
 1

Multi-Layer Competitive-Cooperative Framework for Performance

Enhancement of Differential Evolution

Sheng Xin Zhang, Li Ming Zheng, Kit Sang Tang, Shao Yong Zheng, Wing Shing Chan

Journal-ref: Information Sciences, https://doi.org/10.1016/j.ins.2018.12.065

 2

Multi-Layer Competitive-Cooperative Framework for Performance

Enhancement of Differential Evolution

Sheng Xin Zhang a, b, Li Ming Zheng c, Kit Sang Tang b, Shao Yong Zheng a, Wing Shing Chan b

a School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510006, China
b Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong

c Department of Electronic Engineering, School of Information Science and Technology, Jinan University,

Guangzhou, 510632, China

Abstract

Differential Evolution (DE) is recognized as one of the most powerful optimizers in the evolutionary

algorithm (EA) family. Many DE variants were proposed in recent years, but significant differences in

performances between them are hardly observed. Therefore, this paper suggests a multi-layer

competitive-cooperative (MLCC) framework to facilitate the competition and cooperation of multiple DEs,

which in turns, achieve a significant performance improvement. Unlike other multi-method strategies which

adopt a multi-population based structure, with individuals only evolving in their corresponding

subpopulations, MLCC implements a parallel structure with the entire population simultaneously monitored

by multiple DEs assigned to their corresponding layers. An individual can store, utilize and update its

evolution information in different layers based on an individual preference based layer selecting (IPLS)

mechanism and a computational resource allocation bias (RAB) mechanism. In IPLS, individuals connect to

only one favorite layer. While in RAB, high-quality solutions are evolved by considering all the layers. Thus

DEs associated in the layers work in a competitive and cooperative manner. The proposed MLCC framework

has been implemented on several highly competitive DEs. Experimental studies show that the MLCC

variants significantly outperform the baseline DEs as well as several state-of-the-art and up-to-date DEs on

CEC benchmark functions.

Keywords: Differential evolution (DE); global numerical optimization; multi-layer competitive-cooperative

1. Introduction

 Differential evolution (DE) [30] is well known for its efficiency in solving various continuous

 3

optimization problems [7, 8, 24]. DE has been widely explored over the past two decades, and consequently

many advanced DE variants have been proposed. Recently, several competitive DEs, including CoBiDE

(DE with covariance matrix learning and bimodal distribution parameter setting) [39], SHADE (DE with

success-history based parameter adaptation) [33], MPEDE (DE with multi-population ensemble) [44] and

IDE (DE with individual-dependent mechanism) [36] have been designed. However, when compared with

each other, there were not many differences in their performances. It still remains a challenge to construct a

DE algorithm that can significantly outperform all of these up-to-date DEs.

On the other hand, since the proposal of the AMALGAM-SO (A multi-algorithm genetically adaptive

method for single objective optimization) [37] algorithm, research [1, 13, 25, 28, 31, 44, 50] on combining

multiple operators or multiple evolutionary algorithms (EAs) have been a hot topic in the EA community.

These methods usually employ a multi-population structure, which divides the entire population into several

subpopulations. However, when the population size of each constituent optimizer is large, the convergence of

the hybrid algorithm may decrease significantly. The clustering of individuals would slow down and function

evaluations more likely spent on random explorative moves [26]. Moreover, it may be difficult to incorporate

some complex variants and there is still uncertainty on how to take advantage of these optimizers

simultaneously.

Recognizing the distinct merits of different DE designs and the difficulties in managing multiple DEs under

a multi-population structure, we aim to propose a flexible framework that is able to combine multiple DEs

efficiently and achieve a significant improvement of performance. A multi-layer competitive-cooperative

(MLCC) framework is hence developed in this paper. In MLCC, a single population is maintained, while, by

deploying individuals to operational layers, it facilitates competition and cooperation amongst the employed

DEs. Features of MLCC are highlighted as follows:

 (1) Different from existing multi-population based hybrid methods, MLCC introduces a parallel

multi-layer structure with each layer associated with one adaptive DE optimizer. This parallel structure is

expected to i) eliminate the significant increase in population size as observed in existing multi-population

based structures; and ii) preserve the original designs of the constituent optimizers, providing high flexibility

to incorporate complex DE variants.

 (2) Competition in MLCC is designed to efficiently distribute computation resources. This is

accomplished by the individual preference-based layer selecting (IPLS) mechanism, that allows each

individual to connect to its favorite layer. IPLS differs from existing methods [21, 25, 28, 37, 42-44] in three

aspects: i) each layer in MLCC has access to the entire population. Although some individuals (i.e. the target

vectors) may be processed by a specific layer at some time, individuals for mutation can be selected from the

entire population; ii) each individual can store, use and update its evolution information in multiple layers.

 4

This facilitates the incorporation of self-adaptive DEs [4, 22, 39], which have to evolve individual specified

strategies or parameters; and iii) the entire population is monitored by multiple layers to help each optimizer

make decisions based on the current evolution stage.

 (3) Cooperation in MLCC takes advantages of all the constituent optimizers simultaneously, to allow them

to collaborate closely. This is realized using the resource allocation bias (RAB) mechanism. In RAB, some

high-quality solutions are allowed to generate multiple trial vectors by using all the layers while the inferior

solutions only produce one trial vector. RAB is designed based on the following considerations: i)

simultaneous consideration of all the layers for superior individuals can provide multiple directions for

evolution; ii) the layers in MLCC usually have complementary properties. Evolving elitism solutions by

these layers simultaneously is less likely to suffer from a local optimum but instead enhances the exploitation

capability of the algorithm; iii) different from canonical DE [30] and existing DEs, RAB allocates more

resources to superior solutions. As a result, the evolution can put more efforts onto promising searching

directions, which may be beneficial to the entire population later; and iv) the same as canonical DE, inferior

solutions in RAB can still generate their offspring. This ensures that the chances of inferior solutions can

compete with the superior ones thus keeping the exploratory capability of DE.

The effectiveness of the proposed MLCC framework and its components, i.e. IPLS and RAB, have been

verified through extensive experiments conducted using 30 benchmark functions derived from the 2014

IEEE Congress on Evolutionary Computation (IEEE CEC2014) [18]. Numerical results show that MLCC

significantly improves the performance of the baseline DEs. Moreover, the resulting MLCC variant

significantly outperforms state-of-the-art and up-to-date DEs.

The remainder of this paper is organized as follows: Sec. 2 briefly reviews the related works. Sec. 3

describes the proposed MLCC framework and its implementation details. Sec. 4 presents the experiments and

discussions. Finally, Sec. 5 concludes this paper.

2. Background and Related Works

2.1 Basics of DE

DE is a population-based stochastic search method for continuous real parameter optimization problems.

Given a D-dimensional minimization problem, DE begins with a population of NP individuals,

randomly sampled from the searching space. Afterwards,

at each generation G, three operations: mutation, crossover and selection are performed. They are briefly

introduced in the following.

 0 ,0 ,1,0 ,2,0 , ,0(, , ,), {1,2, }i i i i DP x x x x i NP= =  

 5

 Mutation: In mutation, a mutant vector
,i Gv corresponding to each target vector

Gi
x

,


 is generated by

combining a base vector with one or more difference vectors. Frequently used mutation strategies include:

1) DE/rand/1

)(
,,,, 321 GrGrGrGi

xxFxv


−+= (1)

2) DE/best/1

)(
,,,, 21 GrGrGbestGi

xxFxv


−+= (2)

3) DE/rand/2

)()(
,,,,,, 54321 GrGrGrGrGrGi

xxFxxFxv


−+−+= (3)

4) DE/best/2

)()(
,,,,,, 4321 GrGrGrGrGbestGi

xxFxxFxv


−+−+= (4)

5) DE/current-to-best/1

)()(
,,,,,, 21 GrGrGiGbestGiGi

xxFxxFxv


−+−+= (5)

where
Gbest

x
,


 denotes the best vector in the current population PG, \{ }mr i with ,5,2,1 =m are distinct

integers and F is a user-specified mutation control parameter within (0, 1].

Crossover: After mutation, crossover is performed on each mutant vector
,i Gv and its corresponding target

vector
Gi

x
,


 to generate a trial vector .

,Gi
u


 The classic binomial crossover is formulated as follows.

, ,

, ,

, ,

if (0,1) or

otherwise

i j G j rand

i j G

i j G

v rand CR j j
u

x

 =
= 


 (6)

where randj (0,1) is a uniform random number within (0, 1), jrand is a randomly generated integer from [1, D],

and CR is a user-defined crossover control parameter within [0,1].

Selection: Selection is to determine the better vector between
Gi

u
,


and

Gi
x

,


 which will survive in the next

generation, based on their fitness values)(f .



 

=
+

otherwise

)()(if

,

,,,

1,

Gi

GiGiGi

Gi
x

xfufu
x 




 (7)

 2.2 Advanced DE variants

Since its advent, DE has attracted a lot of attention and many DE variants [8, 24] have been proposed with

different characteristics. Among them, self-adaptive [4, 22, 39] and adaptive [29, 33, 46] DEs exhibit

encouraging performance [2].

Self-adaptive DEs: Self-adaptive DEs [4, 22, 39] allow adjustments of strategy and/or parameter settings

in each individual during evolution. The self-adaptive DE (jDE) [4] encodes control parameters F and CR

into each individual and makes them self-adaptive during the evolution. The Parameters and Mutation

 6

Strategies Ensemble DE (EPSDE) [22] assigns mutation strategies and control parameters to individuals

from a preset pool. The Covariance matrix Learning and Bimodal Distribution Parameter Setting Based DE

(CoBiDE) [39] introduces a self-adaptive bimodal parameter sample scheme.

Adaptive DEs: Adaptive DEs [29, 33, 46] usually collect population-wise success experience from

previous generations and then use it as a guideline for later evolution. The Strategy Adaptive DE (SaDE) [29]

dynamically determines the selecting probabilities of four mutation strategies according to their previous

performances. The Adaptive DE (JADE) [46] introduces a new “current-to-pbest/1” mutation strategy and a

success-based parameter adaptation mechanism. Due to its impressive performance, JADE was later

modified, giving birth to many variants, such as Success History Based Adaptive DE (SHADE) [33], Linear

Population Size Reduction Based SHADE (L-SHADE) [34], Collective Information Powered DE (CIPDE)

[47] and Selective Candidate with Similariy Selection Rule (SCSS) based variants [45].

In addition, with the support of various mutation strategies, plentiful multiple strategies based DEs have

also been proposed. The Composite DE (CoDE) [38] adopts three mutation strategies with different pairs of

F and CR to generate offspring. The Multi-population Based Ensemble of Multiple Strategies DE (MPEDE)

[44], Multiple Subpopulations Based Adaptive DE (MPADE) [6] and Individual-dependent DE (IDE) [36]

assign different mutation strategies to different subpopulations. Apart from single-objective optimization,

mutation strategy selection has also been extended to multi-objective optimization [19, 20].

Besides, the mutation and crossover operations of DE have also been improved using various mechanisms,

such as ranking based mutation [12], two-step subpopulation based mutation [48], eigenvector based

crossover [10], hybrid linkage crossover [5] and orthogonal crossover [40], to name a few.

2.3 Multi-method Search

According to the No Free Lunch Theorem (NFL) [41], no single algorithm or setting can perform the best

for all kinds of problems. For this reason, many researchers have put much efforts into the ensemble of

multiple operators or multiple EAs into their algorithms to confront different challenges in different

evolutionary stages, which in turn improve the overall performance.

Vrugt et al. [37] merged multiple EAs, including Genetic Algorithm (GA) [14], Covariance Matrix

Adaptation Evolution Strategy (CMA-ES) [15], Particle Swarm Optimizer (PSO) [49] and DE together to

formulate the Multi-algorithm Genetically Adaptive Method for Single Objective Optimization

(AMALGAM-SO) to promote efficient searches. AMALGAM-SO dynamically adjusts subpopulation size

for each constituent algorithm according to its previously achieved performance. Peng et al. [25] proposed a

population-based algorithm portfolio (PAP) scheme, in which each constituent optimizer is given a preset

time budget to run, while different optimizers are allowed to interact with each other based on a migration

 7

strategy. Gong et al. [13] proposed a cheap surrogate model to estimate the densities of multiple candidates

produced by multiple operators and then select the one with maximum density as offspring. Iacca et al. [16]

suggested the Multi-strategy Coevolving Aging Particle Optimizer (MS-CAP), combining the advantages of

aging based PSO and multiple strategies based DE. In [23], Noman et al. proposed an adaptive local search

method to improve the performance of classic DE. In [27], Piotrowski et al. introduced a memetic DE by

incorporating a local search algorithm into an adaptive DE. In [17], Kämpf et al. proposed a hybrid algorithm

which combined CMA-ES with a hybrid DE. In [21], Li et al. designed a Hybrid DE (HDE) framework to

perform two DEs alternatively during the evolution process. In HDE, only one of the DEs is activated in each

generation. If the DE that is running is regarded as inefficient, it will be replaced by the other one.

3. Proposed MLCC Framework

 3.1 Motivation

From the literature reviews presented in Sec. 2, it can be observed that: 1) Existing multi-method search [25,

37, 44] commonly divides the entire population into several subpopulations where each subpopulation

evolves with an associated method. This approach may result in two drawbacks. Firstly, as recommended in

many studies, eg. [30], the subpopulation size needs to be large enough to ensure a promising performance.

Therefore, it may result in a large population size, which leads to a deterioration in exploitation capability of

the constructed algorithms. Secondly, integrating multiple DE variants under the multi-method searching

framework may not be easy. For example, the multi-method search in [25, 37, 44] had to be modified

empirically for new DE variants. Also, some complex variants, such as IDE [36] which is already a

multipopulation based algorithm, are hard to integrate. Furthermore, it still remains a mystery on how to take

advantage of all employed methods to achieve more promising search directions; 2) Since the introduction of

SaDE (Strategy adaptive DE) [29] algorithm, the concept of adaptation has been widely adopted in designing

DE variants, usually realized with multiple mutation strategies [16, 19, 22, 44], multiple crossover strategies

[8, 23], and the adjustments of control parameters [33, 39, 46]. Regarding the parameter mechanism, several

self-adaptive [4, 22, 39] and adaptive [29, 33, 46] methods have been proposed. However, due to the fact that

a single mechanism may consistently generate parameters with fixed characteristics, it may hinder the

capability of an algorithm to seek out better parameters; 3) Existing DEs evolve each individual with equal

amount of efforts, despite their potentials.

With the above considerations, this paper proposes a parallel multi-layer structure based

competitive-cooperative (MLCC) DE framework, empowered by two mechanisms, namely the individual

 8

preference-based layer selecting (IPLS) mechanism and the computational resource allocation bias (RAB)

mechanism.

3.2 Competitive IPLS mechanism

Figure 1 depicts the proposed parallel multi-layer structure and IPLS mechanism, in which M different

methods are associated with M layers Lm (m = 1, 2, …, M) and there are NP individuals  , , {1,2, }i Gx i NP in

the population.

 The multi-layer structure is designed as follows. In every generation, the entire population is monitored

simultaneously by multiple optimizers assigned in their corresponding layers. Each target individual is

assigned to a specific layer at a particular time based on its preference (for example, individual 2 is assigned

to L1 in Fig. 1(a)). However, it is still possible to select any individual in the entire population for the mutation

process in a layer.

Preference of the target individuals is determined by the IPLS mechanism (Algorithm 1), described as

follows.

Fig.1 Illustration of the parallel multi-layer structure and IPLS mechanism. (a) Each individual connects to a layer, denoted by

the solid circle while each layer can select any individual from the entire population for the mutation process of the DE

employed. (b) Update of layer assignment by IPLS.

 9

At generation G = 0, individual preferences  , , {1,2, }i GIP i NP are randomly initialized (line 1 in

Algorithm 1). Afterwards, for each individual i at generation G, if the trial vector generated by its favor

method
,i GIP successfully replaces the target vector, then the preference is preserved to the next generation

(line 7 in Algorithm 1). Otherwise, the individual i will randomly reconnect to another distinct layer, in which

another DE is employed (line 11 in Algorithm 1). Accordingly, algorithmic settings of the M methods are

updated, following their original designs (lines 8 and 12 in Algorithm 1). In this way, the M layers compete

and the winner will eventually take more individuals. An illustrative example is depicted in Fig. 1(b).

The parallel framework can effectively deal with self-adaptive [4, 22, 39] and adaptive [29, 33, 46] DEs

even though they have a different structure. An example is given in Fig. 2, where an adaptive DE and a

self-adaptive DE reside at L1 and L2, respectively (Note: Other layers are ignored for clarity.)

For self-adaptive DEs, such as jDE [4], EPSDE [22] and CoBiDE [39], generational strategy or (and)

parameters are associated with each individual. Therefore, as shown in the example, L2 records and updates

strategies or (and) parameters corresponding to each individual in memory

2{ { }, {1,2, }}LMEM i i NP throughout the entire evolutionary process. When ,i Gx is associated with L2, i.e.

, 2i GIP = , strategies or (and) parameters stored in MEML2{i} will be taken to generate a trial vector ,i Gu .

Consequently, MEML2{i} will be updated according to the fitness comparison result between ,i Gx and ,i Gu .

For adaptive DEs, such as JADE [46] and SHADE [33], following their original designs, only

population-wise strategies or (and) parameters are required. Given a layer using adaptive DEs, this piece of

information will be stored and used by any individual associated with the layer. Consider the example shown

Fig.2 Illustration of parameter adaptation in multi-layer structure. For self-adaptive DE in L2, strategy or (and) parameters

corresponding to each individual are stored. For adaptive DE in L1, only population-wise strategies or (and) parameters are

needed. The double-headed arrows indicate the interaction between individuals and the memory in the layer.

 10

in Fig. 2, SHADE is used in L1. Hence, the memory MF and MCR [33] are used to store the values determined

by the latest successful control parameters F and CR. For any
,i Gx with 1, =GiIP , L1 retrieves parameters from

MF and MCR for the generation of trial vectors. Subsequently, parameters determined by the successful update

of
,i Gx are archived to update MF and MCR.

In this paper, an example of combining two adaptive DEs is described in Sec. 4.1 while another example of

integrating an adaptive DE and a self-adaptive DE is given in Sec. 4.4.

Algorithm 1. Competitive IPLS mechanism

1: Set generation count G = 0, initialize a population  0 ,0 , {1,2, }iP x i NP=  , initialize each method m (m = 1,

2, …, M), initialize individual preference  ,0 ((0,1)), {1,2, }i iIP ceil rand M i NP=   . // ()ceil  denotes a ceiling value.

2: While the stopping criteria are not satisfied, Do

3: For i = 1: NP Do

4: For
,i Gx , generate a trial vector

,i Gu by its preference method
,i GIP ;

5: If
, ,() ()i G i Gf u f x

6: , 1 ,i G i Gx u+ = ;

7: , 1 ,i G i GIP IP+ = ;

8: Update the generation strategies and parameter settings of the method
,i GIP if required by its original

design;

9: Else

10: , 1 ,i G i Gx x+ = ;

11: , 1 ,((0,1)) \i G i i GIP ceil rand M IP+ =  ; // “\” implies exclusion of the previous method

12: Update the generation strategies and parameter settings of the method
,i GIP if required by its original

design;

13: End If

14: End For

15: Evaluate the current evolution status and update the settings of the M methods if required by their

original designs;

16: G = G + 1;

17: End While

 11

3.3 Cooperative RAB mechanism

Existing DEs allocate equal amount of computational resources to each individual, regardless of its

potential in finding a better solution. In the following experiment, it is shown that it is more likely to generate

new best solutions (NBS) by evolving superior solutions than inferior ones. Therefore, an even distribution of

resources may not be efficient.

The experiment is conducted with two classic algorithms “DE/rand/1/bin” and “DE/best/1/bin” tested with

30-dimensional CEC2014 benchmark functions. Parameters settings for both algorithms are: F = 0.7, CR =

0.5 and NP = 5×D, and the termination condition is set as 104×D function evaluations, where D = 30 is the

dimension of the functions.

A rank archive, R, is used to record the rank of individuals who produce NBS, while frequencyi indicates

the frequency that the individual with i-th rank generates NBS. Define AR as the average rank of individuals

contributing to NBS, one has  =
=

r

i iR
r

AR
1

1
, where r is the size of archive R. If the contribution of NBS is

independent of individual’s rank, the expected value of AR can be computed by

150exp

1 1
() / () /150 75.5

NP

i i
AR i NP i

= =
= = =  .

Fig. 3 depicts the value of AR for each function in the median trial of 51 independent runs, while the dotted

line indicates the value of ARexp. As shown, AR is smaller than ARexp on all the functions tested for both

“DE/rand/1/bin” and “DE/best/1/bin”. This simply implies that superior individuals have higher potentials to

generate NBS than inferior ones. To further demonstrate this, Fig. 4 shows the value of frequencyi on

representative unimodal functions F2 and multimodal functions F9. It can be clearly seen that individuals

with a higher rank produce more NBS than those with a lower rank.

Inspired by this phenomenon, a resource allocation bias (RAB) scheme is proposed to emphasize

high-quality individuals by using all the layers. Its pseudocode is given in Algorithm 2. At each generation,

the fitness ranking FR(i) of each individual {1,2, }i NP is first determined (line 1). The smaller the FR, the

better the solution. Then, the ((0,1))Gtop ceil rand NP N=   high-rank solutions are regarded as high-quality

individuals, where]1,0[N is a preset parameter. For each top rank individual, M trial vectors

,
, {1,2, }mi G

u m M are generated by M methods and the settings of each method are updated by comparing

,mi G
u with ,i Gx (lines 4-8). Subsequently, the fittest trial vector ,i Gu is chosen to compare with the target vector

,i Gx (lines 9-14). In this way, the M layers work cooperatively to promote the quality of the solution. On the

contrary, inferior individuals are to produce one offspring each (line 16).

 12

The benefits of the cooperative RAB mechanism are twofold. Firstly, computational resources are

re-distributed in a better way. At each generation, superior solutions are given M trials by M complementary

methods. Therefore, the top individuals can be refined with a higher probability and are expected to lead the

entire population towards more promising searching areas. Secondly, inferior solutions still have a chance to

(a)

(b)

Fig. 4. Values of frequencyi on unimodal functions F2 and multimodal functions F9: (a) for

“DE/rand/1/bin”; (b) for “DE/best/1/bin”.

(a) (b)

Fig. 3. Average Rank of individuals that generate new better solution (a) for “DE/rand/1/bin”; (b) for “DE/best/1/bin”.

Experiments are conducted on thirty 30-dimensional CEC2014 benchmark functions with 51 independent runs.

 13

generate one candidate to compete with the superior solutions, thus maintaining the exploratory capability of

DE.

Algorithm 2. Cooperative RAB mechanism

1: At generation G, determine the fitness ranking FR(i), {1,2, }i NP of each individual, set

((0,1))Gtop ceil rand NP N=   ;

2: For i = 1: NP Do

3: If FR(i) ≤ topG

4: For
,i Gx , generate M trial vectors

,
, {1,2, }mi G

u m M by using M methods;

5: For m = 1: M Do

6: Compare
,mi G

u with
,i Gx ;

7: Update the generation strategies and parameter settings of method m if required by its original design;

8: End For

9: Choose the best trial vector
,bi G

u in terms of fitness from
,

, {1,2, }mi G
u m M ,where b indicates the index of

the best method;

10: If ,,
() ()b i Gi G

f u f x

11: , 1 ,bi G i G
x u+ = ;

12: Else

13: , 1 ,i G i Gx x+ = ;

14: End If

15: Else If FR(i) > topG

16: For ,i Gx , generate a trial vector ,i Gu ;

17: If , ,() ()i G i Gf u f x

18: , 1 ,i G i Gx u+ = ;

19: Else

20: , 1 ,i G i Gx x+ = ;

21: End If

22: End If

23: End For

 14

3.4 The MLCC Framework

Combining IPLS and RAB, the proposed MLCC framework is depicted in Fig. 5 and its pseudocode is

presented in Algorithm 3. As observed, for target vectors with ranking FR ≤ topG, M methods are considered

(lines 6-9) and if the target vectors are successfully updated, their preferences are renewed with the

corresponding best method b (line 14). While for the inferior vectors, only their preferences are used (line

19).

Compared to existing methods, the novelty and characteristics of MLCC framework can be summarized

by the following.

(1) The influence between individuals and each layer in MLCC is bidirectional. On the one hand, an

individual can obtain algorithmic configurations from the layers for evolving, while on the other hand, it also

returns feedbacks to the layers. This significantly differs from CoDE [38], in which algorithmic settings can

only influence individuals regardless of the preference of each individual.

(2) MLCC introduces a novel multi-layer structure, which is in nature different from AMALGAM-SO [37],

PAP [25], HDE [21] and MPEDE [44] which only uses one layer. With the multi-layer structure, each

individual in MLCC can store, utilize and update its evolution information in multiple layers during the

evolution, for example, they can evolve multiple layer-associated adaptive/self-adaptive F and CR

parameters. Moreover, in MLCC, the incorporation of self-adaptive DEs [4, 22, 39] becomes much easier.

Fig.5 Illustration of MLCC (M = 2). The top ranked individuals connect to all layers and are evolved by M methods, while the

others are connected to one layer. Note: For clarity, only two layers are shown and the number indicates the rank of an

individual.

 15

 (3) The “multi-layer”, rather than “multi-population” feature in MLCC significantly increase the

flexibility in integrating DE variants with relatively complex proposals, such as the multi-population based

IDE [36] algorithm.

(4) In MLCC, each layer has access to the current population. Although only part of the entire population is

evolved by the m-th layer, where {1,2, }m M , the vectors for mutation are selected from the entire

population, following the original design of m-th method. In this context, the M methods work in a

collaborative manner. This is different from PAP [25] and MPEDE [44], in which individuals evolve only

within their corresponding subpopulations.

 (5) MLCC preserves the original design of the baselines. The procedures performed in each layer identical

to those in the original algorithms, making MLCC easy to implement.

(6) RAB mechanism is introduced in MLCC to redistribute the computational resources and

simultaneously take advantages of all the M methods to enhance performance.

Algorithm 3. The MLCC framework

1: Initialize a population  0 ,0 , {1,2, }iP x i NP=  , initialize each method m (m = 1, 2, …, M), initialize the

individual preference  ,0 ((0,1)), {1,2, }i iIP ceil rand M i NP=   , set generation count G =0, set threshold value N;

2: While the stopping criteria are not satisfied, Do

3: Determine the fitness ranking FR(i) of each individual i in the population, set

((0,1))Gtop ceil rand NP N=   ;

4: For i = 1: NP Do

5: If FR(i) ≤ topG

6: For
,i Gx , generate M trial vectors

,
, {1,2, }mi G

u m M by using M methods;

7: For m = 1: M

8: Compare
,mi G

u with
,i Gx ;

9: Update the generation strategies and parameter settings of method m if required by its original design;

10: End For

11: Choose the best trial vector
,bi G

u in terms of fitness from
,

, {1,2, }mi G
u m M , where b indicates the index

of the best method;

12: If ,,
() ()b i Gi G

f u f x

13: , 1 ,bi G i G
x u+ = ;

 16

14:
, 1i GIP b+ = ;

15: Else

16:
, 1 ,i G i Gx x+ = ;

17: End If

18: Else If FR(i) > topG

19: For
,i Gx , generate a trial vector

,i Gu by its preference method
,i GIP ;

20: If
, ,() ()i G i Gf u f x

21:
, 1 ,i G i Gx u+ = ;

22:
, 1 ,i G i GIP IP+ = ;

23: Update the generation strategies and parameter settings of method
,i GIP if required by its original

design;

24: Else

25:
, 1 ,i G i Gx x+ = ;

26: , 1 ,((0,1)) \i G i i GIP ceil rand M IP+ =  ;

27: Update the generation strategies and parameter settings of the method
,i GIP if required by its original

design;

28: End If

29: End If

30: End For

31: Evaluate the current evolution status and update the settings of the M methods if required by their

original designs;

32: G = G + 1;

33: End While

3.5 On the Selection of the M Methods

This subsection discusses the selection criteria of the M methods for MLCC. In general, the following

guidelines are given. 1) The M methods are high-performers in order to construct a competitive DE; 2) the M

methods should complement each other to ensure a stable performance for a wide range of problems.

To determine suitable candidates, nine state-of-the-art and up-to-date DE variants, namely jDE [4], SaDE

[29], EPSDE [22], JADE [46], CoDE [38], CoBiDE [39], MPEDE [44], SHADE [33] and IDE [36] have

been run on 30-dimensional CEC2014 benchmark function set. The CEC2014 benchmark set is considered

 17

because it covers a wide range of functions with diverse mathematical properties. Therefore, the test results

would reflect the overall performance of an algorithm.

Parameter settings for the DEs being considered, are summarized in Table S1 in the supplemental file. The

mean and standard deviations of solution error values, given by f (x) – f (x*), over 51 independent runs are

tabulated in Table S2 in the supplemental file, where f (x*) and f (x) are the global optima and the best fitness

after 104×D function evaluations, respectively [18]. The comparison results of the DEs given by Wilcoxon

signed-rank test [32] with a significance level of 0.05 are summarized in Table S3.

In Table 1, the p-values obtained by comparing IDE with the other four most competitive DEs are

presented, while the overall performance rankings of the nine considered DEs are summarized in Table 2.

As observed in Table 1, the performance of IDE is comparable to CoDE, CoBiDE, MPEDE and SHADE at

α = 0.05. As shown in Table 2, SHADE and IDE are the best and second best-performing DEs with ranking

values of 3.48 and 3.53, respectively. In addition, according to single problem analysis between SHADE and

IDE using Wilcoxon signed-rank test with 5% significance level, IDE wins, ties and loses in 13, 8 and 9

functions respectively when compared with SHADE. This indicates that the characteristics of SHADE and

IDE complement each other. In summary, Tables 2 and S2 show that SHADE and IDE are the appropriate

candidates for MLCC.

3.6 The MLCC-SI Algorithm

Following Algorithm 3, the MLCC variant for two selected methods, SHADE and IDE, denoted as

MLCC-SI is implemented and the pseudocode is provided as Algorithm S-1 in the supplemental file. It

should be noted that procedures for SHADE and IDE used in the layers are identical to those in the original

literature [33, 36].

Table 2 Performance ranking of the considered DE variants on 30-dimensional

CEC2014 benchmark set using Friedman’s test
Algorithm Ranking

SHADE 3.48

IDE 3.53

CoBiDE 4.06

MPEDE 4.21

CoDE 4.86

JADE 5.15

jDE 5.76

EPSDE 6.38

SaDE 7.53

 Table 1 P-values obtained by comparing IDE with the other four

most competitive DEs according to multi-problem Wilcoxon’s test
IDE v.s. R+ R- p-value α = 0.05

CoDE 263.5 171.5 0.314 No

CoBiDE 240.5 194.5 0.611 No

MPEDE 267.5 167.5 0.274 No

SHADE 271.0 194.0 0.422 No

 18

4. Simulation and Discussion

In this section, the effectiveness of the proposed MLCC framework and the performance of the MLCC

variants is verified through comprehensive experiments conducted on the CEC2014 test set [18]. The 30

benchmark functions in the CEC2014 test set can be classified into four categories: unimodal functions

(F1-F3), simple multimodal functions (F4-F16), hybrid functions (F17-F22) and composition functions

(F23-F30).

Performance of the considered algorithms is evaluated based on solution error value, which was defined

previously in Sec. 3.5. Following the suggestion in [18], solution error values smaller than 10-8 are reported

as zero. In the experiments, each algorithm is run independently on every function for 51 times. In each run,

104×D function evaluations are limited, while the final solution error values obtained are compared. It is

noted that, to have a fair comparison, the initial populations for all algorithms are set to be the same as in a

single run. In the tables presented, the best results achieved for each function is marked in bold.

To have statistically sound conclusions, single problem Wilcoxon’s signed-rank test [32] with a

significance level of 0.05, multiple problem Wilcoxon’s test [11] and Friedman’s test [11] are used in the

performance comparison. Regarding single problem Wilcoxon’s signed-rank test, the symbols “-”, “=” and

“+” in the tables represent that the performance of the compared algorithm is significantly worse than, similar

to or better than that of the considered algorithm, respectively. In addition, for ease of comparison, “Positive

subtracts Negative” value (P-N value) is also given, where “Positive” is the number of functions that the

considered algorithm outperforms the algorithm compared while “Negative” is the number of functions for

the opposite case.

4.1 Effectiveness of the MLCC Framework

In this subsection, the effectiveness of the proposed MLCC framework is verified through performance

comparisons between the MLCC-SI algorithm and its two baseline DEs on the 30 and 50-dimensional

CEC2014 test sets. Parameter settings for the algorithms are summarized as follows:

1) SHADE：NP = 5×D, MF = {0.7}, MCR = {0.5}, and H = NP.

2) IDE：NP = 5×D, T = 1000D/NP, GT = 5T, SRT = 0 (G < GT), and SRT = 0.1 (G ≥ GT) .

3) MLCC-SI： MF = {0.7}, MCR = {0.5}, and H = NP (For SHADE layer); T = 1000D/NP, GT = 5T, SRT =

0 (G < GT), and SRT = 0.1 (G ≥ GT) (For IDE layer); NP = 5×D and N = 0.05.

The mean and standard deviations of error values achieved with 51 independent runs and the statistical

comparison results are shown in Table 3.

 19

From Table 3, it can be observed that MLCC-SI performs significantly better than SHADE and IDE. Out

of the total 120 cases, MLCC-SI wins in 74 (=15+16+22+21) cases and only loses in 12 (=5+1+4+2) cases.

MLCC-SI outperforms SHADE in 37 (=15+22) functions and underperforms in 9 (=5+4) functions. When

compared with IDE, MLCC-SI is superior in 37 (=16+21) cases and inferior in 3 (=1+2) cases.

Considering the features of the test functions, the following results can be observed:

For unimodal functions F1-F3, SHADE performs the best while IDE is the worst. MLCC-SI loses to

SHADE in 3 cases but wins IDE in 4 cases.

For simple multimodal functions F4-F16, MLCC-SI significantly outperforms SHADE and IDE. In the

total 52 (=13×4) cases, MLCC-SI wins SHADE and IDE in 18 (=8+10) and 15 (=7+8) cases and loses in 2

(=2+0) and 1 case, respectively.

For hybrid functions F17-F22, Table 3 shows that MLCC-SI is again the best. MLCC-SI performs better

than SHADE and IDE in 21 functions and only loses in 1 function.

For composition functions F23-F30 with complex mathematical characteristics, from Table 3, MLCC-SI is

also the best performer. It is superior to SHADE and IDE in 9 (3+6) and 7 (=2+5) cases and inferior in 3

(=1+2) and 2 (=1+1) cases, respectively.

Furthermore, the performance of MLCC-SI, SHADE, and IDE are compared according to multiple

problem Wilcoxon’s test, and the results are shown in Table 4. Regarding the p-value obtained, it can be

concluded that the overall performance of MLCC-SI is significantly better than those of SHADE and IDE

with 5% significance level. This is also confirmed by the Friedman’s test results, as given in Table 5, that

MLCC-SI achieves a much smaller ranking value (1.45) while SHADE and IDE perform similarly. In

conclusion, MLCC significantly improves the performance of the baseline DEs.

4.2 Benefits of the Components in MLCC

This subsection studies the advantages of the two components i.e. IPLS and RAB mechanisms designed in

MLCC. Four variants, denoted as Variants I-IV of MLCC-SI are constructed as follows.

Variant-I: MLCC-SI without RAB. In this variant, at each generation, each individual can connect to only

one layer based on its preference.

Variant-II: MLCC-SI without IPLS. In this variant, at each generation, the superior topG individuals

connect to M layers while the remains randomly connect to only one layer.

Variant-III: MLCC-SI without IPLS and RAB. In this variant, at each generation, each individual

randomly connects to only one layer.

Variant-IV: MLCC-SI without fitness bias. In this variant, the topG individuals permitted to connect to M

layers are randomly selected from the entire population without fitness bias.

 20

Table 3 Performance comparisons of MLCC-SI with its baseline DE variants on 30- and 50-dimensional

cec2014 benchmark set over 51 independent runs

D = 30 D = 50

SHADE IDE MLCC-SI SHADE IDE MLCC-SI

F1
2.59E+02 +

(5.67E+02)

1.18E+05 -

(9.41E+04)

4.76E+03

(5.69E+03)

1.19E+05 +

(6.14E+04)

1.24E+06 -

(3.41E+05)

2.79E+05

(1.00E+05)

F2
0.00E+00 =
(0.00E+00)

0.00E+00 =
(0.00E+00)

0.00E+00

(0.00E+00)
0.00E+00 +
(0.00E+00)

2.28E+00 -
(2.53E+00)

2.67E-04
(3.59E-04)

F3
0.00E+00 =

(0.00E+00)

0.00E+00 =

(0.00E+00)

0.00E+00

(0.00E+00)

0.00E+00 =

(0.00E+00)

1.85E+01 -

(1.27E+01)

2.10E-10

(1.50E-09)

F4
0.00E+00 +

(0.00E+00)

2.08E-02 -

(4.14E-02)

1.63E-07

(4.37E-07)

8.35E+01 -

(1.16E+01)

7.19E+01 -

(2.97E+01)

6.53E+01

(2.62E+01)

F5
2.03E+01 -

(3.54E-02)

2.02E+01 -

(5.68E-02)

2.02E+01

(5.40E-02)

2.05E+01 -

(4.03E-02)

2.03E+01 =

(5.95E-02)

2.03E+01

(5.46E-02)

F6
6.41E+00 -
(3.86E+00)

6.20E-02 =
(2.82E-01)

8.71E-02
(2.84E-01)

1.18E+00 =
(3.45E+00)

9.34E-02 +
(3.14E-01)

3.96E-01
(5.61E-01)

F7
0.00E+00 =

(0.00E+00)

0.00E+00 =

(0.00E+00)

0.00E+00

(0.00E+00)

0.00E+00 =

(0.00E+00)

2.22E-03 -

(4.10E-03)

0.00E+00

(0.00E+00)

F8
0.00E+00 =

(0.00E+00)

4.33E-10 =

(3.09E-09)

0.00E+00

(0.00E+00)

1.84E-02 -

(5.39E-03)

4.32E-02 -

(1.97E-01)

0.00E+00

(0.00E+00)

F9
2.75E+01 -

(4.18E+00)

2.46E+01 -

(5.33E+00)

2.14E+01

(4.44E+00)

8.82E+01 -

(8.25E+00)

5.99E+01 -

(1.01E+01)

4.47E+01

(8.15E+00)

F10
1.57E-01 +
(3.94E-02)

5.68E+00 -
(1.66E+01)

1.12E+00
(9.49E-01)

6.06E+01 -
(6.43E+00)

3.34E+01 =
(4.90E+01)

9.00E+00

(3.38E+00)

F11
1.97E+03 -

(2.06E+02)

1.92E+03 -

(3.53E+02)

1.63E+03

(3.34E+02)

6.27E+03 -

(3.93E+02)

4.20E+03 =

(6.65E+02)

4.03E+03

(5.06E+02)

F12
3.08E-01 -
(4.82E-02)

2.91E-01 -
(5.97E-02)

2.60E-01

(5.31E-02)
6.12E-01 -
(6.73E-02)

3.68E-01 =
(7.37E-02)

3.51E-01

(5.92E-02)

F13
2.15E-01 -

(2.58E-02)

1.87E-01 =

(2.20E-02)

1.83E-01

(2.79E-02)

3.01E-01 -

(2.99E-02)

2.96E-01 -

(3.09E-02)

2.77E-01

(2.58E-02)

F14
2.14E-01 -
(2.24E-02)

1.82E-01 =
(3.19E-02)

1.94E-01
(2.21E-02)

2.50E-01 =
(1.82E-02)

2.70E-01 -
(2.23E-02)

2.56E-01
(2.36E-02)

F15
3.83E+00 -

(4.70E-01)

2.69E+00 =

(5.27E-01)

2.47E+00

(4.20E-01)

1.18E+01 -

(8.02E-01)

7.36E+00 -

(1.93E+00)

6.41E+00

(1.34E+00)

F16
9.55E+00 =
(3.49E-01)

1.00E+01 -
(3.94E-01)

9.52E+00

(4.66E-01)
1.88E+01 -
(2.77E-01)

1.92E+01 -
(4.21E-01)

1.85E+01

(4.53E-01)

F17
7.62E+02 -

(3.58E+02)

5.97E+02 -

(2.97E+02)

2.31E+02

(1.23E+02)

2.21E+03 -

(5.57E+02)

7.22E+03 -

(2.74E+03)

1.27E+03

(4.01E+02)

F18
1.44E+01 -
(7.28E+00)

1.90E+01 -
(5.87E+00)

9.79E+00

(3.36E+00)
8.03E+01 -
(2.31E+01)

3.93E+01 -
(1.09E+01)

3.55E+01

(1.17E+01)

F19
4.01E+00 -

(6.47E-01)

2.91E+00 -

(4.69E-01)

3.02E+00

(5.37E-01)

1.29E+01 -

(5.85E+00)

1.03E+01 -

(7.50E-01)

9.87E+00

(3.98E-01)

F20
4.96E+00 +
(2.19E+00)

1.08E+01 -
(3.24E+00)

5.91E+00
(1.42E+00)

4.11E+01 -
(1.63E+01)

4.54E+01 -
(1.04E+01)

2.53E+01

(6.78E+00)

F21
1.29E+02 =

(8.62E+01)

3.30E+02 -

(1.54E+02)

1.04E+02

(7.65E+01)

9.75E+02 -

(2.81E+02)

1.23E+03 -

(3.77E+02)

5.42E+02

(1.92E+02)

F22
1.23E+02 -
(5.85E+01)

7.30E+01 -
(5.78E+01)

3.55E+01

(3.45E+01)
4.85E+02 -
(1.22E+02)

3.04E+02 =
(1.06E+02)

2.75E+02

(1.13E+02)

F23
3.15E+02 =

(4.02E-13)

3.15E+02+

(3.46E-13)

3.15E+02

(4.02E-13)

3.44E+02 -

(4.60E-13)

3.44E+02 -

(4.46E-13)

3.44E+02

(4.18E-13)

F24
2.23E+02 =
(9.22E-01)

2.23E+02 =
(7.24E-01)

2.23E+02

(7.91E-01)
2.69E+02 -
(1.90E+00)

2.58E+02 +
(3.39E+00)

2.58E+02

(2.93E+00)

F25
2.04E+02 -

(7.68E-01)

2.03E+02 =

(2.33E-01)

2.03E+02

(2.95E-01)

2.11E+02 -

(2.59E+00)

2.07E+02 -

(6.05E-01)

2.06E+02

(8.22E-01)

F26
1.00E+02 -
(2.79E-02)

1.00E+02 =
(2.60E-02)

1.00E+02

(2.41E-02)
1.00E+02 -
(3.37E-02)

1.06E+02 =
(2.37E+01)

1.00E+02

(2.83E-02)

F27
3.00E+02 +

(1.11E-13)

3.30E+02 =

(4.63E+01)

3.47E+02

(5.07E+01)

3.33E+02 -

(2.79E+01)

3.06E+02 =

(1.65E+01)

3.20E+02

(2.65E+01)

F28
7.92E+02 =
(1.86E+01)

8.26E+02 -
(8.10E+01)

7.89E+02

(3.09E+01)
1.09E+03 +
(3.20E+01)

1.28E+03 -
(9.49E+01)

1.16E+03
(3.60E+01)

F29
7.20E+02 =

(6.01E+00)

5.75E+02 =

(2.15E+02)

6.94E+02

(1.27E+02)

8.27E+02 -

(5.63E+01)

1.03E+03 -

(1.26E+02)

6.22E+02

(1.41E+02)

F30
1.22E+03 -
(4.61E+02)

5.18E+02 -
(7.28E+01)

5.20E+02
(1.60E+02)

8.45E+03 +
(4.59E+02)

9.90E+03 -
(5.82E+02)

8.61E+03
(3.99E+02)

-/=/+ 15/10/5 16/13/1 22/4/4 21/7/2

 21

Parameter settings for these variants are set the same as those for MLCC-SI, as summarized in Sec. 4.1.

Their performance comparisons with MLCC-SI are presented in Table S4 in the supplemental file and

summarized in Table 6. As shown in Table 6, MLCC-SI performs better than all the variants in both 30 and

50-dimensional cases. The effectiveness of RAB, IPLS, the overall performance contributions by RAB and

IPLS, and the benefit of fitness bias can be observed by comparing MLCC-SI with Variants I-IV,

respectively. To show further the performance improvements on the baseline DEs, the performance of the

four variants are also compared with SHADE and IDE, as shown in Tables S5-S8 in the supplemental file and

Table 7. It can be seen that, with respect to the “-/=/+” results and P-N values, MLCC-SI exhibits higher

improvements than the four variants. Considering the total P-N values achieved by the five algorithms, Table

7 shows that MLCC-SI performs the best with the maximum P-N value (62) while Variant-III without IPLS

and RAB is the worst.

It is interesting to investigate the individual preferences at different evolution stages. To this end, the entire

searching process is divided into several non-overlapping intervals, each consists of 50 generations. Figure 6

plots the evolution of the preference of four randomly selected initial individuals to the two layers SHADE

and IDE in three typical 50-dimensional CEC2014 benchmark functions, namely F13 (multimodal function),

F17 (hybrid function) and F23 (composition function). It is observed that 1) for function F13, Fig. 6(a)

indicates that the four individuals have quite different preferences. The relative percentage Pi processed by

different layers of these four individuals varies at the same searching stages; 2) for function F17, the

individuals demonstrate similar preferences throughout the entire process (Fig. 6(b)); 3) for function F23, Fig.

6(c) shows that all the individuals favor more to the IDE layer at the early stage, but vary at the later stage.

Fig. 7(a) compares the average rank AR (defined in Sec. 3.3) of MLCC-SI with that of Variant-I, while

Fig.7(b) shows the AR of MLCC-SI, SHADE and IDE, for the thirty 50-dimensional CEC2014 functions. It

is observed from Fig. 7(a) that MLCC-SI achieves smaller AR values than Variant-I on all the functions,

which means that the RAB mechanism enables MLCC-SI to focus more on superior individuals. Similarly,

Fig. 7(b) shows that MLCC-SI also achieves smaller AR values than SHADE and IDE on all the functions

except functions F3 and F8, which indicates that MLCC-SI emphasizes more on high-quality solutions

compared with SHADE and IDE.

Table 5 Overall performance ranking of MLCC-SI and

its baseline DE variants on 30- and 50-dimensional

CEC2014 benchmark set by Friedman’s test
Algorithm Ranking

MLCC-SI 1.45

IDE 2.26

SHADE 2.28

Table 4 Comparison results of MLCC-SI with its baseline

DE variants on 30- and 50-dimensional CEC2014

benchmark set according to multi-problem Wilcoxon’s test
MLCC-SI v.s. R+ R- p-value α = 0.05

 SHADE 1394.5 375.5 1.18E-04 Yes

IDE 1512.0 258.0 2.00E-06 Yes

 22

4.3 Performance Sensitivity to N

This subsection investigates the performance sensitivity of MLCC-SI to its parameter N by comparing the

standard MLCC-SI with N = 0.05 with four other settings, i.e. Settings I-IV with N = 0.1, 0.2, 0.5 and 1.0,

respectively. Besides, two more settings, i.e. Settings V and VI with extreme settings of topG = 1 and topG =

NP, respectively, are also considered. Performance comparisons on 30-dimensional CEC2014 functions are

tabulated in Table S9 and summarized in Table 8.

 According to Table 8, the followings can be concluded: 1) the performance of Settings-I and II are

comparable to that of MLCC-SI, implying that MLCC-SI is robust when N is small, such as 0.05, 0.1 or 0.2;

2) the performance of Settings III and IV is inferior to that of MLCC-SI, indicating that N values that are too

large will deteriorate the performance; 3) when comparing the performance of Settings-V and VI with that of

MLCC-SI, the cases for topG = 1 and topG = NP did not perform as well as MLCC-SI. In general, a larger topG

value enables more superior solutions to be improved. However, when topG is too large, e.g. topG = NP in

Table 8 Comparison results of different settings on

30-dimensional cec2014 benchmark set according to

Wilcoxon signed-rank test with a significance level of 0.05
 -/=/+ -/=/+

Setting-I 2/27/1 Setting-IV 9/18/3

Setting-II 2/26/2 Setting-V 4/25/1

Setting-III 6/21/3 Setting-VI 11/15/4

Table 7 Comparison results of MLCC-SI and its four variants with the

baseline des on 30- and 50-dimensional cec2014 benchmark set

according to Wilcoxon signed-rank test with a significance level of

0.05
-/=/+ (P-N) v.s.

D = 30 D = 50 Total

 P-N value

Variant-I SHADE 12/11/7 (5) 18/5/7 (11) (37)

IDE 13/13/4 (9) 18/6/6 (12)

Variant-II SHADE 15/11/4 (11) 18/8/4 (14) (42)

IDE 13/13/4 (9) 15/8/7 (8)

Variant-III SHADE 13/11/6 (7) 16/9/5 (11) (25)

IDE 9/15/6 (3) 15/4/11 (4)

Variant-IV SHADE 14/9/7 (7) 18/6/6 (12) (41)

IDE 14/11/5 (9) 18/7/5 (13)

MLCC-SI SHADE 15/10/5(10) 22/4/4 (18) (62)

 IDE 16/13/1 (15) 21/7/2 (19)

Table 6 Comparison results of MLCC-SI with its four

variants on 30 and 50-dimensional CEC2014 benchmark

set according to Wilcoxon signed-rank test with a

significance level of 0.05
-/=/+ D = 30 D = 50

Variant-I 8/21/1 7/21/2

Variant-II 8/19/3 13/15/2

Variant-III 13/14/3 16/12/2

Variant-IV 7/21/2 7/19/4

 23

Setting-VI, the computation resources are again uniformly distributed and the performance benefit less from

evolving the inferior solutions.

(a) F13

(b) F17 (c) F23

 Fig. 6 Evolution of the relative percentage Pi processed by different layers of four randomly selected initial individuals on

three 50-dimensional CEC2014 benchmark functions F13, F17 and F23 in the median run.

(a) (b)

Fig.7 Average rank on thirty 50-dimensional CEC2014 benchmark functions: (a) MLCC-SI and Variant-I; (b) MLCC-SI,

SHADE and IDE.

 24

4.4 MLCC for Multi-Parameter Strategy Adaptation

Very recently, Tanabe and Fukunaga [35] investigated the behavior and performance of different

parameter adaptation strategies [4, 22, 33, 39, 46] proposed in DE literature. They concluded, [35] by

pointing out that “there is still significant room for improvement in parameter adaptation methods for DE”.

Here, this subsection demonstrates the possibility of improving the performance of DE by the cooperation

of multiple parameter adaptation strategies under the proposed MLCC framework. The adaptive Success

History-based Parameter Configuration (SHA) originated from SHADE [33] and Self-adaptive Bimodal

Distribution Parameter Scheme (BiD) derived from CoBiDE [39] are considered due to their competitive

performance and representative characteristics. Two baseline DEs, assigned to two layers are designed as

follows.

 SHADE: the original SHADE algorithm [33];

 BiDE: SHADE with SHA replaced by BiD [39].

 In this way, by comparing the performance of the MLCC variant, i.e. MLCC-SBi, with that of SHADE

and BiDE, the effectiveness of MLCC in multiple strategies adaptation can be observed. The pseudocode of

MLCC-SBi is presented in Algorithm S-2 in the supplemental file. Parameter settings for the algorithms are

summarized as follows.

1) SHADE：NP = 5×D, MF = {0.7}, MCR = {0.5}, and H = NP.

2) BiDE：NP = 5×D.

3) MLCC-SBi：NP = 5×D, MF = {0.7}, MCR = {0.5}, H = NP, and N = 0.05.

The experimental results on 30 and 50-dimensional CEC2014 test suite are presented in Table S10 and a

summary is given in Table 9. As shown in Table S10 and Table 9, MLCC-SBi performs significantly better

than SHADE and BiDE in both 30 and 50-dimensional cases. Specifically, MLCC-SBi wins the baseline DEs

in 55 (=15+15+6+19) cases and loses in 10 cases (=2+2+3+3). Moreover, Table 9 shows that the superiority

(a) F15 (b) F17

Fig. 8 Distribution of the successful parameters F and CR generated by SHADE, BiDE, MLCC-SBi and RAB mechanism in

MLCC-SBi on two 50-dimensional CEC2014 functions F15 and F17 in the median run. The darker, the higher frequency.

 25

of MLCC-SBi over BiDE is more significant in the 50-dimensional case than in the 30-dimensional case. The

reason is that SHA is not comparable to BiD. As shown in Table S11, BiDE outperforms SHADE with the

“-/=/+” result of “14/10/6” in the 30-dimensional case. However, when the problem dimension increases to

50, the performance of BiD becomes comparable to that of SHA with “-/=/+” of “10/7/13”, as indicated in

Table S11. It should also be stressed that MLCC-SBi consistently exhibits better performance than both of

the baseline algorithms. The cases that MLCC-SBi loses to BiDE are functions F24, F25, and F29 in both 30

and 50 dimensions. On the other functions, MLCC-SBi demonstrates significantly better or similar

performance compared to BiDE.

To investigate factors that contribute to the performance improvements, the distribution of successful

parameters F and CR associating with successful updates of the target vectors generated by SHADE, BiDE,

MLCC-SBi and RAB mechanism in MLCC-SBi on two 50-dimensional CEC2014 functions F15 and F17 are

plotted in Fig. 8. It can be seen that MLCC-SBi produces more diverse successful parameters than single

SHA and BiD. The successful parameters generated by RAB come from both SHA and BiD, revealing that

the proposed RAB mechanism simultaneously takes advantages of both schemes. To conclude, MLCC

provides an effective approach to integrate multiple parameter adaptation schemes.

4.5 MLCC Versus Other Framework

To further demonstrate the superiority of the proposed MLCC framework, another very recently proposed

hybrid DE framework, called HDE [21] is compared. In HDE, two algorithms are performed alternatively

according to their fitness improvement rate. At each generation, only one algorithm is executed. When it did

not perform well for several generations, another would be used. In this subsection, HDE is applied to

SHADE and IDE, SHADE and BiDE, respectively, denoted as H-SI and H-SBi. Their performance are

compared with those of MLCC-SI and MLCC-SBi, respectively. Parameter settings for the HDE framework

are set the same as recommended in the original literature, while parameter settings for the baseline DEs and

the MLCC framework are the same as those used previously in Sec. 4.1 and Sec. 4.4.

As seen from Table S12 and Table 10, MLCC framework exhibits better performance than HDE

framework on both 30 and 50-dimensional functions. In the total of 120 cases, MLCC wins in 46

(=10+14+8+14) cases and loses in 14 (=6+4+3+1) cases. There may be two reasons that MLCC outperforms

HDE. On the one hand, MLCC has the entire population monitored by multiple layers, which are performed

Table 9 Comparison results of MLCC-SBi with its baseline DE

variants on 30- and 50-dimensional CEC2014 benchmark set

according to Wilcoxon signed-rank test with a significance level

of 0.05
-/=/+ D = 30 D = 50

SHADE 15/13/2 15/13/2

BiDE 6/21/3 19/8/3

 26

simultaneously at each generation. Thus, individuals in MLCC could quickly respond to the change of

evolution stage. While on the other hand, the RAB mechanism proposed in MLCC simultaneously takes

advantages of multiple layers and also re-distributes the computation resources to help the algorithm focus

more on promising searching directions.

4.6 Comparisons with State-of-the-Art and Up-to-Date DEs

The effectiveness of the proposed MLCC framework have been verified in previous subsections. In this

subsection, the MLCCDE algorithm based on SHADE and IDE and the following parameter settings, is

compared with eight well-known state-of-the-art and up-to-date DEs, namely, jDE [4], SaDE [29], EPSDE

[22], JADE [46], CoDE [38], CoBiDE [39], SinDE [9] and MPEDE [44].

Parameter settings of MLCCDE: NP =100 (for D = 30) , NP =150 (for D = 50) , MF = {0.7}, MCR = {0.5},

H = NP, T = 1000D/NP, GT = 5T, SRT = 0 (G < GT), SRT = 0.1 (G ≥ GT), and N = 0.05.

It is noted that MLCCDE uses different NP settings from those of MLCC-SI. This is because MLCCDE

empirically exhibits better overall performance with these settings, as compared to other DE variants.

Parameter settings for the compared DEs are set the same as those given in their original literature. Here, the

experiment also includes the recent CEC2017 test suite [3], in which several new functions are introduced.

The performance comparisons on 30 and 50-dimensional CEC2014 and CEC2017 functions are reported

in Tables S13 -S16, and the comparison results are summarized in Table 11.

From Table 11, it can be observed that MLCCDE performs much better than the compared DEs. More

specifically, in the CEC2014 30-dimensional case, MLCCDE outperforms jDE, SaDE, EPSDE, JADE,

CoDE, CoBiDE, SinDE and MPEDE in 20, 27, 20, 18, 15, 13, 16 and 16 functions and underperforms in 2, 0,

5, 2, 4, 3, 5 and 6 functions, respectively. In the CEC2014 50-dimensional case, MLCCDE wins jDE, SaDE,

EPSDE, JADE, CoDE, CoBiDE, SinDE and MPEDE in 22, 29, 23, 21, 22, 22, 18 and 17 functions

respectively and loses in far fewer functions. For the CEC2017 functions, MLCCDE also exhibits much

better performance than the compared DEs, as confirmed by the results in Table 11.

Considering multiple problems Wilcoxon’s test, Tables 12 and 13 show that MLCCDE consistently

achieves much larger R+ than R- when compared with other DEs. The p-values obtained also confirm that

MLCCDE significantly outperforms all the compared DEs at α = 0.05. In addition, from the Friedman’s test

Table 10 Comparison results of MLCC framework with

HDE framework on 30- and 50-dimensional CEC2014

benchmark set according to Wilcoxon signed-rank test with

a significance level of 0.05
-/=/+ D = 30 D = 50

MLCC-SI v.s. H-SI 10/14/6 14/12/4

MLCC-SBi v.s. H-SBi 8/19/3 14/15/1

 27

results shown in Table 14, MLCCDE achieves the smallest ranking values of 2.78 and 2.49 on CEC2014 and

CEC2017 functions, respectively.

Table 13 Comparison results of MLCCDE with

start-of-the-art and up-to-date DE variants on 30- and

50-dimensional CEC2017 benchmark set according to

multi-problem Wilcoxon’s test
MLCCDE v.s. R+ R- p-value α = 0.05

jDE 1764.0 66.0 0.00E+00 Yes

SaDE 1737.0 33.0 0.00E+00 Yes

EPSDE 1607.5 222.5 0.00E+00 Yes

JADE 1588.0 242.0 1.00E-06 Yes

CoDE 1700.5 69.5 0.00E+00 Yes

CoBiDE 1578.0 252.0 1.00E-06 Yes

SinDE 1469.5 300.5 1.00E-05 Yes

MPEDE 1413.0 417.0 2.43E-04 Yes

Table 11 Comparison results of MLCCDE with

start-of-the-art and up-to-date DE variants on 30- and

50-dimensional CEC2014 and CEC2017 benchmark set

according to Wilcoxon signed-rank test with a

significance level of 0.05
-/=/+ CEC2014 CEC2017

D = 30 D = 50 D = 30 D = 50

jDE 20/8/2 22/6/2 21/9/0 23/5/2

SaDE 27/3/0 29/1/0 26/4/0 27/3/0

EPSDE 20/5/5 23/1/6 23/4/3 22/3/5

JADE 18/10/2 21/4/5 22/6/2 21/4/5

CoDE 15/11/4 22/4/4 15/13/2 23/6/1

CoBiDE 13/14/3 22/4/4 15/10/5 24/4/2

SinDE 16/9/5 18/7/5 18/10/2 19/5/6

MPEDE 16/8/6 17/9/4 15/8/7 17/10/3

Table 12 Comparison results of MLCCDE with

start-of-the-art and up-to-date DE variants on 30- and

50-dimensional CEC2014 benchmark set according to

multi-problem Wilcoxon’s test
MLCCDE v.s. R+ R- p-value α = 0.05

jDE 1485.5 284.5 6.00E-06 Yes

SaDE 1765.5 4.5 0.00E+00 Yes

EPSDE 1372.5 397.5 2.30E-04 Yes

JADE 1388.0 382.0 1.44E-04 Yes

CoDE 1657.0 173.0 0.00E+00 Yes

CoBiDE 1407.0 423.0 2.88E-04 Yes

SinDE 1384.0 386.0 1.63E-04 Yes

MPEDE 1275.5 494.5 3.16E-03 Yes

 28

4.7 Flexibility of MLCC

To further demonstrate the flexibility of the framework, two experiments were designed as follows.

In the first experiment, an example of utilizing MLCC to incorporate three optimizers is presented. The

three previously used algorithms, i.e. SHADE, IDE and BiDE are considered. It is noticed that SHADE and

BiDE share some similarities as they adopt the same mutation strategy. The pseudocode of MLCC-SIBi is

given in Algorithm S-3 in the supplemental file. Parameter settings for the algorithms are set the same as used

in Sec. 4.1 and Sec. 4.4. As observed in Table S17 and Table 15, the MLCC variant MLCC-SIBi exhibits

better performance compared to the baseline DEs. More specifically, MLCC-SIBi performs better in 40

(=16+15+9) cases and underperforms in 15(=5+4+6) cases on the 30-dimensional functions. For the

50-dimensional case, MLCC-SIBi wins in 56(=20+16+20) functions and loses in 7(=2+4+1) functions.

In the second experiment, MLCC was extended to incorporate the L-SHADE [34] algorithm with linear

population size reduction (LPSR). To this end, L-SHADE and M_IDE, are assigned to the two layers,

respectively. M_IDE is a modified version of IDE with the original parameter strategy replaced by the

success history-based parameter adaption (SHA) [33]. The reason for this strategy replacement is that

performance of the original parameter strategy in IDE degrades with the LPSR scheme.

The graphic illustration and pseudocode of the resulting MLCC-L-SI variant are shown in Fig. S1 and

Algorithm S-4 in the supplemental file, respectively.

Parameter settings for the algorithms are summarized as follows.

1) L-SHADE: NPinit = 20×D, MF = {0.7}, MCR = {0.5}, and H = 5.

Table 14 Overall performance ranking of all the considered

DEs on 30 and 50-dimensional CEC2014 and cec2017

benchmark set by Friedman’s test
CEC2014 CEC2017

Algorithm Ranking Algorithm Ranking

MLCCDE 2.78 MLCCDE 2.49

MPEDE 4.21 MPEDE 3.86

CoBiDE 4.46 CoBiDE 4.73

JADE 4.85 JADE 4.78

SinDE 4.99 SinDE 4.84

CoDE 5.06 CoDE 5.40

jDE 5.10 jDE 5.76

EPSDE 6.13 SaDE 6.33

SaDE 7.38 EPSDE 6.77

Table 15 Comparison results of MLCC-SIBi with its baseline

DE variants on 30- and 50-dimensional CEC2014 benchmark

set according to Wilcoxon signed-rank test with a

significance level of 0.05
-/=/+ D = 30 D = 50

SHADE 16/9/5 20/8/2

IDE 15/11/4 16/10/4

BiDE 9/15/6 20/9/1

 29

2) M_IDE: NP = 5×D, MF = {0.7}, MCR = {0.5}, and H = NP.

3) MLCC-L-SI: NPinit = 20×D, MLSHA
F = {0.7}, MLSHA

CR = {0.5}, HLSHA = 5 (For L-SHADE layer),

NPM_IDE = 5×D, MM_IDE
F = {0.7}, MM_IDE

CR = {0.5}, HM_IDE = 5 (For M_IDE layer), and N = 0.05.

Remark: In our experiment, M_IDE maintains a fixed population size NP to ensure good performance and

the history length H is set to the population size NP, as recommend in SHA [33]. While in MLCC-L-SI, the

population size of the M_IDE layer NPTG is fixed at 5×D when the current population size NPG  5×D.

However, when NPG < 5×D, NPTG is also adjusted according to the LPSR scheme, as shown in Fig. S1.

Thus, the history length HM_IDE is set the same as HLSHA for simplicity.

As shown in Table S18 and Table 16, MLCC-L-SI exhibits better performance than the constituent

algorithms, winning in 60 (=7+19+11+23) cases and losing in 17 (=3+4+6+4) cases. It is also observed that

the superiority of MLCC-L-SI over M_IDE is more significant than over L-SHADE. The reason lies in that

the performance of M_IDE is significantly inferior to that of L-SHADE, as shown in Table S18.

Nevertheless, MLCC-L-SI still achieves better performance compared to L-SHADE.

5. Conclusion

In this paper, a multi-layer competitive-cooperative (MLCC) framework with a new parallel structure is

proposed. The framework can effectively incorporate multiple competitive DE variants and combine their

advantages. As a result, the design outperforms all of the constituents. MLCC consists of two components,

namely the individual preference layer selecting (IPLS) mechanism and the resource allocation bias (RAB)

scheme. The IPLS allows bidirectional information communication between population and multiple

adaptive optimizers assigned in multiple layers, making the optimizers work in a collaborative manner. The

RAB provides an effective resource allocation, to promote the searching capability. The effectiveness and

advantages of the MLCC framework as well as its components are confirmed by comprehensive experiments

carried out on the CEC benchmark functions.

In this study, mainly two or three DE methods are incorporated into MLCC. We suggest some heuristic

ways to demonstrate how these methods are selected. However, it is still open as to how best determine the

set of methods. Moreover, it will be interesting to see how the proposed framework can be extended to other

EAs, which is another direction for future work.

The MATLAB code of MLCC can be downloaded from https://zsxhomepage.github.io/.

Table 16 Comparison results of MLCC-L-SI with its baseline

DE variants on 30- and 50-dimensional CEC2014 benchmark

set according to Wilcoxon signed-rank test with a

significance level of 0.05
-/=/+ D = 30 D = 50

L-SHADE 7/20/3 11/13/6

M_IDE 19/7/4 23/3/4

 30

Acknowledgments

 The work was supported in part by the National Natural Science Foundation of China (No. 61671485), in

part by the International Science & Technology Cooperation Program of China (No. 2015DFR11050), and in

part by City University of Hong Kong under a SRG Grant (Project No: 7004710).

References

[1] N. H. Awad, M. Z.Ali, P. N. Suganthana, R. G. Reynolds, CADE: A hybridization of Cultural Algorithm

and Differential Evolution for numerical optimization, Inf. Sci. 378 (2017) 215–241.

[2] R. D. Al-Dabbagh, F. Neri, N. Idris, M. S. Baba, Algorithm design issues in adaptive differential

evolution: review and taxonomy, Swarm Evol. Comput. (2018) in press.

[3] N. H. Awad, M. Z. Ali, J. J. Liang, B. Y. Qu, P. N. Suganthan, Problem definitions and evaluation

criteria for the CEC 2017 special session and competition on single objective real-parameter numerical

optimization, Nanyang Technol. Univ., Singapore, Nov. 2016.

[4] J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting control parameters in differential

evolution: a comparative study on numerical benchmark problems, IEEE Trans. Evol. Comput. 10 (2006)

646–657.

[5] Y. Cai, J. H. Wang, Differential evolution with hybrid linkage crossover, Inf. Sci. 320 (2015) 244–287.

[6] L. Cui, G. Li, Q. Lin, J. Chen, and N. Lu, Adaptive differential evolution algorithm with novel mutation

strategies in multiple sub-populations, Comput. Oper. Res. 67 (2016) 155-173.

[7] S. Das, P. N. Suganthan, Differential evolution: a survey of the state-of-the-art, IEEE Trans. Evol.

Comput. 15 (2011) 4–31.

[8] S. Das, S. M. Sankha, P.N. Suganthan, Recent advances in differential evolution – An updated survey,

Swarm Evol. Comput. 27 (2016) 1-30.

[9] A. Draa, S. Bouzoubia, I. Boukhalfa, A sinusoidal differential evolution algorithm for numerical

optimization, Appl. Soft Comput. 27 (2015) 99–126.

[10] S. -M. Guo, C. -C. Yang, Enhancing differential evolution utilizing eigenvector-based crossover

operator, IEEE Trans. Evol. Comput. 19 (2015) 31–49.

[11] S. García, A. Fernández, J. Luengo, F. Herrera, A study of statistical techniques and performance

measures for genetics-based machine learning: Accuracy and interpretability, Soft Comput. 13(2009)

959–977.

 31

[12] W. Gong, Z. Cai, Differential evolution with ranking-based mutation operators, IEEE Trans. Cybernet.

43 (2013) 2066–2081.

[13] W. Gong, A. Zhou, Z. Cai, A multi-operator search strategy based on cheap surrogate models for

evolutionary optimization, IEEE Trans. Evol. Comput. 19 (2015) 746–758.

[14] F. Herrera, M. Lozano, J. L. Verdegay, Tackling real-coded genetic algorithms: Operators and tools for

behavioral analysis, Artif. Intell. Rev. 12 (1998) 265–319.

[15] N. Hansen, A. Ostermeier, Completely derandomized self-adaptation in evolution strategies, Evol.

Comput. 9 (2001) 159–195.

[16] G. Iacca, F. Caraffini, F. Neri, Multi-strategy coevolving aging particle optimization, Int. J. Neur. Syst.

24 (2014) 1450008.

[17] J. H. Kämpf, D. Robinson, A hybrid CMA-ES and HDE optimisation algorithm with application to solar

energy potential, Appl. Soft Comput. 9 (2009) 738–745.

[18] J. J. Liang, B. Y. Qu , P. N. Suganthan, Problem definitions and evaluation criteria for the CEC 2014

special session and competition on single objective real-parameter numerical optimization,

Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report,

Nanyang Technological University, Singapore (2013) .

[19] K. Li , A. Fialho , S. Kwong , Q. F. Zhang, Adaptive operator selection with bandits for a multiobjective

evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput. 18 (2014) 114–130.

[20] K. Li, A. Fialho, S. Kwong, Multi-objective differential evolution with adaptive control of parameters

and operators, in: C.C. Coello (Ed.), Learning and Intelligent Optimization, Springer Berlin Heidelberg,

6683 (2011) 473–487.

[21] G. Li et al, A novel hybrid differential evolution algorithm with modified CoDE and JADE, Appl. Soft

Comput. 47 (2016) 577–599.

[22] R. Mallipeddi, P. N. Suganthan, Q.-K. Pan, M. F. Tasgetiren, Differential evolution algorithm with

ensemble of parameters and mutation strategies, Appl. Soft Comput. 11 (2011) 1679–1696.

[23] N. Noman, H. Iba, Accelerating differential evolution using an adaptive local search, IEEE Trans. Evol.

Comput. 12 (2008) 107–125.

[24] F. Neri , V. Tirronen, Recent advances in differential evolution: a survey and experimental analysis,

Artif. Intell. Rev. 33 (1–2) (2010) 61–106.

[25] F. Peng, K. Tang, G. Chen, X. Yao, Population-based algorithm portfolios for numerical optimization,

IEEE Trans. Evol. Comput. 14 (2010) 782–800.

[26] A. P. Piotrowski, Review of differential evolution population size, Swarm Evol. Comput. 32 (2017)

1-24.

 32

[27] A. P. Piotrowski, Adaptive memetic differential evolution with global and local neighborhood-based

mutation operators, Inf. Sci. 241(2013) 164–194.

[28] R Poláková, J. Tvrdík, P. Bujok, Cooperation of optimization algorithms: A simple hierarchical model,

in: Evolutionary Computation (CEC), 2015 IEEE Congress on, IEEE, 2015, pp. 1046–1052.

[29] A. K. Qin, V. L. Huang, P. N. Suganthan, Differential evolution algorithm with strategy adaptation for

global numerical optimization, IEEE Trans. Evol. Comput.13 (2009) 398–417.

[30] R. Storn and K. Price, “Differential evolution–A simple and efficient adaptive scheme for global

optimization over continuous spaces,” Berkeley, CA, Tech. Rep., 1995, tech. Rep. TR-95-012.

[31] N. R. Sabar, J. Abawajy, J. Yearwood, Heterogeneous cooperative co-evolution memetic differential

evolution algorithms for big data optimisation problems, IEEE Trans. Evol. Comput. 21 (2017)

315–327.

[32] D. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures. London, U.K.:

Chapman & Hall, 2003.

[33] R. Tanabe, A. Fukunaga, Success-history based parameter adaptation for differential evolution, In:

Proceedings of the IEEE Congress on Evolutionary Computation 2013, June20–23, Cancún, México,

2013, pp.71–78.

[34] R. Tanabe , A.S. Fukunaga , Improving the search performance of SHADE using linear population size

reduction, in: Evolutionary Computation (CEC), 2014 IEEE Congress on, IEEE, 2014, pp. 1658–1665 .

[35] R. Tanabe, A. Fukunaga, How far are we from an optimal, adaptive DE? International Conference on

Parallel Problem Solving from Nature, (2017) 145-155, 2017. DOI: 10.1007/978-3-319-45823-6_14

[36] L. Tang, Y. Dong, J. Liu, Differential evolution with an individual-dependent mechanism, IEEE Trans.

Evol. Comput. 19 (2015) 560-574.

[37] J. Vrugt, B. Robinson, J. Hyman, Self-adaptive multimethod search for global optimization in

real-parameter spaces, IEEE Trans. Evol. Comput. 13 (2009) 243–259.

[38] Y. Wang, Z. Cai, Q. Zhang, Differential evolution with composite trial vector generation strategies and

control parameters, IEEE Trans. Evol. Comput. 15 (2011) 55–66.

[39] Y. Wang, H.-X. Li, T. Huang, L. Li, Differential evolution based on covariance matrix learning and

bimodal distribution parameter setting, Appl. Soft Comput.18 (2014) 232–247.

[40] Y. Wang, Z. Cai, Q. Zhang, Enhancing the search ability of differential evolution through orthogonal

crossover, Inf. Sci. 185 (2012) 153–177.

[41] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput. 1

(1997) 67–82.

 33

[42] M. Weber, F. Neri, V. Tirronen, A study on scale factor in distributed differential evolution, Inf. Sci. 181

(12) (2011) 2488–2511.

[43] M. Weber, F. Neri, V. Tirronen, Distributed differential evolution with explorative–exploitative

population families, Genetic Programming and Evolvable Machines 10 (4) (2009) 343–371.

[44] G. Wu, R. Mallipeddi, P. N. Suganthan, R. Wang, H. Chen, Differential evolution with multi-population

based ensemble of mutation strategies, Inf. Sci. 329 (2016) 329–345.

[45] S. X. Zhang, W. S. Chan, Z. K. Peng, S. Y. Zheng, and K. S. Tang, Selective-candidate framework with

similarity selection rule for evolutionary optimization, arXiv: 1712.06338 (2017). [Online]. Available:

https://arxiv.org/abs/1712.06338.

[46] J. Zhang, A. C. Sanderson, JADE: adaptive differential evolution with optional external archive, IEEE

Trans. Evol. Comput. 13 (2009) 945–958.

[47] L. M. Zheng, S. X. Zhang, K. S. Tang, S. Y. Zheng, Differential evolution powered by collective

information , Inf. Sci. 399 (2017) 13–29.

[48] L. M. Zheng, S. X. Zhang, S. Y. Zheng, Y. M. Pan, Differential evolution algorithm with two-step

subpopulation strategy and its application in microwave circuit designs, IEEE Trans. Ind. Inf. 12 (3)

(2016) 911–923 .

[49] Z. H. Zhan, J. Zhang, Y. Li, and H. S. H. Chung, Adaptive particle swarm optimization, IEEE Trans.

Syst. Man Cybern. B. 39 (2009) 1362-1381.

[50] S. X. Zhang, L. M. Zheng, L. Liu, S. Y. Zheng, Y. M. Pan, Decomposition-based multi-objective

evolutionary algorithm with mating neighborhood sizes and reproduction operators adaptation, Soft

Comput . 21(2017) 6381-6392.

https://arxiv.org/abs/1712.06338

