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Abstract—The wavelet frame systems have been playing an
active role in image restoration and many other image pro-

cessing fields over the past decades, owing to the good capa

bility of sparsely approximating piece-wise smooth functns
such as images. In this paper, we propose a novel wavele
frame based sparse recovery model calleBupport Driven Sparse
Regularization (SDSR) for image deblurring, where the partial
support information of frame coefficients is attained via a &lf-
learning strategy and exploited via the proposed truncated/,
regularization. Moreover, the state-of-the-art image resoration
methods can be naturally incorporated into our proposed waelet
frame based sparse recovery framework. In particular, in order
to achieve reliable support estimation of the frame coeffi@nts,
we make use of the state-of-the-art image restoration resusuch
as that from the IDD-BM3D method as the initial reference
image for support estimation. Our extensive experimental esults
have shown convincing improvements over existing state-the-
art deblurring methods.

Index Terms—image deblurring, wavelet frame, support de-
tection, truncated ¢y regularization

I. INTRODUCTION

to incorporate both the observation model and the prior
information of the underlying solution into a variationalrf
mulation, have been widely studied. Among them, variationa

tapproaches and wavelet frame based methods are extensively

studied and adopted [1-16].

In recent years, the sparsity-based prior based on wavelet
frame has been playing a very important role in the devel-
opment of effective image recovery models. The key idea
behind the wavelet frame based image restoration models is
that the interested image is compressible in this transform
domain. Therefore, the regularized process can be chosen by
minimizing the functional that promotes the sparsity of the
underlying solution in the transform domain. The connettio
of wavelet frame based methods with variational and PDE
based approaches is studied in [5], [9]. Such connections
explain the reason why wavelet frame based approaches are
often superior to some of the variational based models. Gen-
erally speaking, the multiresolution structure and redunoy
property of wavelet frames allow to adaptively select prope
differential operators according to the order of the siagty

MAGE restoration is one of the most important researabf the underlying solutions for different regions of a given

topics in many areas of image processing and compu

ierage.

vision. Its major purpose is to enhance the quality of an For regularization methods, exploiting and modeling the

observed image (e.g., noisy and blurred) that is corrupted

dppropriate prior knowledge of natural images is one of the

various ways during the process of imaging, acquisition amdost important topics. In other words, the final recovery
communication, and enable us to observe the crucial butesulgerformance largely depends on the design of the regular-

objects that reside in the images. Image restoration taashs
often be formulated as an ill-posed linear inverse problem:

f=Au-+e Q)

where v, and f is the unknown true image and observe
degraded image, respectively.denotes the additive white
Gaussian noise with varianee. Different image restoration
problem corresponds to a different type of linear operator

ization term from the viewpoint of Bayesian statistics. Mos
existing related works focus more on choices of the claksica
¢y norm, ¢, (0 < p < 1) or ¢y quasi-norm as an appropriate
sparsity term in their specific problems. The sparsity-base
grior regularization has become so widespread and crowded
that it raises the question whether there still room forHert
improvement and what is the right direction to head into. One
interesting direction is to consider to exploit other imiaoit

e.g., an identity operator for image denoising, a projectidmage priors to further improve the recovery performance
operator for inpainting, and a convolution operator for ddesides the classical sparsity prior. Recently, Cai edlaad

blurring, etc. Most image recovery tasks are ill-posed iisge
linear problems. A naive inversion ofl, such as pseudo-

Ji et.al [16] proposed the piecewise-smooth image regtorat
model and added additional regularizations on the locatain

inversion, may result in a restored image with amplified @oigmage discontinuties, which can be viewed as the variants of
and smeared-out edges. Therefore, to obtain a reasondbg/¢:-norm and Tikhonov regularization.

approximated solution, the regularization methods whigh t
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In this paper, we would like to move forward and aim to
further exploit more priors, such as the locations of thezeon
frame coefficients, besides these widely used classicasispa
priors. Correspondingly, we propose a novel wavelet frame
basedSupport Driven Sparse Regularizatig@DSR) model
for image deblurring. This model makes use of the proposed
truncated, regularization to naturally incorporate the detected
partial support information of frame coefficients. Once we
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for faithful image restoration, it is expected that the sanpp
estimation of frame coefficients should be as close as pessib
to those of the unknown original image under the given

) i . ) \gavelet frame. Intuitively, we need to have a relativelyhig
Fig. 1. Overview of the proposed method. Given the noisy an . . - . - .
blurry image, we start from obtaining an initial recoveretage via quality reference .|mage on which th_e_ §upport estimation Is
any existing image restoration methods, e.g., IDD-BM3D hodt Performed. For this purpose, at the initial stage, the stppo
Then we perform support detection of the frame coefficiemtshis estimation can be performed on the recovery results oftagisi
recovered result, and develop a truncatedegularization model. We state-of-the-art image recovery methods, e.g., the IDDZBM

solve this resulted optimization model, and obtain a nevoveed  oihqqg [24] etc. In other words, the proposed framework
image, and so on. Note that our method is an alternating @ztion I N d he should f qi "0

procedure, which repeatedly applies the support deteaishimage 2//0OWS US 10 “stand on the shoulders of giants®. Ones can
recovery. pick up any existing image recovery algorithm and use its

recovery result as the initial reference image and perform

support estimation on it. As we have known, once we are
have partial support information of frame coefficients loaseyiven reliable partial support information, proper exgition
on the initial reference image, this support informatiofi & of it can help improve recovery quality [31], [32], [34], [B5
used to produce a wavelet frame based truncéfeegularized In short, we propose a truncatéglregularization to make use
model. The solution of this new model will be used as the negf the partial support information in the restoration modéie
reference image for the support estimation at second stagein contributions of this paper are summarized as below:
Then the newly updated partial support information willdea
to a new truncated, regularized model, and so on, resulting
into an alternative iterative procedure. Figure 1 illutgsathe
framework of our method, which is a multi-stage procedure.
In figure 2, we provide a first glance of the recovery results
via our proposed truncatefd regularization model while the
detailed definition and analysis of it are available in SettV,
where the oraclé support information of frame coefficients
is exploited. The impressive performance indicates thatgre
potential of incorporating the support information intastig
sparsity regularized model.

o Most existing wavelet frame baséd or /o minimization
image processing models only make use of the sparsity
prior. On the contrary, the partial support information of
the frame coefficients is learned as a prior and exploited
in our work. It is the first time that a truncatef}
regularization model based on self-learning of partial
support information is proposed and the wavelet frame-
based image deblurring is a specific example in this paper.

o While there have existed some works on exploiting
partial support information to improve sparse recovery
performance, they mostly assume that this partial support
information is available beforehand [35]. In addition,}the
are often discussed in the context of compressive sensing.
Our method is a multi-stage self-learning procedure and
applied to a different field—image deblurring.

o The proposed algorithmic framework is able to seam-
lessly incorporate the existing state-of-the-art image
restoration methods by taking their results as the initial
reference image to perform support detection of frame co-
efficients. More precisely, our method is a self-contained
iterative framework with open interface to the available
existing image restoration methods. This makes the algo-
rithm able to often achieve state-of-the-art performance.

o Moreover, this paper is expected to provide new insights
to other sparsity-based prior regularized image resturati
methods. It might chalks out a path for us to explore:

Fig. 2. From left to right: degraded image, recovered image via l€arning (detecting) and exploiting support information
classically regularization model where only sparsity prior is applied, IS a general idea and can be readily incorporated into

PSNR: 27.66d8,SSIM: 0.8541 PSNR: 35.02d8,SSIM: 0.9551

recovered image via proposed truncatéd regularization model existing sparsity-driven methods.
where both the sparsity prior and support information ofmiea ) . .
coefficients are exploited. The rest of this paper is organized as follows. In the

next section, we first briefly introduce some notations and
We would like to emphasize that the key component gfreliminaries of the wavelet tight frames. In Section I,
our method is the support detection, and the final recovetye most related wavelet frame based and nonlocal patch
performance largely depends on the accuracy of the detedteged image restoration methods are revisited. In Secton |
support information of wavelet frame coefficients. In ordewe introduce the proposed SDSR model and summarize the
algorithmic framework. In Section V, extensive experingent
“The oracle case means the support detection is performedeoariginal - are conducted to demonstrate the performance of the SDSR
true image. It is infeasible to obtain in practice, since wendt know the true . . . .
model. Section VI is devoted to the conclusions of this paper

image. However, we use it to illustrate the potential adages of making use ) ) g
of support information. and some discussions on possible future work.
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II. NOTATIONS AND PRELIMINARIES Ill. RELATED WORK

In this section, we briefly introduce some preliminaries qf The proposed algorithm is based on a truncaiedegu-

: ) : . larized model, where the truncation depends on the detected
wavelet tight frames. Tight wavelet frame are widely applie . . .
. . . support information. The truncatey regularized model can
in image processing. One wavelet frame fa(R) is a system

generated by the shifts and dilations of a finite set of g¢nesa be ct())psljldered_ a.\sga varlalnt@‘ rdegularllzedfmodelt.) The(jrefore,
U= (U, 0, ..., U} C Lo(R): we briefly revisit/, regularized wavelet frame based image

recovery model. As a common counterpart, we also review the
classical?; norm regularized wavelet frame based image re-
covery model. The nonlocal patch based methods such as IDD-
BM3D [24] will also be reviewed, since they have achieved
state-of-the-art image deblurring results, which will beed

as the initial reference images for the support estimation.

X(0) ={Y1x1<1,j€Lkel}

whereV, ; , = 27/2W;(27 . —k). Such setX (V) is called tight
frame of Lo(R) if

f=> <f1>Vf € LyR). _
e A. /1 norm regularized wavelet frame-based methods

] ] ] Due to the redundancy of the wavelet frame systems
The construction of framelets can be obtained according (EWWT £ 1), there are several different wavelet frame based

the unitary extension principle (UEP). Following the COMMOmqels, including the synthesis model, the analysis model,
experiment implementations, the linear B-spline frameéet 5y the balanced model. However, what these models share
gsed by considering the balance of the quality and time. Tnf’common is that they mostly penalize the norm of the
linear B-spline framelet has two generators and the asgatiay,yelet frame coefficients for sparsity constraint in disfet

masks{ho, b1, ho} are ways. Detailed description of these different models can be
referred in [22]. Numerical experiments in [22] have shown
ho = %[1’27 1;hy = g[l,O,—l];hz — %[_1’2’_1]' that the quality of the recovery images by these models is

approximately comparable. Therefore, we only consider the

Given the 1D tight wavelet frame, the framelets fbos(IR?) analysis based approach here:

can be easily constructed by using tensors products of 1D 1
y y using P min = [[Au — I3+ |IX - Wull1, 3)
framelets. u 2

In the discrete setting, we will udé” € R™*"™ with m > n  wherep = 1 or p = 2 corresponds to anisotropig norm and

to denote the transform matrix of framelet decompositioth ansotropic/; norm, respectively. Here, the generalizgehorm
useW7” to denote the fast reconstruction. Then according {¢ defined as

the unitary extension principle we hay&”W = I. The 1/p

matrix W is called the analysis (decomposition) operator, Ll

and its transpos&/” is called the synthesis (reconstruction) IV Wl =11 [ D Ay W ul? I 4
operator. TheL-level framelet decomposition of will be =0 \je7

further denoted as: . . :
where| - |? and (-)% are entrywise operations. We introduce

a = Wu and substitute it into (3), then we can obtain the

Wu=(..,Wiu,...) for 0<i<L-1j€Z rewritten form of (3) as follows

. 1
where Z deqotes the index set of th(_e _framelet. bands and min = |[Au — |2+ [|A - allip st. a=Wu. (5)
Wi ;u € R™ is the wavelet frame coefficients af in bands w2

J at levell. The frame coefficient$V; ;u can be constructed Note that the convex optimization problem (3) or (5) can

from the masks associated with the framelets. We consiqg solved via many existing efficient algorithms, e.g., tspli
the L-Level undecimal wavelet tight frame system without thﬁregman or alternating direction method [19], [30].

down-sampling and up-sampling operators as an example here
Let hy denote the mask associated with the scaling function

and {hy, hs, ..., h,} denote the masks associated with othé- ‘o quasi-norm regularized wavelet frame-based methods
framelets. Denote It is well known that the/; norm based approaches are ca-
l pable of obtaining sparsest solution if the operatosatisfies
h§-) = ho* hg * - hg*h; (2) certain conditions according to compressed sensing #®ori
| L ——— .
e developed by Candes and Donoho [20]. For image restora-

tion tasks, unfortunately, the conditions are not necédgsar
wherex denotes the discrete convolution operator. Thgrn;  satisfied. Therefore, thé norm based models often achieve
corresponds to the Toeplitz-plus-Hankel matrix that repnés suboptimal performance.
the convolution operatdlzgl) under Neumann boundary con- Recently, £, quasi-norm ( < p < 1) regularization
dition. We refer the readers to [7], [12] for further detdile was further investigated to recover the images with better
introduction of wavelet frame and its applications. preserving of sharp edges. The authors in [10] proposed to
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use thely quasi-norm instead of thé norm in the analysis i.e., which frame coefficients should be truncated out ofithe
model: guasi-norm, and this is determined via a self-learningena

min l||Au — fI2 4+ M|Wullo (6) After the acquiring of the partial support information, wélw

u 2 have a truncated, regularized model (7) witli" known.
The ¢, quasi-norm of||a||o is defined to be the number of In summary, SDSR is a multi-stage alternative optimization
the non-zero elements of. Note that its proximity operator procedure, which repeatedly applies the following two step
can be easily computed by the hard-thresholding operatwhen applied to model (7):
An algorithm called PD method was proposed to solve thise Component 1: we perform support detection on a refer-
£y minimization problem in [10]. Recently, a more efficienence image and determine tlie
algorithm called MDAL method was developed for solving e Component 2: we solve the truncatéd regularized
the same problem [13]. model (7) withT known. The result will acts as a reference
image for support detection in Componénaf the next stage.

C. The nonlocal patch based methods

The nonlocal approaches are built on the observation th@t Component 1: Support detection to deternilhe
?mage .structure_s of s_mal.l reg_ions tend to repeat themselve%iven a reference image, support detection is performed
in spatial domain, which is suitable for exploiting the radu on it to estimate some partial support information of the

dancy information in natural images. It is started with th nderlying true image. For the first stage, the initial refee

_nonlocal means method proposed by Buades etal [1_7] age comes from the results of other state-of-the-art @nag
image denoising and has been extended to solve other inv 88Iurring methods such as IDD-BM3D method

problems in image processing ta_sks; see .., [3]’ [23]. [2 In this work, we adopt a heuristic but effective support
Vgry recently, the nonlocal idea is combined with the patC(!Petection method, which is similar to the strategy proposed
dlct|onary_ methods a_md generate the current state—o&tthe~n [32]. The support detection is based on the thresholding
methods in the quality of restored images [18], [25], [26 trategy, where we retain indexes of frame coefficients whos
[27], [28], [29]. magnitude larger than the threshold value as the support set
For s-th stage, note that we have the intermediate recovery
IV. WAVELET FRAME-BASED SUPPORT DRIVEN SPARSE  result () at hand, and the support index set of frame
REGULARIZATION (SDSR)MODEL coefficients is obtained as follows:

In this section, we propose a wavelet frame-based support s+ . {i: |(Wu(5))i| > E(s)} 8)

driven sparse regularization (SDSR) model based on a trun-

cated/, regularized term. The model is formulated as followg>orrespondingly, the index set of frame coefficients kept in
the ¢y quasi-norm isr'(s+1) = (1(s+1))¢ We set the threshold

. lue:
min || Au — f[[3 + N[(Wu)r|lo (7) vaue \ \

v 2 e o= (Wl /. 9)
where(Wu)r is the truncated version 6¥'w and this trunca- ith , ~ (. Empirically, the performance of our method is
tion is the main difference with th&, regularized model. The ot very sensitive to the choice pf and a small percentage

index set of frame coefficient&' denotes the complementaryyt \yrong support detection will not degrade the performance
set of the detected support skti.e., 7 = I°. I is unknown of the proposed method.

beforehand. In the commafy model, I is an empty set.

In order to avoid confusion to the readers, we give a toy eR: Component 2: Solving the truncatégd model with 7'
ample to illustrate these notations here. Assuming that & w known
to recover a underlying sparse vecior (0, 10, 0, 25, 20, 0)
via this model, the true support index setaois I = {2,4,5}.
The detected partial support set might be= {2,4}, and
T ={1,3,5,6}. The components correspondingTowill re-
main i|j the truncated, quasi-norm while those correspondin ethod [13] is adopted.
to I will be truncated out. _ We introducea = Wu, and the equivalent constraint
_ T_h_e truncated/, regula_n_zatlon comes from the S'mpleoptimization problem of (7) is:
intuition that a frame coefficient should be not forced to mov 1
closer to 0 and needs to be moved out of the regularizer term, min —||Au — f||2 + A|ar|lo, st. a=Wu  (10)
if this coefficient is believed to be a nonzero component. In 2
other words, once the locations of some nonzero componehf® MDAL method applied to (10) is formulated as:

Given T, (7) becomes a non-convex problem in terms of
u and most existing algorithms for the comm@n (without
truncation) regularized model can be slightly modified apd a
Eﬂied' Here the mean doubly augmented Lagrangian (MDAL)

(especially those of large magnitude) are identified, ik ( u*+1 = argmin,, L||Au— f|2 + 2||Wu — oF + b*|]2

of truncation aims to make them not be shrunk. The resulte +3Ju — u*]|3

benefit is the better preserving of sharp edges. ot = argming Al|ar|lo + 4]l — (Wub T+ b7)|[3
Note that the index set df" or I is unknown beforehand +3 e — |3

as the underlying true image is not available. Thus, the keyf pF+1 — pF 1 JWktl — gk+?
guestion is to perform the support detection to deterniine (12)
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Compared with the common (without truncatiof) quasi- Algorithm 1 Image deblurring via wavelet frame-based
norm regularized model, the main modification of MDAL here ___ SDSR model _
lies in the subproblemy . Specifically, Given observed imag¢ and convolution operatod.

1. Initialization : Compute an initial recovery result via
any image restoration methods, e.g., IDD-BM3D method,
k1 _ Wukt! £ pF o 12 as the initial referencg image for initial support detemtio
“ Ao (WU 407, 0% (12) 2. Outer loop (stage) iteration ons = 1,...,5
(a) Perform support detection on the reference image.

) . ) (b) Inner loop (solving the truncated, model (7))
where the operatof{ is a generalized component-wisely While the stopping condition is not satisfied,

selective(defined byT") hard-threhsolding operator defined as iterate onk — 1.2. ... K Do

follows: (1) Image estimate/**! via (14).

(Il) Computea®+! via (12).
(1) Update b**1 = pF + Wuktt — o+,

; ; LT i
(Hra (@ 9))i = { 0 ieT and |SERI< s End . |
BESWL otherwise Compute the anth_metlc means of the solution
(13) sequence as the final output via (15). It also acts
It is well known that the edges of an image should correspond as the reference image for support detection of
to the large nonzero frame coefficients. Note that only the the next stage.

components ofv indexed inT" perform the hard-threhsolding,
while the nonzero components belonging to the index/set ) )
are not shrunk. Thus this selective hard-threhsoldingaiper D- Taking an even closer look at the proposed algorithm
expects to reduce the wrong shrinkage, leading to bettex edgThe discrete wavelet frame coefficients are obtained by
preserving performance of the recovered images. applying wavelet frame filters to a given image. Since the
As the original MDAL, the minimization with respect to wavelet frame filte_rs are designed to b_e standard difference
remains to be a least square problem with the normal equat@ferators with various orders, the locations of large veivel
frame coefficients indicate the edges of a given image. The
locations of small wavelet frame coefficients indicate the r
gion where image is smooth. A good image restoration method
should preserve smooth image components while enhancing
sharp image edges. This is a rather challenging task since

o - ) smoothing and preservation of edges are often contragiictor
Under the periodic boundary conditions foy the entire left- 5 aach other.

hand side matrix in (14) can be diagonalized by the discreterq pagic motivation behind the wavelet frame based spar-
Fourier transform, and thus it is simple and fast to solve. sity regularized methods is to promote the sparsity of the
Following the implementation of [13], we use the arithmetiwavelet frame coefficients of the recovery images via shrink
means of the solution sequence, denoted by age operators so that edges can be well preserved. It is well
known that soft-thresholding operator and hard-threshgld
operator are equivalent as the minimizatior{ ghorm and/,-

(ATA+ (p+y)Durt = AT fpyu 4+ W T (oF —o%) (14)

L 1 K qguasi-norm based optimization model, respectively. Harev
= —— E uw; ab = —— E al. (15) simply applying eithe¥;-norm or¢y-quasi-norm penalization
k+1+4 k+1+4 :
j=0 j=0 may weaken the sharpness of the edges and introduce un-

wanted artifacts in smooth regions. Tuning the regulaionat
parameter in the model may reduce these artifacts, but it may
as the final output instead of the sequenck, o) itself. smear out edges at the same time, see [13] for details.
Instead of just passively using a sparsity promoting fuorcti
(such as thel;-norm and ¢y-quasi-norm) and hoping the
paradox between smoothness and sharpness can be resolved
automatically. In this paper, we actively exploiting other
helpful information to rectify this shortcoming, i.e., éeting
(learning) the location information of large nonzero frame
coefficients. The selective hard shrinkage operator (13) is
From the analysis in previous sections, we can see tlegjuivalent as the minimization of an truncatgdquasi-norm
the SDSR model in Component 1 and Component 2 wobiased optimization model, which can be viewed as a data-
together to gradually detect the support set and improdeven adaptive shrinkage operator.
the recovery performance. Now, we summarize the SDSRThe key component of our algorithm is the support de-
deblurring algorithmic framework below. tection, and the final recovery performance largely depends
on this prior. Note that given an original clean image, its

C. Summary of the algorithm
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Scenario PSF

. . . . . . o
support information with .the given wavelet frame is unique, 0 T )= T | V3
however unknown for us in practice. Thus we need to design 5 VG 20), o, = 7,7 | 2
a method to learn this useful information or at least part of 3 uniform 9 V2
it, for some reference images. Intuitively, the higher gyaif 4 uniform 9 2
the reference image where the support detection performed o 5 fspecial(gaussian,25,1.6) V2
: : : 6 fspecial(gaussian,25,1.6) 2

more accurate support information should be acquired.Hisr t i _
- - 7 fspecial(motion,15,30) V2
purpose, we perform the support detection of first stagecbase 5 fspecial(motion. 15.30) >

on the recovery results of existing state-of-the-art mesho TABLE T

e.g., IDD-BM3D method etc. “A good beginning is half the EIGHT TYPICAL DEBLURRING EXPERIMENTS WITH VARIOUS
; : . BLUR PSF5 AND NOISE STANDARD VARIANCES

battle”, and we can acquire even more reliable support set as

the iteration of our algorithm proceeds, leading to gragual

improved recovery results.

It should be pointed out that our algorithm is not just &r simulation. The whole experimental settings (degraded
post-processing. Since our algorithmic framework has opg&genarios) are summarized in Table 1. Tloetest images are
interface to any available image recovery results as thlini showed in Figure 3.
reference images to perform support detection, thus we can
“stand on the shoulders of the giants”, i.e., using the stai8. Evaluation measures
of-the-art results as the initial reference images. Howewar o quality of the recovered image is evaluated by the peak
algpnthm itself is an self-contalneq iterative proceduaker- signal to noise ratio (PSNR) value defined as:
natively performing support detection on the recent reppve )
and returning an updfated one by solving the res.ult.ed Fredcat PSNR(u, @) := 10log10 _ N255
¢o model. From the viewpoint of non-convex optimization, we T S Yog (i, ) — (i, 5))?
admit the importance of picking an appropriate initial pomwhere M and N are the dimensions of the image, and

for example, the result of state-of-the-art image debadyri =, ="~ . : '
algorithms can be used here, we would like to emphasi%l’])’_u.(l’j) are .the pixel valueg of the mput evaluate(.j.|mage
. d original true image at the pixel locati¢n j). In addition

the importance of a well-design searching method, whid! o A .
corresponds to the self-contained iterative proceduredas to PSNR, which is used to evaluate the objective image galit

the support detection and the solving of a truncatethodel. we use another image quality assessment: Structural Silila

The proposed Algorithm is simple in implementation an&SSIM) [33]’_ which ams to be more consistent with h””_‘a”
efficient in computation. We emphasize that mostly comp&ye .perceptlon. The higher SSIM value means better visual
tational cost of Algorithm 1 is thénitialization process, for quality. We refer the readers to [33] for details.
example, for a gray-scale image of si286 x 256, it takes
about 5 minutes for IDD-BM3D method, while the total cosE: Comparison methods
of a singleOuter loop (Stage)is merely around 20 seconds. The comparison methods include: wavelet frame based SB

[4] 2, MDAL [13] 3, nonlocal patch based IDD-BM3D [24]

V. NUMERICAL EXPERIMENTS CSR [28]°, GSR [29]°. As far as we know, IDD-BM3D, CSR
and GSR provide the current state-of-the-art image dehbtyrr
results in the literature. All parameters involved in theneo
peting algorithms were optimally assigned or automatycall
chosen as described in the reference papers.

For the proposed SDSR method, at the first stage, the
partial support information is obtained based on the ihitia
reference image, which is the result of various nonlocatlpat
based methods including IDD-BM3D, CSR and GSR. In a
nutshell, our SDSR algorithm can be viewed as the hybrid
Fig. 3. All experimental test images. From left to right and topf \wavelet frame based sparse regularization method and
tlgart?gttéon;tzgf{:ﬁn’c;gl?j?ijlrhg:;écwv%?;mh’ Peppers, Lena, Barbargy s giate-of-the-art nonlocal patch based image resporati

' ’ ' methods. Therefore, we name them as IDD-BM3D+SDSR,
CSR+SDSR, GSR+SDSR, respectively. In addition, in what
. ) follows, we also give the ORACLE recovered results of our

A. Experimental settings proposed method, i.e., the support detection is based on the

In this section, extensive experiments are conducted daginal true image. Clearly, we usually do not know the
demonstrate the performance of our proposed SDSR modsbinal true image in practice. Here, we just use it as an
for image deblurring. The intensity of a pixel of these test
images ranges from 0 to 255. To simulate a blur image,tp:/www.math.ust hkjfcail o
the original images are blurred by a blur kernel and thenjhnp:”b'cmr'pku'equ'wdongbm/Pupl'cat'ons'html

it . ) 1 L http://www.cs.tut.fi* foi/GCF-BM3D/index.html#ref software
additive Gaussian noise with standard deviations v/2 and Shttp://see.xidian.edu.cn/faculty/wsdong/wsdoRgblication.htm
o = 2 are added, respectively. Four blur kernels are usedhttp://124.207.250.90/staff/zhangjian/#Publications
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ideal golden upper bound of the performance for our proposkd observed that the final recovered results of the proposed
method. It aims to demonstrate the advantage by exploitieg iDD-BM3D+SDSR, CSR+SDSR and GSR+SDSR are slightly
detected support knowledge of frame coefficients and shew ttiifferent due to the different initial reference images;t bu

probably largest room of further improvement. overall comparable to each other. We can also observe that
our proposed methods have overall performance improvesment
D. Implementation details compared to the initial recoveries by IDD-BM3D, CSR and

The linear B-spline framelet and two decomposition leve SR, respectively. This observation demonstrates thaRSBS
are adopted for the wavelet frames used in Algorithm 1, i.edery promising. It is not surprising that the ORACLE (suptpor

. - detection based on the true image) situation of the proposed
L = 1 and L = 4, respectively. For all the cases, we fix . .
method achieves the best recovery performance in all tresscas
the parametep, = 0.01, v = 0.003. The parameterg and

)\ control the overall performance. Specifically. the settinThe above observations demonstrate the power of making use
P - =P Y S the support prior of frame coefficients. Ones can achieve

of regularization parameteX in (7) is the same as that in_. .. : N
Iiteratgure [13] inporder for the( gptimal PSNR and SSI ignificant performance gain as long as the support estimati
' s reliable.
values.
o . . The advantage of our algorithm over other methods in terms
Empirically, the parameter is not very sensitive to the type . ) .
of images, blurs and noise levels. In our tests, we have fou?\]::ithe PSNR and S.SIM valugs Is also qon§|stent with the
that p — 200 for L = 1, and p = 250 for L = 4 consistently |mp_rovement_of the visual ql_Jahty. The subjective wsgairt—;o
yield good performance. Optimal adjustments of the pare\meParlsons of (_jl_fferent deblurrln_g methods are shov_vn n Fegur
p may improve the results over what are presented he?'e.S' I_n addition, for better visual comparisons, in F'gufe 6
However, it will also reduce the practicality of the algbrits and F_lgure 7, we present the CIOS?'UP VIews co.rrespondlng to
since more parameters need to be adjusted by users. Thereitgle Flgure 4 and F'gu:ﬁ 5,trr]esp¢ctlvgl)/t (T\Tvese figures S]nettiﬁs
we choose to fix this parameter. The stopping criterion of t gewed on screen, ratner than in prin )- e can see that the
inner loop in Algorithm 1 is: proposed SDSR algorithm leads to less artifacts, much efean
and sharper image than other competing methods. To further
min [u* — ]y [|AuF — [ “5x10-  (16) study the proposed method, in Figure 8 and 9, we explicitly
[|u®]]2 ’ [If]]2 present the support maps, which are obtained by directly in-

Empirically, we have found that our algorithm performs welY
even when the outer loop only executes one iteration (lar

erse wavelet frame transform to the support detectioraglgin
ol coefficients, the coefficients on support locations gre 1

S values do not always lead to significantly noticeable PS € r_emainder are 0) gnd back projection results, Which are
and SSIM improvement). Hence, we s§t— 2 and save obtained by only reserving the large wavelet frame coefisie

much computational complexity of the proposed algorithntl(.) the orlglna! true Image at the support locations. Due _to
All the experiments were performed under Windows 7 arfge SPace limit, here we just present the results of the first
MATLAB v7.10.0 (R2010a) running on a desktop with arstage. Moreover, we list the support detection accuragy rat

Intel(R) Core(TM) i7-4790 CPU (3.60GHz) and 32GB oPf different initial methods in Table IV and Table V, here the
memory. accuracy rate is defined as follows:

- . #{Idetected N Itrue} + #{Tdetected N Ttrue}

E. Results -and discussions AR ey + A (T (17)

Table Il is the PSNR and SSIM results of the 10 test
photographic images on 8 degraded scenarios. Our methoavisere ' ¢ is the support index detected on the original true
compared with IDD-BM3D since the initial support estimatio image, I?¢**t*? is the support index detected on the initial
is performed on the recovered results of IDD-BM3D methodeference image (the recovered results via different nustho
We observe that the proposed IDD-BM3D+SDSR methade., IDD-BM3D, CSR and GSR in this work). Note that
have overall significant improvements compared to the IDDR4etected and T ue is the complementary set afdetected
BM3D method in terms of both PSNR and SSIM values. In aand I'"“¢, respectively.#{-} denotes the cardinality of a
erage, IDD-BM3D+SDSR(L=1) and IDD-BM3D+SDSR(L=4)given set. Clearly, the accuracy rate of support detection o
outperform IDD-BM3D by (0.41 dB, 0.0114) and (0.48 dBthe true image isl00%. From the above observations, we
0.0140), respectively. In addition, we emphasize that tlwan conclude that: 1) The accuracy rates of the above three
proposed Algorithm with, = 4 slightly better thanL. = 1 methods are approximately comparable. We can acquire more
in most cases, but the corresponding computational timeréiable support information as the outer stage iteratibn o
also longer. proposed algorithm proceeds, and the higher accuracy rate

Besides the IDD-BM3D method, two other nonlocal patchf support detection, it tends to achieve better final regove
based methods CSR and GSR are also considered. Dugesult. 2) It inevitably contains wrong support indexes in
the space limit, in what follows, we just present the resofts the detected support set in practice. However, our proposed
scenario 3 and scenario 5 in Table I, since the other cases h&DSR is robust to the detected support information andicerta
the same conclusions. The PSNR and SSIM results of IDPercentage of wrong support information would not degrade
BM3D, CSR, GSR and corresponding IDD-BM3D+SDSRthe final recovery performance. To our best knowledge, this
CSR+SDSR and GSR+SDSR are reported in Table Ill. It cas the first time that an algorithm is able to consistently
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Scenario Method C.man Boat Man Monarch Peppers Lena Barbara Parrots Starfish Goldhill Average
SB [4] 29.55/0.8830 29.87/0.8716 29.07/0.8688 | 31.76/0.9408 30.58/0.8845 31.98/0.9133 28.72/0.8568 32.47/0.9201 30.65/0.8991 28.84/0.8062 30.35/0.8844
MDAL [13] 30.15/0.8927 30.06/0.8767 29.03/0.8716 | 31.28/0.9431 31.43/0.8860 32.02/0.9184 29.10/0.8765 32.71/0.9252 30.99/0.9074 29.10/0.8124 30.59/0.8910
1DD-BM3D [24] 31.08/0.8916 30.96/0.8911 29.65/0.8810 | 32.47/0.9452 31.98/0.8893 33.27/0.924T 32.7710.9296 33.90/0.9233 31.95/0.9129 29.51/0.8223 31.75/0.9010
1 [ IDD-BM3D+SDSR (L=1) 31.51/0.9033 31.67/0.9058 30.28/0.8945 | 32.97/0.9554 32.39/0.8975 33.61/0.9339 | 32.36/0.9328 34.2170.9328 32.61/0.9248 29.99/0.8389 32.16/0.9120
IDD-BM3D+SDSR (L=4) 31.770.9057 31.820.9095 30.350.8967 33.080.9573 32.460.8982 33.760.9368 32.820.9361 34.440.9353 32.740.9269 30.080.8416 32.33/0.9144

36.27/0.9604
36.74/0.9639

36.28/0.9695
36.93/0.9750

34.90/0.9682
35.85/0.9746

37.10/0.9778
37.41/0.9820

36.65/0.9548
37.36/0.9597

37.35/0.9713
37.70/0.9762

34.10/0.9654
34.83/0.9716

37.62/0.9641
37.89/0.9702

37.04/0.9728
37.74]0.9784

35.61/0.9572
36.54/0.9642

36.29/0.9662
36.90/0.9716

ORACLE (=0
ORACLE (L=4)

SB [4] 28.47/0.8654 28.80/0.8421 | 28.08/0.8398 | 30.62/0.9269 29.71/0.8694 30.98/0.8952 | 27.35/0.8142 31.40/0.9090 29.59/0.8749 28.10/0.7739 29.31/0.8611

MDAL [13] 29.10/0.8742 29.06/0.8530 | 28.04/0.8407 | 30.19/0.9295 30.67/0.8736 31.04/0.9003 | 27.82/0.8395 31.64/0.9142 29.99/0.8820 28.31/0.7823 29.59/0.8689

IDD-BM3D [24] 30.01/0.8760 29.79/0.8664 | 28.56/0.8556 | 31.23/0.9329 31.08/0.8745 32.13/0.9083 | 31.370.9087 32.47/0.9113 30.77/0.8935 28.77[0.7947 30.61/0.8822

2 IDD-BM3D+SDSR (L=1) 30.42/0.8879 30.26/0.8810 | 28.96/0.8686 | 31.67/0.9441 31.49/0.8842 32.35/0.9176 | 30.63/0.9108 32.69/0.9206 31.29/0.9059 29.10/0.8085 30.89/0.8929
IDD-BM3D+SDSR (L=4) 30.56/0.8915 30.31/0.8849 | 29.02/0.8705 | 31.73/0.9479 31.60/0.8860 32.46/0.9225 | 31.240.9144 32.92/0.9240 31.37/0.9074 29.21/0.8121 31.04/0.8961

ORACLE (L=1) 34.25/0.9500 34.26/0.9576 | 32.70/0.9547 | 35.05/0.9705 34.79]0.9427 35.14/0.9605 | 31.53/0.9489 35.51/0.9545 35.05/0.9620 33.75/0.9425 34.20/0.9544

ORACLE (L=4) 34.95/0.9583 35.13/0.9681 | 33.89/0.9672 | 35.55/0.9781 35.73/0.9534 35.68/0.9699 | 32.56/0.9610 35.83/0.9657 35.95/0.9721 35.01/0.9559 35.03/0.9650

SB [4] 26.74/0.8335 26.95/0.7854 | 25.90/0.7556 | 27.47/0.8752 28.57/0.8274 28.59/0.8438 | 26.35/0.7678 27.39/0.8708 27.09/0.7934 27.47/0.7357 27.25/0.8089

MDAL [13] 27.64/0.8545 27.56/0.8177 [ 26.15/0.7690 | 27.95/0.8921 29.17/0.8395 28.93/0.8589 | 26.59/0.7842 28.64/0.8868 27.81/0.8232 27.72/0.7496 27.82/0.8276

IDD-BM3D [24] 28.54/0.8586 28.06/0.8219 [ 26.55/0.7799 | 29.04/0.9034 29.62/0.8427 29.71/0.8658 | 27.99/0.8227 29.98/0.8914 28.35/0.8321 27.92/0.7526 28.58/0.8371

3 IDD-BM3D+SDSR (L=1) 29.04/0.8726 28.54/0.8402 | 26.98/0.7998 | 29.59/0.9138 30.02/0.8544 30.05/0.8752 | 28.10/0.8291 30.24/0.8982 28.84/0.8492 28.30/0.7712 28.97/0.8502

30.06/0.8553
35.69/0.9440
37.42/0.9523

29.07/0.8744 28.58/0.8410 | 26.97/0.7993
35.02/0.9551 35.05/0.9578 | 33.62/0.9552
36.33/0.9575 36.86/0.9671 | 36.25/0.9699

29.63/0.9159
36.07/0.9733
37.80/0.9811

30.10/0.8771
35.77/0.9597
37.90/0.9711

28.170.8316
31.93/0.9414
34.92/0.9648

30.36/0.9001 28.81/0.8484
35.03/0.9563 35.67/0.9619
37.07/0.9640 37.70/0.9729

28.32/0.7722
34.59/0.9410
36.18/0.9729

29.00/0.8513
34.84/0.9456
36.8410.9674

TDD-BM3D¥SDSR (L=4)
ORACLE (L=1)
ORACLE (L=4)

SB [4] 26.09/0.8152 26.37/0.7585 | 25.37/0.7296 | 26.86/0.8589 28.01/0.8121 28.09/0.8278 | 25.69/0.7395 26.83/0.8601 26.51/0.7692 26.92/0.7048 26.67/0.7876

MDAL [13] 27.01/0.8360 26.76/0.7826 | 25.51/0.7436 | 27.10/0.8738 28.51/0.8254 28.31/0.8429 | 25.86/0.7559 27.87[0.8751 27.01/0.7951 27.18]0.7215 27.110.8052

1DD-BM3D [24] 27.69/0.8393 27.2710.7935 | 25.94/0.7540 | 28.24/0.8875 28.97/0.8263 29.03/0.8473 | 27.25/0.7949 29.20/0.8784 27.60/0.8066 27.39/0.7262 27.86/0.8154

4 IDD-BM3D+SDSR (L=1) 28.13/0.8533 27.70/0.8124 | 26.32/0.7740 | 28.66/0.8987 29.31/0.8398 29.31/0.8587 | 27.20/0.8012 29.47/0.8875 28.00/0.8239 27.70/0.7428 28.18/0.8192

TDD-BM3D+SDSR (L=4)
ORACLE (L=1)
ORACLE (=9

28.20/0.8553 27.76/0.8142
33.40/0.9477 33.36/0.9467
35.07/0.9536 35.43/0.9615

26.31/0.7729
31.79/0.9428
34.63/0.9647

28.68/0.9014
34.28/0.9671
36.24/0.9784

29.33/0.8407
34.18/0.9351
36.18/0.9484

29.33/0.8608
34.10/0.9509
36.31/0.9669

27.34/0.8046 29.58/0.8902 27.99/0.8236
30.08/0.9268 33.61/0.9496 34.14/0.9523
33.53/0.9592 35.93/0.9617 36.31/0.9683

27.74]0.7441
33.13/0.9281
33.13/0.9281

28.23/0.8308
33.21/0.9447
35.28/0.9591

SB [4] 27.00/0.8601 28.01/0.8396 | 27.46/0.8376 | 30.35/0.9335 29.14/0.8781 30.71/0.9025 | 25.12/0.7640 30.31/0.9163 29.08/0.8768 27.66/0.7699 28.48/0.8578

MDAL [13] 27.34/0.8687 28.09/0.8487 | 27.14/0.8349 | 29.39/0.9326 29.18/0.8775 30.21/0.9038 | 25.61/0.7752 29.96/0.9180 29.31/0.8923 27.20/0.7690 28.34/0.8621

IDD-BM3D [24] 28.10/0.8687 28.73/0.8528 | 27.83/0.8441 | 30.90/0.9380 29.97/0.8799 31.41/0.9089 | 27.08/0.8205 31.55/0.9179 30.36/0.8924 28.18/0.7787 29.41/0.8702

5 IDD-BM3D+SDSR (L=1) 28.36/0.8781 29.08/0.8641 | 28.12/0.8543 | 31.34/0.9442 30.24/0.8862 31.59/0.9149 | 27.22/0.8245 31.85/0.9244 30.83/0.9019 28.31/0.7876 29.68/0.8780
| IDD-BM3D+SDSR (L=4) 28.42]0.8796 29.12/0.8661 | 28.1470.8551 | 31.37/0.9466 30.27/0.8867 31.67/0.9168 | 27.26/0.8272 31.93/0.9267 30.91/0.9039 28.34/0.7882 29.74]0.8797
ORACLE (L=I) 35.56/0.9616 36.67/0.9713 | 35.21/0.9706 | 37.89/0.981L 37.23/0.9579 38.08/0.9751 | 31.97/0.9433 36.86/0.9669 | 38.09/0.9765 35.58/0.9551 36.31/0.9659

ORACLE (L=4) 37.51/0.9658 38.81/0.9781 [ 38.30/0.9798 | 39.48/0.9850 38.83/0.9627 40.02/0.9805 | 35.89/0.9724 38.36/0.9717 39.73/0.9824 37.62/0.9659 38.46/0.9744

SB [4] 26.73/0.8496 27.59/0.8215 | 27.08/0.8206 | 29.84/0.9245 28.85/0.8694 30.31/0.8914 | 24.69/0.7480 29.94/0.9087 28.69/0.8631 27.44/0.7533 28.12/0.8450

MDAL [13] 27.08/0.8574 27.68/0.8306 | 26.83/0.8189 | 29.05/0.9249 29.33/0.8708 29.94/0.8943 | 24.57/0.7467 29.56/0.9099 28.68/0.8744 27.07/0.7563 27.98/0.8484

IDD-BM3D [24] 27.63/0.8609 28.05/0.8311 [ 27.28/0.8201 | 30.24/0.9338 29.55/0.8725 30.84/0.9019 | 26.02/0.7853 30.99/0.9161 29.69/0.8757 27.71/0.7549 28.80/0.8552

6 IDD-BM3D+SDSR (L=1) 27.85/0.8646 28.49/0.8450 | 27.63/0.8349 | 30.57/0.9361 29.85/0.8780 30.94/0.9025 | 26.32/0.7926 31.18/0.9157 30.12/0.8857 27.88/0.7693 29.08/0.8624
IDD-BM3D+SDSR (L=4) 27.96/0.8671 28.53/0.8479 | 27.68/0.8366 | 30.73/0.9381 29.91/0.8787 31.04/0.9055 | 26.24/0.7921 31.30/0.9191 30.25/0.8887 27.91/0.7701 29.16/0.8644

ORACLE (L=1) 34.48/0.9558 35.32/0.9647 | 33.64/0.9626 | 36.36/0.9767 35.97/0.9510 36.45/0.9687 | 30.83/0.9341 35.87/0.9614 36.50/0.9699 34.56/0.9477 35.00/0.9593

ORACLE (L=4) 36.80/0.9637 37.82/0.9755 | 37.25/0.9771 | 38.21/0.9829 38.03/0.9600 38.80/0.9777 | 35.20/0.9697 37.66/0.9696 38.40/0.9791 37.04/0.9633 37.52/0.9719

SB [4] 28.76/0.8672 28.53/0.8383 | 27.86/0.8231 | 29.37/0.9035 29.82/0.8614 30.37/0.8837 | 27.25/0.8226 31.00/0.9065 28.96/0.8614 28.21/0.7793 29.01/0.8547

MDAL [13] 30.31/0.8886 29.58/0.8672 | 28.39/0.8425 | 30.70/0.9286 31.29/0.8744 30.98/0.9053 | 27.89/0.8521 32.34/0.9202 30.18/0.8895 28.86/0.7994 30.05/0.8768

IDD-BM3D [24] 30.97/0.8841 30.35/0.8776 | 28.85/0.8548 | 31.65/0.9287 31.60/0.8746 32.24/0.9062 | 31.76/0.9170 32.47/0.9081 31.01/0.8950 29.26/0.8114 31.02/0.8858

7 IDD-BM3D+SDSR (L=1) 31.71/0.9059 31.17/0.8964 | 29.66/0.8779 | 32.66/0.9467 32.41/0.8904 32.91/0.9276 | 31.42/0.9234 33.50/0.9278 31.96/0.9153 29.88/0.8336 31.730.9045
IDD-BM3D+SDSR (L=4) 31.77/0.9063 31.15/0.8954 [ 29.66/0.8768 | 32.49/0.9459 32.38/0.8894 32.85/0.9269 | 31.950.9255 33.54/0.9284 31.88/0.9133 29.93/0.8340 31.760.9042

ORACLE (L=1) 36.53/0.9606 36.25/0.9694 | 35.16/0.9680 | 37.19/0.9773 36.64/0.9573 37.24/0.9713 | 34.14/0.9651 37.62/0.9646 36.86/0.9725 35.78/0.9610 36.3470.9667

ORACLE (L=4) 37.09/0.9645 37.09/0.9750 | 36.33/0.9754 | 37.73/0.9817 37.55/0.9631 37.83/0.9767 | 35.44/0.9735 38.24/0.9700 37.78/0.9782 36.91/0.9679 37.20/0.9726

SB [4] 27.57/0.8447 27.57/0.8042 | 26.86/0.7899 | 28.16/0.8857 28.77/0.8420 29.31/0.8610 | 26.21/0.7853 29.87/0.8957 27.99/0.8333 27.37/0.7425 27.97/0.8284

MDAL [13] 29.12/0.8661 28.49/0.8368 | 27.27/0.8038 | 29.39/0.9105 30.21/0.8548 29.92/0.8836 | 26.67/0.8092 31.10/0.9069 28.90/0.8585 28.05/0.7643 28.91/0.8495

IDD-BM3D [24] 29.65/0.8675 29.06/0.8510 | 27.58/0.8215 | 30.30/0.9144 30.47/0.8564 31.01/0.8880 | 30.370.8940 30.93/0.8974 29.67/0.8698 28.34/0.7784 29.73/0.8638
8 | IDD-BM3D+SDSR (L=1) 30.37/0.8879 29.81/0.8707 | 28.27/0.8466 | 31.19/0.9322 | 31.24/0.8736 31.570.9084 29.62/0.8961 32.07/0.9151 30.48/0.8906 28.85/0.7992 30.340.8820 |
| IDD-BM3D+SDSR (L=4) 30.39/0.8887 29.68/0.8685 | 28.20/0.8438 | 31.02/0.9318 31.19/0.8727 31.490.9095 30.260.8982 32.10/0.9168 30.35/0.8881 28.82/0.7981 30.350.8816 |

ORACLE (L=1) 34.53/0.9509 34.14/0.9569 | 33.05/0.9553 | 35.20/0.9701 34.71/0.9442 35.12/0.9608 | 31.66/0.9484 35.61/0.9552 34.90/0.9620 33.86/0.9461 34.28/0.9550

ORACLE (L=4) 35.22/0.9575 35.23/0.9672 [ 34.37/0.9676 | 35.88/0.9772 35.83/0.9547 35.80/0.9695 | 33.24/0.9632 36.31/0.9641 35.97/0.9714 35.18/0.9575 35.30/0.9650

TABLE T

THE COMPARISON OFPSNR OB) AND SSIMRESULTS OF OUR PROPOSEIDD-BM3D+SDSRTOGETHER WITH DIFFERENT
ALTERNATIVE METHODS. BOLD VALUES DENOTE THE HIGHESTPSNROR SSIMVALUES EXCLUDING THE ORACLE CASES

THE COMPARISON OF SUPPORT DETECTION ACCURACY RATHHE PSNR
AND SSIMRESULTS OF EACH STAGE WHEN THE INITIAL REFERENCE
IMAGE IS PRODUCED BYIDD-BM3D, CSRAND GSR,RESPECTIVELY

THE DECOMPOSITION LEVELL = 1.

THE COMPARISON OF SUPPORT DETECTION ACCURACY RATEHE PSNR
AND SSIMRESULTS OF EACH STAGE WHEN THE INITIAL REFERENCE
IMAGE IS PRODUCED BYIDD-BM3D, CSRAND GSR,RESPECTIVELY

Image name (Scenario)| Initial method Accuracy rate (1st stage)| Accuracy rate (2nd stage)| Image name (Scenario)| Initial method Accuracy rate (1st stage)| Accuracy rate (2nd stage)|
DD-BM3D 81.67% (29.02/0.8713) 81.95% (29.04/0.8726) IDD-BM3D 78.61% (29.04/0.8722) 79.13% (29.07/0.8744)
Cameraman (3) TSR 80.86% (28.96/0.8744) 81.99% (29.02/0.8751) Cameraman (3) TSR 77.91% (29.09/0.8758) 79.28% (29.12/0.8769)
GSR 80.44% (28.80/0.8718) 81.51% (28.83/0.8728) GSR 77.12% (28.87/0.8728) 78.74% (28.91/0.874T)
IDD-BM3D 81.22% (29.54/0.9130) 81.54% (29.59/0.9138) IDD-BM3D 78.06% (29.52/0.9136) 78.55% (29.63/0.9159)
Monarch (3) TSR 79.94% (29.55/0.9139) B1.17% (29.63/0.9143) Monarch (3) TSR 77.15% (29.62/0.9158) 78.21% (29.65/0.9161)
GSR 80.63% (29.26/0.9150) 81.24% (29.42/0.9161) GSR 77.63% (29.42/0.9162) 78.31% (29.49/0.9184)
IDD-BM3D 85.65% (31.80/0.9234) 85.97% (31.85/0.9244) IDD-BM3D 82.08% (31.80/0.9242) 82.72% (31.93/0.9267)
Parrots (5) CSR 84.39% (32.07/0.9236) 86.02% (32.18/0.9249) | Parrots (5) CSR 80.63% (32.20/0.9267) 82.84% (32.2710.9280)
GSR 85.67% (31.51/0.9218) 85.95% (31.68/0.9242 GSR 82.16% (31.71/0.9248) 82.80% (31.79/0.9271)
IDD-BM3D 82.94% (31.53/0.9146) 83.17% (31.59/0.9149) IDD-BM3D 80.09% (31.62/0.9147) 80.49% (31.67/0.9168)
Lena (5) CSR 81.69% (31.54/0.9147) 83.21% (31.57/0.9157) Lena (5) CSR 78.79% (31.64/0.9166) 80.60% (31.71/0.9179)
GSR 83.30% (31.48/0.9150) 83.45% (31.60/0.9180) GSR 80.53% (31.63/0.9176) 80.77% (31.73/0.9202)

ABLE IV ABLE V

THE DECOMPOSITION LEVELL = 4.

outperforms the IDD-BM3D, CSR and GSR in terms of imagis easy to see that the s&t in (7) contains all the frame
deblurring. coefficients and the truncated model degrades to plaif
Finally, we would like to show the part of the total permodel, two scenarios of deblurring experiments are corlict
formance improvement gained solely by support detectionith various kernels and noise variances, i.e., scenarind3 a
We tried two cases. The first one is to solve a commign scenario 5 in Table Il. Only the PSNR and SSIM results of
model and the second one is to solve a truncdtedodel. proposed IDD-BM3D+SDSR(L=4) are shown here, since the
Both are non-convex models and when we solve them, tbther cases have the similar conclusions. Then we choose to
same initial points are used, i.e., we both use the resusist fix p = 250 and we will obtain a truncate€ model. From
of BM3D as the initial points. Specifically, we first choosé@able VI, we can observe that considerable improvements are
to fix p = 1 in order to focus on the contributions due tachieved by the proposed SDSR algorithm wjth= 250
support detection. Whep = 1 in our SDSR algorithm, it compared top = 1. Such a performance gain demonstrates
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Scenario Method C.man| Boat Man Monarch | Peppers| Lena | Barbara | Parrots | Starfish | Goldhill | Average

2854 | 28.06 | 26.55 29.04 29.62 29.71 27.99 29.98 28.35 27.92 28.58

IDD-BM3D [24] 0.8586 | 0.8219 | 0.7799 | 0.9034 | 0.8427 | 0.8658 | 0.8227 | 0.8914 | 0.8321 | 0.7526 | 0.8371

SR 128] 7853 | 2840 | 2690 | 29.05 | 2963 | 2001 | 27.96 | 3055 | 28.83 | 27.88 | 28.76

0.8563 | 0.8297 | 0.7924| 08970 | 0.8403 | 0.8655| 0.8214 | 0.8883 | 0.8469 | 0.7607 | 0.8399

GSR [29] 7808 | 28.27 | 26.66 | 28.99 | 2966 | 30.10 | 28.95 | 3040 | 2856 | 27.96 | 28.78

0.8538 | 0.8316| 0.7887 | 09074 | 0.8484 | 0.8772| 0.8488 | 0.8923 | 0.8407 | 0.7602 | 0.8449

5 DD-BM3D-SDSR (L=1) | 2004 | 2854 | 2698 | 2950 | 30.02 | 3005 | 2810 | 3024 | 2884 | 2830 | 2897

0.8726 | 0.8402 | 0.7998 | 0.9138 | 0.8544 | 0.8752| 0.8291 | 0.8982 | 0.8492 | 0.7712 | 0.8502

29.07 | 28.58 | 26.97 29.63 30.06 30.10 28.17 30.36 28.81 28.32 29.00

IDD-BM3D+SDSR (L=4) | (5744 | 0.8410 | 0.7993| 0.9159 | 0.8553 | 0.8771| 0.8316 | 0.9001 | 0.8484 | 0.7722 | 0.8513

29.02 | 28.74 | 27.17 29.63 30.13 30.29 28.11 30.81 29.26 28.33 29.15

CSR+SDSR (L=1) 0.8751 | 0.8477| 0.8067 | 0.9143 | 0.8565 | 0.8802 | 0.8309 | 0.9019 | 0.8611 | 0.7773 | 0.8551

29.12 | 28.50 | 27.00 29.65 30.16 30.35 28.17 30.95 29.28 28.35 29.15

CSR+SDSR (L=4) 0.8769 | 0.8409| 0.8019| 0.9161 0.8576 | 0.8823 | 0.8331 | 0.9051 | 0.8612 | 0.7778 0.8552

28.83 | 28.73 | 27.07 29.42 30.01 30.32 28.83 30.61 29.01 28.32 29.11

GSR+SDSR (L=1) | 5798 | 0.8464 | 0.8046| 0.9161 | 0.8569 | 0.8825| 0.8493 | 0.9015 | 0.8549 | 0.7751 | 0.8558

2891 | 28.75 | 27.07 29.49 30.07 30.39 28.97 30.77 29.00 28.35 29.17

GSR+SDSR (L=4) | 58741 | 0.8473| 0.8042| 0.9184 | 0.8583 | 0.8848 | 0.8518 | 0.9040 | 0.8542 | 0.7754 | 0.8571

28.10 | 28.73 | 27.83 30.90 29.97 31.41 27.08 31.55 30.36 28.18 29.41

IDD-BM3D [24] 0.8687 | 0.8528| 0.8441| 0.9380 | 0.8799 | 0.9089 | 0.8205 | 0.9179 | 0.8924 | 0.7787 | 0.8702

e —— 2827 | 29.07 | 27.98 | 3036 | 3017 | 3123 | 27.80 | 31.76 | 3007 | 2797 | 29.56

0.8554 | 0.8605| 0.8501| 0.9226 | 0.8670 | 0.8970 | 0.8257 | 0.9054 | 0.8980 | 0.7760 | 0.8658

GSR [29] 3777 2864 | 2758 | 3029 | 3020 | 347 | 2826 | 3140 | 30.19 | 28.06 | 29.39

0.8666 | 0.8557 | 0.8427 | 0.9357 | 0.8793 | 0.9135| 0.8436 | 0.9179 | 0.8900 | 0.7793 | 0.8724

5 DD-BM3D+SDSR (L=1) | 2536 | 2908 | 2812 | 3L34 | 30.4 | 3L50 | 2722 | 3L8 | 3083 | 2831 | 2968

0.8781 | 0.8641| 0.8543 | 0.9442 0.8862 | 0.9149 | 0.8245 | 0.9244 | 0.9019 | 0.7876 0.8780

28.42 | 29.12 | 28.14 31.37 30.27 31.67 27.26 31.93 30.91 28.34 29.74

IDD-BM3D+SDSR (L=4) 0.8796 | 0.8661 | 0.8551 | 0.9466 0.8867 | 0.9168 | 0.8272 | 0.9267 | 0.9039 | 0.7882 0.8797

28.60 | 29.27 | 28.15 30.92 30.73 31.57 27.92 32.18 31.56 28.25 29.92

CSR+SDSR (L=1) | 8810 | 0.8697 | 0.8567 | 0.9442 | 0.8868 | 0.9157 | 0.8363 | 0.9249 | 0.9126 | 0.7893 | 0.8817

28.63 | 29.20 | 28.03 31.01 30.75 31.71 27.97 32.27 31.62 28.27 29.95

CSR+SDSR (L=4) | 18828 | 0.8696 | 0.8551 | 0.9437 | 0.8873 | 0.9179| 08392 | 0.9280 | 0.9140 | 07899 | 0.8827

28.08 | 29.00 | 27.92 30.67 30.54 31.60 28.23 31.68 30.77 28.23 29.67

GSR+SDSR (L=1) | 5756 | 0.8652 | 0.8527 | 0.9431 | 0.8862 | 0.9180 | 0.8441 | 0.9242 | 0.9019 | 0.7869 | 0.8798

28.17 | 29.03 | 27.96 30.81 30.59 31.73 28.30 31.79 30.85 28.26 29.75

GSR+SDSR (L=4) 0.8776 | 0.8676 | 0.8544 | 0.9447 0.8872 | 0.9202 | 0.8471 | 0.9271 | 0.9038 | 0.7879 0.8818

TABLE TN
THE COMPARISON OFPSNR OB) AND SSIMRESULTS BY OUR PROPOSEDDD-BM3D+SDSR, CSR+SDSRAND GSR+SDSR
TOGETHER WITH DIFFERENT ALTERNATIVE METHODS BOLD VALUES DENOTE THE HIGHESTPSNROR SSIMVALUES.

Image name (Scenario p=1 p = 250 . ..
Cameraman (3) | 28.16/0.8552| 29.07/0.8744 G. Algorithm Stability
Camefa“;]a?g)@ g;-z‘zg-ggig gg-ggﬁg-gzgg Since the objective function (7) is non-convex wiffi
onarc . . . . P . . . .
Monarch (5) 59620 93361 31.37/0 9466 known, it is difficult to give its theoretlcal pr.olof for .globa
Lena (3) 28.91/0.8560| 30.10/0.8771 convergence. Here, we only provide the empirical evideace t
P'-e”at (5()3) gg-ggﬁg-gggg g(l)-ggg-gég? illustrate the stability of the proposed SDSR algorithnguFe
arrots . . . . . . .
Parrots (5) 30-80/0. 91971 31.93/0.9767 12 plots the evolutions of PSNR versus iteration numbers. It
TABLE VI is observed that with the growth of iteration number, all the

THE PSNRVALUE AND SSIMVALUE OF IDD-BM3D+SDSR(L=4)WHEN  PSNR curves increase monotonically and ultimately become

THE PARAMETERp = 1 AND p = 250. THE SCENARIOS ARE3 AND 5, [ "
RESPECTIVELY THE DECOMPOSITION LEVEL ISL — 4. fIat;mld stable, exhibiting good stability of the proposeS8D
model.

o ) ) VI. CONCLUSIONS AND FUTURE WORK
that the significant improvement of SDSR algorithm can be

achieved only owning to the truncation of the original
model.

Image deblurring is a fundamental topic in image process-
ing and computer vision fields. In this paper, we propose
the wavelet frame based support driven sparse regulanzati
(SDSR) model. The partial support information of frame
coefficients is self-learned and incorporated into thedated
¢y quasi-norm frame-based model. To attain reliable support
This section will give the detailed description about howet, the results of the state-of-the-art image restoratiethods
sensitive the performance of the proposed algorithm istdte are used as the initial reference image for support detectio
by p. In order to investigate the sensitivity of the parametdtxperimental results demonstrated that the SDSR method
p for the performance, the curves of PSNR and SSIM valuestperforms the other state-of-the-art competing methtks
versus thep choices are presented in Figure 10 and Figukey component of the proposed SDSR model is the support
11, respectively. We can observe that the proposed SD8&imation of frame coefficients. The possible future work
algorithm is very robust to the parameter along the same research line is to develop more effective

F. Effect of the parametey
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Fig. 8. The comparison of support maps (the first row and third rovig. 9. The comparison of support maps (the first row and third row,
which are obtained by directly inverse wavelet frame tramsfto the which are obtained by directly inverse wavelet frame trammsfto the
support detection) and back projection results (the secondand support detection) and back projection results (the secondand
fourth row, which are obtained by only reserving the largevelet fourth row, which are obtained by only reserving the largevelet
frame coefficients to the original true image at the suppmrations) frame coefficients to the original true image at the suppmrations)
via different initial methods; IDD-BM3D method (first colurjy CSR via different initial methods , IDD-BM3D method (first colurj CSR
method (second column), GSR method (third column) and ORACLmethod (second column), GSR method (third column) and ORACL
true imgae (fourth column). Scenario: 3. The decompositeel true imgae (fourth column). Scenario: 5. The decompositevel
L=1. L =4.

Evolution of PSNR in the case of Scenario: 3, Level: 1 Evolution of PSNR in the case of Scenario: 3, Level: 4

support detection methods and extend SDSR to other imac ..

precessing tasks.
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Fig. 4. Visual quality comparison of image deburring results on gmaCameraman (256 x 256). From left to right
and top to bottom: original image, degraded image (ScenaB) the recovered image by SB [4] (PSNR=26.74;
SSIM=0.8335), MDAL [13] (PSNR=27.64; SSIM=0.8545), IDOVBD [24] (PSNR=28.54;SSIM=0.8586), CSR [28]
(PSNR=28.53;SSIM=0.8563), GSR [29] (PSNR=28.28;SS1M588), Our proposed IDD-BM3D+SDSR(L=1) (PSNR=29.04;SSIM726),
IDD-BM3D+SDSR(L=4) (PSNR=29.07;SSIM=0.8744), CSR+SIISRL) (PSNR=29.02;SSIM=0.8751), CSR+SDSR(L=4)
(PSNR=29.12SSIM=0.8769, GSR+SDSR(L=1) (PSNR=28.83;SSIM=0.8728), GSR+SDSRjL= (PSNR=28.91;SSIM=0.8741),
ORACLE(L=1) (PSNR=35.02;SSIM=0.9551), ORACLE(L=4) (PB#&B6.33;SSIM=0.9575). Bold values denote the highest PSNR
or SSIM values excluding the ORACLE cases.
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Fig. 5. Visual quality comparison of image deburring results on dgmaParrots (256 x 256). From left to right and top

to bottom: original image, degraded image (Scenario 3), teeovered image by SB [4] (PSNR=30.31; SSIM=0.9163),
MDAL [13] (PSNR=29.96; SSIM=0.9180), IDD-BM3D [24] (PSNR%.55; SSIM=0.9179), CSR [28] (PSNR=31.76;
SSIM=0.9054), GSR [29] (PSNR=31.40;SSIM=0.9179), Our ppsed IDD-BM3D+SDSR(L=1) (PSNR=31.85;SSIM=0.9244),
IDD-BM3D+SDSR(L=4) (PSNR=31.93;SSIM=0.9267), CSR+S[ISAL) (PSNR=32.18;SSIM=0.9249), CSR+SDSR(L=4)
(PSNR=32.27SSIM=0.928), GSR+SDSR(L=1) (PSNR=31.68;SSIM=0.9242), GSR+SDSRjL= (PSNR=31.79;SSIM=0.9271),

ORACLE(L=1) (PSNR=36.86;SSIM=0.9669), ORACLE(L=4) (PB#&B8.36;SSIM=0.9717). Bold values denote the highest PSNR
or SSIM values excluding the ORACLE cases.



IEEE TRANSACTIONS ON IMAGE PROCESSING 14

Fig. 6. The zoom in visual comparisons corresponding to Fig 4. Frefntb right and top to bottom: IDD-BM3D, Proposed IDD-
BM3D+SDSR(L=1), IDD-BM3D+SDSR(L=4), CSR, Proposed CSRER(L=1), CSR+SDSR(L=4), GSR, Proposed GSR+SDSR(L=1),
GSR+SDSR(L=4).
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Fig. 7. The zoom in visual comparisons corresponding to Fig 5. Frefhtb right and top to bottom: IDD-BM3D, Proposed IDD-
BM3D+SDSR(L=1), IDD-BM3D+SDSR(L=4), CSR, Proposed CSRER(L=1), CSR+SDSR(L=4), GSR, Proposed GSR+SDSR(L=1),
GSR+SDSR(L=4).



