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Abstract

The Growing Hierarchical Self-Organizing Map (GHSOM) algorithm has
shown its potential for performing several tasks such as exploratory anal-
ysis, anomaly detection and forecasting on a variety of domains including
the financial and cyber-security domains. GHSOM is a dynamic variant of
the SOM algorithm which generates a multi-level hierarchy of SOM maps
based solely on input data. However, in order to generate this multi-level
structure, GHSOM requires multiple iterations over the input dataset, thus
making it intractable on large datasets. Moreover, the conventional GHSOM
algorithm is designed to handle datasets with numeric attributes only. This
represents an important limitation as most modern real-world datasets are
characterized by mixed attributes - numerical and categorical. In this work,
we propose an extension of the conventional GHSOM algorithm called Spark-
GHSOM, which exploits the Spark platform to process massive datasets in a
distributed manner. Moreover, we leverage a method known as the distance
hierarchy approach to modify the optimization function of GHSOM so that
it can (also) coherently handle mixed-attribute datasets. We test our new
method with respect to accuracy, scalability and descriptive power. The re-
sults obtained using different datasets demonstrate the superior predictive
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and descriptive capabilities of Spark-GHSOM, as well as its applicability to
large-scale datasets which could not be analyzed before.

Keywords: GHSOM, Self-Organizing Map, Clustering, Distributed, Big
Data

1. Introduction

The Self-Organizing Map (SOM) [27] is a neural-network-based clustering
and data analysis algorithm that operates by mapping high-dimensional in-
put data onto a 2-dimensional space implemented by a grid of neurons called
a feature map. The shape and number of neurons in the feature map need
to be established prior to training the SOM. This is difficult when nothing
is known about the underlying dataset. Furthermore, hierarchical relations
within the dataset cannot be identified when using conventional SOM, as
they appear in the same feature space.

The Growing Hierarchical Self-Organizing Map (GHSOM) was proposed
in [11] to overcome these limitations. The GHSOM corresponds to a mul-
tilevel tree-like architecture that consists of individual SOMs. The size of
each SOM layer adapts to the data incident on it. This way, the hierarchical
structure of the GHSOM provides a zooming capability: starting from the
first map which represents the complete data, one can zoom into the next
hierarchical layer to see the finer details of the dataset. Thus, the GHSOM
has the capability to grow horizontally to adapt to the underlying dataset as
well as to expand vertically to provide details at finer levels of granularity.
The GHSOM has been successfully used in many applications such as ex-
ploratory analysis [39], knowledge representation in the legal field [42] [45],
financial diagnosis [43], financial fraud detection [51, 20], network anomaly
detection [10] and product demand forecasting [31].

One shortcoming of the GHSOM is the fact that it can only process
numerical attributes. Yet, many real world datasets contain a mixture of
numerical and categorical attributes. This is not a trivial problem since
handling categorical attributes along with numerical ones would require new
optimization functions that coherently consider any type of attributes so that
no bias related to the attribute type is introduced in the learning phase. A
second, and probably even more limiting, problem is that GHSOM involves
multiple passes over the input dataset. This makes it intractable on large
datasets if applied sequentially on a single machine.



We overcome these limitations by introducing a new optimization function
based on the distance hierarchy, originally presented in [19]. The approach
provides a uniform method for handling both the numeric and categorical
components of a mixed attribute dataset. Our second contribution is a new
and distributed version of the GHSOM algorithm, called Spark-GHSOM,
which is capable of analyzing massive datasets representing real-world use
cases. This was achieved by formulating the two dimensional and hierarchi-
cal growth processes in terms of Spark’s map and reduceByKey functions.
Combining our two contributions, we propose a new hierarchical clustering
algorithm able to process large data sets composed of both numeric and
categorical attributes accurately and efficiently.

The paper is structured as follows: in Section 2 we briefly review ex-
isting work related to this paper. Section 3 introduces background notions
necessary for the description of our work along with the original GHSOM
algorithm. In Section 4, we propose and describe our distributed Spark-
GHSOM algorithm. In Section 5,we describe our experimental evaluation
method and present the results obtained in these experiments. Specifically,
the results show that our method is able to make accurate predictions and is
efficient when dealing with massive data sets. Section 6 concludes the paper
and suggests new directions for future work.

2. Related work and contribution

In the literature, there is always significant interest in new algorithms for
learning SOMs, mainly due to their versatility in different tasks and fields.
For example, the authors in [16] exploit the characteristic of SOMs to preserve
the topological properties of the input data, to generate a set of uniformly dis-
tributed weight vectors, which can be integrated with decomposition-based
algorithms tailored for solving many-objective optimization problems. SOMs
are also powerful in data collection and exploration tasks. [12] exploits SOMs
as an autonomous data collection tool from predeployed sensors, applying it
to the traveling salesman problem. [40] implements SOMs in a time series
analysis framework, which supports the analyst with data exploration, clus-
ter visualization, and pattern identification capabilities. [1] exploits SOMs
in combination with crisp sets as an efficient information retrieval system.
[7] addresses the problem of identifying complex spatio-temporal patterns in
groundwater data with SOMs. The proposed soft-computing methodology
is capable to display complex high-dimensional data sets into visible topo-



logical maps, which accurately represent the current status of groundwater
resources, providing a way for their future management. [36] adopts SOMs
to seek for non-linear and complex relationships in ecological data.

Lately, SOMs have also been exploited to support supervised learning
tasks. [50] accomplishes near-optimal classification of industrial polymer
species employing SOMs to separate polymers of different types, and then
using K-Means to separate polycarbonate and polystyrene. [4] proposes coali-
tions and complex network topologies for connecting the neurons within a
SOMs, which are then used to perform time series prediction tasks. [34]
focuses on rock penetrability classification exploiting Artificial Bee Colony
(ABC) and SOM algorithms. The study demonstrates that SOM can be of
valuable help also in classification tasks. [55] exploits SOMs for modeling
the operating conditions of an industrial process reflected by available aux-
iliary signals. The Best Matching Unit is subsequently fed in a neuro fuzzy
inference system tailored for forecasting tasks.

All these recent works, are directly related to our paper for multiple
reasons: the analysis of spatio-temporal and sensor data, the adaptation to
the analysis of time series and the usage of SOMs for supervised learning
tasks. These aspects, have been considered in our paper because of the
different tasks presented in Section 5.

In the remaining part of this section we focus on works that are sim-
ilar to ours from a methodological viewpoint. Specifically, we first discuss
some works which extend GHSOM in the direction of managing mixed types
of attributes and then mention some works that provide distributed imple-
mentations of SOM (there is no work, to the best of our knowledge, which
proposes a distributed implementation of GHSOM).

2.1. Eztending GHSOM for Mized Attributes

The original GHSOM algorithm is applicable to datasets with numeric
attributes only. One of the most popular and naive approaches for extending
an algorithm to mixed attribute domains is One Hot Encoding. In this ap-
proach, categorical attributes are transformed into a set of binary attributes,
where the number of binary attributes created is equal to the number of
discrete values in the domain of the categorical attribute. After the trans-
formation, all binary attributes are treated as numerical attributes and the
dataset can be processed normally. However, the resulting dataset has an
increased dimensionality which results in high computational complexity of
the learning phase. Moreover, the transformed dataset is very sparse and
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an addition of a new value to the domain of categorical attributes needs a
change in schema of the dataset.

Another popular approach is Simple Matching in which two categorical
values have a distance of 0 if they are the same, 1 otherwise. This approach,
has been originally used in k-modes [22] and k-prototypes [21] algorithms,
which are variants of the k-means clustering algorithm for handling cate-
gorical and mixed-attribute datasets, respectively. For updating the cluster
centres in the variants of k-means algorithm, a frequency-based approach has
been adopted. The value of the j¥ categorical attribute of a cluster centre
is set to the most frequent value of the j** attribute for the instances in that
cluster. Following this initial research, a similar simple matching approach
for dealing with categorical attributes in the SOM training has been pro-
posed in NCSOM [8]. In this work, however, the computed distances are not
fractional (i.e. they are either 0 or 1, with no intermediate values). This
inevitably leads to a loss in precision.

Tai et al. [49] address the problem of clustering mixed attributes datasets
by devising a distance measure which considers information embedded in con-
cept hierarchies, to properly find similarities between the data instances and
neurons. Alternatively, SCM models [13] have been proposed to address sym-
bol strings clustering by extracting a lattice of nodes on a 2D map. Each
node of the SCM is associated with a symbol string and a weight vector.
TCSOMs [18] have been proposed for clustering transaction data with cat-
egorical attributes. Differently from SOMs, the update phase involves only
the winner neuron. Similarly, [29] proposes a distance measure which takes
information embedded in concept hierarchies into consideration for cluster-
ing transactional data. The major drawbacks of these methods, however, is
that they typically focus on a specific data type, and none of them addresses
the large-scale data clustering issue, thus resulting ineffective with real world
massive datasets.

Hsu [19] proposed a distance hierarchy method for handling categorical
attributes in serial SOM. This variant of SOM was called GSOM (Gener-
alized Self Organizing Map). The approach extends the concept hierarchy
technique [17] by giving weights to the links. It provides a method for cal-
culating the distance between mixed, numeric and/or categorical data in a
uniform manner. This is accomplished by mapping the values to the distance
hierarchy of attributes and calculating their distance in the hierarchies. The
distance hierarchy approach provides a better representation of the simi-
larities or dissimilarities between the categorical values. For example, if we



consider a categorical attribute of Drink with values Mocha, Expresso, Pepsi,
Coke, Mocha and Expresso (types of coffee) are more similar to each other
than Mocha when compared with Pepsi (carbonated drink). Obviously, to
compute the distance between such categorical values, a distance hierarchy
for each categorical attribute must be provided in advance. Similar values
according to the concept hierarchy are placed under a common parent (Coffee
or Carbonated Drink) which represents an abstract concept. This work, al-
though relevant for the study reported in our paper because we use the same
distance hierarchy, does not propose to learn Hierarchical Self-Organizing
Maps and learning is not distributed.

2.2. Distributed Implementations of SOM

There are different recent works involving SOM and GHSOM. Some ap-
proaches tackle the issue of treating categorical data, while others propose
distributed implementations.

The work in [54] presents a MapReduce variant of SOM implemented on
the Hadoop framework. The number of key-value pairs shuffled from the
map to the reduce task is equal to n -k, where n is the total number of input
instances and k is the number of neurons in the layer. This algorithm does
not use the concept of combiner, which would greatly reduce the number of
key-value pairs transmitted over the network.

The authors in [48] overcome the limits of the serial SOM algorithm ex-
ploiting an MPI implementation (Message-Passing Interface) called MapReduce-
MPIT to distribute the SOM training process in a cluster environment. How-
ever, these approaches are implemented in MapReduce, which presents the
limitation of iterative disk spill of data partitions, which reduce the efficiency
of the computation [44].

The study in [41] is the first attempt to implement the SOM algorithm in
Apache Spark. In the paper, the authors propose two implementations: the
first one is similar to the one mentioned in [54] where the number of key-value
pairs generated is n - k, where n is the total number of input instances and
k is the number of neurons in the SOM layer. In the second algorithm, the
output of the mapper task is a matrix constituted by rows of input vectors
multiplied by the neighborhood factor and a neighborhood vector consisting
of the neighborhood factors. The size of the matrix is k - n where k is the
number of neurons and n is the number of input vectors, while the size of
neighborhood vector is equal to the number of neurons.



All the papers mentioned do not tackle the problem of treating categorical
data. Moreover, they can only learn SOM models and not a hierarchy of
models as in the GHSOM algorithm. In fact, to the best of our knowledge,
a distributed implementation of GHSOM has never been proposed in the
literature.

Other variants of SOM and GHSOM tackle the problem of mixed at-
tributes, but they are capable to work only on a single machine (see, for
instance [19] [8]), therefore, they are limited in terms of amount of data that
can be processed.

This paper makes two contributions to the existing literature: 1) it pro-
poses a distributed implementation of hierarchical SOM; and 2) it proposes
an implementation for handling mixed attributes in the hierarchical context.

The former, performs all training steps exploiting map and reduce trans-
formation functions in Apache Spark. Particular effort has been put to
exploit data locality where possible, thus performing local aggregations on
worker nodes, minimizing network communication costs and computational
load on the driver node.

The latter, leverages the distance hierarchy approach to modify the opti-
mization function of GHSOM in order to coherently handle mixed-attribute
datasets during the step of SOM adaptation. Moreover, the distance hierar-
chy approach has been exploited as a distance measure between an instance
and a neuron in a SOM, required for the identification of the winner neuron
during the training process.

The same measure has been also profitably exploited for predictive pur-
poses as discussed in Section 5, where we evaluate the accuracy of our algo-
rithm in regression and forecasting tasks, also focusing on industrial problems
of practical importance, such as energy forecasting.

Moreover, a qualitative evaluation has been carried out, which demon-
strates the usefulness of the proposed algorithm for data exploration tasks.
Finally, the efficiency of the algorithm has been assessed with a scalability
evaluation.

3. Background: Growing Hierarchical Self-Organizing Map (GH-
SOM)

In this section, we provide a brief theoretical background of the SOM
and the GHSOM algorithms. A SOM layer consists of a grid of neurons



where each neuron is associated with a weight vector. The training of the
SOM involves two basic steps. In the first step, an instance is provided to
the SOM and the neuron with the shortest distance from the input instance
is selected as the winner neuron. In the next step, the winner neuron and
its surrounding neighbor neurons are adapted towards the input instance.
This training process requires a defined number of iterations over the input
dataset called epochs.

The GHSOM extensively uses a metric called the Mean Quantization
Error (MQE) [39] [32]. The MQE of a neuron is the total deviation of
the neuron from its mapped input instances, whereas the MQFE for a SOM
layer is the average M QF of all the neurons representing instances. For the
GHSOM training, first, the MQFE of the level-0 neuron, mqgeq is calculated
with respect to all the input instances. The first neuron map is created at
level-1 consisting of 2 x 2 neurons. This level-1 map is trained using the
conventional SOM training process. After the training is complete, the map
is analyzed and the MQF for the map MQE,, is computed. A higher value
of the MQE,, signifies that the map m does not represent the input data well
and requires more neurons to better represent the input domain. Formally,
this is governed by Equation 1 (T, criterion):

MQE,, <t -mgey, with 0 <1 <1 (1)

where, mge, is the MQE of the parent neuron from which this map m is
expanded. The map grows until the condition in Equation 1 is satisfied. To
grow the map, the neuron with the highest MQFE is identified as the error
neuron e. Then, its most dissimilar direct neighboring neuron d is selected
and a new row or column of neurons is inserted into the grid between e and d.
The vectors of these new neurons are initialized as the average of the weight
vectors of their corresponding adjacent neighbors. This process produces an
updated (grown) layer, which is then trained and analyzed again. These
iterations of growth and training continue until the T, criterion is satisfied.

Once the T, criterion is satisfied, each neuron in the map is analyzed
according to the criterion in Equation 2 (15 criterion):

mqey, < Ty - mqeg, with 0 < 1o < 1. (2)

The neurons which do not satisfy the Ty criterion are expanded into new
maps at the next level of hierarchy. These new maps undergo the same



process of training, growth and hierarchical expansion as the level-1 map.
The training of the GHSOM stops when all the neurons in the lowest level
maps satisfy Equation 2. The resulting GHSOM structure thus contains
multiple SOM layers arranged in a hierarchy with each SOM representing
the data at a finer granularity than its parent layer.

4. Method

In this section we discuss how we redesigned the GHSOM algorithm in
order to process mixed attributes datasets and to distribute the computation.
For the first aspect, the main difficulty comes from the computation of a
hierarchical distance function which can be used to modify the optimization
function of GHSOM. For the second aspect, the main difficulty comes from
the implementation, using the Spark framework, of the adaptation of the
SOM, where several partial updates have to be efficiently combined to reach
a complete adaptation of the SOM from epoch to epoch.

4.1. Extending the GHSOM algorithm for mized attributes

The first step in the GHSOM algorithm is to compute the inherent dis-
similarity in the input data set indicated by mgey (mean quantization error
of the level 0 neuron). In fact, in the original GHSOM, to compute mge, for
the level-0 neuron, we need to compute the mean of all input vectors mg in
the dataset. We then compute the mean distance of the input vectors from
the mean vector to obtain the value of mgqey, which is defined as follows:

7 (3)

mqgeg = 1 Z Hmo - l‘(ﬂ')
n z(.)€Cn

where C), is the set of all n input instances, x(.; is the vector which
represents the ¢-th instance and mgey represents the overall dissimilarity in
the input dataset.

Extending this definition in order to deal with mixed attributes is not
straightforward because we have to replace the computation of the mgeg
with a measure that is valid for both numeric and categorical attributes.
The main problem is that there is no standard definition of mean for cate-
gorical attributes. For this reason, we replaced the mean quantization error
by variance and used it as a measure for assessing the quality of map and
neurons.



Variance, while being a valid way to compute the deviation in the in-
put (and more robust to outliers than mean quantization error), has also a
counterpart for categorical attributes. In fact, [24] states that, for categori-
cal attributes, “unalikeability” is a good measure to estimate the “variation
about mean” or, more precisely, how often the categorical values differ from
one another.

The coefficient of unalikeability for a categorical attribute [ is defined as:

w()= Y p(l-p) (4)
i€ Domain(l)
_ frequency(l;, Cy,)

where p; = , 1; is the i-th value of the attribute [ in its
n

domain and frequency(l;, C,) is the absolute frequency of [; for the attribute
lin C,,. This equation is similar (and inspired by) the “within data” variance
for continuous attributes defined as follows:

> (xiy — 2am)”

1 k:l(n2 — n) ) (5)

W) =1

n

where x(; ;) represents the value of attribute [ for the i-th instance. It can
be proved (see [15]) that with a simple shift of values of the attribute [ such
that the average mo = L3, 2¢; = 0, we have that W(l) = 2 - Var(l),
where Var(l) is the classical variance.

Formulae (4) and (5) represent deviation of input from the mean or a
reference, they are defined for categorical and continuous attributes (resp.),
they have an intuitive interpretation and, more importantly, they are com-
parable. Hence, we use variance as a measure of dissimilarity in place of the
mean quantization error in the GHSOM training. This means that the total
variance in the input data vary can be computed as:

L

varg = 3 (Tmmert. v ) 4 gestearat 220 ) (6)
=1

where, L is the number of input attributes, 17#merical() (yegp, Jcategorical(l))

is 1 if [ is numerical (resp. categorical), 0 otherwise.
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4.1.1. Using distance hierarchy in GHSOM for mized attributes

The following step in the GHSOM training process consists, according
to the competitive learning setting, in finding the winner neuron for each
input instance, i.e., the least distant neuron from the input instance. Both
simple matching and distance hierarchy techniques support this operation
for mixed attributes. In this work we adopt the distance hierarchy approach,
since it provides a uniform mechanism for handling numeric and categorical
attributes.

A distance hierarchy is a tree-like structure with a root and several leaves
as shown in Fig. 2. In the distance hierarchy, the value of an instance at-
tribute is represented by a point in the tree. A point X is represented by a
pair of (Nx,dx) where Nx is the anchor or the leaf symbol and dy is the
offset of the point from the root. Typically, the non-leaf points in the hierar-
chy represent neurons’ attributes while the leaf points represent the instance
attributes. During the SOM training, when we present an instance to the
neuron map, the neuron’s weight vector is adapted by a certain amount to
match the instance vector. In terms of distance hierarchy, when an instance
is presented, it pulls the neuron point towards its leaf.

mg

(a) Distance hierarchy for categorical (b) Distance hierarchy for numeric at-
attribute tribute

Figure 1: Distance hierarchy for the mixed attribute GHSOM

As stated earlier, training an individual SOM layer is a two step process.
In the first step we identify the winner neuron w(z(.;) for the instance (.,
at time ¢.

w(z() = arg mkin dist(z(.q), Mk (t)) (7)
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where dist(x(.;), m(.k(t)) is the distance between x(.; and neuron m. ) at
time ¢ using the distance hierarchy, which can be computed as:

I 1/2
dist(x(.,i), m(.7k) (t)) = (Z|dh<l, JJ(M)) — dh(l, TTL(UC) (t)) |2) (8)
=1

where, dh(l,z( ;) and dh(l,m(t)) represent the distance hierarchy map-
pings (for the hierarchy of the [-th attribute) of z(.; and my at time ¢ and
L is the number of attributes. That is, dh(l,za:)) = (Nay,,,ds,,,) and
dh(l,my(t)) = (Nm(l,k)(t)7 dm(l,k)(t))'

The difference, used in formula (8), between any two points X (= dh(l, x(,)))
and Y (= dh(l,mq(t))) in a distance hierarchy is computed using Equa-
tion 9.

L(1,9)

| X —Y|=dx +dy —2-dropx,y) 9)

where, X and Y represent distance hierarchy points, dy and dy represent
the offset of the points in the distance hierarchy and dpcp(x,y) is the offset
of the least common point of X and Y. LCP(X,Y) is defined as one of the
following:

1. either X or Y, if X and Y refer to the same point, or

2. X if X is an ancestor of Y, i.e. X lies on the path from the root to Y,
or

3. the least common ancestor of X and Y.

For example, with reference to Figure la, the distance for the attribute
Animal between my(t) and an instance for which the value of the attribute
"Animal" is "Dog', is 0.375 + 0.5 - 2 * 0.25 = 0.375. Here we assume
that the distance between every node and its parent node is 0.25 and that

dmyry = 0.375 or, in other terms, my(t) is in the middle between "Mammal'
and "Cat".

Once the winner w(x.;)) for each instance z(.; has been identified, it is
used to adapt the whole SOM at epoch t, where the SOM S can be repre-
sented by a matrix of neurons of size L (i.e., S(t) = {m kw)(t)} ks If we
represent as my. ;) (t) the neuron of size L in position k and k' of S, we have
that:
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where h(-,-) is defined as:

2
(1) @) _ ([k1 — ki| + |k — k3))
h(m(,’khk,l)(t),m("k%ké)(t)) = exp <_ )

20(t)?

and o(t) corresponds to the width of the neighborhood function:

U@:(W)_em( t <VRQ+02>> 12)

2 _numEpochs e 2

In formula (10) we have at the numerator the multiplication operation between
a scalar and a distance hierarchy point. This multiplication returns a new distance
hierarchy point where the node remains the same and the offset is the multiplica-
tion between the offset value of the distance hierarchy point by the neighborhood
factor.

To define the addition operation of two points in the distance hierarchy (used
in the summation of the numerator of (10)), we introduce the concept of a pliable
point. A pliable point P is a point in the distance hierarchy that moves along the
paths in the hierarchy as other points are applied to it. Initially, the location of P
is the root of the tree. Hence, the initial value of P is (Np,dp) where the value
of Np = Any and the value of dp = 0. The addition operation of two or more
distance hierarchy points can be considered as applying each point one after the
other to P and pulling P towards the anchor of the applied point. Formally, this
can be written as:

(Na,da+dp) if Na= Np
(NA,dA)@(NB,dB)Z (NA,dA—dB) if No# Np and dg > dp (13)
(NB,dB—dA) ifNA%NB and dg < dp

Similarly, for the division operation (used in (10)), we can divide the offset
value by the dividend value.
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Intuitively, during the adaption process, the distance hierarchy points for
the neurons move towards the respective leaf nodes of the input instance. Let
(Nas,dar) represent the mapping for the neuron M, (Nx,dx) be the mapping for
the instance X, P be the conceptual parent of X at an offset dp from the root and §
be the adaption amount of M towards X (formally, § = |m ) (t+1) =1 g 1) ()]
due to a single instance). Then, the following cases arise during adaption:

Case 1: When M is in the path between the root and X and P. If, after
adjustment dp; + d, M does not cross over P, then the new value M’ is
(Npr,dyr + 60). This is illustrated in Fig. 2a. The anchor of M does not
change.

Case 2: When M is in the path between the root and X and P. If, after
adjustment dy;+9, M crosses over P, then the new value M’ is (Nx, dp;+9).

This is illustrated in Fig. 2b. The anchor of M becomes equal to the anchor
of X s N, M = N X-

Case 3: When P is in the path between the root and M, M is in the path
between P and X (with (Ny; = Nx)), then the new value M’ is (Nx, dps+9).
This is illustrated in Fig. 2c. The anchor of M does not change (it is already
same as the anchor of X).

Case 4: When P is in the path between the root and M, M is not in the
path between P and X (Nj; # Nx) and M does not cross over P, then the
new value M’ is (Nys, dps — 6). This is illustrated in Fig. 2d. The anchor of
M does not change (Njs # Nx).

Case 5: When P is in the path between the root and M, M is not in the
path between P and X (Njp; # Nx) and M crosses over P, then the new
value M’ is (Nx,2dp — dp; + 60). This is illustrated in Fig. 2e. The anchor
of M changes to Nx.

Once the SOM has been trained, the growing process, which consists in the
addition of new rows and columns in the SOM, and the hierarchical growth, which
consists in the creation of new SOMs at a finer level of granularity, follow the
classical process of GHSOM described in Section 3.

In the next section, we formally present the distributed algorithms for Spark-
GHSOM.

4.2. Distributed Algorithms

In this section, we describe the algorithms for training Spark-GHSOM models,
adopting the Apache Spark distributed computing engine.
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X
(a) Case 1 (b) Case2 (c) Case3 (d) Case4 (e) Caseb

Figure 2: Distance hierarchy for the mixed attribute GHSOM

The map function is executed in parallel on the mapper nodes and emits an
output or a set of outputs for each input record. The reduceByKey function is
similar to the reduce() function in the conventional Map-Reduce. It works in a
distributed manner on reducer nodes and each reducer node is responsible for an
exclusive subset of keys. The reduce() function in Spark is an aggregation function
which combines all the input values and returns a single output, while the reduce-
ByKey function returns a single output per input key. The emit() function used in
the algorithms, indicate the output produced by the map() and reduce ByKey()
functions on a per input record or per key basis, respectively.

4.2.1. Complete distributed algorithm
Before the training takes place, the dataset is transformed as follows,

dataset(instance) —

dataset(parent_layer, parent__neuron, instance) (14)

This is important to maintain mapping information for the hierarchical
growth of Spark-GHSOM, since each spawned-off new layer is trained only
on the subsets of instances represented by the parent neuron.

Algorithm 1 outlines the Spark-GHSOM algorithm. The first step com-
putes the overall variance vary of the dataset. This can be done using a
simple iteration exploiting the map and reduce functions. Since we train
the SOM layers in a breadth-first manner, we maintain a queue to manage
these layers. Next, we transform the dataset as per Equation 14. Then we
start processing the SOM layers. We first filter out the instances for the cur-
rent layer. Then we train the individual SOM layer. We describe this SOM
training process in the next subsection. Once the SOM layer is trained, it is
evaluated for the T, criterion for two-dimensional growth (see Fig. 3). Once
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that criterion is satisfied, we evaluate each neuron for the hierarchical growth
using the T, criterion. Both growth processes can be achieved adopting the
map and reduce functions. Once we identified the neurons for hierarchical
expansion (see Fig. 4), we filter and map the associated instances to the
neurons (line 37).

4.2.2. Training of an individual SOM

A high-level algorithm for training an individual SOM is shown in Algo-
rithm 2. First, a 2 x 2 SOM layer is created. If this is the layer at level 1,
then the neuron weight vectors are initialized randomly. For any subsequent
levels, the layers can be initialized as a function of their parent neuron and
their neighbors. For this we used the approach mentioned in [6]. The train-
ing of the SOM involves a defined number of epochs over the dataset. Hence
before we start with the training, we cache the dataset in memory (Algo-
rithm 2, line 2). During each epoch, the neuron layer is broadcast to the
mapper nodes. The new weight vectors for the neurons (neuron_updates)
are computed in a map and reduce iteration. At the end of the epoch, the
neuron updates are collected at the driver. The driver updates the neuron
layer with the new weight vectors (see Formula (10)) and broadcasts it to
the mapper nodes for the next epoch.

Algorithm 3 shows a SOM training iteration using map and reduce func-
tions. The map function computes the numerator and the denominator of
(10). It emits a key-value pair, where key is the neuron identifier and value is
the computed numerator and denominator part. The reduce By K ey function
computes the updates by collating all the numerator and denominator parts
for each neuron efficiently, exploiting the data locality of the records with

the same key which are processed on the same node.
g
0
O

T30 oo
1ed

(a) Imsertion of a new row in a SOM (b) Insertion of a new column in a SOM
model model

Figure 3: Adding a new row or column between the error neuron and the most dissimilar
neighbor neuron
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Algorithm 1 Spark-GHSOM

1: function SPARK-GHSOM/(dataset, Ty, T2, epochs)

35:
36:
37:
38:
39:
40:

compute varg using map and reduce functions for Formula 6
parent__queue <— create queue to track parent layer and
neuron of current layer
parent__layer < 0 > For level-0 layer
parent__neuron < 0 > Only neuron in level-0 layer
parent__queue.enqueue(parent_layer, parent_neuron)
> for the first level layer
mapped__dataset < transform dataset as in Equation 14
curr__layer_id < 0
while parent_queue is not empty do
(curr__parent_layer, curr__parent_neuron) <
parent__queue.dequeue()
curr__dataset <+ filter instances from mapped__dataset for
current layer
curr__dataset.cache()
curr__layer < create a new layer of 2 X 2 neurons
curr__layer_id < curr_layer_id+ 1
is_2d__growth + false
repeat
train curr__layer SOM as in Algorithm 2
evaluate quality (variance) of curr_layer
if curr_layer does not satisfy 2-D growth T; crit. then
grow the layer
is_2d__growth < true
else
is_2d__growth < false
end if
until is_ 2d_ growth is true
expand_ neuron__set <— create empty set
for all neuron € curr_layer do
if neuron does not satisfy hier. growth Ty crit. then
add neuron to expand_neuron__set
parent__queue.enqueue(curr_layer__id, neuron.id)
end if
end for
mapped__dataset < associate instances to winner neurons
save the current SOM
curr__dataset.uncache()
end while

41: end function
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Figure 4: Hierarchical structure of a trained GHSOM model

Algorithm 2 Training of SOM

1: function SOMTRAIN(dataset RDD, neuron_ layer, numEpochs)
2: datasetRDD.cache()
3 initialize neuron_ layer
4: for current_epoch < 0,...,numEpochs do
5: neuron_updatesRDD < Adapt SOM from datasetRDD, neuron_ layer
/*(see Algorithm 3)*/
apply the updates neuron_updatesRDD to neuron_ layer
current__epoch < current__epoch + 1
end for
end function
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Algorithm 3 SOM Adaptation

1: function MAP(instance z, neuron_layer)
2 find the winning neuron w in the SOM layer for instance z
3 for all m € neuron_layer do
4 foralllel,...,L do
5: num__part[l] < h(w, m) - dh(l, z)
6: end for
T den__part < h(w,m)
8 emit(neuron.id, (num__part, den_part))
9 end for
10: end function

11: function REDUCEBYKEY (neuron_id,val_list =

[(num__part, den_part), . ..])
12: numerator < 0
13: denominator < 0
14: for all partial__update € val_list do
15: foralllel,...,L do
16: numerator|[l] < numerator[l] ® partial_update.num__part][l]
17: end for
18: denominator < denominator + partial__update.den__part
19: end for
20: updated__weight__vector < numerator - 1/denominator
21: emit(neuron_id, updated_weight_vector)

22: end function
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This section outlined the crucial distributed algorithms involved in the
training of the complete Spark-GHSOM. It also demonstrated how we lever-
aged the in-memory data processing capability provided by the Apache Spark
computing engine. In the next section we focus on the experimental results
obtained using Spark-GHSOM.

5. Empirical Evaluation

In this section, we describe our evaluation approach to assess Spark-
GHSOM from different perspectives (accuracy, scalability and descriptive
power of the models extracted) and we present the results obtained.

5.1. Accuracy evaluation

In order to assess quantitatively the accuracy of the models extracted by
our algorithm, we designed a predictive module which, once the model is
built using training data, is capable of assigning a prediction to unlabeled
instances at testing time.

Let G be a Spark-GHSOM model built using a training set Tr = {2 (.;) } )
G consists of a set of SOM models (G = {S(t) h1<t<numEpochs) €ach of which
defined as S(t) = {m kw)(t) } -

We represent winner neurons, namely, neurons which are chosen at least
once as best matching units during the training process, as a subset W of
all neurons in S. Formally, W is defined as W = {w| Im € S s.t. m =
w(z(q)) N € Tr} (w(-) is the function which returns the winner neuron).

During the training phase, when a training instance x(.; is processed, a
winner neuron m = w(x.;) is found in the current SOM S(t) considered:
it is then possible to assign a target attribute value x(, ;) (y is the index of
the target attribute) to m and keep track of any subsequent target attribute
assignments received by m using a vector V,,

At the end of the training process, each neuron m for the SOMs in G
might have an empty vector Vy, (if it has never been activated as winner
for any training instance) or a non-empty vector (|Vy,| >= 1), if it has been
activated at least once as winner. In the second case, we assign one definitive
target attribute value m, to m for each m € W, calculated as the average of
all assignments received during the training process:

[V

my = |Vm| 2 Vim (1)
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In the prediction phase, let Ts be the set of instances Ts = {x(. 4}, for
which the value of the (target) attribute y is unknown. Then, the prediction
for each instance in Ts can be done in the following way: for each instance
r(.; € Ts and for each SOM S(t), we find the closest neuron w(z(.;)) between
r(.; and all neurons m € S(t). If m = w(x;) has a target attribute
value assigned (according to formula (15)), we assign that value as potential
prediction to z(.;. Otherwise, we find the next closest neuron in the current
SOM S(t) according to their distance. This process leads to a candidate
neurons set C(x(.;)) consisting of one chosen candidate neuron w(z(.;) for
each SOM S(t). Subsequently, we calculate the distances between z(. ;) and
all candidate neurons in C' once again and select the closest neuron ¢ € C.
The target attribute value of ¢ is then assigned to z(,;. The algorithm is
described in Algorithm 4.

It is noteworthy that all the distances both for training and prediction
phases are computed according to formula (8) and, thus, 1) we consider
the hierarchy and 2) we work with continuous and categorical attributes
indifferently.

Algorithm 4 Prediction Module

1: function PREDICT(z(. ;), G)
2: for all SOM S(t) € G do

3: repeat
4: m = w(z(;) € S(t);
5: if m, is defined then add m to C}
6: else remove m from neurons considered in S(t);
7 end if
8: until m,, is defined;
9: end for
10: c = argmin{dist(c(. j), z(.45))};
c..jHEC

11: emit(cy);
12: end function

To evaluate the predictive module introduced above, we have focused our
attention on two different tasks: regression with mixed attributes datasets
and sensor data forecasting, discussed in the following subsections.

For both tasks, the Spark-GHSOM algorithm has been compared with
state of the art systems and, specifically, with SVR, linear regression and
isotonic regression (distributed implementation available in Spark MLLib
[33]). Since Linear regression requires to set the regularization parameter,
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Dataset Features Numerical Categorical Targets

Energy Efficiency 8 6 2 2
Forest 12 10 2 1
Facebook Metrics 7 4 3 2
Automobile 25 15 10 1

Table 1: Brief description of datasets adopted for the regression with mixed attributes
datasets task.

we performed a grid search to identify the best value in the following set of
choices: (0.15,0.3,0.45). Moreover, in order to allow the algorithms to handle
the categorical attributes, we adopted the One Hot Encoding approach.

Only for sensor data forecasting, we have also used K-Means and ARIMA
(which predicts time series) algorithms. In order to obtain predictions from
K-Means, we use clusters. In particular, when the value of the target at-
tribute of a new instance has to be predicted, we assign to it the value of
the target variable of the closest centroid of the obtained clusters. Also in
this case we allow each method to perform in its best conditions. For this
purpose, we adopted the following approach:

e ARIMA: we select the best ARIMA model according to Akaike’s In-
formation Criterion (AIC), as in the AUTO-ARIMA algorithm [23];

¢ K-Means: we select the best value of the parameter k via grid search
considering the following set of choices: (sqrt(n)/8, sqrt(n)/4, sqrt(n)/2,
sqrt(n), sqrt(n) * 2, sqrt(n) x4, sqrt(n) x* 8), where n is the number of
data instances in the training window.

5.1.1. Regression with mized attributes datasets

We evaluated the performance of Spark-GHSOM in the regression task,
using datasets with mixed attributes obtained from the UCI repository, such
as Automobile [26], Energy Efficiency [52], Forest [9] and Facebook Metrics
[35]. The details can be found in Table 1. In particular, the Facebook Metrics
and Energy Efficiency datasets propose more than one target variable which
can be chosen for the regression task. Thus, we perform the regression task
separately, as shown in Table 3.

Experiments are performed according to a 5 fold cross validation proce-
dure. The final results obtained in terms of the average Root Mean Square

22



Error (RMSE) and average Mean Average Error (MAE) are presented in
Table 2 and 3.

Form the results reported in Table 2, we can see that, globally, the best
configuration is t; = 0.3 and T, = 0.7, that is, models with fine granularity
and small hierarchies. With these values, in fact, we have the best accuracy
for most of the datases.

In Table 3 we report the results of the comparison with other approaches.
For a fair evaluation, for all the systems, only the best value obtained vary-
ing parameters’ configurations is compared. The results show that Spark-
GHSOM is capable to achieve a noteworthy improvement margin with re-
spect to other approaches for the considered regression tasks. We observe
that only for the Forest dataset, the linear regression method obtains the
best performance, although the difference with Spark-GHSOM is only 0.16%
in terms of improvement with respect to Polynomial SVR. This is probably
due to the intrinsic difficulty of the task, motivated by the fact that none of
the methods is able to outperform the others by a significant margin.

5.1.2. Sensor data forecasting

In this section we propose the application of Spark-GHSOM for sensor
data forecasting. In details, we focus on the one-day-ahead renewable energy
forecasting task. The datasets considered consists of a set of weather vari-
ables (such as temperature, humidity, etc.) monitored at hourly granularity
(time series) by sensors placed on photovoltaic plants, located in different
geographical areas. The task consists in forecasting the production of each
photovoltaic plant for the next 24 hours.

We considered three datasets in all. Their description is reported in
Table 4. Additional details about the preliminary data preprocessing steps
performed for the datasets can be found in [5].

For the evaluation, a random sampling of 10% of the days has been per-
formed for each dataset, considered as testing days. For each testing day, a
time based sliding window model [14] has been adopted to train the model
considering only the previous 60 days of historical data collected by the sen-
sors. The trained model has been employed to predict the following 24 hours
of the target variable (power) considering the geographical coordinates (lati-
tude and longitude) of the plants and the weather conditions of the next day
as independent variables.

In Table 5 we report the results which allow us to investigate the sensi-
tivity of the system to the values of Ty and t5. They show that, also for this
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Dataset: Energy Efficiency Target: heating load

T2:0.7 T2=0.5 TQZO.S

RMSE MAE Imp.%|/RMSE MAE Imp.%| /RMSE MAE Imp.%
T;=0.7 0.1252 0.0950 75.80 |0.1252 0.0950 75.80 |0.1252 0.0950 75.80
T1=0.5 0.1202 0.0896 76.77 ]0.1190 0.0896 77.00 |0.1252 0.0950 75.80
7;=0.3 0.1044 0.0664 79.82 |0.1066 0.0668 79.40 |0.1044 0.0664 79.82
Dataset: Energy Efficiency Target: cooling load

T2:0.7 T2:0.5 T2:0.3

RMSE MAE Imp.% | RMSE MAE Imp.%| RMSE MAE Imp.%
T1=0.7 0.1146 0.0856 74.50 |0.1146 0.0856 74.50 |0.1146 0.0856 74.50
T7=0.5 0.1050 0.0790 76.63 |0.1146 0.0856 74.50 |0.1146 0.0852 74.50
7=0.3 0.1038 0.0696 76.90 |0.1024 0.0694 77.21 |0.1028 0.0688 77.12
Dataset: Forest Target: area

T220.7 T2:0.5 T220.3

RMSE MAE Imp.% RMSE MAE Imp.% RMSE MAE Imp.%
T=0.7 0.0516 0.0178 78.65 |0.0514 0.0174 78.73 |0.0514 0.0174 78.73
71=0.5 0.0524 0.0182 78.32 |0.0526 0.0182 78.23 |0.0524 0.0180 78.32
171=0.3 0.0566 0.0180 76.58 |0.0572 0.0188 76.33 |0.0558 0.0180 76.91
Dataset: Facebook Metrics Target: lifetime post_ consumers

T2:0.7 T2=0.5 T2:0.3

RMSE MAE Imp.% | RMSE MAE Imp.%| RMSE MAE Imp.%
171=0.7 0.0692 0.0406 32.59 |0.0738 0.0452 28.11 |0.0768 0.0478 25.19
T1=0.5 0.0702 0.0406 31.62 |0.0676 0.0394 34.15 |0.0684 0.0400 33.37
7;=0.3 0.0676 0.0380 34.15 |0.0694 0.0398 32.39 |0.0684 0.0396 33.37
Dataset: Facebook Metrics Target: total interactions

T2:0.7 T2:0.5 T2:0.3

RMSE MAE Imp. % RMSE MAE Imp.%| RMSE MAE Imp.%
71=0.7 0.0526 0.0262 15.93 |0.0534 0.0262 14.65 |0.0532 0.0258 14.97
T7=0.5 0.0558 0.0268 10.82 |0.0542 0.0264 13.37 |0.0544 0.0266 13.05
7=0.3 0.0574 0.0274 8.26 0.0556 0.0270 11.14 |0.0564 0.0276 9.86
Dataset: Automobile Target: price

TQZO.7 T2:0.5 TQZO.3

RMSE MAE Imp.% RMSE MAE Imp.% RMSE MAE Imp.%
T7=0.7 0.1394 0.0896 58.48 |0.135 0.0832 59.79 |0.1378 0.0838 58.96
7=0.5 0.1272 0.082 62.11 [0.1272 0.082 62.11 [0.1272 0.0820 62.11
17=0.3 0.1250 0.0692 62.77 |0.1250 0.0692 62.77 |0.1250 0.0692 62.77

Table 2: Sensitivity analysis of Spark-GHSOM for the regression task with mixed
attributes datasets, considering different values of 71 and 3. The improvement (%)
is calculated with respect to the polynomial SVR baseline method. Best results

for each dataset are highlighted in bold.
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Dataset: Energy Efficiency Energy Efficiency Forest

Target: heating load cooling load area

Method RMSE MAE Imp.%|/RMSE MAE Imp.% RMSE MAE Imp.%
SVR (Linear) >1 >1 >1 >1 >1 > 1

SVR (Polyn.) 0.5176 0.4411 0.4495 0.3702 0.2417 0.1945

SVR (Sigm.) 0.2734 0.2475 47.17 ]0.2568 0.2316 42.85 [0.0511 0.0125 78.84
Isotonic Reg. 0.1472 0.1084 71.55 |0.1224 0.0922 72.76 |0.0536 0.0200 77.82
Linear Reg. 0.1808 0.1496 65.06 |0.1736 0.1442 61.37 |0.0510 0.0174 78.89
Spark-GHSOM 0.1044 0.0664 79.82 [0.1024 0.0694 77.21 |0.0514 0.0174 78.73
Dataset: Facebook Metrics Facebook Metrics Automobile

Target: lifetime__post_ consum. total interactions price

Method RMSE MAE Imp.%|RMSE MAE Imp.% RMSE MAE Imp.%
SVR (Linear) >1 >1 >1 >1 >1 > 1

SVR (Polyn.) 0.1027 0.0699 0.0626 0.0332 0.3357 0.2859

SVR (Sigm.) 0.0758 0.0428 26.17 |0.0531 0.0229 15.19 |0.1788 0.1275 46.74
Isotonic Reg. 0.0754 0.0470 26.55 ]0.0528 0.0258 15.61 [0.1774 0.1288 47.15
Linear Reg. 0.0748 0.0468 27.13 |0.0526 0.0260 15.93 ]0.1566 0.1158 53.35

Spark-GHSOM 0.0676 0.0380 34.15

0.0526 0.0262 15.93

0.1250 0.0692 62.77

Table 3: Experimental results for the regression with mixed attributes datasets
task, and improvement (%) with respect to the polynomial SVR baseline method.
Each method is executed in its best configuration. The best results for each dataset
are highlighted in bold.

Dataset Plants Days Hours Instances
PV Italy 17 856 19 276488
PV NREL 48 3656 19 331968
Burlington 1 366 24 16464

Table 4: Brief description of datasets adopted for the sensor data forecasting task.
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task, the best configuration is Ty = 0.3 and T, = 0.7.

In Table 6 we compare the average RMSE obtained by different systems.
As for the regression experiment, we have only considered the best values
obtained by each method by varying parameters’ configuration. The results
clearly show that Spark-GHSOM globally outperforms the other algorithms.
The only case in which Spark-GHSOM does not outperform the others is
PV-NREL, where SVR Poly performs very well. Here the motivation can be
found in the fact that PV NREL, differently from other datasets, is simu-
lated: probably SVR Poly is able to catch the underlying data distribution
according to which data have been generated.

To confirm the superiority of Spark-GHSOM, in Table 7 we report the
results of the signed Wilcoxon rank test. As we can see, Spark-GHSOM
significantly outperforms other methods (with o = 0.05), even if it is not
designed for regression (it is designed for clustering). This confirms that the
extracted clusters well describe the data distribution, without unnecessary
overfitting.

5.2. Scalability evaluation

In this section we introduce scalability results performed using the KDD
CUP 1999 network dataset. This dataset has been chosen because it repre-
sents a good example of a big dataset (it contains 4.2 millions of instances)
with mixed attributes (it contains 41 features, 7 of which categorical). Ad-
ditionally, we performed a stress test considering augmented versions of the
dataset, which allow to test the performances of our method with up to 100
millions of instances.

The experiments aim to demonstrate that Spark-GHSOM is capable of
processing a large mixed attribute dataset in a distributed environment.

All the experiments have been conducted on a Spark cluster consisting of
one driver node (6 cores, 32GB RAM) and 4 worker nodes (24 cores, 128GB
RAM in total), each of them equipped with an Intel Core i7 Processor and
512GB SSD hard drives. In particular, to assess the behavior of the algorithm
with different data sizes, we performed the experiments with three different
samples (100%, 1000% and 2000%) of the total number of instances.

The running times, with the different samples, are shown in Fig. 5. The
results highlight the linear complexity of the algorithm in an enough compli-
cate situation (t; = 0.5, T2 = 0.5). The results also show that the algorithm
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Dataset: PV NREL Target: power

T2:0.7 T2:0.5 TQZO.S

RMSE Impr.% | RMSE Impr.% | /RMSE Impr.%
T7;=0.7 0.2397 15.85 0.2406 15.52 0.2410 15.38
11=0.5 0.2353 17.40 0.2331 18.15 0.2351 17.48
;=03 0.2331 18.17 0.2309 18.92 |0.2328 18.25
Dataset: PV Italy Target: power

T2=0.7 T220.5 ngo.g

RMSE Impr.%|RMSE Impr.% | RMSE Impr.%
T1=0.7 0.1543 7.87 0.1543 7.85 0.1521 9.15
T71=0.5 0.1436 14.22 0.1427 14.80 0.1443 13.82
77=0.3 0.1340 19.94 |0.1341 19.89 0.1352 19.26
Dataset: Burlington Target: power

T2:0.7 T2:0.5 T2:0.3

RMSE Impr.%|RMSE Impr.% | RMSE Impr.%
T;=0.7 0.1518 32.91 0.1587 29.87 0.1549 31.57
77=0.5 0.1370 39.45 |0.1402 38.05 0.1411 37.63
T7;=0.3 0.1440 36.36 0.1467 35.18 0.1451 35.87

Table 5: Sensitivity analysis of Spark-GHSOM for the sensor data forecasting task
with different datasets, considering different values of Ty and T2, and improvement
(%) with respect to the ARIMA baseline method. Best results for each dataset

are highlighted in bold.

Dataset: PV NREL PV Italy Burlington
Target: power power power
Method RMSE Impr.%|RMSE Impr.%|RMSE Impr.%
ARIMA 0.2849 0.1675 0.2263
K-Means 0.2336 17.99 0.1507 10.00 0.1397 38.26
SVR (Linear) 0.1781 37.49 0.1967 -17.43 ]0.1953 13.70
SVR (Poly) 0.1491 47.67 0.1758 -4.96 0.1623 28.28
SVR (Sigmoid) >1 0.1966 -17.37 ]0.1952 13.74
Isotonic Reg. 0.2621 8.00 0.2000 -19.40 ]0.4388 -93.90
Linear Reg. 0.2307 19.02 0.1503 10.27 0.1451 35.88
Spark-GHSOM 0.2309 18.92 0.1340 19.94 |0.1370 39.45

Table 6: Experimental results for the sensor data forecasting task, and improve-
ment (%) with respect to the ARIMA baseline method. Each method is executed
in its best configuration. The best results for each dataset are highlighted in bold.
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Table 7: p-values of the signed Wilcoxon rank tests for all pairwise combinations of
the methods in common for the two predictive tasks considered (regression with mixed
attributes and sensor data forecasting). In bold statistically significant values (confi-
dence=0.05, unless specified otherwise).

Pairwise comparison p-value winner
RMSE criterion
Spark-GHSOM V'S

SVR (Linear) 0.011 Spark-GHSOM
SVR (Poly) 0.038 Spark-GHSOM
SVR (Sigmoid) 0.011 Spark-GHSOM
Linear Reg. 0.036 Spark-GHSOM
Isotonic Reg. 0.008 Spark-GHSOM

is not affected by computational bottlenecks such as complex operations per-
formed on the driver node.

Another important perspective of the results is provided by Figure 6 (left),
where we report the speedup factor obtained when processing 4M instances
(the whole KDD CUP 1999 dataset) with an increasing number of cores.
Moreover, Figure 6 (right) shows the scaleup performances obtained with an
increasing number of data instances and cores (4M - 8 cores, 8M - 16 cores,
12M - 24 cores). Both, speedup and scaleup curves are quite close to the
ideal curves (linear and constant curves, respectively). This confirms that
Spark-GHSOM can be profitably used in a cluster enviroment with large
datasets.

Finally, in Figure 7 we report the performances of Spark-GHSOM in
terms of execution time with an increasing number of features, considering
a sample of the KDD CUP 1999 dataset, where features are replicated by a
factor of 2x, 4x, 8x and 16x. Although Spark-GHSOM does not scale linearly
in the number of features because the distribution of the workload is carried
out in terms of horizontal partitioning, the results show that Spark-GHSOM
is still capable to handle datasets characterized by a large number of features
since its time complexity is still polynomial (in the number of features).

5.8. Hierarchical Growth Evaluation

In this evaluation, we analyze the hierarchical behavior of Spark-GHSOM.
Since there does not exist any variant of the GHSOM capable of handling
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Figure 5: Stress test results (KDD CUP 1999 dataset) with 11=0.5, T2=0.5 and
epochs = 15.
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Figure 6: Speedup and scaleup results (KDD CUP 1999 dataset) with t; = 0.5,
T9 = 0.5 and epochs = 15.
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Figure 7: Stress test results with a sample of the KDD CUP 1999 dataset (1
million instances) with 11=0.8, T9=0.8 and epochs = 15 and increasing number of
features.

mixed attributes, we analyze the results in this section empirically. Here, we
try to show that Spark-GHSOM produces layers arranged in a hierarchy such
that the layers lower in the hierarchy represent the data at a finer granularity
than the data represented by the parent neuron in the parent layer.

We used the Zoo[30] dataset consisting of 101 instances of animals. Each
instance has 16 attributes (excluding the name of animal and the type at-
tribute for the class). We treated all the boolean attributes in the dataset
as categorical attributes. Thus, the dataset had 15 categorical attributes
and 1 numeric attribute. To understand the hierarchical structure produced
by Spark-GHSOM, we present the label distribution (animal names) of the
SOM layers.

Figure 8 shows the resulting GHSOM structure. The first layer of the
SOM is shown by the blue coloured grid. The lower level layers are projected
into the first layer (shown by small red coloured grids). The first layer of the
generated SOM had dimensions of 5 x 2. It splits the dataset into two major
groups - mammals (cells [0,0], [0,1] and [1,0]) and non-mammals (rows 2 to
4). The last row represents the bird family. Further, we can see that some
of the cells ([0,1], [2,0], etc.) spawned into new layers and represent the
data into finer groups. The cell [0, 1], representing land animals, is further
expanded into a new layer of in which columns 0 and 1 represent predators
while the remaining are non-predators. In this sub-layer, the orientation of
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the predator related cells is towards the cell [0, 0] containing aquatic preda-
tors - mink, seal and sealion. This ascertains that Spark-GHSOM preserves
the orientation of the sublayers with respect to the parent neuron and its
neighbors in the parent layer. From the generated map, we can conclude
that Spark-GHSOM reflects the hierarchical relations in the data.

0 1
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Figure 8: Hierarchical SOMs for Zoo dataset

5.4. Qualitative evaluation

We now proceed to our analysis of a large census dataset, to show a
possible use of Spark-GHSOM. The analysis of a Census dataset can have
applications in election campaign steering or market segmentation, just to
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mention few applications. We used the Census-Income (KDD) Dataset con-
taining ~300K records with mixed-attributes from UCI [30]. Owing to the
size and the presence of mixed-attributes, it would not be feasible to analyze
and visualize this dataset using the conventional GHSOM. The classification
attribute for this dataset (income class) is derived from the attribute of total
person income in the original survey. As we wanted to model this dataset as
a typical census microdata of a population, we treated the prediction class
attribute as one of the analysis attributes. We combined the train and test
datasets to form our dataset of ~300K instances. The original dataset con-
tains 42 attributes which are of mixed type - numeric and categorical. We
excluded the attributes that do not give information about the instance such
as year (the year of census survey) and instance weight (attribute related
to stratified sampling used for creating this dataset). Further, we ignored
the missing values in the dataset. For presentation purposes, we generated
layers of size that would be legible for the paper. The generated GHSOM
structure contained two levels. The values of T; and T, were set to 0.7 and
0.6 respectively.

The first level map is a small map of 3 x 2 neurons. It represents the
dataset at a very coarse level. The U-Matrix [53] and relevant component
planes for this map are shown in Fig. 9. The U-Matrix is a popular SOM
visualization technique which marks the clusters in the data on a gray scale

(boundaries are represented by dark colours).
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Figure 9: U-Matrix and Component Planes for Level 1 SOM of the Census Dataset
From the U-Matrix(Fig. 9a, we can see two major clusters. The cluster

in the lower part of the map corresponds to the population of individuals
with low capital gains. From these map visualizations, we can also see that
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the people in the mid-age of around 40 (orange shade in Fig. 9d) have higher
capital gains and more wage per hour (red shade in Fig. 9b) and 9c¢). Three
neurons from the level-1 map expanded into new layers. We discuss the layer
spawned from the cell [0, 0].

From the neuron [0,0] in the level 1 map, a SOM layer of size 14 x 16
neurons is created. Fig. 10 shows the U-Matrix and the component planes
for this layer. The U-Matrix (Figure 10a) shows several clusters in this
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231.39
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Figure 10: U-Matrix and Component Planes for Level 2 SOM of the Census Dataset

layer. It indicates that the data represented by the parent neuron was indeed
diversified and needed to be refined further. We can see some major clusters
(comprising of the several minor ones) marked by fairly darker boundaries.
The cluster labelled as 1 is a cluster denoting immigrants (those not born
in USA) as asserted by the component plane of the attribute citizenship
(blue region). Further, the majority of this population is in the age range of
30-40 (light green, yellow and light orange region near the bottom edge of
Figure 10b). Further, this population works for almost 50 hours in a year
(red color in Figure 10d). The cluster labelled as 1 represents the population
who didn’t stay in their current house for more than one year (Figure 10f).
Moreover, this cluster contains the age group of 25 to 35 on average. Also,
this population has an average wage per hour in the range of 110 to 150
(Figure 10c).
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Dataset Instances Features Classes SOM Layers Time (mins)

Breast Cancer [47] 85 456 5 12 138
Colon Cancer [2] 62 2000 2 5 1
CNS Tumor [3§] 60 7128 2 7 19.7
Huntington’s Disease [3] 31 22283 2 6 37.3
Lymphoma [46] 58 6817 2 10 176
SRBCT [25] 63 2308 4 3 0.5

Table 8: Experimental results with high-dimensional micro-array datasets. Results are
obtained with a configuration of T;=0.8 and 12=0.8 and epochs = 15.

We observed that Spark-GHSOM generated a GHSOM structure in which
the first layer depicted the data at a very coarse level to be refined at lower
levels. Using the example of the Census dataset above, we also demonstrated
the use of the U-Matrix and the component plane visualizations to analyze
the results.

In order to assess the behavior of the algorithm with high-dimensional
data, we have conducted additional experiments with micro-array data, also
because hierarchical clustering on gene-expression data is highly required in
bioinformatics [37]. The datasets used for this evaluation are described in Ta-
ble 8, where we also report the number of layers extracted and running times.
Experiments have been performed using a fixed configuration of t;=0.8 and
T9=0.8 and epochs = 15.

In the following we illustrate the results obtained on the Lymphoma
dataset, in terms of U-matrix representations at different SOM levels. Ap-
plication of our approach on the other micro-array datasets are similar. The
Lymphoma dataset [46] contains data about B-cell lymphoid malignancies
in adults. It consists of 6817 features and two classes: 58 examples are of
class DLBCL (Diffuse Large B-Cell Lymphom) and 19 examples of class FL
(Follicular Lymphoma). However, it is known in the literature that FLs fre-
quently evolve over time and acquire the morphologic and clinical features
of DLBCLs, and some subsets of DLBCLs have chromosomal translocations
characteristic of FLs [28]. This aspect, in combination with the large number
of features, makes data exploration and classification challenging with this
data.

Our algorithm extracts a hierarchy of 10 SOM levels (see Fig. 11 for a
partial view of the hierarchy). At level 1 (mapl), the model describes data
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at a coarse level. In fact, there are cases in which examples of different
classes are mapped to the same neurons. Successive levels offer a finer level
of detail in the representation. For example, map2 (at level 2) specializes
the neuron at position [0, 0] in mapl: data instances associated to this level
are exclusively of class DLBCL. The same applies for map4 (specializing the
neuron at position [0,0] in map2), mapb (which specializes the neuron at
position [0,1] in the map2), map7 (which specializes the neuron at position
[1,1] in map5) and map9 (which specializes the neuron at position [1,1] in
map6). The remaining maps represent instances coming from different classes
mapped on the same SOM model: this phenomenon happens on a single
neuron in map3 (which specializes the neuron at position [2,0] in mapl),
map6 (which specializes the neuron at position [1,0] in map3) and map8
(which specializes the neuron at position [1,0] in map6). These levels would
likely be expanded further with lower values of T; and T5. A different case is
represented by mapl0, in which the originating SOM model maps instances
belonging to different classes on different rows of neurons.

Overall, these representations can, in principle, offer a wide and concise
perspective of the data for a domain expert, who can easily gain insights
thanks to the hierarchy of two-dimensional grids.

Additional results in terms of component planes and U-Matrix represen-
tations for all datasets are available online on the supplemental material
website.

5.5. Availability

The system and the datasets are available at the following hyperlink for
replication purposes: http://www.di.uniba.it/~ceci/ghsom/.

6. Conclusions

In this work, we proposed a variant of the GHSOM algorithm called
Spark-GHSOM, which scales GHSOM to large real-world datasets on a dis-
tributed cluster. Moreover, we also proposed a new distance hierarchy ap-
proach to extend the GHSOM for mixed attribute datasets. We also defined
the arithmetic operations for the distance hierarchy points, required for the
training process in the GHSOM algorithm.

From a quantitative viewpoint, we evaluated the scalability and the accu-
racy of the models extracted with the algorithm, also presenting two real ap-
plications, namely, regression with mixed attributes datasets and sensor data
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Figure 11: Hierarchy of U-Matrix representations extracted with the Lymphoma
Dataset. The results are obtained with 11=0.8, 19=0.8 and epochs = 15. Maps
are numbered from mapl to mapl0. “DLBCL/FL” indicates that there are cases
in which examples of different classes are mapped to the same neurons. “DL-
BCL”(“FL”) indicates that there is no case in which examples of different classes
are mapped to the same neurons.
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forecasting, comparing the results obtained with state of the art algorithms,
specifically designed for regression. Lastly, we analyzed our Spark-GHSOM
using some popular datasets from UCI [30]. The results ascertained that
Spark-GHSOM produced satisfactory results, both in terms of modelling an
individual SOM as well as depicting the hierarchical relations in the dataset.
We generated a multi-level hierarchy of SOM layers and discussed the results
using the U-Matrix and the component plane visualizations.

Overall, we can conclude that the Spark-GHSOM is an useful extension of
the GHSOM algorithm, which not only scales GHSOM to large datasets but
also extends it to process high-dimensional mixed attribute datasets. The
models extracted can be profitably exploited in a variety of contexts, from
data visualization to predictive modeling.

Directions for future work include efficient treatment of high-dimensional
data. For example, it would be possible to include a dimensionality reduction
or feature extraction step to be performed before the modeling step, in order
to address issues such as feature collinearity and computational bottlenecks
deriving from high-dimensional data. Alternatively, it could be possible to
formulate a distributed variant of the algorithm which would perform vertical
data partitioning instead of horizontal partitioning. One other aspect worth
investigating is the extension or the integration of GHSOM models with
supervised techniques to perform tasks of recent interest, such as multi-label
classification and multi-target regression.
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