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Abstract 

There are typically two types of consistency of fuzzy preference relations (FPR), namely 

additive and multiplicative consistency. They are defined based on the assumption that decision 

makers are rational and can provide strictly consistent FPRs. To take into consideration the 

bounded rationality of decision makers, the current study relaxes this assumption and proposes a 

new measure called triangular bounded consistency. To define triangular bounded consistency, a 

directed triangle is used to represent three FPRs among any three alternatives, with each directed 

edge representing an FPR. The condition of restricted max–max transitivity (RMMT) in the 

directed triangle is quantitatively examined. Under the assumption that the bounded rationality of 

a decision maker is characterized by their historical FPRs, which are represented by directed 

triangles that satisfy RMMT, triangular bounded consistency is determined using the historical 

FPRs. We then illustrate how triangular bounded consistency can be used to verify the consistency 

of FPRs that are newly provided by decision makers and how to estimate some missing FPRs that 

are not provided by decision makers. Finally, to demonstrate the application of triangular bounded 

consistency of FPRs in multi-attribute decision analysis, we investigate a problem that involves 

selecting areas to market products for a company. 

Keywords: Triangular bounded consistency; Fuzzy preference relation; Restricted max–max 

transitivity; Bounded rationality; Multi-attribute decision analysis 
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1. Introduction 

Decision makers generally use preference relations to express their preference information 

when analyzing decision problems (Herrera et al., 2001; Massanet et al., 2016; Wan et al., 2018). 

The two types of preference relations commonly accepted in the context of pairwise comparison 

of alternative courses of action (or simply, alternatives) (Genç et al., 2010; Chen et al., 2015; Wan 

et al., 2017) are multiplicative preference relation (MPR) (Saaty, 1977) and fuzzy preference 

relation (FPR) (Orlovsky, 1978). As the two types of preference relations can be transformed into 

each other (Herrera-Viedma et al., 2004), this study focuses on FPR. FPR was first proposed by 

Orlovsky (1978) to represent the opinion of a decision maker when comparing a set of alternatives. 

FPR can not only reflect whether an alternative is superior to another but also characterize the 

degree to which an alternative is preferred (Pan et al., 2017; Zhang et al., 2018). The full 

definition of FPR is given in Section 2. 

Consistency is a prerequisite for using FPRs to model and analyze decision problems (Chen et 

al., 2014; Li et al., 2018). Verifying whether the required consistency is reached is an important 

step in the process of analyzing decision problems modeled by FPRs (Ureña et al., 2015; Zhang et 

al., 2016). Decisions made using inconsistent FPRs may be irrational and of poor quality (Xu et al., 

2016; Herowati et al., 2017). A basic requirement for consistency is transitivity. Different types of 

transitivity, such as weak transitivity, triangular condition, and restricted max–max transitivity 

(RMMT), have been defined and investigated in existing studies (Liao and Xu, 2015; Liu et al., 

2018). RMMT is stricter than weak transitivity and triangular condition (see Section 2) and is 
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considered as a necessary condition of consistent FPRs (Liu et al., 2014). 

To verify the consistency of FPRs, different types of consistency measure of FPR have been 

developed (Chiclana et al., 2009; Deng et al., 2014; Deng et al., 2015). Representative and 

commonly accepted types include additive consistency (Pérez et al., 2016; Al Salema and Awasthi, 

2018) and multiplicative consistency (Wu and Chiclana, 2014; Krejčí, 2017). Both of these types 

of consistency satisfy RMMT (Herrera-Viedma et al., 2004). More importantly, they are based on 

the assumption that decision makers are strictly rational, and thus the FPRs strictly satisfy the 

given mathematical conditions for the two types of consistency (Herrera-Viedma et al., 2004; Xu 

et al., 2014). However, it is very difficult or even impossible in practice for decision makers to 

offer such exact FPRs as they may not have access to all the information required; even if they do, 

they may not be able to process it properly within a given time limit (Wang and Chen, 2008; Yan 

and Ma, 2015). This phenomenon is referred to as bounded rationality by Simon (1982). Therefore, 

in many situations, decision makers may seek to offer “good enough” judgments that may not be 

perfectly rational or consistent, but reasonably acceptable. Hence, we must consider which 

judgements are reasonably acceptable and can be used for decision-making. 

Therefore, we propose a new consistency concept called triangular bounded consistency to 

measure the consistency of FPRs. Firstly, the difference between the two commonly accepted 

types of consistency of FPR, i.e., additive and multiplicative consistency, and then their limitations 

are analyzed. Secondly, inspired by triangular condition (Dasgupta and Deb, 1996), which is a 

type of transitivity of FPR, we propose the use of a directed triangle to represent the three FPRs 

among any three alternatives in which each FPR is represented by a directed edge. Because 

RMMT is considered as a necessary condition for consistent FPRs, we then examine what the 
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triangles should look like if the FPRs they represent satisfy RMMT by specifying the range of 

angles formed by two adjacent edges. Here, adjacent edges represent the two directed edges whose 

arrows do not both leave or point to the angles they form. That is, the arrow of one directed edge 

should point to the angle, whereas the arrow of the other edge should point away from the angle. 

When the collected preference information satisfies RMMT, it is regarded as reasonably 

acceptable. Otherwise, it should be further revised or ignored. In other words, we assume that all 

decision makers are at least reasonably rational in the sense that their preferences satisfy RMMT. 

Thirdly, we introduce the concept of triangular bounded consistency to measure the consistency of 

FPRs provided by a decision maker. To estimate triangular bounded consistency of given FPRs, 

the pairwise preference judgments provided by the decision maker previously, or currently to a set 

of sample alternatives if no previous judgments are available, should be collected. From the 

collected information, the preferences satisfying the RMMT can be represented by directed 

triangles and then used to estimate the lower and upper bounds of triangular bounded consistency 

of FPRs for this particular decision maker. 

One important use of triangular bounded consistency is estimating missing FPRs, as decision 

makers generally offer only minimal preference information (Sen and Yang, 1994) or an 

acceptable incomplete FPR matrix (which is defined in Section 2) to avoid inconsistency issues 

when there are many alternatives under consideration. For example, among alternatives i, j, and k, 

a decision maker may specify how much they prefer i to j and j to k without mentioning their 

preference between i and k. When this is the case, we can estimate their preferences between i and 

k using triangular bounded consistency estimated for them. As the estimated preference is 

normally a range, to find a point estimate of the missing FPR, an optimization model is 
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constructed using the least squares method to minimize the difference between the point estimate 

and the decision maker’s usual or historical consistency behavior characterized by the middle 

point of the range of their triangular bounded consistency. 

To demonstrate the application of triangular bounded consistency, we applied this concept to 

analyze multi-attribute decision analysis (MADA) problems modeled by acceptable incomplete 

FPR matrices. The main contributions of this study can be summarized as follows: (1) we analyze 

the difference between additive and multiplicative consistency of FPRs, (2) we specify the value 

range of the angle formed by two adjacent edges of the directed triangle representing FPRs that 

satisfy RMMT, (3) we introduce a new consistency concept called triangular bounded consistency 

to verify the consistency of newly provided FPRs by a decision maker to follow their usual 

consistency behavior, (4) we apply triangular bounded consistency to find the missing FPRs in an 

incomplete FPR matrix provided by a decision maker, and (5) we develop a solution process to 

MADA problems modeled by acceptable incomplete FPR matrices. 

The remainder of this paper is organized as follows. Section 2 presents the basics of our 

proposed consistency concept. Section 3 provides an analysis of additive and multiplicative 

consistency of FPRs. Section 4 introduces triangular bounded consistency and uses it to estimate 

missing elements in acceptable incomplete FPR matrices. Section 5 describes the application of 

triangular bounded consistency to MADA problems modeled by FPRs. This application is 

demonstrated in Section 6 by analyzing a problem of selecting areas to market the products of a 

company. Finally, Section 7 presents conclusions and future work to be considered. 

 

2. Preliminaries 



6 

In this section, we introduce the basic concepts of FPRs, some representative definitions of 

consistency and transitivity of FPRs, and the validity judgment on an incomplete FPR matrix with 

missing elements. 

Definition 1. (Orlovsky, 1978) Let X = {x1, x2, …, xn} be a set of alternatives. P = (pij)nn is called 

an FPR matrix on X × X such that pij[0,1], pij + pji = 1,  i, j{1, …, n}, where pij denotes the 

degree to which alternative xi is preferred to xj. Specifically, pij = 0.5 indicates an indifference 

between xi and xj (denoted as xi : xj), 0.5 < pij < 1 indicates that xi is preferred to xj (denoted as 

xi f xj), and pij = 1 indicates that xi is absolutely preferred to xj. 

As mentioned in Section 1, consistency is an important property with respect to FPRs. In 

previous studies, the two commonly accepted definitions of consistency, namely additive and 

multiplicative consistency, were used to determine whether an FPR matrix is consistent. 

Definition 2. (Tanino, 1984) Given a set of alternatives X = {x1, x2, …, xn}, let P = (pij)nn be an 

FPR matrix on X × X. P is considered additively consistent if it satisfies the following condition: 

pij + pjk + pki = 1.5,  i, j, k{1, …, n}.                                          (1) 

Definition 3. (Tanino, 1984) Given a set of alternatives X = {x1, x2, …, xn}, let P = (pij)nn be an 

FPR matrix on X × X. P is considered multiplicatively consistent if it satisfies the following 

condition: 

pij∙pjk∙pki = pik∙pkj∙pji,  i, j, k{1, …, n}.                                         (2) 

From the above two definitions, it can be observed that additive and multiplicative consistency 

are very strict conditions for FPRs to satisfy. Compared with the two types of consistency, 

transitivity is a weaker condition for FPRs to satisfy. Representative types of transitivity include 

weak transitivity, RMMT, and triangular condition. 
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Definition 4. (Tanino, 1984; Herrera-Viedma et al., 2004) Given a set of alternatives X = {x1, 

x2, …, xn}, let P = (pij)nn be an FPR matrix on X × X. P is said to be weakly transitive if it satisfies 

the following conditions: 

(1) if 0.5 ≤ pij ≤ 1 and 0.5 ≤ pjk ≤ 1, then 0.5 ≤ pik ≤ 1,  i, j, k{1, …, n}, and 

(2) if 0 ≤ pij ≤ 0.5 and 0 ≤ pjk ≤ 0.5, then 0 ≤ pik ≤ 0.5,  i, j, k{1, …, n}. 

Definition 5. (Herrera-Viedma et al., 2004) Given a set of alternatives X = {x1, x2, …, xn}, let P = 

(pij)nn be an FPR matrix on X × X. P is said to have RMMT if it satisfies the following conditions: 

(1) if 0.5 ≤ pij ≤ 1 and 0.5 ≤ pjk ≤ 1, then max{pij,pjk} ≤ pik ≤ 1,  i, j, k{1, …, n}, and 

(2) if 0 ≤ pij ≤ 0.5 and 0 ≤ pjk ≤0.5, then 0 ≤ pik ≤ min{pij,pjk}, i, j, k{1, …, n}. 

Definition 6. (Dasgupta and Deb, 1996; Herrera-Viedma et al., 2004) Given a set of alternatives X 

= {x1, x2, …, xn}, let P = (pij)nn be an FPR matrix on X × X. P is said to satisfy triangular 

condition if 

pij + pjk ≥ pik,  i, j, k{1, …, n}.                                               (3) 

RMMT is stricter than weak transitivity and triangular condition, and it is generally regarded as 

a necessary condition for a consistent FPR matrix. An FPR matrix satisfying additive or 

multiplicative consistency implies that RMMT is satisfied in the matrix, which is formally 

described in the following theorems. 

Theorem 1. (Herrera-Viedma et al., 2004) Given a set of alternatives X = {x1, x2, …, xn}, let P = 

(pij)nn be an FPR matrix on X × X. If P satisfies multiplicative consistency, i.e., if it satisfies 

pij∙pjk∙pki = pik∙pkj∙pji,  i, j, k{1, …, n}, ijk, then P must satisfy RMMT. 

Theorem 2. (Herrera-Viedma et al., 2004; Liao and Xu, 2014) Given a set of alternatives X = {x1, 

x2, …, xn}, let P = (pij)nn be an FPR matrix on X × X. If P satisfies additive consistency, i.e., if it 
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satisfies pij + pjk + pik =1.5,  i, j, k{1, …, n}, i  j  k, then P must satisfy RMMT. 

When some elements in an FPR matrix P cannot be provided by a decision maker, P is called an 

incomplete FPR matrix. 

Definition 7. (Ureña et al., 2015) Given a set of alternatives X = {x1, x2, …, xn}, let P = (pij)nn be 

an FPR matrix on X × X. If some elements other than the diagonal ones in P cannot be provided, 

then P is called an incomplete FPR matrix, which satisfies 

pij[0,1], pij + pji = 1,  i, j{1, …, n}.                                         (4) 

Next, we discuss whether an incomplete FPR matrix is acceptable or not. 

Definition 8. (Xu et al., 2014) Given a set of alternatives X = {x1, x2, …, xn}, let P = (pij)nn be an 

incomplete FPR matrix on X × X. If the missing elements of P can be determined by its provided 

elements, then P is called an acceptable incomplete FPR matrix; otherwise, P is not an acceptable 

incomplete FPR matrix. 

Theorem 3. (Xu et al., 2014) Given a set of alternatives X = {x1, x2, …, xn}, let P = (pij)nn be an 

incomplete FPR matrix on X × X. Only when there exists at least one provided element in each 

row or column of P, with exception of the diagonal elements (pii = 0.5, i =1, ..., n), the matrix can 

be considered acceptable. 

3. Analysis of existing consistency of FPRs 

Section 2 presents the two commonly accepted types of consistency of FPRs, i.e., additive and 

multiplicative consistency. In the following, they are analyzed to show their difference and 

possible limitations in real applications. 

Given an MPR matrix A = (aij)nn on X × X with aij[1/9, 9], where X = {x1, x2, … , xn} denotes 

a set of alternatives, it is said to be consistent if we have aij∙ajk = aik,  i, j, k. Owing to the 
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transformation of an MPR matrix to an FPR matrix, which is demonstrated by Proposition B.1 of 

Section B.1 in Appendix B of the supplementary material, a consistent MPR matrix can result in a 

consistent FPR matrix satisfying the condition in Definition 2 presented in Section 2. It can be 

inferred from the equivalence between the consistency of an MPR matrix and the additive 

consistency of an FPR matrix that a decision maker is said to be perfectly rational when they 

provide a consistent FPR matrix. However, multiplicative consistency of an FPR matrix cannot 

reflect the perfect rationality of a decision maker because a difference exists between additive and 

multiplicative consistency of an FPR matrix. To facilitate a quantitative measurement of the 

deviation between additive and multiplicative consistency, the following proposition is given first. 

Proposition 1. Suppose that f(x, y) = 
1 2

xy

x y xy  
 − (x + y − 0.5) is a two-variable function 

with 0 ≤ x, y ≤ 1. Then, the function satisfies  

(1) when x, y[0.5, 1], f(x, y) is a monotonously decreasing function with respect to x or y. 

(2) when x, y[0, 0.5], f(x, y) is a monotonously decreasing function with respect to x or y. 

(3) when (x − 0.5)∙(y − 0.5) ≤ 0, the lower bound of f(x, y) tends to −0.5 if (x, y) = (0, 1-) or (x, y) 

= (1-, 0) while the upper bound of f(x, y) tends to 0.5 if (x, y) = (0+, 1) or (x, y) = (1, 0+). 

(4) when (x − 0.5)∙(y − 0.5) ≥ 0, f(x, y) reaches the maximum value, i.e., −0.5, if (x, y) = (1, 1), 

while f(x, y) reaches the minimum value, i.e., 0.5, if (x, y) = (0, 0). 

The proof of Proposition 1 is presented in Section A.1 of Appendix A in the supplementary 

material. It can be deduced from Definitions 2 and 3 presented in Section 2 that pik = pij + pjk – 0.5 

(  i, j, k  {1, …, n}) holds in an additively consistent FPR matrix, and pik = 

1 2
ij jk

ij jk ij jk

p p

p p p p  
 ( i, j, k{1, …, n}) holds in a multiplicatively consistent FPR matrix. 

Assume that a
ikp  = pij + pjk – 0.5 ( i, j, k{1, …, n}) is an additively consistent FPR matrix, 
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and m
ikp  = 

1 2
ij jk

ij jk ij jk

p p

p p p p  
 ( i, j, k{1, …, n}) is a multiplicatively consistent FPR 

matrix. Then, the function f(x, y) in Proposition 1 can represent the deviation between m
ikp  and 

a
ikp  given that pij and pjk are two variables. Proposition 1 also reveals that −0.5 ≤ m a

ik ikp p  ≤ 0.5 

when (pij − 0.5)∙(pjk − 0.5) ≥ 0, and −0.5 < m a
ik ikp p  < 0.5 when (pij − 0.5)∙(pjk − 0.5) ≤ 0. It can 

be easily concluded that multiplicative consistency of an FPR matrix is different from additive 

consistency of the matrix, particularly when (pij − 0.5)∙(pjk − 0.5) ≤ 0 ( i, j, k{1, …, n}). As 

such, multiplicative consistency is incapable of characterizing the perfect rationality of a decision 

maker. 

Example 1. For a set of alternatives X = {x1, …, x5}, suppose that P = (pij)55 is an FPR matrix on 

X × X with p12 = 0.7, p23 = 0.6, p34 = 0.98, and p45 = 0.1. The deviations between 13
mp  and 13

ap  

and between 35
mp  and 35

ap  are calculated in the following. 

As for p12 and p23, we have 13
ap  = p12 + p23 − 0.5 = 0.8 and 13

mp  = 12 23

12 23 12 231 2

p p

p p p p  
 = 

0.78; therefore, the deviation between 13
mp  and 13

ap  is −0.02. When p34 and p45 are used to 

consistently decide p35, it can be similarly calculated that 35
ap  = p34 + p45 − 0.5 = 0.58 and 35

mp  = 

34 45

34 45 34 451 2

p p

p p p p  
 = 0.84, which implies that 35 35

m ap p = 0.26. The results in these two 

situations are clearly limited to the lower and upper bounds given in Proposition 1. 

Specifically, p12 = 0 and p23 = 0.999 lead to 13 13
m ap p- = −0.499, and p34 = 0.001 and p45 = 1 

result in 35 35
m ap p- = 0.499. This verifies Proposition 1 under the condition that (pij − 0.5)∙(pjk − 0.5) 

≤ 0. As a whole, a clear difference can be noted between multiplicative and additive consistency of 

an FPR matrix from perfect rationality. 

In addition, another important difference is noted between multiplicative and additive 

consistency of an FPR matrix. That is, given pij and pjk, the domain of pik for multiplicative 
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consistency is different from the domain of pik for additive consistency. To facilitate such 

comparison, the following proposition is given first. 

Proposition 2. Suppose that f(x, y) = 
1 2

xy

x y xy  
 is a two-variable function with 0 ≤ x, y ≤ 1. 

Then, the function is monotonously increasing with respect to x or y. 

The proof of Proposition 2 is presented in Section A.2 of Appendix A. This proposition 

indicates that pik generated by multiplicative consistency is always limited to the interval [0, 1] 

given pij and pjk such that 0 ≤ pij, pjk ≤ 1. In detail, it can be determined from Proposition 2 that pik 

= 0 when (pij, pjk) = (0, 0), and pik = 1 when (pij, pjk) = (1, 1) under the condition that multiplicative 

consistency is satisfied. On the other hand, when pij and pjk such that 0 ≤ pij, pjk ≤ 1 are given to 

determine pik using additive consistency, the range of pik is limited to the interval [−1.5, 1.5]. 

When (pij, pjk) = (0, 0), pik is equal to −1.5, whereas pik becomes 1.5 when (pij, pjk) = (1, 1). As a 

result, the range of pik from additive consistency is clearly different from the range of 

multiplicative consistency given pij and pjk such that 0 ≤ pij, pjk ≤ 1. 

Although the range of pik from additive consistency given pij and pjk such that 0 ≤ pij, pjk ≤ 1 can 

be mapped into the interval [0,1] in some way (Herrera-Viedma et al., 2004), the decision maker 

providing the FPRs is assumed to be perfectly rational. Meanwhile, the assumption of perfect 

rationality is relaxed when multiplicative consistency is applied. In real applications, it is very 

difficult or even impossible for a decision maker to be perfectly rational and provide an additively 

consistent FPR matrix. More importantly, both additive and multiplicative consistency cannot 

reflect the real preference of a decision maker with bounded rationality. In other words, for any 

pair of pij and pjk, pik can be generated directly by additive or multiplicative consistency without 

consideration of the preference of a decision maker. As such, the resulting pik cannot be 
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guaranteed to be the one that the decision maker wishes to provide. In the context of 

decision-making, the direct application of additive and multiplicative consistency is doubtful, 

owing to a lack of consideration of the preferences of a decision maker with bounded rationality. 

For these reasons, we develop a new consistency measure of an FPR matrix based on triangular 

condition in consideration of the preference information of a decision maker with bounded 

rationality, as described in the next section. 

4. Triangular bounded consistency 

In this section, starting from triangular condition in Definition 6 presented in Section 2, we 

quantitatively explain the relationship among three edges of a valid triangle and the RMMT in a 

triangular context. Then, we propose triangular bounded consistency of an FPR matrix with 

coverage of the preferences of a decision maker. 

4.1 Quantitative description of triangular condition 

In Definition 6, the basic condition of a triangle is used to geometrically explain the consistency 

condition of an FPR matrix. In the following, we quantitatively describe the relationship among 

three edges of a directed triangle with the angle between two edges. 

From an abstract angle, suppose that x, y, and z with 0 ≤ x, y, z ≤ 2 denote the three edges of a 

directed triangle △ABC, i.e., edges AB
uuur

, BC
uuur

, and CA
uuur

 in Fig. 1. The angle between x and y is 

denoted by θ. 
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Fig. 1. Directed triangle △ABC. 

When x, y, and z form a triangle, they must satisfy the following conditions: 

(1) x + y ≥ z, 

(2) x + z ≥ y, and 

(3) y + z ≥ x. 

From the above conditions, we can deduce that |x − y| ≤ z ≤ x + y. The angle between x and y 

can be constructed from x, y, and z as θ =
2 2 2

arccos
2

x y z

xy

 
. The relationship between θ and z 

and the relationship between θ and x (or y) are revealed in the following. 

Property 1. Suppose that x, y, and z with 0 ≤ x, y, z ≤ 2 are the lengths of three edges of the 

triangle △ABC plotted in Fig. 1 with the angle between edges AB
uuur

 and BC
uuur

 denoted by θ. Then, 

we have 

(1) θ is monotonously increasing with respect to z, and  

(2) θ is monotonously decreasing with respect to x or y when z ≥ 2 2x y . 

The proof of Property 1 is presented in Section A.3 of Appendix A. Given x and y such that 0 ≤ 

x, y ≤ 2 and x > y, it can be determined that x − y ≤ z ≤ x + y. In this situation, we can deduce from 

Property 1 that 0 ≤ θ ≤ π. This is formally presented in the following. 

Property 2. Suppose that x, y, and z, such that 0 ≤ x, y, z ≤ 2 and x > y, are the lengths of three 

edges of the triangle △ABC plotted in Fig. 1 with the angle between edges AB
uuur

 and BC
uuur

 

denoted by θ. Then, we have 

(1) 0 ≤ θ ≤ π, 

(2) θ = 0 when z = x − y, and 

(3) θ = π when z = x + y. 
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4.2 Description of RMMT in directed triangles of three FPRs 

As demonstrated in Section 2, although RMMT is covered by additive and multiplicative 

consistency, it is stricter than weak transitivity and triangular condition. In the developed 

triangular bounded consistency of an FPR matrix, it is also intended to satisfy RMMT. 

Given an FPR matrix P = (pij)nn on X × X, where X = {x1, x2, … , xn} denotes a set of 

alternatives, assume that xi, xj, and xk are the three vertices of a triangle, and FPRs pij, pjk, and pik 

represent the lengths of directed edges from vertexes xi to xj, xj to xk, and xi to xk, respectively. The 

directed edge from vertex xi to xj means that alternative xi is superior or equivalent to xj, which 

results in pij ≥ 0.5. In general, there are two situations where (pij − 0.5)∙(pjk − 0.5) ≥ 0 and (pij − 

0.5)∙(pjk − 0.5) ≤ 0, as plotted in Fig. 2. In the first situation, alternative xi is superior or equivalent 

to xj, and xj is superior or equivalent to xk; thus, xi is certainly superior or equivalent to xk. In other 

words, pij ≥ 0.5 and pjk ≥ 0.5 must lead to pik ≥ 0.5. In the second situation, alternative xi is 

superior or equivalent to xj, and xj is inferior or equivalent to xk; whether xi is superior or 

equivalent to xk depends on whether pij is larger than or equal to pkj (i.e., 1 − pjk). Situation (b) in 

Fig. 2 indicates that pij ≥ pkj. In the following, we discuss RMMT in these two situations. 

 

Fig. 2. Two situations of directed triangle △xixjxk. 

4.2.1 RMMT in the first situation 

In the situation of Fig. 2 (a), as demonstrated in Section 4.1, given pij and pjk, if the combination 
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of pik with pij and pjk can form a triangle, then we can determine that |pij − pjk| ≤ pik ≤ pij + pjk. This 

condition covers RMMT. 

Proposition 3. Let P = (pij)nn be an FPR matrix on X × X, where X = {x1, x2, … , xn} denotes a set 

of alternatives. For any three alternatives xi, xj, and xk (i  j  k), when pij (the degree to which xi is 

superior to xj) and pjk (the degree to which xj is superior to xk) are known, if pij, pjk, and pik satisfy 

RMMT, then the three edges with lengths of pij, pjk, and pik must form a triangle. 

Given pij and pjk such that pij ≥ 0.5 and pjk ≥ 0.5 in Fig. 2 (a), under the assumption that RMMT 

is satisfied, Proposition 3 clearly holds because |pij − pjk| < max{pij, pjk} and 1 < pij + pjk. In such a 

triangle composed of pij, pjk, and pik, the angle between edge i jx x
uuuur

 with length of pij and edge 

j kx x
uuuur

 with length of pjk is determined by 

θ = 
2 2 2

arccos
2

ij jk ik

ij jk

p p p

p p

 
.                                                      (5) 

When pik is limited to [max{pij, pjk}, 1], the range of θ can be determined. 

Property 3. Let P = (pij)nn be an FPR matrix on X × X, where X = {x1, x2, … , xn} denotes a set of 

alternatives. For any three alternatives xi, xj, and xk (i  j k), if their pairwise comparisons pij, pjk, 

and pik satisfy 0.5 ≤ pij, pjk ≤ 1 and max{pij, pjk} ≤ pik ≤ 1, then we can determine that the angle 

between edge i jx x
uuuur

 with length pij and edge j kx x
uuuur

 with length pjk in triangle △xixjxk satisfies 

 
 

,
arccos

2 ,

ij jk

ij jk

p p

x p

n

ma p

mi
 ≤ θ ≤ 

2 2 1
arccos

2
ij jk

ij jk

p p

p p

 
,                                  (6) 

π/3 ≤ 
 
 

,
arccos

2 ,

ij jk

ij jk

p p

x p

n

ma p

mi
 ≤ 0.4196π, and                                       (7) 

π/3 ≤ 
2 2 1

arccos
2

ij jk

ij jk

p p

p p

 
 ≤ π.                                                 (8) 

The proof of Property 3 is presented in Section A.4 of Appendix A. In order to clearly 



16 

demonstrate Property 3, Example B.1 is given in Section B.3 of Appendix B in the supplementary 

material. In triangle △xixjxk, where the lengths of edges i jx x
uuuur

 and j kx x
uuuur

 (pij and pjk, respectively) 

are provided, and the length of edge i kx x
uuuur

 (pjk) is unknown, when pij ≥ 0.5 and pjk ≥ 0.5, pik can be 

calculated under the assumption that RMMT is satisfied. 

Definition 9. Let P = (pij)nn be an FPR matrix on X × X, where X = {x1, x2, … , xn} denotes a set 

of alternatives. For any three alternatives xi, xj, and xk (i  j  k), assume that their pairwise 

comparisons pij and pjk satisfy 0.5 ≤ pij, pjk ≤ 1 and RMMT is satisfied. Then, in triangle △xixjxk 

composed of three edges with lengths of pij, pjk, and pik, pik is determined by 

pik = 2 2 2ij jk ij jkp p p p cos  ,                                                  (9) 

where θ represents the angle between edges i jx x
uuuur

 and j kx x
uuuur

 in triangle △xixjxk such that 

 
 

,
arccos

2 ,

ij jk

ij jk

p p

x p

n

ma p

mi
 ≤ θ ≤ 

2 2 1
arccos

2
ij jk

ij jk

p p

p p

 
. 

4.2.2 RMMT in the second situation 

In the situation of Fig. 2 (b), where pij ≥ 0.5, pjk ≤ 0.5, and pij ≥ 1− pjk = pkj, the problem changes 

to one considering the angle between edges i kx x
uuuur

 and k jx x
uuuur

 in triangle △xixjxk under the 

assumption that RMMT is satisfied. First, the situation where the triangle exists is formally 

presented. 

Proposition 4. Let P = (pij)nn be an FPR matrix on X × X, where X = {x1, x2, … , xn} denotes a set 

of alternatives. For any three alternatives xi, xj, and xk (i  j k), when their pairwise comparisons 

pij, pjk, and pik satisfy pij ≥ 0.5, pjk ≤ 0.5, and pij ≥ 1− pjk = pkj, if pij, pkj, and pik satisfy RMMT and 

pij − pkj ≤ pik, then three edges with lengths of pij, pkj, and pik must form a triangle. 

Given pij and pjk such that pij ≥ 0.5, pjk ≤ 0.5, and pij ≥ pkj in Fig. 2 (b), under the assumption that 

RMMT is satisfied and pij − pkj ≤ pik, Proposition 4 clearly holds because max{pik, pkj} ≤ pij can be 
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used to directly deduce that pik ≤ pij + pkj. In such a triangle, the range of angles between edge 

i kx x
uuuur

 with length pik and k jx x
uuuur

 with length pkj can be determined. 

Property 4. Let P = (pij)nn be an FPR matrix on X × X, where X = {x1, x2, … , xn} denotes a set of 

alternatives. For any three alternatives xi, xj, and xk (i  j  k), if their pairwise comparisons pij, pjk, 

and pik satisfy pij ≥ 0.5, pjk ≤ 0.5, pij ≥ 1− pjk = pkj, and 0.5 ≤ pik ≤ pij, then we can determine that 

the angle between edge i kx x
uuuur

 with length pik, and edge k jx x
uuuur

 with length pkj in triangle △xixjxk 

satisfies 

 
 

,
arccos

2 ,

ij kj

ij kj

p p

x p

n

ma p

mi
 ≤ θ ≤ 

2 2 20.5
arccos

2 0.5
kj ij

kj

p p

p

 

 
,                               (10) 

π/3 ≤ 
 
 

,
arccos

2 ,

ij kj

ij kj

p p

x p

n

ma p

mi
 ≤ 0.4196π, and                                     (11) 

π/3 ≤ 
2 2 20.5

arccos
2 0.5

kj ij

kj

p p

p

 

 
 ≤ π.                                              (12) 

The proof of Property 4 is presented in Section A.5 of Appendix A. Example B.2 in Section B.3 

clearly demonstrates Property 4. In triangle △xixjxk, where the lengths of edges i jx x
uuuur

 and k jx x
uuuur

 

(pij and pkj, respectively) are provided and the length of edge i kx x
uuuur

 (pik) is unknown, when pij ≥ pkj 

≥ 0.5, pik can be calculated under the assumption that RMMT is satisfied. 

Definition 10. Let P = (pij)nn be an FPR matrix on X × X, where X = {x1, x2, … , xn} denotes a set 

of alternatives. For any three alternatives xi, xj, and xk (i  j  k), assume that their pairwise 

comparisons pij and pkj satisfy pij ≥ pkj ≥ 0.5 and RMMT is satisfied. Then, in triangle △xixjxk 

composed of three edges with lengths of pij, pkj, and pik, pik is determined by 

pik = pkj∙cosθ + 2 22 sij kjp p in  ,                                               (13) 

where θ represents the angle between edges i kx x
uuuur

 and k jx x
uuuur

 such that 
 
 

,
arccos

2 ,

ij kj

ij kj

p p

x p

n

ma p

mi
 ≤ 
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θ ≤ 
2 2 20.5

arccos
2 0.5

kj ij

kj

p p

p

 

 
. 

Eq. (13) is inferred from pij = 2 2 2ik kj ik kjp p p p cos   presented in Eq. (9). 

4.3 Introduction of triangular bounded consistency 

By using directed triangles to represent the FPRs for any three alternatives, the RMMT of an 

FPR matrix is reconstructed in Section 4.2. Taking this as an important foundation, this section 

introduces a new consistency of an FPR matrix called triangular bounded consistency, which is 

developed depending on the bounded rationality of a decision maker. Thus, triangular bounded 

consistency is clearly different from additive and multiplicative consistency. The developed 

consistency is then applied to estimate the missing elements in an acceptable incomplete FPR 

matrix. 

4.3.1 Concept of triangular bounded consistency 

As demonstrated in Section 3, when a decision maker provides an FPR matrix, which is 

additively consistent, they are assumed to be perfectly rational. In contrast, multiplicative 

consistency relaxes this assumption to guarantee that all FPRs are limited to [0, 1]. In practice, 

however, the two types of consistency cannot characterize the bounded rationality of a decision 

maker. This negatively influences the applicability of the two types of consistency in real cases. To 

address such a problem, a new consistency of an FPR matrix called triangular bounded 

consistency is proposed under the condition that RMMT is satisfied. 

Triangular bounded consistency is defined under the assumption that a decision maker may not 

have access to all relevant information or may not be able to process the information consistently 

and rationally in an efficient way (Yan and Ma, 2015). This guarantees that preferences of the 

decision maker are reasonably acceptable but not perfectly consistent. The basic idea of checking 
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triangular bounded consistency of a known triangle denoted by △xixjxk as plotted in Fig. 2 (a) is 

comprised of four steps: 

(1) collecting preferences of a decision maker as directed triangles, 

(2) using each directed triangle to determine the third edge i kx x
uuuur

 of △xixjxk from the two edges 

i jx x
uuuur

 and j kx x
uuuur

, 

(3) creating a consistency interval based on the mean and standard deviation of the resulting 

third edges, and 

(4) judging whether the known third edge is limited to the created consistency interval to 

confirm the consistency of the known triangle. 

These steps are described in detail below. 

(1) Collection of preferences 

There are typically two ways to collect the preferences of a decision maker. One is to choose 

them from historical evaluations represented by FPRs. The other is to obtain the preferences of the 

decision maker by asking them to compare given alternatives in pairs in a similar field they are 

very familiar with. Suppose that the preferences of a decision maker are gathered and expressed 

by h triangles {( 1
ap , 1

bp , 1
cp ), …, ( h

ap , h
bp , h

cp )}. Because the triangles in the second situation 

presented in Section 4.2 can be transformed into those in the first situation in accordance with the 

basic characteristics of FPRs in Definition 1 presented in Section 2, the h triangles are assumed in 

the first situation, where 0.5m
ap  , 0.5m

bp  , and max{ , }m m m
c a bp p p  (m = 1, …, h) are 

satisfied. The angle between the two edges associated with m
ap  and m

bp  is denoted by θm, which 

is limited to [ m
 , m

 ] = [
 
 

,
arccos

2 ,

m m
a b

m m
a b

p p

x p

n

ma p

mi
, 

   2 2
1

arccos
2

m m
a b

m m
a b

p p

p p

 
], as indicated by 

Property 3 in Section 4.2. 
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(2) Determination of the third edge 

Given that a known triangle △xixjxk in the first situation is provided, where the lengths of edges 

i jx x
uuuur

 and j kx x
uuuur

 (pij and pjk, respectively) are larger than or equal to 0.5, a direct method of using 

the h triangles to calculate the length of edge i kx x
uuuur

 (pik) is to regard θm as the angle θ between 

edges i jx x
uuuur

 and j kx x
uuuur

. We can determine from Eq. (6) that θ [  ,  ] = [
 
 

,
arccos

2 ,

ij jk

ij jk

p p

x p

n

ma p

mi
, 

2 2 1
arccos

2
ij jk

ij jk

p p

p p

 
]. For the h triangles, however, θm cannot be always guaranteed to be limited to 

this interval. For example, given ( m
ap , m

bp , m
cp ) = (0.6, 0.7, 0.85) and (pij, pjk) = (0.8, 0.8), θm = 

0.4515π and [θ-, θ+] = [0.3333π, 0.4298π] can be obtained using Eqs. (5) and (6), respectively. It is 

clear that θm [θ-, θ+], and a direct method is unavailable in this situation. 

Therefore, a ratio method is developed to determine θ in the triangle △xixjxk. The idea of such a 

method is that the ratio of m m    to m m    is equal to the ratio of     to    , as 

plotted in Fig. 3. Following this idea, we can easily determine that 

θ = ( )m m

m m

 
  

 


  

 


  


.                                                   (14) 

The value of pik is then determined using Eq. (9). When all h triangles are applied, m
ikp  (m = 1, …, 

h) is generated. 

 

Fig. 3. Equivalent transformation between triangle △xixjxk and the triangle ( m
ap , m

bp , m
cp ) 

provided by the decision maker. 
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It should be noted that m
 =

   2 2
1

arccos
2

m m
a b

m m
a b

p p

p p

 
 and θ+=

2 2 1
arccos

2
ij jk

ij jk

p p

p p

 
 are assumed 

in the above analysis to follow the basic property of FPRs that the maximum value of an FPR is 1. 

This property is not ensured by additive consistency; thus, it inspires multiplicative consistency. In 

theory, the length of the third edge in a triangle may be larger than 1 if the other two edges have 

lengths larger than 0.5. From this perspective, additive consistency rather than multiplicative 

consistency covers all possible situations that may not follow the basic characteristics of FPRs. 

From the viewpoint of the triangle, θ+ should be set to π to cover all possible situations. Otherwise, 

some counterintuitive results may be obtained, which is illustrated by the following example. 

Example 2. For a set of alternatives X = {x1, …, x5}, suppose that P = (pij)55 is an FPR matrix on 

X × X with p12 = 0.61, p23 = 0.75, p34 = 0.66, and p45 = 0.75. For simplicity, given ( 1
ap , 1

bp , 1
cp ) = 

(0.6, 0.7, 0.78), p13 and p35 are calculated under the condition that 1
 = 

   2 21 1

1 1

1
arccos

2

a b

a b

p p

p p

 
and θ+=

2 2 1
arccos

2
ij jk

ij jk

p p

p p

 
 as well as 1

 = π and θ+ = π. 

1) 1
 = 

   2 21 1

1 1

1
arccos

2

a b

a b

p p

p p

 
 and θ+=

2 2 1
arccos

2
ij jk

ij jk

p p

p p

 
 

In this situation, it can be calculated that [ 1
 , 1

 ] = [
 
 

1 1

1 1

,
arccos

2 ,

a b

a b

p p

x p

n

ma p

mi
, 

   2 21 1

1 1

1
arccos

2

a b

a b

p p

p p

 
] = [0.359π, 0.5571π], and θ1 = 

     2 2 21 1 1

1 1
arccos

2

a b c

a b

p p p

p p

 
 = 0.4071π. 

When p12 and p23 are considered, we can determine that [  ,  ] = [
 
 

12 23

12 23

,
arccos

2 ,

p p

x p

n

ma p

mi
, 

2 2
12 23

12 23

1
arccos

2

p p

p p

 
] = [0.3667π, 0.5228π]. From [ 1

 , 1
 ] and [  ,  ], it can be calculated that θ 

= 0.4046π using Eq. (14), and it can be further deduced from Eq. (9) that 1
13p = 0.8151. As for p34 

and p45, in a similar way, we can determine that [   ,   ] = [
 
 

34 45

34 45

,
arccos

2 ,

min p p

max p p
, 
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2 2
34 45

34 45

1
arccos

2

p p

p p

 
] = [0.355π, 0.5006π], θ = 0.3903π, and 1

35p  = 0.8147. The conclusion that 

1
13p > 1

35p  is clearly counterintuitive because p12 < p34 and p23 = p45. 

2) 1
 = π and θ+= π 

When 1
  and θ+ are changed to π, with respect to p12 and p23, θ is changed to 0.4142π, in 

which it can be further deduced that 1
13p = 0.8313. Under the same condition, θ between p34 

and 1
35p  and between p45 and 1

35p  are converted into 0.4034π and 0.838, respectively. The 

conclusion that 1
13p < 1

35p  makes sense because it is in line with the given conditions. 

Example 2 reveals that [ m
 , m

 ] = [
 
 

,
arccos

2 ,

m m
a b

m m
a b

p p

x p

n

ma p

mi
, π] for the h triangles and [  ,  ] = 

[
 
 

,
arccos

2 ,

ij jk

ij jk

p p

x p

n

ma p

mi
, π] because the triangle △xixjxk should be specified to guarantee the 

rationality of m
ikp  calculated based on the h triangles. Note that   = π may result in m

ikp  ≥ 1. As 

shown in Definition 1 presented in Section 2, m
ikp  = 1 means that the alternative xi is absolutely 

preferred to xk. With this consideration, the situation of m
ikp  > 1 can be reduced to the situation of 

m
ikp  = 1 without information loss. From this, Property 3 presented in Section 4.2 is also satisfied. 

(3) Creation of consistency interval 

Each of the h triangles represents the preference of a decision maker and none of them can be 

considered to be more representative than another without further information provided by the 

decision maker. In this situation, a feasible method of considering the preferences contained in the 

h triangles is to find a consistency interval to cover m
ikp  (m = 1, …, h). Because the mean and 

standard deviation are two statistics commonly used to measure the central tendency and 

dispersion among a set of discrete numbers, the mean and standard deviation of m
ikp  (m = 1, …, 

h), denoted by 
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ikp  = 1

1 m
ik

h

m
p

h   and                                                      (15) 

ikS  =  2

1

1

1
h m

ik ikm
p p

h  

                                                  (16) 

respectively, are applied to construct the consistency interval [ ik ikp S , ik ikp S ]. 

(4) Triangular bounded consistency 

Using the constructed consistency interval derived from the h triangles provided by a decision 

maker, whether a triangle △xixjxk is of triangular bounded consistency is judged as follows. 

Definition 11. Suppose that h triangles denoted by {( 1
ap , 1

bp , 1
cp ), …, ( h

ap , h
bp , h

cp )} are 

provided by a decision maker to characterize their preferences, where 0.5m
ap  , 0.5m

bp  , and 

max{ , }m m m
c a bp p p (m = 1, …, h). Given a triangle △xixjxk with lengths pij, pjk, and pik such that pij 

≥ 0.5, pjk ≥ 0.5, and pik ≥ max{pij, pjk}, assume that m
ikp  (m = 1, …, h) is generated by using Eqs. 

(9) and (14) and the mean ikp and the standard deviation Sik of m
ikp  (m = 1, …, h) are known. 

Then, pij, pjk, and pik are considered to satisfy triangular bounded consistency if they satisfy the 

following condition: 

ik ikp S  ≤ pik ≤ ik ikp S .                                                    (17) 

Based on Definition 11, triangular bounded consistency of an FPR matrix is defined. 

Definition 12. Given a set of alternatives X = {x1, x2, …, xn}, let P = (pij)nn be an FPR matrix on 

X × X. Suppose that h triangles denoted by {( 1
ap , 1

bp , 1
cp ), …, ( h

ap , h
bp , h

cp )} are provided by a 

decision maker to characterize their preferences, where 0.5m
ap  , 0.5m

bp  , and 

max{ , }m m m
c a bp p p (m = 1, …, h). Under the given conditions, P is said to have triangular bounded 

consistency if pij, pjk, and pik ( i, j, k{1, …, n}) are verified to be of triangular bounded 

consistency. 

Note that for any three alternatives, we can always find a triangle in the first situation shown in 
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Section 4.2, which is similar to the situation of the h triangles and potentially assumed in 

Definition 12. 

4.3.2 Estimation of missing FPRs 

In real-world applications, it could be a burden on a decision maker to have to compare all 

alternatives in pairs and guarantee consistency of the comparisons. To relieve this burden, the 

decision maker is allowed to provide comparisons between some alternatives rather than all 

alternatives. This gives rise to the question of how to estimate the missing comparisons in an 

acceptable incomplete comparison matrix as defined in Definition 8 presented in Section 2. This 

question is addressed using triangular bounded consistency of the matrix for each of the two 

situations presented in Section 4.2. 

(1) Analysis of the first situation 

Assume that the h triangles in the first situation, denoted by {( 1
ap , 1

bp , 1
cp ), …, ( h

ap , h
bp , 

h
cp )}, are provided by a decision maker. Under the condition that pij and pjk with pij ≥ 0.5 and pjk ≥ 

0.5 are provided and pik is unknown, m
ikp  (m = 1, …, h) limited to [0.5, 1], ikp , and ikS  can be 

obtained in accordance with Subsection 4.3.1. When pik is limited to [ ik ikp S , ik ikp S ], pij, pjk, 

and pik can be considered to have triangular bounded consistency. 

(2) Analysis of the second situation 

Suppose that pij and pkj with pij ≥ pkj ≥ 0.5 (or pkj ≥ pij ≥ 0.5) are provided; then, the angle 

between edges i kx x
uuuur

 and k jx x
uuuur

 in triangle △xixjxk represented by θ is limited to [  ,  ] = 

[
 
 

,
arccos

2 ,

ij kj

ij kj

p p

x p

n

ma p

mi
, π]. The reason that the upper bound is π instead of 

2 2 20.5
arccos

2 0.5
kj ij

kj

p p

p

 

 
 

is similar to that in the first situation, which is explained in Example 2, so is not discussed here. 

For each reference triangle ( m
ap , m

bp , m
cp ), θ is also determined from Eq. (14) and is used to 
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calculate m
ikp  (m = 1, …, h) in accordance with Eq. (13). Note that m

ikp ≥ 0.5 is specified by 

Property 4; thus, m
ikp  = 0.5 is set when m

ikp < 0.5 because  
 = π. Based on m

ikp  (m = 1, …, h) 

limited to [0.5, 1], the consistency interval [ ik ikp S , ik ikp S ] is created from Eqs. (15) and (16). 

Similar to the first situation, any point in the interval can be given to pik to ensure that pij, pkj, and 

pik are of triangular bounded consistency. 

The above analyses indicate that any value in the consistency interval [ ik ikp S , ik ikp S ] can 

be considered as the estimation of a missing FPR. An important issue is how to find an estimation 

in which the information contained in m
ikp  (m = 1, …, h) is considered as much as possible. To 

address this issue, a fair rule is designed to identify such an estimation, which is nearly or even 

completely equidistant from m
ikp  (m = 1, …, h). In other words, the estimation selected from the 

consistency interval [ ik ikp S , ik ikp S ] is fair for the given h triangles. To find this estimation, 

an optimization model is constructed as described below. 

MIN   2*
1

h m
ik ikm

p p                                                        (18) 

s.t.    ik ikp S ≤ *
ikp  ≤ ik ikp S ,                                             (19) 

where *
ikp  symbolizes a decision variable to differentiate it from the optimized pik. 

Suppose that f( *
ikp ) =  2*

1

h m
ik ikm

p p  ; then, solving the optimization model shown in Eqs. 

(18) and (19) changes to finding the minimum value of the function f( *
ikp ) within the range 

[ ik ikp S , ik ikp S ]. For this purpose, the first derivative of f( *
ikp ) is calculated as 

 *

*

ik

ik

d p

dp

f
 = 

2  *
1

h m
ik ikm

p p  . It can be inferred from 
 *

*

ik

ik

d p

dp

f
= 0 that *

ikp  = 1

1 h m
ikm

p
h   = ikp  may be an 

extreme point. To confirm this, the second derivative of f( *
ikp ) is obtained as 

 2 *

* 2( )

ik

ik

d p

d p

f
= 2h > 0, 
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which indicates that 
 *

*

ik

ik

d p

dp

f
< 0 when pik < ikp  and 

 *

*

ik

ik

d p

dp

f
> 0 when pik > ikp . That is, f(pik) > 

f( *
ikp ) with *

ikp  = ikp  always holds whether pik < ikp  or pik > ikp . As a result, it can be 

concluded that *
ikp  = ikp  is the extreme point that minimizes the function f( *

ikp ). In other words, 

ikp  is the specific estimation selected from the consistency interval [ ik ikp S , ik ikp S ] 

following the fair rule. Such estimation can be used to generate recommended values of missing 

FPRs in an acceptable incomplete FPR matrix under the condition that Theorem 3 in Section 2 is 

satisfied. 

More importantly, for triangle △xixjxk with pij ≥ 0.5 and pjk = 0.5, the value of pik can be 

estimated for both situations described in Section 4.2. When pjk = 0.5+, i.e., it is very close to but 

larger than 0.5, pik can be inferred from the first situation and its value is denoted by ikp . 

However, when pjk = 0.5-, i.e., it is very close to but less than 0.5, pik can be obtained from the 

second situation and its value is denoted by ikp . Without loss of generality, pjk reaching 0.5- and 

pjk reaching 0.5+ are equally likely. As a result, the value of pik can be estimated by the equality pik 

= ( ikp + ikp )/2. 

A numerical example and its discussion are presented in Section B.4 of Appendix B to 

demonstrate the issue of how to decide whether the known elements in an acceptable incomplete 

FPR matrix satisfy triangular bounded consistency; the question of how to estimate the missing 

elements in the matrix by using triangular bounded consistency is also discussed there. It should 

be noted that when three FPRs provided by a decision maker do not satisfy triangular bounded 

consistency, they must be revised. 

5. Application of triangular bounded consistency of FPRs in MADA 

In this section, we describe how triangular bounded consistency of FPRs is applied to MADA. 

5.1 Modeling and analysis of MADA problems with FPRs 
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An MADA problem arises when a decision maker must compare several alternative courses of 

action by considering multiple factors to select one or more desirable ones. Pairwise comparison 

between alternatives is one commonly used approach for MADA owing to its simplicity. Because 

FPR is one method of recording the decision makers’ preferences in pairwise comparisons, in this 

application, we will apply FPR to analyze the following MADA problem. 

Suppose that in an MADA problem M alternatives denoted by al (l = 1, ..., M) are compared in 

pairs on L attributes denoted by ei (i = 1, ..., L). The comparison between alternatives al and am is 

expressed by FPR to form an FPR matrix on attribute ei denoted by P(ei(alm)) = (pi(alm))MM, 

where 0 ≤ pi(alm) ≤ 1, pi(alm) + pi(aml) = 1 for l, m{1, …, M}, and pi(all) = 0.5. The relative 

weights of the L attributes are denoted by w = (w1, w2, …, wL), where 0 ≤ wi ≤ 1 for i = 1, …, L 

and 1
1L

ii
w   are set to balance the contribution of pi(alm) to the overall comparison between 

alternatives al and am. The weights can be determined by subjective judgments of a decision maker 

or can be determined based on the performances of the alternatives (Chin et al., 2015; Fu and Chin, 

2014; Fu and Xu, 2016). Then, the weighted P(ei(alm)) can be combined to generate the overall 

preferred degree of alternative al over am, denoted by p(alm). The simple additive weighting 

method (Kaliszewski and Podkopaev, 2016) is one method of carrying out such a combination: 

p(alm) = 
1

( ( ))L
i i lmi

w p e a  .                                                  (20) 

From the aggregated FPR matrix P(alm) = (p(alm))MM, desirable alternatives can be identified 

using a specific method, such as the net flow method (Fodor and Roubens, 1994). In this method, 

the leaving flow and entering flow of alternative al are calculated from    1,

M
l lmm m la p a

    

and    1,

M
l mlm m la p a

   , respectively. Then, the net flow of alternative al is calculated by 

     l l la a a     . An alternative with a larger net flow is more preferred; thus, all 
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alternatives can be compared by their net flows to generate a ranking order of the M alternatives 

and desirable ones can be identified. The details of this can be found in Section B.2 of Appendix 

B. 

5.2 Process of finding solutions to MADA problems with FPRs based on triangular bounded 

consistency 

The above discussion is about finding solutions to MADA problems with complete FPR 

matrices. This may not be feasible in practice because offering consistent FPR matrices P(alm)MM 

is very difficult for a decision maker, particularly when M and L are extremely large. To relieve 

the burden on the decision maker, the decision maker can offer (M−1)·L FPRs between adjacent 

alternatives, from which the remaining FPRs can be derived (Sen and Yang, 1994). Following this 

idea, we design a process of analyzing MADA problems based on triangular bounded consistency, 

which is plotted in Fig. 4. 
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Fig. 4. Process of analyzing MADA problems based on triangular bounded consistency. 

Fig. 4 shows the three stages in the process, namely problem structuring and information 

collection, consistency analysis, and decision-making. In the problem structuring and information 

collection stage, only (M-1)·L FPRs between adjacent alternatives denoted by p(ei(al(l+1))) (l = 

1, ..., M−1) are required, which is beneficial for relieving the burden on the decision maker and 

avoiding inconsistencies in the provided FPRs. This is clearly different from Section 5.1, in which 

M·(M-1)·L FPRs are required. To estimate FPRs between nonadjacent alternatives, it is necessary 

to use historical triangles of FPRs obtained from a similar field with which the decision maker is 

familiar. Suppose that there are h triangles {( 1
ap , 1

bp , 1
cp ), …, ( h

ap , h
bp , h

cp )} available from 
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historical FPRs. 

In the consistency analysis stage, through Eq. (20), FPRs between adjacent alternatives on each 

attribute are combined to generate the overall FPR between adjacent alternatives, denoted by 

p(al(l+1)) (l = 1, ..., M−1). Then, FPRs between nonadjacent alternatives are estimated under the 

condition that triangular bounded consistency is guaranteed. By considering the h triangles as 

benchmarks, the FPRs between nonadjacent alternatives p(alm) ( l, m{1, ..., M}, m > l + 1) in 

the upper triangle of the FPR matrix are derived from p(al(l+1)) using triangular bounded 

consistency, as shown in Definition 11 presented in Subsection 4.3.1 and the optimization model 

in Eqs. (18) and (19). The FPRs p(aml) ( l, m  {1, ..., M}, m>l) in the lower triangle of the FPR 

matrix are then obtained in accordance with the basic constraint on FPRs in Definition 1 presented 

in Section 2, i.e., p(alm) + p(aml) = 1 ( l, m{1, ..., M}). 

In the decision-making stage, from the complete FPR matrix, the net flow of each alternative is 

calculated to generate a solution to the MADA problem. 

From the above discussion, it can be observed that the process outlined in Fig. 4 is different 

from the process of analyzing MADA problems discussed in Section 5.1 in both the problem 

structuring and information collection stage and the consistency analysis stage. The former 

involves the estimation of FPRs between nonadjacent alternatives in accordance with triangular 

bounded consistency. The latter requires complete FPR matrices, which may or may not be 

consistent. 

6. Case study 

In this section, a problem of selecting areas to market products, i.e., a market selection problem, 

for a company located in Qingyang County of Anhui Province in China is investigated to 
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demonstrate the application of triangular bounded consistency of FPRs in a MADA problem. 

6.1 Description of the market selection problem 

We focus on how a company located in Qingyang County of Anhui province, with limestone 

powder as their main product, selects markets. In the current situation, the potential markets of the 

company are the five areas of Anhui, Jiangsu, Shanghai, Belgium, and Japan. Selling limestone 

powder to these five areas simultaneously imposes a heavy burden on the company because this 

requires a large amount of operating capital and inventory. To relieve this burden, the company’s 

board decides to select the most appropriate two areas to sell in by considering current cash flow 

difficulties. The manager of the company acts as the decision maker responsible for the alternative 

selection with the help of five experts from the sales, planning, finance, and research and 

development departments and a collaborative university (the second author is the expert from the 

university). The five alternatives are evaluated in pairs on seven attributes: capital inputs, market 

demands, process loss, capital cycle, research and development inputs, capabilities of market 

profits, and capabilities of sustainable development. 

Suppose that the five alternatives are denoted by Al (l = 1, …, 5) and the seven attributes are 

denoted by ei (i = 1, …, 7). After analyzing the influence of each attribute on the overall 

comparison between alternatives, the decision maker uses a method discussed by Ölçer and 

Odabaşi (2005) to specify that wi (i = 1, …, 7) = (0.15, 0.25, 0.07, 0.1, 0.1, 0.18, 0.15). Based on 

the analysis of documents and data related to the five alternatives, the decision maker provides 

comparisons between adjacent alternatives using MPRs, as presented in Table C.1 of Section C.1 

in Appendix C of the supplementary material. The MPRs in Table C.1 are then transformed into 

FPRs (shown in Table 1) using Proposition B.1. 
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Table 1 

FPRs between adjacent alternatives on seven attributes. 

Attributes p(ei(A12)) p(ei(A23)) p(ei(A34)) p(ei(A45)) 

e1 0.5415 0.5766 0.6461 0.6577 

e2 0.6577 0.5217 0.6794 0.5597 

e3 0.7717 0.5000 0.6338 0.5923 

e4 0.4188 0.3838 0.4492 0.4492 

e5 0.4492 0.6070 0.6688 0.6070 

e6 0.3423 0.2915 0.3423 0.2915 

e7 0.4492 0.3423 0.4188 0.4760 

To estimate the FPRs between nonadjacent alternatives, the decision maker is required to 

choose the triangles of FPRs that he is most confident with from historical evaluations he made for 

a past decision problem. The problem is to select the most appropriate city to construct a new 

factory from five candidates: Tongling (TL), Chizhou (CZ), Hefei (HF), Shanghai (SH), and 

Taizhou (TZ). The five candidates are evaluated on six attributes, which are production cost, 

manpower resource, regional conditions, service facility, competitor, and political stability. The 

decision maker is most confident with the FPRs he made when comparing three candidates on 

each attribute to form the following six triangles: {(CZ/TL, TL/SH, CZ/SH), (HF/SH, SH/TL, 

HF/TL), (SH/TZ, TZ/CZ, SH/CZ), (SH/HF, HF/TL, SH/TL), (TZ/CZ, CZ/HF, TZ/HF), (TL/TZ, 

TZ/SH, TL/SH)} = {(0.59, 0.68, 0.72), (0.36, 0.81, 0.70), (0.55, 0.76, 0.78), (0.64, 0.82, 0.90), 

(0.15, 0.92, 0.83), (0.25, 0.29, 0.21)}. As is stated in Subsection 4.3.1, the triangles in the second 

situation can be transformed into those in the first situation in accordance with the basic 
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characteristics of FPRs in Definition 1 presented in Section 2. For this reason, the above six 

triangles are uniformly expressed by six ones in the first situation: {(0.59, 0.68, 0.72), (0.64, 0.70, 

0.81), (0.55, 0.76, 0.78), (0.64, 0.82, 0.90), (0.83, 0.85, 0.92), (0.75, 0.71, 0.79)}. 

6.2 Generation of a solution to the market selection problem 

To find a solution to the market selection problem, the FPRs between adjacent alternatives 

p(ei(Al(l+1))) (i = 1, …, 7, l = 1, ..., 4) given in Table 1, which are presented in Section 6.1, are 

combined using Eq. (20) and wi (i = 1, …, 7) to generate the aggregated FPRs between adjacent 

alternatives p(Al(l+1)) (l = 1, ..., 4), as presented in Table 2. 

Table 2 

Aggregated FPRs between the five alternatives. 

Areas A1 A2 A3 A4 A5 

A1 0.5 0.5155 0.497 0.561 0.6036 

A2 0.4845 0.5 0.4485 0.5039 0.557 

A3 0.503 0.5515 0.5 0.5621 0.6083 

A4 0.439 0.4961 0.4379 0.5 0.5116 

A5 0.3964 0.443 0.3917 0.4884 0.5 

Then, the overall FPR matrix based on triangular bounded consistency must be obtained, as 

outlined in the consistency analysis stage of Fig. 4 in Section 5.2. Suppose that the FPRs between 

nonadjacent alternatives Al and Am in the upper triangle of an FPR matrix are denoted by p(Alm) (m 

> l + 1); they must be subsequently estimated. By considering the six triangles in the first situation 

discussed in Subsection 4.2.1 as benchmarks, six estimations of p(Alm), denoted by ( )r
lmp A  (r = 

1, …, 6), can be obtained. Owing to space limitation, the resulting ( )r
lmp A  are not provided in 

this paper. The mean and standard deviation of ( )r
lmp A , denoted by ( )lmp A  and ( )lmS A , 
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respectively, can be further calculated using Eqs. (15) and (16) to form the consistency interval of 

the FPR p(Alm) and make triangular bounded consistency indicated in Definition 11, which is 

presented in Subsection 4.3.1. Here, we have ( )lmS A  (l = 1, …, 3, m > l + 1) = (0.003, 0.0171, 

0.0175, 0.003, 0.0171, 0.0174) for FPRs in the upper triangle of the overall FPR matrix. As 

presented in Subsection 4.3.2, ( )lmp A  is the solution to the optimization model given by Eqs. (18) 

and (19) when the fair rule is adopted; therefore, the aggregated FPRs between nonadjacent 

alternatives in the upper triangle of the overall FPR matrix are obtained and presented in Table 2. 

Note that only ( )lmp A  is presented in Table 2 to avoid repetition. From the FPRs between 

adjacent and nonadjacent alternatives in the upper triangle of the FPR matrix, all FPRs in the 

lower triangle are obtained in accordance with the basic constraint on FPRs in Definition 1 

presented in Section 2, which can be found in Table 2. 

From the results presented in Table 2, the leaving and entering flows of the five alternatives are 

calculated as  lA  (l = 1, …, 5) = (2.1771, 1.9939, 2.2249, 1.8846, 1.7195) and  lA  (l = 

1, …, 5) = (1.8229, 2.0061, 1.7751, 2.1154, 2.2805). Then,  lA  is derived from  lA  and 

 lA  to obtain (0.3542, −0.0122, 0.4498, −0.2308, −0.561). A ranking order of the five 

alternatives is generated from  lA , which is A3 f  A1 
f  A2 f  A4 

f  A5. Based on the 

ranking order, the most appropriate two areas are Shanghai (A3) and Anhui (A1) with the 

preferential order of A3 f  A1. Note that the solution is based on the current situation of the 

company, and it does not mean that the company will not be willing to sell limestone powder to 

other areas in the future. When the company overcomes its cash flow difficulties, the decision 

maker may prefer to sell limestone powder to other areas for long-term and sustainable 

development. 
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In the following, we analyze Anhui and Shanghai from real perspectives to demonstrate the 

above solution. The company has constructed favorable marketing channels in Anhui owing to 

geographical convenience and thus can satisfy market requirements more rapidly. To sell 

limestone powder in Anhui, there will be less losses in the transportation process. Owing to the 

long-term cooperation relationship between the company and consumers in Anhui, the company is 

capable of achieving a rapid cycle of capital. Despite this, because of the level of economic 

development in Anhui, the sale market of limestone powder in Anhui is not normative. This 

negatively contributes to the long-term and sustainable development of the company. Meanwhile, 

the company has limited capabilities of gaining market profits in Anhui for the same reason. 

The situation in Shanghai is different from that in Anhui. For reasons of geographical distance, 

there will be more loss in the transportation process when the company sells limestone powder to 

Shanghai. Note that under the given conditions, the company must spend more capital on 

transportation to guarantee the quality of limestone powder. Owing to the high level of economic 

development, Shanghai has a normative market and thus provides a good opportunity for the 

company to gain more market profits. Moreover, Shanghai provides a good business environment, 

which is beneficial for the capital cycle and the sustainable development of the company. As a 

whole, the solution above is generated by considering the performances of Anhui and Shanghai on 

the seven attributes and their weights simultaneously and by conforming to the real situations of 

Anhui and Shanghai. 

6.3 Influence of historical preferences of the decision maker on solutions 

As shown in Fig. 4, which is presented in Section 5.2, the historical preferences of a decision 

maker in the problem structuring and information collection stage influence the consistency 

analysis stage as well as the decision-making stage. They are considered as benchmarks for 
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carrying out triangular bounded consistency analysis, and this is reflected in solutions to MADA 

problems. To examine the potential influence of historical preferences of a decision maker on 

solutions, we take a given preference represented by a triangle (0.55, 0.76, 0.78) in the market 

selection problem as an example to conduct a sensitivity analysis. 

To facilitate this examination, we fix the first edge and adapt the second or third edge. First, 

under the condition that the length of the third edge is changed to 0.9, suppose that the length of 

the second edge changes from 0.5 to 0.9 with a step of 0.01 to satisfy RMMT. For the 41 triangles, 

the net flows of the five alternatives are calculated and plotted in Fig. 5. 

 

Fig. 5. Movement of net flows of the five alternatives when the length of the second edge changes 

from 0.5 to 0.9. 

Fig. 5 shows that the rankings of Jiangsu (A2), Belgium (A4), and Japan (A5) remain unchanged 

with an increase in the length of the second edge, and the rankings of Anhui (A1) and Shanghai (A3) 

alter when the length of the second edge approaches 0.74. Before and after 0.74, Anhui (A1) 

changes from the best area to the second-best area. 

Next, when the length of the second edge is set to 0.6, suppose that the length of the third edge 

changes from 0.6 to 1 to satisfy RMMT. For the 41 triangles, the net flows of the five alternatives 

are calculated and plotted in Fig. 6. It is shown in Fig. 6 that the rankings of Jiangsu (A2), Belgium 
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(A4), and Japan (A5) remain unchanged with an increase in the length of the third edge, and the 

rankings of Anhui (A1) and Shanghai (A3) alter when the length of the third edge approaches 0.76. 

Before and after 0.76, Shanghai (A3) changes from the best area to the second-best area. 

 

Fig. 6. Movement of net flows of the five alternatives when the length of the third edge changes 

from 0.6 to 1. 

Altogether, the above discussion illustrates the significant influence of the preferences of the 

decision maker represented by triangles on solutions to the market selection problem. This also 

implies that the preferences of a decision maker significantly influence the generation of FPRs 

between nonadjacent alternatives from FPRs between adjacent alternatives when triangular 

bounded consistency is followed. Note that perfect rationality can be considered as a special case 

of bounded rationality. When all preferences of the decision maker satisfy additive or 

multiplicative consistency of FPRs, triangular bounded consistency will reduce to either additive 

or multiplicative consistency. 

6.4 Comparative analysis 

As presented in Section 3, triangular bounded consistency is inspired by additive and 
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multiplicative consistency. To highlight the difference between triangular bounded consistency 

and the two types of consistency, we conduct a comparative analysis based on the market selection 

problem described in Section 6.1. 

By using additive and multiplicative consistency indicated in Definitions 2 and 3, respectively, 

we reimplement the process of generating the aggregated FPRs presented in Section 6.2, and the 

obtained results are presented in Tables 3 and 4. 

Table 3 

Aggregated FPRs between the five alternatives in accordance with additive consistency. 

Areas A1 A2 A3 A4 A5 

A1 0.5 0.5155 0.464 0.5261 0.5377 

A2 0.4845 0.5 0.4485 0.5106 0.5222 

A3 0.536 0.5515 0.5 0.5621 0.5737 

A4 0.4739 0.4894 0.4379 0.5 0.5116 

A5 0.4623 0.4778 0.4263 0.4884 0.5 

Table 4 

Aggregated FPRs between the five alternatives in accordance with multiplicative consistency. 

Areas A1 A2 A3 A4 A5 

A1 0.5 0.5155 0.4639 0.5262 0.5378 

A2 0.4845 0.5 0.4485 0.5107 0.5223 

A3 0.5361 0.5515 0.5 0.5621 0.5735 

A4 0.4738 0.4893 0.4379 0.5 0.5116 

A5 0.4622 0.4777 0.4265 0.4884 0.5 
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From the results in Tables 3 and 4, the net flows of alternative Al (l = 1, …, 5) associated with 

additive and multiplicative consistency denoted by  A lA  and  M lA  are calculated as 

(0.0866, −0.0684, 0.4466, −0.1744, −0.2904) and (0.0868, −0.068, 0.4464, −0.1748, −0.2904), 

respectively. A common ranking order of the five alternatives is then generated, which is A3 f  A1 

f  A2 f  A4 f  A5. Shanghai (A3) and Anhui (A1) are still the most appropriate two areas, which is 

the same as the solution generated based on triangular bounded consistency. However, the net flow 

 lA  is clearly different from  A lA  and  M lA , particularly for the net flows of 

alternatives A1 and A5. This difference is mainly because the preferences of the decision maker are 

bounded by triangular bounded consistency rather than additive or multiplicative consistency. 

Given a fixed set of FPRs of a decision maker, the solutions generated by adopting triangular 

bounded consistency may not be unique but within a range that reflects the bounded rationality of 

the decision maker. However, the solution is unique when additive or multiplicative consistency is 

adopted, implying that all decision makers must be strictly rational and make the same choice no 

matter who they are. In practice, different decision makers may make different decisions. From 

this perspective, triangular bounded consistency is more feasible and effective than additive or 

multiplicative consistency for generating solutions that are acceptable or satisfactory to a decision 

maker. 

In Appendix D of the supplementary material, we further compare the relationship between the 

two types of consistency and triangular bounded consistency based on the market selection 

problem. 

7. Conclusions 

Consistency is an important issue concerning FPRs. There are two classical types of consistency 
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in existing studies, namely additive and multiplicative consistency. Through a detailed analysis, it 

is concluded that these two types of consistency cannot reflect the preferences of a decision maker 

with bounded rationality. To address such an issue, a new consistency measure of an FPR matrix, 

called triangular bounded consistency, is proposed. Using directed triangles to represent the 

pairwise FPRs for any three alternatives, the RMMT of FPRs is geometrically represented by the 

value range of the angles formed by two adjacent edges of triangles. This representation takes 

different forms in the following two situations. The first is when the length of one of the two 

adjacent edges is larger than 0.5, and the length of the other edge is smaller than 0.5. The second is 

when the lengths of both the adjacent edges are either larger or smaller than 0.5. Given that 

RMMT is satisfied, triangular bounded consistency is defined using the preference information of 

a decision maker characterized by a set of directed triangles. The constructed triangular bounded 

consistency is then applied to estimate the missing elements in an acceptable incomplete FPR 

matrix. Finally, a problem of selecting areas to market the products of a company is investigated to 

demonstrate the application of triangular bounded consistency of FPRs in MADA problems. 

In the future, two significant issues concerning triangular bounded consistency must be 

investigated. The first issue involves the set of triangles provided by a decision maker being 

filtered to greatly reduce inconsistent triangles that satisfy RMMT but cannot represent the 

bounded rationality of the decision maker. The other issue involves determining the importance 

weight of the remaining triangles in determining the lower and upper bounds of triangular 

bounded consistency of a decision maker. In addition, triangular bounded consistency will be used 

to compare the consistency levels of different decision makers and check whether a decision 

maker is more consistent in making some decisions than others. Furthermore, triangular bounded 
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consistency will be extended to other situations where preference information of a decision maker 

is characterized by different types of FPRs, such as triangular FPRs (Meng and Chen, 2017). 
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