be strengthened by resorting to the pairwise Wilcoxon rank sum

test, in order to compare the error curves yielded by both CoNeRa-C and CoNeRa-D. The test is performed

with the null hypothesis that the error curves of CoNeRa-C and CoNeRa-D are samples from continuous

distributions, which perform equally, against the alternative that they do not work equally. The test does

not provide enough evidence to reject the equal performance hypothesis, as it returns p−value=1 for Movies

and Vegetation and p−value=0.8777 for Twitter. A deeper discussion is opened analyzing the error curves
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Table 4: Pairwise Wilcoxon rank sum test. Evaluation of the hypothesis of an increase in the median of pairwise compared

error curves of CoNeRa, Random, DAL, PAL and ALFNET-R. p− value ≤ 0.05 is in bold. This indicates that there is evidence

to reject the null hypothesis 0 (hypothesis of equal performance) and concludes that there is a positive shift in the median of

the observed error in the same curve from CoNeRa to Random/DAL/PAL/ALFNET-R at the 0.05 significance level.

Data CoNeRa vs Random CoNeRa vs DAL CoNeRa vs PAL CoNeRa vs ALFNET-R

Irs 0.53306 0.14042 0.17004 0.00033545

Mf 1.6959e-06 1.6959e-06 0.58215 4.067e-05

Movies 0.0006076 1.6959e-06 0.13138 0.86862

Ms 1.6959e-06 2.0716e-06 0.057494 0.0006076

NCEP 0.66085 4.067e-05 0.30933 0.0050609

PubmedMellitus 2.01e-05 0.099253 0.011266 1.6959e-06

SCH 2.8685e-05 0.00015393 0.00070204 0.002105

SOILmoisture 0.0023974 2.01e-05 1.6784e-05 1.6959e-06

Twitter 1.3047e-05 3.9285e-05 7.386e-05 0.00010017

Vegetation 0.62999 0.06243 0.26691 0.019044

YouTube 0.0018453 0.0064108 0.011266 0.0018453

Table 5: Learning times. The average learning time (in millisecs) is computed on the trials performed for each dataset.

Data
clustering active learning

CC GC CoNeRa ALFNET-R Random DAL PAL

Irs 102483 881 13686 9864 4560 21764 3967

Mf 1721 115 3256 2954 2056 2148 2088

Movies 2185 243 4513 3565 2290 2673 2445

Ms 1692 134 3300 2923 2061 2137 2154

NCEP 17265 581 8204 6273 3334 7420 3131

PubmedMellitus 73153 129 10793 10798 5854 17054 9257

SCH 8821386 377400 230924 181114 62734 78400 15347

SOILmoisture 95983 1474 11623 9840 4253 32283 4974

Twitter 171 108 1693 1343 807 1068 1324

Vegetation 93229 1474 14216 10066 4406 32332 4955

YouTube 563020 4688 218580 123490 16428 145276 29288

with Mf dataset. For this dataset, CoNeRa-C is stacked on top of CoNeRa-D when labels have been acquired

for less than 120 nodes, while CoNeRa-D is stacked on the bottom of the CoNeRa-D when labels are acquired

for more than 120 nodes. This means that a labeled set represented in both the descriptive and collective

space easily can counterbalance the learning limits (e.g. overfitting), caused by the scarceness of known

labels. Agreeably, the positive impact of the injection of the collective knowledge into the regression models

is observed in the initial iterations of the learning process when fewer labels have been acquired. It can also

be observed that CoNeRa-C is stacked stably on top of CoNeRa-D in the SOILmoisture dataset only. This is

the only dataset in this study, where there is a clear evidence that a benefit can be achieved in the accuracy

of the testing procedure, by preferring the descriptive regression model to the collective regression model.

Based on this analysis, the considerations already formulated in [7] can be confirmed in general term: the

considered experiments provide empirical evidence that the collective regression learner is generally better

than (or equally well to) the descriptive regression learner in the testing procedure.
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(a) Irs (b) Mf (c) Movies (d) Ms

(e) NCEP (f) PubmedMellitus (g) SCH (h) SOILmoisture

(i) Twitter (j) Vegetation (k) YouTube

Figure 5: CoNeRa error curves (RMSE (axis Y) computed on the testing data along the labeled set size at consecutive iterations

(axis X)): regression model learned in labeled set spanned on the descriptive variable space (CoNeRa-D) vs regression model

learned in the labeled set spanned on the descriptive+collective variable space (CoNeRa-C) .

Constraint clustering vs Graph clustering. The actual contribution of the selected constraint clustering

solution is analyzed. In CoNeRa, clustering information is used both in the initialization phase and in the

iterative phase. In the initialization phase, the initial labeled set is constructed by sampling the examples

to be labeled cluster by cluster. In the iterative phase, the correlation-aware disagreement of an example

is computed on the cluster-based representation of its neighborhood and weighted according to the size of

the labeled part of the cluster it belongs to. This idea of exploiting the knowledge of the cluster structure

of the network in the active learning strategy is introduced at first in [7], where clustering is performed

by taking advantage of the available network structure and by using a graph clustering algorithm to find

the clusters. On the contrary, this study proposes to adopt a constraint clustering algorithm that identifies

clusters of connected, similar nodes. In particular, the cluster structure of the data network (see details

in Section 4.2) is determined by accounting for both the network information (i.e. the network linkedness)

and the node similarity (i.e. the similarity between the nodes computed in the descriptive space). In the

described experiments, the error curve of CoNeRa run with the constraint clustering algorithm (CoNeRa-CC),

is compared to the error curve of CoNeRa run with the graph clustering algorithm (CoNeRa-GC). The graph

clustering algorithm described in [37] is considered. The error curves, shown in Figures 6(a)-6(k), reveal

that the constraint clustering algorithm generally stands out as the winning clustering algorithm for our
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(a) Irs (b) Mf (c) Movies (d) Ms

(e) NCEP (f) PubmedMellitus (g) SCH (h) SOILmoisture

(i) Twitter (j) Vegetation (k) YouTube

Figure 6: CoNeRa error curves (RMSE (axis Y) computed on the testing data along the labeled set size at consecutive iterations

(axis X)): graph clustering (CoNeRa-GC) vs constraint clustering (CoNeRa-CC).

active learning strategy. In all datasets, the initial labeled set, constructed by considering the constraint-

cluster structure of the network data, allows us to construct a regression model that is more accurate

than the regression model constructed from the labeled set, initialized by considering the graph-cluster

structure of the network. On the other hand, in almost all datasets, the consideration of a constraint-cluster

structure contributes to a gain in accuracy in the iterative phase, compared to the graph-cluster structure.

In particular, graph clustering constantly outperforms constraint clustering in the Movies dataset only.

Cluster-based disagreement. The role of the cluster structure in the disagreement measurement is explored.

The complete version of CoNeRa, where the disagreement of a node (see details in Section 4.2) is computed

on the cluster-based projection of its neighborhood (CoNeRa-CS), is compared to the variant that computes

the disagreement of an example in its entire neighborhood, but without accounting for the clustering infor-

mation (CoNeRa-NCS). The error curves, shown in Figures 7(a)-7(k), highlight the fact that using clustering

information provides, in general, gains over using just disagreement information. The evidence of this gain

is clear in various datasets, i.e. Irs, Movies, Ms, NCEP, SCH, SOILmoisture, Vegetation and YouTube.

5.4.3. Sensitivity study

The sensitivity of the active learning strategy is investigated along size l of the initial labeled set and size

t of the sample pool. For this analysis, SCH, SOILmoisture and YouTube are considered. The error curves,
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(a) Irs (b) Mf (c) Movies (d) Ms

(e) NCEP (f) PubmedMellitus (g) SCH (h) SOILmoisture

(i) Twitter (j) Vegetation (k) YouTube

Figure 7: CoNeRa error curves (RMSE (axis Y) computed on the testing data along the labeled set size at consecutive

iterations (axis X)): sample pool selection with no-cluster based disagreement measure (CoNeRa-NCS) vs sample pool selection

with cluster-based disagreement measure (CoNeRa-CS) .

by varying l, are shown in Figures 8(a)-8(c), while the error curves, by varying t, are shown in Figures 8(d)-

8(f). In addition, the impact of the choice of l and t on the average learning times (in milliseconds) spent

completing the active learning process is evaluated.The learning times are collected in Table 6. These results

show that the lower l and/or t, the higher the number of performed iterative steps and, hence, the higher the

learning time spent using the entire budget and then completing of the active learning process. On the other

hand, the shape of the error curve is clearly influenced by the choice of l and t. In any case, all the regression

models, which are learned when the entire budget B is used, converge generally to an approximately fixed

point of testing accuracy. The only exceptions are observed in the SCH dataset, where the accuracy of the

final regression model is visibly greater when either the size of the initial labeled set (l=700 in Figure 8(a))

is enlarged or the size of the sample pool (t = 25 in Figure 8(d)) is diminished. This is attributed to the

presence of various target outliers in SCH (see Figure 4(a)). The presence of outliers may add complexity

to the task. Having outliers in a labeled set, especially in the initial iterations (i.e. when the regressors

are learned with few labeled data), may lead to computing models that overfit outlier characteristics. On

the other hand, outliers diminish the effectiveness of the correlation analysis during the collective inference.

Therefore, starting with a larger labeled set may be a valid means to balance the presence of outliers and

contribute to learning accurate initial models that will positively influence the subsequent learning process.
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Varying l

(a) SCH (B = 1200, t = 50) (b) SOILmoisture (B = 190, t = 10) (c) YouTube (B = 2400, t = 100

Varying t

(d) SCH (B = 1200, l = 500) (e) SOILmoisture (B = 190, l = 50) (f) YouTube (B = 2400, l = 1000)

Figure 8: CoNeRa error curves (RMSE (axis Y) computed on the testing data along the labeled set size at consecutive iterations

(axis X)) by varying l or t.

At the same time, reducing the sample pool size avoids the addition of too many outliers, especially during

the initial iterations, when their contribution will have a stronger effect on the training phase.

Table 6: Learning times. Results (in millisecs) are collected by varying l or t.

l

SCH (B = 1200, t = 50)
l 700 600 500 400 300

time 187782 213725 230924 259178 289581

SOILmoisture (B = 190, t = 10)
l 90 70 50 30 10

time 9858 10555 11623 12106 13055

youTubeScribers (B = 2400, t = 100)
l 1400 1200 1000 800 600

time 25676 26307 27239 26883 27223

t

SCH (B = 1200, l = 500)
t 100 50 25

time 145877 230924 411660

SOILmoisture (B = 190, l = 50)
t 20 10 5

time 7783 11623 19165

youTubeScribers (B = 2400, l = 1000)
t 200 100 50

time 218580 27239 42320
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5.4.4. Cluster structure study

This investigation evaluates the clustering impact on the initialization sampler, as well as the clustering

stability along the seed selection order (i.e. order according to seeds are evaluated during the cluster

construction) and the distance computed (i.e distance computed to evaluate the cluster homogeneity).

Clustering along sampling. The initial labeled set corresponds to the set of l training nodes that are initially

sampled from U and labeled by the oracle before starting the iterative active and collective learning process.

For each training dataset, the initial labeled set is fed with nodes that are randomly selected from the

training dataset by resorting to the random sampling procedure without replacement. In Random, DAL

and PAL, sampling is fully random across the entire training dataset (i.e. each node is randomly extracted

from the entire training dataset without replacement), while in ALFNET-R and CoNeRa a random sample

is selected from the cluster structure of the training dataset (i.e. nodes are randomly sampled per cluster

without replacement, the number of nodes sampled per cluster is proportional to the cluster size; details are

in Section 4.2). In all cases, the use of a random sampler implicates that, by repeating the random sampling

on several trials, different nodes may be selected to feed the initial labeled set. In the entire empirical study,

to account for the impact of the random sampling procedure on the initialization of the labeled set, five

trials of labeled sets are always randomly generated for each training set of the 5-fold CV (see details in

Section 5.2). However, a feedback on the impact of the random sampling procedure can be achieved by a

deeper analysis on the descriptive regression model that is constructed, during the initialization phase, after

the selection of the training nodes done by the sampler and labeled by the oracle. With this intention, a

comparison is carried out between the average and standard deviation of the (testing) RMSEs of the initial

descriptive regression model constructed with the fully random sampler, the graph cluster-based random

sampler and the contiguity constraint cluster-based random sampler. Results, collected in Table 7, confirm

that the contiguity constraint cluster structure of the training data set provides useful information to drive

the selection of a “good” initial sample of nodes. The contiguity constraint cluster-based sampling (being

repeated on various trials) guarantees the learning of the most accurate initial descriptive regression model

in general. This also confirms the best initialization of the labels for the collective inference. Finally, the

standard deviation analysis clarifies that the contiguity constraint cluster-based sampler is commonly more

robust than its competitors (random sampler and graph cluster-based sampler) when evaluated along the

random aspect of the initialization phase. The initial descriptive regression models, computed on the various

repetitions of the experiment, commonly achieve the lowest variability (standard deviation) of the RMSE.

Clustering along seed selection. The contiguity constraint clustering algorithm starts the cluster construction

from a seed node that is randomly selected across the set of nodes, still un-clustered, in the training dataset.

The execution of the clustering algorithm is repeated on five trials (by selecting randomly, at each trial,

cluster seeds), in order to evaluate the robustness of the cluster structure to the seed selection. The derived

cluster structures are compared to the cluster structure (baseline) used in the remaining part of this empirical

study. For this purpose, the Rand index [42] is computed as a measure of agreement between two cluster
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Table 7: Sampling procedure accuracy analysis. For each data set, the training set can be initialized by resorting to either

a fully random sampler, a graph cluster-based sampler or a constraint cluster-based sampler. The accuracy of the descriptive

regression model, learned during the initialization phase, is measured. The average ± standard deviation of the testing RMSE

is collected (columns 2-4). The lower average and standard deviation are signed in bold.

Data Fully random Graph cluster-based random Constraint cluster-based random

Irs 3.7530 ± 0.2772 3.8825 ± 0.3760 3.4043± 0.2346

Mf 3.0016 ± 1.4126 2.9104 ± 1.4903 2.1745 ± 0.9204

Movies 1.3419 ± 0.2268 1.2076 ± 0.3149 0.9339 ±0.2196

Ms 7.6072 ± 3.3628 7.4161 ± 3.2780 5.9646 ± 1.5979

NCEP 3.5880 ± 0.3856 3.6925 ± 0.6868 3.3510 ± 0.4414

PubmedMellitus 0.0156 ± 0.0012 0.0157 ± 0.0012 0.0156 ± 0.0012

SCH 79190.3488 ± 4164.3062 78028.2597 ± 2501.9610 78322.7468 ± 2269.3593

SOILmoisture 0.1150 ± 0.0364 0.1126 ± 0.0686 0.0611 ± 0.0101

Twitter 4981991.8417 ± 7037146.7156 3334259.3878 ± 2682523.1932 2395733.9126 ± 2332402.5417

Vegetation 11.8321 ± 6.2437 12.8515 ± 3.6365 9.3474 ± 1.5830

YouTube 326.3828 ± 18.7350 340.8697 ± 22.4620 342.2367 ± 25.0099

structures of the same dataset. It is measured by considering all pairs of nodes and counting pairs that

are assigned to the same or different clusters in the trial and baseline cluster structure. It assumes values

between 0 and 1. It has a value close to 0.0 for random labeling independently of the number of clusters and

samples and exactly 1.0 value when the cluster structures are identical (up to a permutation). Using the

Rand Index to compare the cluster structures (see column 2, Table 8), it can be observed that a moderate to

high degree of similarity appears between cluster structure outcomes. The Rand index is commonly greater

than 0.80, except for Irs (0.6601) and SCH (0.69143), where it is still greater than .65. This analysis shows

that the clustering algorithm can be considered, generally, robust to the seed selection order.

To support this conclusion, CoNeRa is run along the various cluster structures generated when changing

the seed order selection. For each cluster configuration, the regression accuracy (RMSE) of CoNeRa is

measured over the several trials of the considered dataset, as they are defined by the methodology presented

in Section 5.2. The testing accuracy of the collective regression model, learned when the iterative process

stops (and therefore labels of the full budget are acquired) is analyzed. The one-way analysis of variance

(ANOVA) [8] is performed, in order to determine whether there are any significant differences between

the means of the RMSEs collected along the compared cluster configurations on the tested trials. The

tested hypothesis shows that they are all the same against the general alternative that they are not. By

considering that the common significance level of this statistical analysis is 0.01, the ANOVA analysis (see

column 3, Table 8) shows that there is no statistical significant difference due to the impact of the cluster

structures generated with different seeds on the final accuracy of the entire learning process. To display the

results of the ANOVA analysis, the interactive graph of the estimates with the comparison intervals of the

multiple comparison test are derived for datasets Vegetation and YouTube (see columns 4-5, Table 8) .11

In the visualization, each group mean is represented by a symbol, and the interval is represented by a line

11Similar visual results are achieved for the remaining datasets. They are omitted due to space limitation.
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Table 8: Seed selection ANOVA analysis. For each training set, the cluster structure construction is repeated on five

new trials by changing randomly the seed selection order during the cluster construction. The average of the Rand Index is

computed between the cluster structure constructed in each trial of this specific experiment and the baseline cluster structure

used in the remaining part of this empirical study (column 2). Th p-value of the ANOVA analysis compares RMSEs of the

collective regression models learned for each cluster configuration generated by varying the seed selection order (column 3).

The interactive graph represents the estimates and comparison intervals of the multiple RMSE comparison test associated with

the ANOVA analysis (using Matlab function multcompare() ) visualized for Vegetation and YouTube (columns 4-5). For each

interactive graph, axis Y represents: Baseline (i.e. the cluster configuration considered as the baseline in the experimental

study), as well as T1, T2, T3, T4 and T5 (i.e. the cluster configurations generated by running clustering on five trials). Axis

X represents the comparison intervals around the configurations on axis Y.

Data RandIndex ANOVA p-value multicompare

Irs 0.66018 0.0536

Mf 0.82673 0.9977

Vegetation

Movies 0.84011 0.1853

Ms 0,81672 0.9918

NCEP 0.88099 0.0985

PubmedMellitus 0.99927 0.9997

SCH 0.69143 0.6289

YouTube

SOILmoisture 0.85561 0.6876

Twitter 0.99294 1.0000

Vegetation 0.83045 0.7706

YouTube 0.93313 0.9330

extending out from the symbol. Two group means are significantly different if their intervals are disjoint; they

are not significantly different if their intervals overlap. This analysis confirms the robustness of the entire

learning process to the seed selection order considered during the cluster structure construction showing that

collective regression accuracy does not change greatly, despite slight differences possibly observed either in

the cluster boundaries or in the labeled nodes initially sampled across these boundaries.

Clustering along distance. The contiguity constraint clustering algorithm bases the computation of the

homogeneity property (see Formula 2) on the Euclidean distance between the vectors of the descriptive

values associated to two (candidate) clustered nodes. To evaluate the quality of the cluster structure along

the distance, the cluster configuration computed by employing the Euclidean distance can be compared to the

configuration computed employing alternative distances, e.g. Chebyshev distance or Mahalanobis distance.

The Chebyshev distance is a metric defined on a vector space, where the distance between two vectors is

the greatest of their differences along any coordinate dimension. The Mahalanobis distance is a measure of

the distance between a node n and a distribution N . It is a multi-dimensional generalization of the idea of

measuring how many standard deviations are away from the average of N . This distance is zero if n is at the

average of N , and grows as n moves away from the average: along each principal component axis, it measures

the number of standard deviations from n to the average of N . The mathematical formulation and the time

complexity of the compared distances are reported in Table 9. To evaluate the stability of the cluster

configuration along the distance, the Rand index is computed between the cluster structure determined
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Table 9: Distance complexity analysis. Let n(x1, x2, . . . , xm) be a vector of descriptive values associated with a node

n ∈ N , ni, nj ∈ N be two nodes, C is the covariance matrix of the node set. The formulation of the Euclidean distance,

Chebyshev distance and Mahalanobis distance (column 2) and their complexity in the O notation (column 3).

Distance Formula O complexity

Euclidean d(ni, nj) =

√√√√ ∑
k=1,...,m

(ni(xk)− nj(xk))
2

m O(m)

Chebyshev d(ni, nj) = max
k=1,...,m

|ni(xk)− nj(xk)| O(m)

Mahalanobis d(ni, nj) =
√

(ni(x1, . . . , xm)− nj(x1, . . . , xm))TC−1(ni(x1, . . . , xm)− nj(x1, . . . , xm)) O(N2m)

Table 10: Rand index analysis. For each dataset, the Rand Index is computed between the cluster structure constructed

by considering the baseline Euclidean distance - E and the cluster structure constructed by considering either the Chebyshev

distance - C or the Mahalanobis distance - M.
Dataset E vs C E vs M Dataset E vs C E vs M Dataset E vs C E vs M

Irs 0.67729 0.67057 Mf 0.84045 0.85075 Movies 0.85786 0.85377

Ms 0.84495 0.84864 NCEP 0.82490 0.82002 PubmedMellitus 0.99972 0.99959

SCH 0.51647 0.46140 SOILmoisture 0.80896 0.80723 Twitter 0.99556 0.99556

Vegetation 0.81397 0.81210 YouTube 0.89898 0.73477

with the Euclidean distance (baseline) and the cluster structure determined with the Chebyshev distance or

the Mahalanobis distance. The results, reported in Table 10, generally show high the degree of similarity

between cluster structure outcomes, although computing the Mahalanobis distance is asymptotically more

complex than computing the Euclidean distance (see column 3, Table 9).

Again the actual impact of the differences possibly observed in the cluster boundaries is measured in terms

of the regression accuracy of the collective regression model learned by CoNeRa when the iterative process

stops. The average and standard deviation of the (testing) RMSEs are reported in Table 11. These results

show that the Euclidean configuration outperforms competitors in five-out-of-eleven datasets, the Chebyshev

configuration outperforms competitors in two-out-of-eleven datasets, while the Mahalanobis configurations

outperforms competitors in four-out-of-eleven datasets. The one-way analysis of variance (ANOVA) is,

finally, performed, in order to determine whether there are any significant differences between the averages of

the RMSE along the compared distances on the tested trials. The significance level of this statistical analysis

is 0.01 (see column 4, Table 11). The ANOVA analysis reveals that there are only four-out-of-eleven datasets,

where the test hypothesis is rejected as the errors of the compared configurations are statistically different. In

these datasets, a multiple comparison test is performed, in order to determine whether any of those averages

are significantly different from each other [8]. The results, plotted in Figures 9(a)-9(d), highlight that the

Euclidean configuration is statistically better than the Chebyshev and Mahalanobis configurations in both

Movies and SOILmoisture, while it is statistically better than the Mahalanobis configuration (and equally to

the Chebyshev configuration) in Vegetation. The only case where the Chebyshev configuration is statistically

better than the Euclidean one is in NCEP. This empirical analysis combined with the considerations on

the complexity of the distance computation confirms the efficacy of the idea of performing the constraint

clustering algorithm in combination with the Euclidean distance.
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Table 11: Distance ANOVA analysis. For each data set, the testing RMSE (average ± standard deviation) of CoNeRa

(final collective regression model) is collected. The constraint cluster structures are computed with the Euclidean distance,

the Chebyshev distance or the Mahalanobis distance (columns 2-4). The lowest error is in bold. The p-value of the ANOVA

analysis (column 4). The p-value less than .01 (in bold) means that there is one configuration that statistically outperforms

the compared configurations.

Dataset Euclidean Chebyshev Mahalanobis ANOVA p-value

Irs 2.81793 ± 0.17195 2.87298 ± 0.17193 2.85332 ± 0.16570 0.52664

Mf 1.96288 ± 1.01006 1.95065 ± 0.97069 1.91082± 1.01582 0.98234

Movies 0.53963 ± 0.17491 0.72619 ± 0.21951 0.74987 ± 0.23927 0.00164

Ms 5.31166 ± 1.42782 4.98325 ± 1.52704 4.98081 ± 1.19437 0.6395

NCEP 2.27356 ± 0.16962 2.04945 ± 0.20279 2.15830 ± 0.15588 0.00020

PubmedMellitus 0.01560 ± 0.00115 0.01553 ± 0.00110 0.01553 ± 0.00115 0.9705

SCH 72640.976± 4531.820 70501.938 ± 2423.068 69538.287 ± 2842.734 0.00734

SOILmoisture 0.05017 ± 0.00346 0.06351 ± 0.00459 0.07721 ± 0.00798 3.598e-25

Twitter 2432550.609 ± 2058910.482 2432550.609 ± 2058910.482 2432550.609 ± 2058910.482 1.000

Vegetation 7.94238 ± 0.61360 8.30071 ± 0.53465 15.28869 ± 2.41583 1.1.882e-29

YoutTube 309.38877 ± 18.18947 316.73096 ± 20.73862 317.29956 ± 17.97720 0.28075

(a) Movies (b) NCEP (c) SOILmoisture (d) Vegetation

Figure 9: ANOVA analysis visualization (p-value=0.01): Euclidean - E, Chebyshev - C, Mahalanobis - M . The Matlab function

multcompare() is used, in order to visualize the multiple comparison test. Axis Y represents the distance (E, C, M), while axis

X represents the comparison intervals around the configurations on axis Y.

5.5. Temporal analysis

Although CoNeRa is designed to process network data collected at a specific point of time, this experiment

is performed, in order to preliminary investigate the impact of the temporal dimension on the viability of

the collective model learned by CoNeRa. The considered dataset contains the atmospheric forcing data

collected by the Geophysical Fuild Dynamics Laboratory for NOAA [14]. Data were recorded monthly from

November, 1997 to November, 2000 by 162 sensors, which roughly cover the area of the U.S. state of Alaska.

The target variable is the cloud area fraction, while the descriptive variables are: the atmosphere cloud ice

content, the snowfall flux, the surface air pressure and the surface downward eastward stress. The sensors

represent the nodes and the variables associated with the nodes take the original values of the geophysical

measurements recorded during the period of observation. As for spatial networks described in Section 5.1.2,

the coordinates of the sensors are used to define the edge spatial structure of the network. In particular,

every node is actually linked to the nodes falling in the influence sphere with radius equal to the 10 percent

of the maximum Euclidean distance between the sensors in the network. The Global Moran’s I and its

expected value E(I), calculated on the target data, every month between November, 1997 and November
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2000, are reported in Figure 10(b). Values I ≥ E(I) confirm that a positive in-network phenomenon of

correlation of the target can be observed at each specific time point. This means that close target values are

generally similar when they are collected at the same time point, although their visualization, reported in

Figure 10(a), highlights that the target variable changes over time. In any case, the observed temporal data

change exhibits a seasonal pattern as the fluctuations roughly repeat on a yearlong period. This suggests

that a regression model, learned at a time point, can be efficaciously employed to forecast upcoming periodic

testing data coherently with the observed seasonal pattern. The validity of this assumption is here verified

by investigating the forecasting performance of collective regression models.

The collective regression models are those learned by CoNeRa when the collective active learning process

stops. The algorithm is run with l = 10, t = 3 and B = 34 by resorting the experimental methodology

already described in Section 5.2. Specifically, the 5-fold CV of the network is performed (nodes are randomly

divided in five folds; for each trial, one fold defines the testing sets, the hold-out folds define the training

sets). The learning process is repeated from scratch as new data are collected. As reported in Section 5.2,

for each training set, the learning process is repeated five times (by changing the initialization of L). Final

collective regression models learned at time t are employed to predict the held-out testing targets at the

same time point t, as well as to forecast testing targets at 24-ahead time points t+ 1, t+ 2, . . . , t+ 24. The

forecasting error curve is constructed. Each point of the curve represents the average RMSE computed on

the testing sets, for each time point t, t+1, t+2, . . . , t+24, by using the collective regression models learned

at time t. This experiment was repeated with t ranging between November, 1997 and October, 1998.

The average forecasting error curve, computed by averaging the forecasting error curves constructed

with t ranging between November, 1997 and October, 1998, is reported in Figure 10(c). Interestingly the

overall error exhibits the periodic pattern initially observed in the target data. In addition, the forecasting

efficacy of the collective regression model decreases over time. However, the performance can be improved

accounting for a known periodic pattern and employing a model to predict upcoming testing data only

when they behave similarly to the training data. This consideration is confirmed by exploring the individual

forecasting error curves constructed with t = November, 1997 (Figure 10(d)), t = March, 1998 (Figure

10(e)) and t = July, 1998 ( Figure 10(f)), respectively. In this detailed analysis, a baseline is considered. It

is the error curve, where each point represents the average performance of the regression models trained at

the specific time point employed to predict only held-out testing data collected at the same time point. This

comparative analysis shows that the accuracy performance is improved when the collective active learning

process is repeated from scratch as new data are collected online. However, this analysis also highlights

that old models can sometimes perform appropriately in the future when training and testing data behave

similarly (i.e. forecasting error curve and baseline error curve are repeatedly closer every twelve time points).

Although this preliminary empirical investigation cannot be considered conclusive, it paves the way for future

developments in the area of spatio-temporal data mining. In particular, it requires new investigations, in

order to extend the presented collective active learning strategy by integrating change detection mechanisms,

incremental learning solutions, as well as regression models accounting for trend and seasonality of data.
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(a) data (b) I ≥ E(I) (c) AVG RMSE

(d) 11/97-11/99 (e) 3/98-3/00 (f) 7/98-7/00

Figure 10: Figure 10(a): The time series of target variable “cloud area fraction” (axis Y) monthly measured by each sensor in

the network from November, 1997 to November 2000 (axis X). Figure 10(b): The Global Moran’s I and its expected value E(I)

(axis Y) of “cloud area fraction” computed by varying time (axis X) monthly between November, 1997 and November 2000.

Figure 10(c): The average forecasting error curve (axis Y) computed by averaging the error curves of the regression models

trained at time t and used to predict testing data at t, t + 1, . . . , t + 24 (axis X). The average is computed on the error curves

generated with t ranging monthly between November, 1997 and October, 1998. Figures 10(d)-10(f): The forecasting error curve

(continuous line - Forecast) compared to the baseline error curve (dotted line - Baseline). Both curves are generated starting

from t = November, 1997 (Figure 10(d)), t = March, 1998 (Figure 10(e) and t = July, 1998 (Figure 10(f)), respectively.

5.6. Active Network Regression Literature

Active learning targeting on network regression problems has received significantly less attention than

classification. In any case, some recent results achieved with active regression in the network scenario can

be considered. Cai et al. [10] evaluate EMCM on forest fires dataset (http://archive.ics.uci.edu/ml/).

This is a spatial network regression problem as data are collected with spatial coordinates. The target

(burned area of forest fires) ranges between 0 and 1090.84 with a few outliers. Removing three top ranked

values, the target ranges between 0 and 212.88. The target Global Moran’s I and its expected value E(I),

calculated without outliers, are 0.0051 and -0.0019, respectively. As the target exhibits positive correlation,

the base condition to take advantage of collective inference can be considered satisfied. The experimental

setting described in [10] is here repeated. The dataset is split into a training (80%) and a testing set

(20%), l is set equal to 10% of the dataset size, t is set equal to 3% of the dataset size and B is set equal

to 40% of the dataset size. The split between the training and the testing set is repeated on 10 trials.

The RMSE is computed on each testing set with the regressors learned, as B is fully used. The RMSE

is averaged on the 10 trials. DAL, PAL, ALFNET-R and CoNeRa are run in this setting. Average errors

are: 38.75 (CoNeRa), 39.59 (DAL), 40.50 (PAL) and 40.22 (ALFNET-R), while the errors of EMCM with

linear regression (see Fig. 2.c of [10]) are greater than 50.0 and the errors of EMCM with non-linear gradient

boosting decision trees (GBDT) for regression (see Fig. 4.c of [10]) are greater than 40.0. Therefore, CoNeRa
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yields more accurate predictions than all its competitors, including than EMCM-GBDT that is configured

to be robust to the presence of outliers. Komurlu and Bilgic [25] evaluate DGBm on temperature readings

in the Intel Berkeley Research Lab sensor network (http://db.csail.mit.edu/labdata/labdata.html).

The experimental setting described in [25] is considered. The initial labeled sample collects the readings of

50 sensors, aggregated every 30 minutes, measured on days 2, 3, and 4. A spatio-temporal network is defined

by linking readings to readings that are close over space or (past) time. The consequent Global Moran’s I

is 0.9080 and its expected value E(I) is -0.0019. The unlabeled set collects aggregated data over the first 6

hours of day 5. The active learning strategy is performed, to acquire temperature labels of 10% , 20%, 30%,

40% and 50% of the unlabeled set. The Mean Absolute Error (MAE) is computed on the entire unlabeled

set. Collected errors are: 0.32 (CoNeRa), 0.53 (DAL), 0.54 (PAL), 0.34 (ALFNET-R) and 0.31 (DGBm), with

10% of testing labels acquired; 0.26 (CoNeRa), 0.51 (DAL) ,0.48 (PAL), 0.32 (ALFNET-R) and 0.27 (DGBm),

with 20% of testing labels acquired; 0.21 (CoNeRa), 0.46 (DAL) ,0.43 (PAL), 0.26 (ALFNET-R) and 0.23

(DGBm), with 30% of testing labels acquired; 0.17 (CoNeRa), 0.41 (DAL) ,0.36 (PAL), 0.21 (ALFNET-R) and

0.18 (DGBm), with 40% of testing labels acquired; 0.12 (CoNeRa), 0.35 (DAL) ,0.21 (PAL), 0.17 (ALFNET-R)

and 0.12 (DGBm), with 50% of testing labels acquired. DGBm errors are reported in Table 4 of [25]. This

study confirms that CoNeRa performs better than its baseline competitors and its accuracy is comparable to

that of DGBm that also exploits correlations. However, DGBm is formulated for univariate spatio-temporal

network data, while CoNeRa is defined for multivariate general-network data, although, here, it is forced to

consider univariate data only.

6. Conclusion

A novel collective active learning regression algorithm is described. Collective inference is used to handle

network information and achieve better predictive accuracy, by labeling examples collectively, rather than

treating them as independent examples. Active learning is used to interact with oracles, guiding them

to the most informative examples to be labeled, in order to efficiently learn the correct regression model.

Collective inference and active learning have been explored in the literature. The novel contribution of this

study is that it combines these two strategies in a single learning algorithm, appositely defined for network

regression problems. This algorithm, which represents one of the main contributions of this work, proves

effective for the network regression problem. A peculiar contribution of the algorithm is the definition of

a clustering procedure that accounts for descriptive and network information, in order to derive a model

of the data correlation across the network. This cluster knowledge optimizes the selection of the active

examples to be labeled by the oracle during the collective active learning strategy. In addition, this study

formulates a sample selection criterion that accounts for the network correlation of node labels, in order to

select new training examples for the labeling process, as well as the network correlation of node descriptive

data, in order to guarantee diversity in label acquisition. The correlation of node labels is expressed through

a disagreement score, measuring local correlation of labels. The correlation of node descriptive data is

37

http://db.csail.mit.edu/labdata/labdata.html


modeled through a cluster structure, depicting linked nodes of similar descriptive data. The effectiveness

of the proposed algorithm is assessed via an empirical study on various data networks characterized by

positive correlation of the target.. This study confirms that collective inference can deal with the correlation

property and gain in accuracy modeling network data. It contributes to proving that a collective active

learning regression algorithm is more accurate than the traditional active learning algorithms, that disregard

the network structure of data. The presented algorithm is more accurate than the state-of-the-art collective

active learning algorithm that uses collective inference, but adopts a sample selection criterion that neglects

the property of target data correlation. In addition, this study proves that collective inference, clustering

and network-aware disagreement contribute to improving the accuracy of the algorithm. It also evaluates

the accuracy and scalability of the presented collective active learning process along the labeling budget

setting, as well as it evaluates the robustness of the constraint cluster structure along the distance measure

definition and the seed selection ordering. A further contribution is the investigation of the accuracy of the

collective active regression strategy over time. This temporal analysis paves the way for new investigations,

in order to integrate change detection mechanisms, incremental learning solutions, as well as regression

models accounting for trend and seasonality of data. A final contribution is the comparison with the results

of network regression reported in the recent active learning literature. Additional directions for further work

are still to be explored. The Markov random field theory can be investigated in the synthesis of collective

information. It would be interesting to study ways to determine both the size and shape of neighborhoods.

Finally, big data technologies may be studied to apply the presented solution to big imagery data.
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