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Abstract

In this paper, based on nonuniform sampling, the master-slave synchronization in a class of Lur’e systems is studied via using
the sampled outputs of error system. Different from existing results, the transmission of control signals is determined by a
novel adaptive event-triggered scheme, where the triggering thresholds depend on the dynamic behaviors of controlled systems
rather than the predetermined constants as some traditional ones. Through choosing two augmented Lyapunov-Krasovskii
functionals (LKFs), some delay-dependent synchronization criteria are formulated and the conservatism can be effectively
reduced owing to the utilization of Wirtinger-based inequalities and delay-product-type LKF terms. Especially, the existence
of the controller can be easily checked since the derived conditions are presented via LMI forms. Finally, two numerical
examples with comparisons and simulations are given to illustrate the proposed results.

Key words: Chaotic Lur’e systems; master-slave synchronization; adaptive event-triggered scheme; sampled-data control;
time-varying delay

1 Introduction

In past decades, the research on synchronization control of various chaotic systems has received considerable atten-
tion since the pioneering works of Pecora and Carroll were reported [1,20]. The works show that as some conditions
are satisfied, a chaotic system (the slave system) may become synchronized to another identical one (the master
system) if the master system sends some driving signals to the slave one. Presently, it is widely known that there
exist many benefits of chaos synchronization in various engineering applications, such as teleoperation control, secure
communication, and image processing. It is worth noting that the dynamical behaviors of chaotic systems are highly
sensitive to small changes of initial values and the trajectories in phase space are bounded due to the presence of
nonlinearity. Therefore, the problem on chaos synchronization has been widely investigated and a large number of
elegant results have been reported [2,3,6,8,10,11,13,14,23–26,28,32,36–40].

Meanwhile, Lur’e system is an important theoretic model describing how nonlinear uncertainties reflect the dy-
namic behaviors in a system, which can include linear models and nonlinear ones as its special case and exhibit some
chaotic behaviors [18,31]. Therefore, the synchronization in Lur’e systems has received considerable attention and
many interesting results have been proposed [2,3,6,8,13,14,23–26,32,36–39]. The Ref. [6] studied two nonlinear Lur’e
ones subject to control saturation and assumed that their outputs were measurable. In [36], two Lur’e networks of
homogeneous dimensions were analyzed to tackle the master-slave synchronization only when the relative measure-
ments were available. It is worth noting that time-delay is an inherent feature in physical processes and may lead
to instability or significantly deteriorate system performance. Thus some works have tackled the time-delay Lur’e
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systems [3,23,24,37,39]. In [3], an impulsive controller involving time-delay was designed to study the exponential
synchronization and in [23,24,37,39], some easy-to-test criteria were presented.

In practical situations, since digital controllers allow for the task only by using the error outputs of the master
system and slave one at discrete time instants, they are more preferable than the continuous-time ones and widely uti-
lized to study the synchronization [2,8,13,14,24–26,32,37–39]. Especially, in [2], the H∞ synchronization was studied
and the Ref. [13] put forward a novel discontinuous LKF term to reduce the conservatism and further gave compar-
isons with existing ones. The work [14] considered the networked circumstances and the Refs. [24,25,28] utilized some
Wirtinger-based inequalities to extend the application areas, in which stochastic disturbance and non-fragility were
involved. Yet the Lur’e systems in [13,14,25,28] did not include time-delay, which was considered in [2,8,24,26,37,39].
It should be pointed out that the controllers in [2,8,13,14,24–26,37–39] were time-triggered and a maximum sampling
interval had to be carefully selected. This type of triggered scheme unavoidably leads to unnecessary utilization of
communication bandwidth. In order to overcome this point, a novel idea described as event-triggered technique was
put forward. Compared with time-triggered scheme, the event-triggered one is more efficient and typically requires
less data transmissions since the sampler is triggered only when the value of the designed function exceeds a given
threshold value. Therefore, this scheme has been widely employed [4,7,14,28,32,33,40,42–45], which was also applied
to tackle the synchronization issue of many systems including Lur’e ones [14,28,32,40].

Though the results above are elegant, there still exist two challenges to be addressed. Firstly, since the event-
triggered technique based on sampled data was put forward to moderate the transmission burden [35], it has received
numerous improvements [4,14,28,32,33,40,42–45]. Yet, most triggering thresholds were pre-selected constants belong-
ing to (0, 1] and could not adapt to the real-time performance of controlled system. Though the work [7] has given
preliminary discussions on on-line optimization algorithms of achieving the desired thresholds. However, its adaptive
condition was presented via a simple form and could not reflect the whole information. Especially, as we know, no
works have employed the adaptive event-triggered technique to tackle the synchronization issue. Secondly, as for
LKF candidate, a novel discontinuous LKF term based on free-weighting matrices was put forward in [13] and some
comparisons were also given with the one based on Wirtinger’s inequalities [16]. Yet, few works have not combined
the LKF terms in [13,16] to extend the application areas. Furthermore, the derivative of LKF term in [13] results
in one Zero term, which will unavoidably induce the conservatism. Especially, most recently, the Refs. [18,46] put
forward some novel delay-product-type LKF terms, which can reduce the conservatism more effectively than ever.
Yet no present works have utilized this technique to tackle the synchronization in Lur’e systems. It is worth noting
that, as for time-delay Lur’e systems based sampling control, there always exist two types of time-delays, i.e., one
is embedded in system and the other is a modeled one [2,8,24,26,37,39]. However, few works have utilized their
interconnection to construct the LKF. Though the work [5] has studied this point on time-delay neutral system, the
LKF terms seemed to be simple and multiple integral ones were not utilized. To the best knowledge of authors, the
research on adaptive event-triggered synchronization in master-slave Lur’e systems has not appeared with the aid
of latest relaxed integral inequalities and LKF terms, which motivates this presented work.

In this paper, based on sampled data, the master-slave synchronization in Lur’e systems with time-varying delay
will be deeply studied and an adaptive event-triggered scheme is designed to improve the transmission efficiency.
Together with the information on time-delays and nonlinear functions, two augmented LKFs will be constructed. By
employing some Wirtinger-based inequalities and convex combination technique, two novel conditions will present
less conservatism and easily checked owing to that they are presented in terms of the LMIs. Finally, the efficiency
of the derived criteria will be demonstrated by resorting to two numerical examples.

Notations The term LKF is the abbreviation of Lyapunov-Krasovskii functional and N represent the set of natural
numbers; the set Rn denotes the n-dimensional Euclidean space and Rn×m is the set of n × m real matrices; In
denotes the n × n identity matrix; sym{X} means sym{X} = X +XT ; A ⊗ B denotes the Kronecker product of
A,B, and the symmetric term in a symmetric matrix is denoted by ∗.

2 Problem formulations and lemmas

In this paper, we consider the time-delay Lur’e systems of master-slave case described as

M :

{
ẋ(t) = Ax(t) +Bx(t− τ(t)) +Dh(Ex(t)),

p(t) = Fx(t),
(1)

S :

{
ż(t) = Az(t) +Bz(t− τ(t)) +Dh(Ez(t)) + u(t),

q(t) = Fz(t),
(2)
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where M is the master system and S is the slave system; here x(t), z(t) ∈ Rn are the state vectors and the output
ones are presented as p(t), q(t) ∈ Rn0 ; A = [aij ]n×n, B = [bij ]n×n, F = [fij ]n0×n, E = [ET

1 , E
T
2 , · · · , ET

n1
]T are

constant matrices; moreover h(·) = [h1(·), h2(·), · · · , hn1
(·)]T denotes the nonlinear vector-valued function which

satisfies the global Lipschitz condition.

The following assumptions will be utilized throughout this paper.

H1. The function τ(t) denotes the time-varying delay satisfying

0 ≤ τ(t) ≤ τ̄ , µ0 ≤ τ̇(t) ≤ µ1, (3)

where τ̄ , µ0, µ1 are constant scalars.
H2. There exist the constants σ+

i , σ
−
i (i = 1, · · · , n1) such that the nonlinear function hi(·) in (1)-(2) satisfies[

hi(ξ)− σ+
i ξ
][
hi(ξ)− σ−

i ξ
]
≤ 0, ∀ ξ ∈ R. (4)

Here, we introduce Σ̄ = diag(σ+
1 , · · · , σ+

n1
), Σ = diag(σ−

1 , · · · , σ−
n1
), and

Σ1 = diag
(
σ+
1 σ

−
1 , · · · , σ+

n1
σ−
n1

)
, Σ2 = diag

(σ+
1 + σ−

1

2
, · · · ,

σ+
n1

+ σ−
n1

2

)
.

Now by defining ε(t) = z(t)− x(t), the error system together with the controller can be given as

ε̇(t) = Aε(t) +Bε(t− τ(t)) +Df(Eε(t)) + u(t), (5)

where f(Eε(t)) = h(Ez(t))− h(Ex(t)). Based on Ref. [27], one can check that fi(·) (i = 1, 2, · · · , n1) satisfies H2.

In this work, we will study the synchronization task via sampled-data feedback. Since only discrete-time measure-
ments of p(t), q(t) can be used for the control purpose, we can have the measurements p(tl), q(tl) (l ∈ N) at the
sampling instant tl. In traditional control, it is always assumed that the control input is generated by using a
zero-order-hold (ZOH) function with a sequence of holding time t ∈ [tl, tl+1), where tl is the transmitted instant
from sensor to controller. Yet, in practice, the sampled-data packets transmitted through a communication channel
usually suffer some unfavorable factors such as transmission delay. Similar to [44], we take the transmission delay
as a constant d̄ and the property of the ZOH altogether into account, the design controller can be presented as

u(t) = K
[
q(tl)− p(tl)

]
, t ∈ Ωl

.
= [tl + d̄, tl+1 + d̄), (6)

where K is the controller gain waiting to be designed. Now as for the controller in (6), normally, in a conventional
time-triggered scheme, there always assumes that the sampling intervals are identical in all time, that is, tl+1 = tl+h
for a constant sampling period h > 0. Yet, in communication networks, since limited bandwidth, loading changes,
device faults, outer disturbance, and other unknown factors are always existent, the sampling period has to be time
variable and then the assumption above will be relaxed. That is to say, in this work, the sampling period hi (i ∈ N)

is allowed to be variable and belongs to a given interval, i.e., hi ∈ [h, h̃] with h > 0. Meanwhile, since time-triggered
scheme unavoidably leads to unnecessary utilization of communication network, then an adaptive event-triggered one
will be designed in this work. That is to say, an event for system (5) is triggered as soon as the following relationship
is violated E(·, ·, ·) ≤ 0. Here the event-trigged scheme E(·, ·, ·) can be described as

E(e(is), ε(tl), ε(is)) = eT (is)Φ1e(is)− α(t)εT (tl)Φ2ε(tl)− β(t)εT (is)Φ2ε(is), (7)

where is = tl +
s−1∑
i=1

hi is the current sampling instant, tl is the latest transmitted one, e(is) = ε(is) − ε(tl), and

Φi > 0 (i = 1, 2) are the weight matrices. Especially, the functions α(t), β(t) satisfy

α̇(t) =
1

α(t)

[ 1

α(t)
− δ1

][
eT (is)Φ1e(is)− θ1ε

T (is)Φ2ε(is) + θ1ε
T (tl)Φ2ε(tl)

]
, (8)

β̇(t) =
1

β(t)

[ 1

β(t)
− δ2

][
eT (is)Φ1e(is)− θ2ε

T (tl)Φ2ε(tl) + θ2ε
T (is)Φ2ε(is)

]
, (9)
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where δi, θi (i = 1, 2) are given positive constants such that 1
δ1

≤ α(t) ≤ θ2,
1
δ2

≤ β(t) ≤ θ1.

Remark 1. Based on the strategy (7), one can check that, firstly, our scheme does not only include the information
on triggering error, but also depends on the latest updated released data and current sampling one; secondly, the
triggering thresholds α(t), β(t) are not predetermined constants but two time-varying functions regulated by the
adaptive laws in (8)-(9), in which the triggering error, the previously transmitted data, and current one are fully
studied. Thus, our scheme can include the one in [7] as its special case. Especially, since Φi (i = 1, 2) are different,
then the restricted condition 0 < α(t) < 1 in [7] is no longer needed.

Remark 2. Together with the event-triggered scheme described in (7)-(9), firstly, once the systems (1)-(2) achieve
the desired synchronization, then α̇(t) = β̇(t) = 0, which means that the triggering thresholds α(t), β(t) do not need
regulation any more; secondly, though δi > 0, θi > 0 (i = 1, 2) are any given constants, the condition 1

δ1
≤ θ2,

1
δ2

≤ θ1
will further offer an effective technique how to choose those scalars before the computing; thirdly, once α(t), β(t)
converge to be constants, the event-triggered scheme in (7) can be reduced to the traditional case [4,14,28,32,33,40,42–
45]. Overall, our scheme can present more generalities.

Based on the triggered scheme (7)-(9), it is well known that there are some discarded data between two transmitted
ones. For introducing the proposed scheme at every sampling instant, the current sampled data is determined whether
it should be transmitted or not. Then similar to the Ref. [35], we also divide the holding interval Ωl of the ZOH into
subsets Ξs

.
= [is + d̄, is + hs+1 + d̄), i.e., Ωl = ∪Ξs (s = 0, 1, · · · , tl+1 − tl − 1).

Now as for t ∈ Ξs, if we denote η(t) = t− is, the designed controller in (6) can be rewritten as

u(t) = KFε(tl) = KF [ε(tl)− ε(is) + ε(is)] = KF
[
ε(t− η(t))− e(is)

]
, (10)

where η̇(t) = 1 and 0 ≤ d̄ ≤ η(t) ≤ hs+1 + d̄ ≤ h̃+ d̄
.
= h̄. Then the system (5) can be equivalently converted to

ε̇(t) = Aε(t) +Bε(t− τ(t)) +Df(Eε(t)) +KFε(t− η(t))−KFe(is), t ∈ Ξs. (11)

In what is next, some essential lemmas are introduced.
Lemma 1.(Extended reciprocal convex lemma; [41]) For α ∈ (0, 1), let R1, R2 ∈ Rn×n be real symmetric positive
matrices and the vectors ω1, ω2 ∈ Rn. Thus for any Y1, Y2 ∈ Rn×n and F(α) = 1

αω
T
1 R1ω1 +

1
1−αω

T
2 R2ω2, then

F(α) ≥

[
ω1

ω2

]T {[
R1 αY1 + (1− α)Y2

∗ R2

]
+

[
(1− α)

(
R1 − Y1R

−1
2 Y T

1

)
0

∗ α
(
R2 − Y2R

−1
1 Y T

2

) ]}[ ω1

ω2

]
.

Lemma 2.(Integral inequality; [21]) For any constant matrix M > 0, the following inequalities hold for all contin-
uously differentiable function φ in [a, b] → Rn:

−(b− a)

b∫
a

φT (s)Mφ(s)ds ≤ −

( b∫
a

φ(s)ds

)T

M

( b∫
a

φ(s)ds

)
− 3ΘTMΘ,

−b
2 − a2

2

b∫
a

t∫
t+θ

φT (s)Mφ(s)dsdθ ≤ −

( b∫
a

t∫
t+θ

φ(s)dsdθ

)T

M

( b∫
a

t∫
t+θ

φ(s)dsdθ

)
,

where Θ =
∫ b

a
φ(s)ds− 2

b−a

∫ b

a

∫ s

a
φ(u)duds

Lemma 3. (Integral inequality; [9]) For any constant matrix M > 0, the following inequality holds for all continuously
differentiable function φ in [a, b] → Rn:

− (b− a)2

2

b∫
a

s∫
a

φT (u)Mφ(u)duds ≤ −

( b∫
a

s∫
a

φ(u)duds

)T

M

( b∫
a

s∫
a

φ(u)duds

)
− 2ΘTMΘ,
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where Θ =
∫ b

a

∫ s

a
φ(u)duds− 3

b−a

∫ b

a

∫ s

a

∫ u

a
φ(v)dvduds.

Lemma 4.(Integral inequality; [22]) For a vector ω, real scalars a ≤ b, symmetric matrix R > 0 such that the
integration is well defined, then the following inequality holds,

−(b− a)

b∫
a

ω̇T (s)Rω̇(s)ds ≤ −χT
1 Rχ1 − 3χT

2 Rχ2 − 5χT
3 Rχ3,

where χ1 = ω(b)−ω(a), χ2 = ω(b)+ω(a)− 2
b−a

∫ b

a
ω(s)ds,and χ3 = ω(b)−ω(a)+ 6

b−a

∫ b

a
ω(s)ds− 12

(b−a)2

∫ b

a

∫ b

s
ω(θ)dθds.

Lemma 5.(Convex combination technique; [17]) Suppose that Ω,Ξij ,Ξmn (i,m = 1, 2, 3, 4; j, n = 1, 2) are the
constant matrices of appropriate dimensions, α ∈ [0, 1], β ∈ [0, 1], γ ∈ [0, 1], and δ ∈ [0, 1], then

Ω+
[
αΞ11 + (1− α)Ξ12

]
+
[
βΞ21 + (1− β)Ξ22

]
+
[
γΞ31 + (1− γ)Ξ32

]
+
[
δΞ41 + (1− δ)Ξ42

]
< 0

holds, if and only if the inequalities Ω+ Ξij + Ξmn < 0 (i,m = 1, 2, 3, 4; j, n = 1, 2) can be true.

3 Mixed-delay-dependent synchronization criteria

In order for simplification, we initially set n0 = n1 = n and present some useful denotations in A Appendix.
In what is next, based on the scheme in (7)-(9) and Lemmas 1-5, we will establish one sufficient condition on the
controller design of the error system (11).

Theorem 1. For given scalars τ̄ ≥ 0, h̄ ≥ 0, θ̄ ≥ 0, δ̄ ≥ 0, δ ≥ 0, δi > 0, θi > 0 (i = 1, 2), µ0, µ1, µ̄ in (3) and
(51), if there exist matrices P > 0, Qi > 0 (i = 1, 2, · · · , 6), Rj > 0 (j = 1, 2, 3, 4), Sl > 0,Φl > 0, Ul (l = 1, 2),

U > 0, V > 0,W > 0,M > 0, X > 0,M1, Nm (m = 1, 2, · · · , 6) making R̄l = diag(Rl, 3Rl, 5Rl),
[
R̄l Ul

∗ R̄l

]
≥ 0 (l =

1, 2),


N1 N2 N3

∗ N4 N5

∗ ∗ N6

 ≥ 0, and diagonal matrices Q > 0, R > 0,H > 0 such that the LMI in (12) hold


Ω+Υ+ µ̄Φi + h̄Ψj + τ̄Θk ΠT

3−kU1 ΓT
3−jU2

∗ −τ̄ R̄1 0

∗ ∗ −h̄R̄2

 < 0 (i, j, k = 1, 2), (12)

where Υ = sym{Υ0Ξ$T1 + ΛP$T2 } − 1
τ̄

[
Π1

Π2

]T [
R̄1 U1

∗ R̄1

][
Π1

Π2

]
− 1

h̄

[
Γ1

Γ2

]T [
R̄2 U2

∗ R̄2

][
Γ1

Γ2

]
,Φi = eT2Qie2, and

Ψj = sym{ΥjΞ$T1 +ΦjP$
T
2 } − eT8+jS2e8+j − (e8+j − e12+j)

T (3S2)(e8+j − e12+j)− ΓT
3−j

R2

h̄2
Γ3−j ,

Ξ = h̄
(
N1 +

h̄2

3
N4 − sym

{
[N5 N5 0]

})
+ sym

{
[N3 −N3 2N5]

}
,

Θk = sym{ΨkP$
T
2 } − eT6+kS1e6+k − (e6+k − e10+k)

T (3S1)(e6+k − e10+k)−ΠT
3−k

R1

τ̄2
Π3−k

with the terms Π3−k,Γ3−i (k, i = 1, 2) given in (60)-(61) and ei (1 ≤ i ≤ 19) expressed in (56). Furthermore, except
for zero elements, the rest of the matrix Ω =

[
Ωij

]
19×19

can be individually listed as

Ω11 = Q1 +Q3 + τ̄S1 + h̄S2 + θ̄2(W −X) + 0.25(τ̄2R3 + h̄2R4 − π2M) + sym
{
MT

1 A
}
− ETHΣ1E,

Ω12 =MT
1 B, Ω14 = Y F − 0.25π2M, Ω16 =MT

1 D + ETHΣ2, Ω1,15 = θ̄2X,
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Ω1,17 = ET (Σ̄R− ΣQ)E −MT
1 + δATM1, Ω1,18 = −Y F, Ω22 = (µ0 − 1)Q1 + (1− µ1)Q2 − 1.5R3,

Ω2,17 = δBTM1, Ω33 = −Q2 − θ̄U − 9V − 1.5R3, Ω35 = 3V, Ω3,15 = 36V, Ω3,16 = −30V,

Ω44 = (2 + δ1θ1 + δ2θ2)Φ2 − 1.5R4 − 0.25π2M, Ω4,17 = δFTY T ,

Ω4,18 = −(1 + δ2θ2)Φ2, Ω55 = θ̄U − 9V −Q5 − 1.5R4, Ω5,15 = −24V, Ω5,16 = 30V,

Ω66 = −H, Ω6,17 = δDTM1 +Q−R, Ω15,15 = −192V − θ̄2(4W +X),

Ω15,16 = 180V + 3θ̄2W, Ω16,16 = −180V − 3θ̄2W,

Ω17,17 = τ̄R1 + h̄R2 + θ̄2V + 0.25δ̄2X +N6 + h̄2M − sym
{
δMT

1

}
+Q4,

Ω17,18 = −δY F, Ω18,18 = −(δ1 + δ2)Φ1 + (1 + δ2θ2)Φ2,

Ω19,19 = −Q6 −N6, Ω77 = Ω88 = −3R3, Ω2,11 = Ω3,12 = 1.5R3,

Ω7,11 = Ω8,12 = 3R3, Ω11,11 = Ω12,12 = −4.5R3, Ω99 = Ω10,10 = −3R4,

Ω4,13 = Ω5,14 = 1.5R4, Ω9,13 = Ω10,14 = 3R4, Ω13,13 = Ω14,14 = −4.5R4.

Then the master system (1) and the slave one (2) can achieve the desired synchronization. Moreover, the corre-
sponding controller gain in (6) can be computed out as K =M−T

1 Y .

Proof. Now based on the assumptions H1-H2 and (7), we can construct the Lyapunov-Krasovskii functional as

V (εt) =

6∑
i=1

Vi(εt), ∀ t ∈ Ξl, (13)

with

V1(εt) = ζT (t)Pζ(t) +
α2(t)

2
+
β2(t)

2
+ 2

n∑
i=1

{
qi

Eiε(t)∫
0

[fi(s)− σ−
i s]ds+ ri

Eiε(t)∫
0

[σ+
i s− fi(s)]ds

}
,

V2(εt) =

t∫
t−τ(t)

εT (s)Q1ε(s)ds+

t−τ(t)∫
t−τ̄

εT (s)Q2ε(s)ds+

t∫
t−η(t)

[
εT (s)Q3ε(s) + ε̇T (s)Q4ε̇(s)

]
ds

+

t−η(t)∫
t−h̄

[
εT (s)Q5ε(s) + ε̇T (s)Q6ε̇(s)

]
ds,

V3(εt) =

0∫
−τ̄

t∫
t+s

[
ε̇T (θ)R1ε̇(θ) + εT (θ)S1ε(θ)

]
dθds+

0∫
−h̄

t∫
t+s

[
ε̇T (θ)R2ε̇(θ) + εT (θ)S2ε(θ)

]
dθds

+
1

2

t∫
t−τ̄

ϱ∫
t−τ̄

t∫
θ

ε̇T (s)R3ε̇(s)dsdθdϱ+
1

2

t∫
t−h̄

ϱ∫
t−h̄

t∫
θ

ε̇T (s)R4ε̇(s)dsdθdϱ,

V4(εt) = θ̄

t−h̄∫
t−τ̄

εT (s)Uε(s)ds+ θ̄

−h̄∫
−τ̄

t∫
t+s

[
ε̇T (θ)V ε̇(θ) + εT (θ)Wε(θ)

]
dθds+

δ̄

2

t−h̄∫
t−τ̄

0∫
ϱ

t∫
t+θ

ε̇T (s)Xε̇(s)dsdθdϱ,

V5(εt) =

t∫
t−h̄

ε̇(s)N6ε̇(s)ds+ ζT (t)
[
h̄
(
N1 +

h̄2

3
N4 − sym{[N5 N5 0]}

)
+ sym

{
[N3 −N3 2N5]

}]
ζ(t),

V6(εt) = h̄2
t∫

il

ε̇(s)Mε̇(s)ds− π2

4

t∫
il

[
ε(s)− ε(il)

]T
M
[
ε(s)− ε(il)

]
ds,
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where Vi(εt) (i = 5, 6) are discontinuous functionals and

ζT (t) =

[
εT (t), εT (t− h̄),

t∫
t−h̄

εT (s)ds

t∫
t−τ̄

εT (s)ds

]
.

Especially, the positive definiteness and superiorities of Vi(εt) (i = 5, 6) can be checked in the Refs. [13,15,16].

Then together with the denotations in (51)-(59) and Ξ in (12), the derivative of Vi(εt) (i = 1, 2, · · · , 6) along the
system (11) can be directly computed out as

V̇1(εt) = 2ζT (t)P ζ̇(t) + α(t)α̇(t) + β(t)β̇(t) + 2fT (Eε(t))(Q−R)Eε̇(t)− 2εT (t)ET (ΣQ− Σ̄R)Eε̇(t), (14)
V̇2(εt) = εT (t)(Q1 +Q3)ε(t)− (1− τ̇(t))εT (t− τ(t))(Q1 −Q2)ε(t− τ(t))− εT (t− τ̄)Q2ε(t− τ̄)

+ε̇T (t)Q4ε̇(t)− εT (t− h̄)Q5ε(t− h̄)− ε̇T (t− h̄)Q6ε̇(t− h̄), (15)

V̇3(εt) = εT (t)
(
τ̄S1 + h̄S2 + 0.25τ̄2R3 + 0.25h̄2R4

)
ε(t)−

t∫
t−τ̄

[
ε̇T (θ)R1ε̇(θ) + εT (θ)S1ε(θ)

]
dθ

+ε̇T (t)(τ̄R1 + h̄R2)ε̇(t)−
t∫

t−h̄

[
ε̇T (θ)R2ε̇(θ) + εT (θ)S2ε(θ)

]
dθ − 1

2

t∫
t−τ̄

θ∫
t−τ̄

ε̇T (s)R3ε̇(s)dsdθ

−1

2

t∫
t−h̄

θ∫
t−h̄

ε̇T (s)R4ε̇(s)dsdθ, (16)

V̇4(εt) = εT (t− h̄)(θ̄U)ε(t− h̄)− εT (t− τ̄)(θ̄U)ε(t− τ̄) + ε̇T (t)
(
θ̄2V + 0.25δ̄2X

)
ε̇(t) + εT (t)(θ̄2W )ε(t)

−θ̄
t−h̄∫

t−τ̄

[
ε̇T (θ)V ε̇(θ) + εT (θ)Wε(θ)

]
dθ − δ̄

2

t−h̄∫
t−τ̄

t∫
t+θ

ε̇T (s)Xε̇(s)dsdϱ, (17)

V̇5(εt) = ε̇T (t)N6ε̇(t)− ε̇T (t− h̄)N6ε̇(t− h̄) + ξT (t)sym
{
Υ0Ξ$T1 + η(t)Υ1Ξ$T1 + η̄(t)Υ2Ξ$T1

}
ξ(t), (18)

V̇6(εt) = h̄2ε̇T (t)Mε̇(t)− π2

4

[
ε(t)− ε(il)

]T
M
[
ε(t)− ε(il)

]
. (19)

Furthermore, as for some terms in (14) and (16)-(17), we can respectively utilize the conditions in (8)-(9), Lemmas
1-4, and denotations in (51)-(61) to give their estimations as

2ζT (t)P ζ̇(t) = ξT (t)sym
{
ΛP$T2 + τ(t)Ψ1P$

T
2 + τ̄(t)Ψ2P$

T
2 + η(t)Φ1P$

T
2 + η̄(t)Φ2P$

T
2

}
ξ(t), (20)

α(t)α̇(t) + β(t)β̇(t)≤ εT (tl)Φ2ε(tl) +
β(t)− θ1
α(t)

εT (il)Φ2ε(il)− δ1
[
eT (il)Φ1e(il)− θ1ε

T (il)Φ2ε(il)
]

+εT (il)Φ2ε(il) +
α(t)− θ2
β(t)

εT (tl)Φ2ε(tl)− δ2
[
eT (il)Φ1e(il)− θ2ε

T (tl)Φ2ε(tl)
]

≤ εT (tl)(1 + δ2θ2)Φ2ε(tl) + εT (il)(1 + δ1θ1)Φ2ε(il)− eT (il)
(
δ1 + δ2

)
Φ1e(il)

=−eT (il)
(
δ1 + δ2

)
Φ1e(il) +

[
ε(t− η(t))− e(il)

]T
(1 + δ2θ2)Φ2

[
ε(t− η(t))− e(il)

]
+εT (t− η(t))(1 + δ1θ1)Φ2ε(t− η(t)), (21)

−
t∫

t−τ̄

ε̇T (θ)R1ε̇(θ)dθ≤−1

τ̄
ξT (t)

[
Π1

Π2

]T ([
R̄1 U1

∗ R̄1

]
+

[
τ̄(t)
τ̄ 0

0 τ(t)
τ̄

]
⊗ (R̄1 − U1R̄

−1
1 UT

1 )

)[
Π1

Π2

]
ξ(t), (22)

−
t∫

t−τ̄

εT (θ)S1ε(θ)dθ≤−τ(t)ρT (t)S1ρ(t)− τ(t)
[
ρ(t)− ν(t)

]T
(3S1)

[
ρ(t)− ν(t)

]
− τ̄(t)σT (t)S1σ(t)

7



−τ̄(t)
[
σ(t)− ω(t)

]T
(3S1)

[
σ(t)− ω(t)

]
, (23)

−
t∫

t−h̄

ε̇T (θ)R2ε̇(θ)dθ≤− 1

h̄
ξT (t)

[
Γ1

Γ2

]T ([
R̄2 U2

∗ R̄2

]
+

[
η̄(t)

h̄
0

0 η(t)

h̄

]
⊗ (R̄2 − U2R̄

−1
2 UT

2 )

)[
Γ1

Γ2

]
ξ(t), (24)

−
t∫

t−h̄

εT (θ)S2ε(θ)dθ≤−η(t)ϱT (t)S2ϱ(t)− η(t)
[
ϱ(t)− ϕ(t)

]T
(3S2)

[
ϱ(t)− ϕ(t)

]
− η̄(t)θT (t)S2θ(t)

−η̄(t)
[
θ(t)− φ(t)

]T
(3S2)

[
θ(t)− φ(t)

]
, (25)

−θ̄
t−h̄∫

t−τ̄

ε̇T (θ)V ε̇(θ)dθ≤−
[
ε(t− h̄)− ε(t− τ̄)

]T
V
[
ε(t− h̄)− ε(t− τ̄)

]
−
[
ε(t− h̄) + ε(t− τ̄)− 2ψ(t)

]T
(3V )

[
ε(t− h̄) + ε(t− τ̄)− 2ψ(t)

]
−
[
ε(t− h)− ε(t− τ̄) + 6ψ(t)− 6χ(t)

]T
(5V )

[
ε(t− h)− ε(t− τ̄) + 6ψ(t)− 6χ(t)

]
, (26)

−θ̄
t−h∫

t−τ̄

εT (θ)Wε(θ)dθ≤−θ̄2ψT (t)Wψ(t)− θ̄2
[
ψ(t)− χ(t)

]T
(3W )

[
ψ(t)− χ(t)

]
. (27)

Especially, as for the double integral terms in (16)-(17), it follows from Lemma 2 and Lemma 3 that

−1

2

t∫
t−τ̄

θ∫
t−τ̄

ε̇T (s)R3ε̇(s)dsdθ=−1

2

[ t∫
t−τ(t)

t−τ(t)∫
t−τ̄

+

t∫
t−τ(t)

θ∫
t−τ(t)

+

t−τ(t)∫
t−τ̄

θ∫
t−τ̄

]
ε̇T (s)R3ε̇(s)dsdθ

≤−
[
ρ(t)− ε(t− τ(t))

]T
R3

[
ρ(t)− ε(t− τ(t))

]
−
[
σ(t)− ε(t− τ̄)

]T
R3

[
σ(t)− ε(t− τ̄)

]
−
[1
2
ε(t− τ(t)) + ρ(t)− 3

2
ν(t)

]
(2R3)

[1
2
ε(t− τ(t)) + ρ(t)− 3

2
ν(t)

]
−
[1
2
ε(t− τ̄) + σ(t)− 3

2
ω(t)

]T
(2R3)

[1
2
ε(t− τ̄) + σ(t)− 3

2
ω(t)

]
, (28)

−1

2

t∫
t−h̄

θ∫
t−h̄

ε̇T (s)R4ε̇(s)dsdθ=−1

2

[ t∫
t−η(t)

t−η(t)∫
t−h̄

+

t∫
t−η(t)

θ∫
t−η(t)

+

t−η(t)∫
t−h̄

θ∫
t−h̄

]
ε̇T (s)R4ε̇(s)dsdθ

≤−
[
ϱ(t)− ε(t− η(t))

]T
R4

[
ϱ(t)− ε(t− η(t))

]
−
[
ϑ(t)− ε(t− h̄)

]T
R4

[
ϑ(t)− ε(t− h̄)

]
−
[1
2
ε(t− η(t)) + ϱ(t)− 3

2
ϕ(t)

]
(2R4)

[1
2
ε(t− η(t)) + ϱ(t)− 3

2
ϕ(t)

]
−
[1
2
ε(t− h̄) + ϑ(t)− 3

2
φ(t)

]T
(2R4)

[1
2
ε(t− h̄) + ϑ(t)− 3

2
φ(t)

]
, (29)

− δ̄
2

t−h̄∫
t−τ̄

t∫
t+θ

ε̇T (s)Xε̇(s)dsdϱ≤−θ̄2
[
ε(t)− ψ(t)

]T
X
[
ε(t)− ψ(t)

]
. (30)

In what is next, for any n× n matrix M1, diagonal one H > 0, and a scalar δ > 0, it follows from (11) and H2 that

0 = 2
[
εT (t)MT

1 + ε̇T (t)(δMT
1 )
][

− ε̇(t) +Aε(t) +Bε(t− τ(t)) +Df(Eε(t)) +KFε(t− η(t))−KFe(il)
]
, (31)
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0≤−
[
εT (t)ETHΣ1Eε(t)− 2εT (t)ETHΣ2f(Eε(t)) + fT (Eε(t))Hf(Eε(t))

]
. (32)

Now combining with the right terms from (14) to (32), we can verify that V̇ (εt) satisfies

V̇ (εt)≤ ξT (t)
{
Ω+Υ+ η(t)Ψ1 + η̄(t)Ψ2 + τ(t)Θ1 + τ̄(t)Θ2 +

η(t)

h̄2
ΓT
2 U2R̄

−1
2 UT

2 Γ2 +
η̄(t)

h̄2
ΓT
1 U2R̄

−1
2 UT

2 Γ1

+
τ(t)

τ̄2
ΠT

2 U1R̄
−1
1 UT

1 Π2 +
τ̄(t)

τ̄2
ΠT

1 U1R̄
−1
1 UT

1 Π1 + [τ̇(t)− µ0]Φ1 + [µ1 − τ̇(t)]Φ2

}
ξ(t)

.
= ξT (t)∆(t)ξ(t), (33)

where the terms Ω,Υ,Ψ1,Ψ2,Θ1,Θ2,Φ1,Φ2 are respectively presented in (12) and the ones τ̄(t), η̄(t) are defined
in (51). Together with the definition on Schur-complement, as for i, j, k ∈ {1, 2}, we can check that the LMI in (12)
can guarantee the following term to be true

Ω+Υ+ µ̄Φi + h̄
[
Ψj +

1

h̄2
ΓT
3−jU2R̄

−1
2 UT

2 Γ3−j

]
+ τ̄
[
Θk +

1

τ̄2
ΠT

3−kU1R̄
−1
1 UT

1 Π3−k

]
< 0. (34)

Now based on Lemma 5, the terms in (34) can be equivalent to ∆(t) < 0. Therefore, once the condition (12) holds,
there must exist a positive scalar ϵ > such that

V̇ (εt)≤−ξT (t)∆(t)ξ(t) ≤ −ϵ ∥ ε(t) ∥2< 0, ∀ ε(t) ̸= 0.

Then the error system (11) is absolutely stable, i.e., the systems (1)-(2) achieve the desired synchronization. It
completes the proof.

Remark 3. Once α(t), β(t) are given constants, the event-triggered scheme (7) can be reduced to a traditional one

eT (is)Φ1e(is) ≤ αεT (tl)Φ2ε(tl) + βεT (is)Φ2ε(is). (35)

Then based on the scheme in (35) and Theorem 1, we also can derive the relevant results.

Most recently, a kind of novel delay-product-type LKF was put forward [18,46], which can help reduce the conser-
vatism more effectively than ever. The novelties of this technique benefits from that the advantages of Wirtinger-
based integral inequalities can be fully utilized by resorting to introducing some necessary integral vectors in the
LKF derivative. Thus in what follows, we also use this kind of LKF to derive the relevant results. Prior to presenting
the theorem, we firstly introduce some denotations as

ςT (t) =

[
εT (t) εT (t− τ(t)) εT (t− τ̄) εT (il) εT (t− h̄) fT (Eε(t)) ρT (t) σT (t) ϱT (t) θT (t) νT (t) ωT (t)

ϕT (t) φT (t) ψT (t) χT (t) ε̇T (t) eT (il) ε̇T (t− h̄) ε̇T (t− τ(t))

]
; (36)

ei =
[
0n×(i−1)n In 0n×(20−i)n

]T
(1 ≤ i ≤ 20); (37)

Ψ̄1(t) =
[
e1, e2, τ(t)e7, τ̄(t)e8

]
, Ψ̄2(t) =

[
e17, (1− τ̇(t))e20, e1 − (1− τ̇(t))e2, (1− τ̇(t))e2 − e3

]
; (38)

Ψ̂1 =
[
e1, e2, e7

]
, Ψ̂2(t) =

[
τ(t)e17, τ(t)(1− τ̇(t))e20, e1 − (1− τ̇(t))e2 − τ̇(t)e7

]
, Ψ̌1 =

[
e1, e17

]
; (39)

Ψ̃1 =
[
e1, e2, e8

]
, Ψ̃2(t) =

[
τ̄(t)e17, τ̄(t)(1− τ̇(t))e20, (1− τ̇(t))e2 − e3 + τ̇(t)e8

]
, Ψ̌2 =

[
e2, e20

]
. (40)

Theorem 2. For given scalars τ̄ ≥ 0, h̄ ≥ 0, θ̄ ≥ 0, δ̄ ≥ 0, δ ≥ 0, δi > 0, θi > 0 (i = 1, 2), µ0, µ1 in (2) and (51),
if there exist matrices P > 0, Ph > 0 (h = 1, 2), Qi > 0 (i = 1, 2, · · · , 6), Rj > 0 (j = 1, 2, 3, 4), Sl > 0,Φl >
0, Ul (l = 1, 2), U > 0, V > 0,W > 0,M > 0, X > 0,M1, Nm (m = 1, 2, · · · , 6) making R̄l = diag(Rl, 3Rl, 5Rl),
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[
R̄l Ul

∗ R̄l

]
≥ 0 (l = 1, 2),


N1 N2 N3

∗ N4 N5

∗ ∗ N6

 ≥ 0, and diagonal matrices Q > 0, R > 0,H > 0 such that the LMIs in

(41)-(42) hold
Φ
(
0, 0, τ̇(t)

)
|τ̇(t)=µ0,µm

ΠT
1 U1 ΓT

1 U2

∗ −τ̄ R̄1 0

∗ ∗ −h̄R̄2

 < 0,


Φ
(
τ̄ , 0, τ̇(t)

)
|τ̇(t)=µ0,µm

ΠT
2 U1 ΓT

1 U2

∗ −τ̄ R̄1 0

∗ ∗ −h̄R̄2

 < 0, (41)


Φ
(
0, h̄, τ̇(t)

)
|τ̇(t)=µ0,µm

ΠT
1 U1 ΓT

2 U2

∗ −τ̄ R̄1 0

∗ ∗ −h̄R̄2

 < 0,


Φ
(
τ̄ , h̄, τ̇(t)

)
|τ̇(t)=µ0,µm

ΠT
2 U1 ΓT

2 U2

∗ −τ̄ R̄1 0

∗ ∗ −h̄R̄2

 < 0, (42)

where Φ
(
τ(t), η(t), τ̇(t)

)
= Ω+Υ1 +Υ2(t) + η(t)Ψ1 + η̄(t)Ψ2 + τ(t)Θ1 + τ̄(t)Θ2 and

Υ1 = Ψ̌1Q1Ψ̌
T
1 − 1

τ̄

[
Π1

Π2

]T [
R̄1 U1

∗ R̄1

][
Π1

Π2

]
− 1

h̄

[
Γ1

Γ2

]T [
R̄2 U2

∗ R̄2

][
Γ1

Γ2

]
,

Υ2(t) = sym
(
Ψ̄1(t)P Ψ̄

T
2 (t) + Ψ̂1P1Ψ̂

T
2 (t) + Ψ̃1P2Ψ̃

T
2 (t) + Υ0Ξ$T1

)
+ Ψ̂1(τ̇(t)P1)Ψ̂

T
1 − Ψ̃1(τ̇(t)P2)Ψ̃

T
1

− (1− τ̇(t))Ψ̌1

(
Q1 −

[
Q2 0

∗ 0

])
Ψ̌T

1 ,

Ψj = sym{ΥjΞ$T1 } − eT8+jS2e8+j − (e8+j − e12+j)
T (3S2)(e8+j − e12+j)− ΓT

3−j

R2

h̄2
Γ3−j ,

Θk = −eT6+kS1e6+k − (e6+k − e10+k)
T (3S1)(e6+k − e10+k)−ΠT

3−k

R1

τ̄2
Π3−k

with Ψ̄1(t), Ψ̄2(t), Ψ̂1, Ψ̂2(t), Ψ̃1, Ψ̃2(t), Ψ̌1, Ψ̌2 denoted in (38)-(40), the terms Π3−k,Γ3−i (k, i = 1, 2) given in (60)-
(61), and Ξ is presented in (12). Furthermore, except for zero terms and the identical ones in Theorem 1, the rest
of the matrix Ω =

[
Ωij

]
20×20

can be presented as

Ω11 = Q3 + τ̄S1 + h̄S2 + θ̄2(W −X) + 0.25(τ̄2R3 + h̄2R4 − π2M) + sym
{
MT

1 A
}
− ETHΣ1E, Ω22 = −1.5R3.

Proof. Based on the Ref. [46] and (13), we choose the Lyapunov-Krasovskii functional as

V (εt) =

6∑
i=1

Vi(εt), ∀ t ∈ Ξl, (43)

with

V1(εt) = υT1 (t)Pυ1(t) + υT2 (t)
(
τ(t)P1

)
υ2(t) + υT3 (t)

(
τ̄(t)P2

)
υ3(t) +

t∫
t−τ(t)

υT4 (s)Q1υ4(s)ds+

t−τ(t)∫
t−τ̄

εT (s)Q2ε(s)ds,

V2(εt) =
α2(t)

2
+
β2(t)

2
+

t∫
t−η(t)

[
εT (s)Q3ε(s) + ε̇T (s)Q4ε̇(s)

]
ds+

t−η(t)∫
t−h̄

[
εT (s)Q5ε(s) + ε̇T (s)Q6ε̇(s)

]
ds

+2

n∑
i=1

{
qi

Eiε(t)∫
0

[fi(s)− σ−
i s]ds+ ri

Eiε(t)∫
0

[σ+
i s− fi(s)]ds

}
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with Vi(εt) (i = 3, 4, 5, 6) identical to the corresponding ones in (13) and

υT1 (t) =

[
εT (t), εT (t− τ(t)),

t∫
t−τ(t)

εT (s)ds,

t−τ(t)∫
t−τ̄

εT (s)ds

]
, υT2 (t) =

[
εT (t), εT (t− τ(t)), ρT (t)

]
,

υT3 (t) =
[
εT (t), εT (t− τ(t)), σT (t)

]
, υT4 (s) =

[
εT (s), ε̇T (s)

]
.

Then the derivative of V1(εt) along the system (11) can be directly obtained as

V̇1(εt) = 2υT1 (t)P υ̇1(t) + υT2 (t)τ̇(t)P1υ2(t) + 2υT2 (t)τ(t)P1υ̇2(t)− υT3 (t)τ̇(t)P2υ3(t) + 2υT3 (t)τ̄(t)P2υ̇3(t)

+υT4 (t)Q1υ4(t)− (1− τ̇(t))
[
υT4 (t− τ(t))Q1υ4(t− τ(t))− εT (t− τ(t))Q2ε(t− τ(t))

]
−εT (t− τ̄)Q2ε(t− τ̄)

= ςT (t)sym
(
Ψ̄1(t)P Ψ̄

T
2 (t) + Ψ̂1P1Ψ̂

T
2 (t) + Ψ̃1P2Ψ̃

T
2 (t)

)
ς(t) + ςT (t)

[
Ψ̂1

(
τ̇(t)P1

)
Ψ̂T

1 − Ψ̃1

(
τ̇(t)P2

)
Ψ̃T

1

−(1− τ̇(t))Ψ̌2

(
Q1 −

[
Q2 0

∗ 0

])
Ψ̌T

2

]
ς(t) + ςT (t)Ψ̌1Q1Ψ̌

T
1 ς(t)− εT (t− τ̄)Q2ε(t− τ̄) (44)

and V̇i(εt) (i = 2, 3, 4, 5, 6) can be derived as the ones in Theorem 1. Now together with (14)-(32), denotations in
(37)-(40), and (44), we can achieve

V̇ (εt)≤ ςT (t)
{
Ω+Υ1 +Υ2(t) + η(t)Ψ1 + η̄(t)Ψ2 + τ(t)Θ1 + τ̄(t)Θ2 +

η(t)

h̄2
ΓT
2 U2R̄

−1
2 UT

2 Γ2

+
η̄(t)

h̄2
ΓT
1 U2R̄

−1
2 UT

2 Γ1 +
τ(t)

τ̄2
ΠT

2 U1R̄
−1
1 UT

1 Π2 +
τ̄(t)

τ̄2
ΠT

1 U1R̄
−1
1 UT

1 Π1

}
ς(t)

.
= ςT (t)

[
Φ
(
τ(t), η(t), τ̇(t)

)
+
η(t)

h̄2
ΓT
2 U2R̄

−1
2 UT

2 Γ2 +
η̄(t)

h̄2
ΓT
1 U2R̄

−1
2 UT

2 Γ1 +
τ(t)

τ̄2
ΠT

2 U1R̄
−1
1 UT

1 Π2

+
τ̄(t)

τ̄2
ΠT

1 U1R̄
−1
1 UT

1 Π1

]
ς(t)

.
= ςT (t)Φ̄

(
τ(t), η(t), τ̇(t)

)
ς(t), (45)

where ς(t) is given in (36) and Ω,Υ1,Υ2(t),Ψ1,Ψ2,Θ1,Θ2 are expressed in (41)-(42). Especially, Φ̄
(
τ(t), η(t), τ̇(t)

)
can be rewritten as the following form:

Φ̄
(
τ(t), η(t), τ̇(t)

) .
= Φ̄1 + τ̇(t)Φ̄2 + τ(t)

[
Φ̄3 + τ̇(t)Φ̄4

]
+ η(t)Φ̄5. (46)

Then together with the methods in Ref. [18], one can check that if

Φ̄
(
0, 0, τ̇(t)

)
= Φ

(
0, 0, τ̇(t)

)
+

1

h̄
ΓT
1 U2R̄

−1
2 UT

2 Γ1 +
1

τ̄
ΠT

1 U1R̄
−1
1 UT

1 Π1 < 0, (47)

Φ̄
(
τ̄ , 0, τ̇(t)

)
= Φ

(
τ̄ , 0, τ̇(t)

)
+

1

h̄
ΓT
1 U2R̄

−1
2 UT

2 Γ1 +
1

τ̄
ΠT

2 U1R̄
−1
1 UT

1 Π2 < 0, (48)

Φ̄
(
0, h̄, τ̇(t)

)
= Φ

(
0, h̄, τ̇(t)

)
+

1

h̄
ΓT
2 U2R̄

−1
2 UT

2 Γ2 +
1

τ̄
ΠT

1 U1R̄
−1
1 UT

1 Π1 < 0, (49)

Φ̄
(
τ̄ , h̄, τ̇(t)

)
= Φ

(
τ̄ , h̄, τ̇(t)

)
+

1

h̄
ΓT
2 U2R̄

−1
2 UT

2 Γ2 +
1

τ̄
ΠT

2 U1R̄
−1
1 UT

1 Π2 < 0, (50)

then Φ̄
(
τ(t), η(t), τ̇(t)

)
< 0 can hold. Now together with Schur-complement and convex combination technique, one

can check that the terms in (41)-(42) guarantee (47)-(50) to be true, which means Φ̄
(
τ(t), η(t), τ̇(t)

)
< 0. Thus once

the conditions in (41)-(42) hold, the systems (1)-(2) achieve the desired synchronization.

Remark 4. During proving Theorems 1-2, the LKF terms in V (εt) have efficiently utilized the information on
τ(t), η(t), nonlinear function f(Eε(t)), and adaptive conditions α(t), β(t), some of which have not been considered
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in present works. Especially, two improved discontinuous Lyapunov terms and delay-product-type ones have been
put forward to reduce the conservatism. Though the derived LMI-based conditions are presented in terms of com-
plicated forms and induce the computational complexity, it is convenient to check their feasibility without tuning
any parameters by resorting to the most recently developed algorithms.

Remark 5. On the basis of the discussions in [9,21,22,41], these integral inequalities described by Lemmas 1-4 can
can be more efficient than ever. Therefore, together with these integral inequalities and improved ones, based on the
multiple integral LKF terms in (13) and (43), our work has effectively tackled the issue on delay-dependence and
the previously ignored information has been fully studied. Furthermore, since two types of time-varying delays were
involved in the systems, some novel Lyapunov terms have been presented to deal with their interconnection, which
could play an important role in reducing the conservatism [8,24,37,39].

Remark 6. Most recently, the Refs. [12,30,46–48] put forward some novel techniques to reduce the conservatism.
In [12], the novelty relies on second-order Bessel-Legendre integral inequality which is less conservative than the
Wirtinger-based ones. Later, the Ref. [30] extends the methods in [12] to arbitrary orders, which can further reduce
the conservatism. The Ref. [46] presents some novel delay-product-type LKFs that is tightly related to integral
inequalities. The work [47] combines the Wirtinger-based inequality (or Auxiliary function-based inequality) and
reciprocally convex technique to achieve a set of novel integral inequalities, which later receive some improvement
[48]. In this work, we have resorted to the methods in [46,48] to obtain the theorems.

Remark 7. The methods of this work can be extended to many cases. Firstly, as for uncertainties and time-delay,
distributed complex-valued parameters [31], polytopic uncertain ones and norm-bounded uncertain ones [10], nonlin-
ear uncertain ones [11], and distributed time-delay [10] can be added into the systems (1)-(2) and the corresponding
results can be obtained. Secondly, as illustrated in Refs. [30,34], sensor faults usually occur during sampling data,
which can be studied in this work, either. As for the issue, we can design a fault-tolerant controller in the presence
of actuator faults and loss of effectiveness of the actuator. Furthermore, in order to tackle the fault failures, the
adaptive event-triggered schemes also need some improvements.

Remark 8. Overall, the theoretic contributions of this work can be elaborated as: firstly, a novel adaptive event-
triggered scheme was presented, which can wholly reflect the real-time information of controlled systems; secondly,
in V3(εt), two triple Lyapunov terms were employed to reduce the conservatism; thirdly, in V4(εt), some novel LKF
terms were put forward to represent the interconnection between τ(t) and η(t), which has not appeared in present
works; fourthly, as for those recently reported LKF terms in [13,16,18,46], our work have combined and improved
them to extend the application areas.

4 Numerical examples

In this section, two numerical examples with comparisons will be presented to illustrate the derived results.

Example 1. As a special case of systems (1)-(2), we will use the following Chua’s circuit to illustrate our master-slave
synchronization results

ẋ1 = α
[
−m1x1 + x2 + h(x1)

]
,

ẋ2 = x1 − x2 + x3,

ẋ3 = −βx2 − x3,

with h(x1) = 1
2 (m1 − m0)(|x1 + c| − |x1 − c|) and the parameters expressed as m0 = − 1

7 ,m1 = 2
7 , α = 9, β =

14.286, c = 1. Then the system can be represented in the form of Lur’e model (1) with

A =


− 18

7 9 0

1 −1 1

0 −14.286 0

 , B =


0 0 0

0 0 0

0 0 0

 , D =


27
7 0 0

0 0 0

0 0 0

 , E =


1 0 0

0 0 0

0 0 0

 , F =
[
1 0 0

]
,

and f1(x1) = 1
2 (|x1 + 1| − |x1 − 1|) belonging to the sector [0, k] with k = 1. Now, based on the adaptive event-

triggered scheme (AETS) in (7)-(9) and the controller in (10), if we set d̄ = 0, h = h̄ = 0.3, τ̄ = 0.01, µ0 = µ1 = 0,
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and δ = 0.2, δ1 = δ2 = 5, θ1 = θ2 = 2, then by resorting to LMI in Matlab Toolbox, one can check that the feasible
solution to the LMIs in Theorem 1 is existent. Especially, the triggering parameters Φi (i = 1, 2) and the controller
gain K can be respectively computed out as

Φ1 =


0.8638 0.1420 −0.2641

0.1420 0.8234 −0.1123

−0.2641 −0.1123 1.0464

 , Φ2 =


0.7435 −0.2537 0.3492

−0.2537 0.9036 0.2502

0.3492 0.2502 0.9733

 , K =


3.0238

0.1684

−2.7955

 .
Furthermore, if we set α = β = 0.2, then the scheme in (7) can be converted into the traditional event-triggered
scheme (TETS). Now together with Theorem 1 and Remark 3, we also can derive the corresponding triggering
parameters Φi (i = 1, 2) and the controller gain K with d̄ = 0, h = h̄ = 0.3, τ̄ = 0.01, µ0 = µ1 = 0. By denoting
z =

[
z1 z2 z3

]T
, x =

[
x1 x2 x3

]T , and ε = z−x =
[
z1−x1 z2−x2 z3−x3

]T , then the state trajectories of z(t), x(t),
and the error state ε(t) can be respectively presented in Fig. 1 with the initial conditions x(0) = [−1, 0.8,−0.3]T and
z(0) = [0.8,−0.3, 0.7]T . The transmission instants and releasing intervals by AETS and TETS can be illustrated in
Fig. 2. One can check that the AETS releases less transmitted data than the ones by TETS. Especially, by setting
α(0) = 0.648, β(0) = 0.852 guaranteeing 0.2 ≤ α(0), β(0) ≤ 2, we also present the tendency of the functions α(t), β(t)
in Fig. 3. Then from Fig. 3, one check that once the desired synchronization is achieved, the functions α(t), β(t) can
converge to be constants with time on.

Meanwhile, since this example has been widely studied, thus we aim to give some comparisons on maximum allowable
upper bounds (MAUBs) of h̄ with the ones in the Refs. [8,13,14,25,39]. By setting d̄ = 0, h = 0.1, τ̄ = 0.01, µ0 =
µ1 = 0 in Theorem 1 and Theorem 2, the MAUBs of h̄ can be computed out and listed in Table 1. To show the
superiorities of our methods, we still use the theorems in [8,13,14,25,39] to obtain the corresponding MAUBs and
controller gains, which can be illustrated in Table 1. From Table 1, it is clear that our results present much less
conservatism than some existing ones. Especially, one can check that the MAUB by Theorem 2 is larger than the one
by Theorem 1, which means that the delay-product-type LKF terms can reduce the conservatism more effectively.
Especially, the numbers of decision variables (NoDVs) are also presented in Table 1.

Table 1
The corresponding MAUBs of h̄ for various methods and NoDVs in Example 1.

Utilized methods MAUBs on h̄ Controller gain K NoDVs
Theorem 3.1 [8] 0.4355 [3.8449 0.3853 − 3.4730]T 14.5n2 + 6.5n

Theorem 3.1 [25] 0.4687 [3.7455 0.2457 − 2.5735]T 21.5n2 + 12.5n

Theorem 3.1 [14] 0.5000 [6.7420 1.7730 − 5.9268]T 13.5n2 + 4.5n

Theorem 1 [39] 0.5185 [3.1756 0.1406 − 2.8992]T 15.5n2 + 8.5n

Theorem 2 [13] 0.5386 [3.1152 0.1746 − 2.7955]T 47.5n2 + 7.5n

Theorem 1 0.5584 [3.0225 0.2087 − 3.2440]T 27.5n2 + 15.5n

Theorem 2 0.5775 [3.0124 0.1756 − 3.2254]T 37.5n2 + 19.5n

Example 2. Together with the state delay τ(t), we consider the master system (1) and the slave one (2) with

A =

[
−0.7 0.4

0.6 −0.8

]
, B =

[
0.1 −0.05

0.05 0.1

]
, D =

[
2.1 −0.2

−5.0 3.0

]
, E = F =

[
1 0

0 1

]
,

and the nonlinear functions can be selected as fi(s) = tanh(s) (i = 1, 2). Firstly, in Table 2, we will give some
comparing results on MAUBs of h̄ with the Refs. [24,37,39]. Similar to Example 1, we still utilize Theorem 1 and
Theorem 2 to check the superiorities. Prior to solving the derived LMIs, since time-delay involved in [24,37,39] are
constant ones, the condition µ0 = µ1 = 0 has to imposed. During the computing, we will set d̄ = 0, h = 0.1, τ̄ =
0.45, δ = 0.2, δ1 = δ2 = 6, θ1 = θ2 = 2 in Theorem 1 and Theorem 2. Then the corresponding MAUBs can be listed
in Table 2. Secondly, in Table 3, we will set h̄ = 0.35 and give some comparing results on the MAUBs of τ̄ with the
Refs. [24,37,39], which can help check the superiorities of delay-product-type LKF technique.
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Fig. 1. State trajectories of the master system, slave system, and error one.
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Fig. 2. Transmission instants and releasing intervals of TETS (left) and AETS (right).

Table 2
The corresponding MAUBs of h̄ for various methods and τ̄ = 0.45 in Example 2.

Methods Theorem 2 [37] Theorem 1 [39] Theorem 1 [24] Theorem 1 Theorem 2
h̄ 0.2975 0.3824 0.3537 0.4125 0.4253

Table 3
The corresponding MAUBs of τ̄ for various methods and h̄ = 0.35 in Example 2.

Methods Theorem 2 [37] Theorem 1 [39] Theorem 1 [24] Theorem 1 Theorem 2
τ̄ 0.3372 0.4635 0.4527 0.4790 0.5025

It follows from the tables above that our results can be more efficient than the ones in [24,37,39]. Furthermore, our
results can tackle time-varying delay while the ones in [24,37,39] fail to verify this case.
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Fig. 3. The trajectories of the event adaptive laws α(t), β(t).

5 Conclusion

In the paper, the problem on designing the adaptive event-triggering scheme and sampled-data controller of master-
slave synchronization has been studied for master-slave Lur’e systems with time-varying delay. In order to reduce
the conservatism, some novel Wirtinger-based inequalities and two augmented LKFs have been put forward during
the discussions. Together with stability criteria on synchronization error system, two sufficient conditions have been
obtained and the controller gains can be checked by solving the derived LMIs. Finally, two numerical examples have
demonstrated that our results could produce less conservatism than some reported ones.
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A Appendix

τ̄(t) = τ̄ − τ(t), η̄(t) = h̄− η(t), µ̄ = µ1 − µ0, θ̄ = τ̄ − h̄, δ̄ = τ̄2 − h̄2; (51)

ρ(t) =
1

τ(t)

t∫
t−τ(t)

ε(s)ds, σ(t) =
1

τ̄(t)

t−τ(t)∫
t−τ̄

ε(s)ds, ϱ(t) =
1

η(t)

t∫
t−η(t)

ε(s)ds, ϑ(t) =
1

η̄(t)

t−η(t)∫
t−h̄

ε(s)ds; (52)

ν(t) =
2

τ2(t)

t∫
t−τ(t)

s∫
t−τ(t)

ε(u)duds, ω(t) =
2

τ̄2(t)

t−τ(t)∫
t−τ̄

s∫
t−τ̄

ε(u)duds, ψ(t) =
1

θ̄

t−h̄∫
t−τ̄

ε(s)ds; (53)

ϕ(t) =
2

η2(t)

t∫
t−η(t)

s∫
t−η(t)

ε(u)duds, φ(t) =
2

η̄2(t)

t−η(t)∫
t−h̄

s∫
t−h̄

ε(u)duds, χ(t) =
2

θ̄2

t−h̄∫
t−τ̄

s∫
t−τ̄

ε(u)duds; (54)

ξT (t) =

[
εT (t) εT (t− τ(t)) εT (t− τ̄) εT (il) εT (t− h̄) fT (Eε(t)) ρT (t) σT (t) ϱT (t) θT (t) νT (t)

ωT (t) ϕT (t) φT (t) ψT (t) χT (t) ε̇T (t) eT (il) ε̇T (t− h̄)

]
; (55)

ei =
[
0n×(i−1)n In 0n×(19−i)n

]T
(1 ≤ i ≤ 19); (56)

Υ0 =
[
e1 e5 019n·n

]
, Υ1 =

[
019n·2n e9

]
, Υ2 =

[
019n·2n e10

]
, Λ =

[
e1 e5 019n·2n

]
; (57)
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$1 =
[
e17 e19 e1 − e5

]
, $2 =

[
e17 e19 e1 − e5 e1 − e3

]
, Ψ1 =

[
019n·2n e7 019n·n

]
; (58)

Ψ2 =
[
019n·2n e8 019n·n

]
, Φ1 =

[
019n·3n e9

]
, Φ2 =

[
019n·3n e10

]
; (59)

Π1 =


e1 − e2

e1 + e2 − 2e7

e1 − e2 + 6e7 − 12e11

 , Π2 =


e2 − e3

e2 + e3 − 2e8

e2 − e3 + 6e8 − 12e12

 ; (60)

Γ1 =


e1 − e4

e1 + e4 − 2e9

e1 − e4 + 6e9 − 12e13

 , Γ2 =


e4 − e5

e4 + e5 − 2e10

e4 − e5 + 6e10 − 12e14

 . (61)
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