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Abstract 

Differential Evolution (DE) is recognized as one of the most powerful optimizers in the evolutionary 

algorithm (EA) family. Many DE variants were proposed in recent years, but significant differences in 

performances between them are hardly observed. Therefore, this paper suggests a multi-layer 

competitive-cooperative (MLCC) framework to facilitate the competition and cooperation of multiple DEs, 

which in turns, achieve a significant performance improvement. Unlike other multi-method strategies which 

adopt a multi-population based structure, with individuals only evolving in their corresponding 

subpopulations, MLCC implements a parallel structure with the entire population simultaneously monitored 

by multiple DEs assigned to their corresponding layers. An individual can store, utilize and update its 

evolution information in different layers based on an individual preference based layer selecting (IPLS) 

mechanism and a computational resource allocation bias (RAB) mechanism. In IPLS, individuals connect to 

only one favorite layer. While in RAB, high-quality solutions are evolved by considering all the layers. Thus 

DEs associated in the layers work in a competitive and cooperative manner. The proposed MLCC framework 

has been implemented on several highly competitive DEs. Experimental studies show that the MLCC 

variants significantly outperform the baseline DEs as well as several state-of-the-art and up-to-date DEs on 

CEC benchmark functions. 
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1. Introduction 

    Differential evolution (DE) [30] is well known for its efficiency in solving various continuous 
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optimization problems [7, 8, 24]. DE has been widely explored over the past two decades, and consequently 

many advanced DE variants have been proposed.  Recently, several competitive DEs, including CoBiDE 

(DE with covariance matrix learning and bimodal distribution parameter setting) [39], SHADE (DE with 

success-history based parameter adaptation) [33], MPEDE (DE with multi-population ensemble) [44] and 

IDE (DE with individual-dependent mechanism) [36] have been designed. However, when compared with 

each other, there were not many differences in their performances. It still remains a challenge to construct a 

DE algorithm that can significantly outperform all of these up-to-date DEs.  

On the other hand, since the proposal of the AMALGAM-SO (A multi-algorithm genetically adaptive 

method for single objective optimization) [37] algorithm, research [1, 13, 25, 28, 31, 44, 50] on combining 

multiple operators or multiple evolutionary algorithms (EAs) have been a hot topic in the EA community. 

These methods usually employ a multi-population structure, which divides the entire population into several 

subpopulations. However, when the population size of each constituent optimizer is large, the convergence of 

the hybrid algorithm may decrease significantly. The clustering of individuals would slow down and function 

evaluations more likely spent on random explorative moves [26]. Moreover, it may be difficult to incorporate 

some complex variants and there is still uncertainty on how to take advantage of these optimizers 

simultaneously. 

Recognizing the distinct merits of different DE designs and the difficulties in managing multiple DEs under 

a multi-population structure, we aim to propose a flexible framework that is able to combine multiple DEs 

efficiently and achieve a significant improvement of performance. A multi-layer competitive-cooperative 

(MLCC) framework is hence developed in this paper. In MLCC, a single population is maintained, while, by 

deploying individuals to operational layers, it facilitates competition and cooperation amongst the employed 

DEs. Features of MLCC are highlighted as follows: 

 (1) Different from existing multi-population based hybrid methods, MLCC introduces a parallel 

multi-layer structure with each layer associated with one adaptive DE optimizer. This parallel structure is 

expected to i) eliminate the significant increase in population size as observed in existing multi-population 

based structures; and ii) preserve the original designs of the constituent optimizers, providing high flexibility 

to incorporate complex DE variants. 

 (2) Competition in MLCC is designed to efficiently distribute computation resources. This is 

accomplished by the individual preference-based layer selecting (IPLS) mechanism, that allows each 

individual to connect to its favorite layer. IPLS differs from existing methods [21, 25, 28, 37, 42-44] in three 

aspects: i) each layer in MLCC has access to the entire population. Although some individuals (i.e. the target 

vectors) may be processed by a specific layer at some time, individuals for mutation can be selected from the 

entire population; ii) each individual can store, use and update its evolution information in multiple layers. 
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This facilitates the incorporation of self-adaptive DEs [4, 22, 39], which have to evolve individual specified 

strategies or parameters; and iii) the entire population is monitored by multiple layers to help each optimizer 

make decisions based on the current evolution stage. 

 (3) Cooperation in MLCC takes advantages of all the constituent optimizers simultaneously, to allow them 

to collaborate closely. This is realized using the resource allocation bias (RAB) mechanism. In RAB, some 

high-quality solutions are allowed to generate multiple trial vectors by using all the layers while the inferior 

solutions only produce one trial vector. RAB is designed based on the following considerations: i) 

simultaneous consideration of all the layers for superior individuals can provide multiple directions for 

evolution; ii) the layers in MLCC usually have complementary properties. Evolving elitism solutions by 

these layers simultaneously is less likely to suffer from a local optimum but instead enhances the exploitation 

capability of the algorithm; iii) different from canonical DE [30] and existing DEs, RAB allocates more 

resources to superior solutions. As a result, the evolution can put more efforts onto promising searching 

directions, which may be beneficial to the entire population later; and iv) the same as canonical DE, inferior 

solutions in RAB can still generate their offspring. This ensures that the chances of inferior solutions can 

compete with the superior ones thus keeping the exploratory capability of DE. 

The effectiveness of the proposed MLCC framework and its components, i.e. IPLS and RAB, have been 

verified through extensive experiments conducted using 30 benchmark functions derived from the 2014 

IEEE Congress on Evolutionary Computation (IEEE CEC2014) [18]. Numerical results show that MLCC 

significantly improves the performance of the baseline DEs. Moreover, the resulting MLCC variant 

significantly outperforms state-of-the-art and up-to-date DEs. 

The remainder of this paper is organized as follows: Sec. 2 briefly reviews the related works. Sec. 3 

describes the proposed MLCC framework and its implementation details. Sec. 4 presents the experiments and 

discussions. Finally, Sec. 5 concludes this paper. 

 

2. Background and Related Works 

2.1 Basics of DE  

DE is a population-based stochastic search method for continuous real parameter optimization problems. 

Given a D-dimensional minimization problem, DE begins with a population of NP individuals, 

randomly sampled from the searching space. Afterwards, 

at each generation G, three operations: mutation, crossover and selection are performed. They are briefly 

introduced in the following.  

 0 ,0 ,1,0 ,2,0 , ,0( , , , ), {1,2, }i i i i DP x x x x i NP= =  
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   Mutation: In mutation, a mutant vector 
,i Gv  corresponding to each target vector

Gi
x

,


 is generated by 

combining a base vector with one or more difference vectors. Frequently used mutation strategies include:  

1) DE/rand/1 
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2) DE/best/1 

)(
,,,, 21 GrGrGbestGi

xxFxv


−+=                                                                                        (2) 
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5) DE/current-to-best/1 
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where 
Gbest

x
,


 denotes the best vector in the current population PG, \{ }mr i  with ,5,2,1 =m are distinct 

integers and F is a user-specified mutation control parameter within (0, 1]. 

Crossover: After mutation, crossover is performed on each mutant vector 
,i Gv and its corresponding target 

vector 
Gi

x
,


 to generate a trial vector .

,Gi
u


 The classic binomial crossover is formulated as follows. 

, ,

, ,

, ,

if (0,1) or

otherwise

i j G j rand

i j G

i j G

v rand CR j j
u

x

 =
= 
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                                                                                      (6) 

where randj (0,1) is a uniform random number within (0, 1), jrand is a randomly generated integer from [1, D], 

and CR is a user-defined crossover control parameter within [0,1]. 

Selection: Selection is to determine the better vector between 
Gi

u
,


and 

Gi
x

,


 which will survive in the next 

generation, based on their fitness values )(f . 



 

=
+

otherwise
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

                                                                                     (7) 

 2.2 Advanced DE variants 

Since its advent, DE has attracted a lot of attention and many DE variants [8, 24] have been proposed with 

different characteristics. Among them, self-adaptive [4, 22, 39] and adaptive [29, 33, 46] DEs exhibit 

encouraging performance [2].  

Self-adaptive DEs: Self-adaptive DEs [4, 22, 39] allow adjustments of strategy and/or parameter settings 

in each individual during evolution. The self-adaptive DE (jDE) [4] encodes control parameters F and CR 

into each individual and makes them self-adaptive during the evolution. The Parameters and Mutation 
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Strategies Ensemble DE (EPSDE) [22] assigns mutation strategies and control parameters to individuals 

from a preset pool. The Covariance matrix Learning and Bimodal Distribution Parameter Setting Based DE 

(CoBiDE) [39] introduces a self-adaptive bimodal parameter sample scheme. 

Adaptive DEs: Adaptive DEs [29, 33, 46] usually collect population-wise success experience from 

previous generations and then use it as a guideline for later evolution. The Strategy Adaptive DE (SaDE) [29] 

dynamically determines the selecting probabilities of four mutation strategies according to their previous 

performances. The Adaptive DE (JADE) [46] introduces a new “current-to-pbest/1” mutation strategy and a 

success-based parameter adaptation mechanism. Due to its impressive performance, JADE was later 

modified, giving birth to many variants, such as Success History Based Adaptive DE (SHADE) [33], Linear 

Population Size Reduction Based SHADE (L-SHADE) [34], Collective Information Powered DE (CIPDE) 

[47] and Selective Candidate with Similariy Selection Rule (SCSS) based variants [45].  

In addition, with the support of various mutation strategies, plentiful multiple strategies based DEs have 

also been proposed. The Composite DE (CoDE) [38] adopts three mutation strategies with different pairs of 

F and CR to generate offspring. The Multi-population Based Ensemble of Multiple Strategies DE (MPEDE) 

[44], Multiple Subpopulations Based Adaptive DE (MPADE) [6] and Individual-dependent DE (IDE) [36] 

assign different mutation strategies to different subpopulations. Apart from single-objective optimization, 

mutation strategy selection has also been extended to multi-objective optimization [19, 20]. 

Besides, the mutation and crossover operations of DE have also been improved using various mechanisms, 

such as ranking based mutation [12], two-step subpopulation based mutation [48], eigenvector based 

crossover [10], hybrid linkage crossover [5] and orthogonal crossover [40], to name a few. 

 

2.3 Multi-method Search 

According to the No Free Lunch Theorem  (NFL) [41], no single algorithm or setting can perform the best 

for all kinds of problems. For this reason, many researchers have put much efforts into the ensemble of 

multiple operators or multiple EAs into their algorithms to confront different challenges in different 

evolutionary stages, which in turn improve the overall performance.  

Vrugt et al. [37] merged multiple EAs, including Genetic Algorithm (GA) [14], Covariance Matrix 

Adaptation Evolution Strategy (CMA-ES) [15], Particle Swarm Optimizer (PSO) [49] and DE together to 

formulate the Multi-algorithm Genetically Adaptive Method for Single Objective Optimization 

(AMALGAM-SO) to promote efficient searches. AMALGAM-SO dynamically adjusts subpopulation size 

for each constituent algorithm according to its previously achieved performance. Peng et al. [25] proposed a 

population-based algorithm portfolio (PAP) scheme, in which each constituent optimizer is given a preset 

time budget to run, while different optimizers are allowed to interact with each other based on a migration 
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strategy. Gong et al. [13] proposed a cheap surrogate model to estimate the densities of multiple candidates 

produced by multiple operators and then select the one with maximum density as offspring. Iacca et al. [16] 

suggested the Multi-strategy Coevolving Aging Particle Optimizer (MS-CAP), combining the advantages of 

aging based PSO and multiple strategies based DE. In [23], Noman et al. proposed an adaptive local search 

method to improve the performance of classic DE. In [27], Piotrowski et al. introduced a memetic DE by 

incorporating a local search algorithm into an adaptive DE. In [17], Kämpf et al. proposed a hybrid algorithm 

which combined CMA-ES with a hybrid DE. In [21], Li et al. designed a Hybrid DE (HDE) framework to 

perform two DEs alternatively during the evolution process. In HDE, only one of the DEs is activated in each 

generation. If the DE that is running is regarded as inefficient, it will be replaced by the other one.  

 

3. Proposed MLCC Framework 

 3.1 Motivation 

From the literature reviews presented in Sec. 2, it can be observed that: 1) Existing multi-method search [25, 

37, 44] commonly divides the entire population into several subpopulations where each subpopulation 

evolves with an associated method.  This approach may result in two drawbacks. Firstly, as recommended in 

many studies, eg. [30], the subpopulation size needs to be large enough to ensure a promising performance. 

Therefore, it may result in a large population size, which leads to a deterioration in exploitation capability of 

the constructed algorithms. Secondly, integrating multiple DE variants under the multi-method searching 

framework may not be easy. For example, the multi-method search in [25, 37, 44] had to be modified 

empirically for new DE variants. Also, some complex variants, such as IDE [36] which is already a 

multipopulation based algorithm, are hard to integrate. Furthermore, it still remains a mystery on how to take 

advantage of all employed methods to achieve more promising search directions; 2) Since the introduction of 

SaDE (Strategy adaptive DE) [29] algorithm, the concept of adaptation has been widely adopted in designing 

DE variants, usually realized with multiple mutation strategies [16, 19, 22, 44], multiple crossover strategies 

[8, 23], and the adjustments of control parameters [33, 39, 46]. Regarding the parameter mechanism, several 

self-adaptive [4, 22, 39] and adaptive [29, 33, 46] methods have been proposed. However, due to the fact that 

a single mechanism may consistently generate parameters with fixed characteristics, it may hinder the 

capability of an algorithm to seek out better parameters; 3) Existing DEs evolve each individual with equal 

amount of efforts, despite their potentials.   

With the above considerations, this paper proposes a parallel multi-layer structure based 

competitive-cooperative (MLCC) DE framework, empowered by two mechanisms, namely the individual 
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preference-based layer selecting (IPLS) mechanism and the computational resource allocation bias (RAB) 

mechanism. 

 

3.2 Competitive IPLS mechanism 

Figure 1 depicts the proposed parallel multi-layer structure and IPLS mechanism, in which M different 

methods are associated with M layers Lm (m = 1, 2, …, M) and there are NP individuals  , , {1,2, }i Gx i NP in 

the population. 

 The multi-layer structure is designed as follows. In every generation, the entire population is monitored 

simultaneously by multiple optimizers assigned in their corresponding layers. Each target individual is 

assigned to a specific layer at a particular time based on its preference (for example, individual 2 is assigned 

to L1 in Fig. 1(a)). However, it is still possible to select any individual in the entire population for the mutation 

process in a layer.  

Preference of the target individuals is determined by the IPLS mechanism (Algorithm 1), described as 

follows. 

 

 
Fig.1 Illustration of the parallel multi-layer structure and IPLS mechanism. (a) Each individual connects to a layer, denoted by 

the solid circle while each layer can select any individual from the entire population for the mutation process of the DE 

employed.  (b) Update of layer assignment by IPLS. 
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At generation G = 0, individual preferences  , , {1,2, }i GIP i NP are randomly initialized (line 1 in 

Algorithm 1). Afterwards, for each individual i at generation G, if the trial vector generated by its favor 

method 
,i GIP  successfully replaces the target vector, then the preference is preserved to the next generation 

(line 7 in Algorithm 1). Otherwise, the individual i will randomly reconnect to another distinct layer, in which 

another DE is employed (line 11 in Algorithm 1). Accordingly, algorithmic settings of the M methods are 

updated, following their original designs (lines 8 and 12 in Algorithm 1). In this way, the M layers compete 

and the winner will eventually take more individuals. An illustrative example is depicted in Fig. 1(b). 

The parallel framework can effectively deal with self-adaptive [4, 22, 39] and adaptive [29, 33, 46] DEs 

even though they have a different structure. An example is given in Fig. 2, where an adaptive DE and a 

self-adaptive DE reside at L1 and L2, respectively (Note: Other layers are ignored for clarity.) 

 

 

 

 

 

 

 

 

 

For self-adaptive DEs, such as jDE [4], EPSDE [22] and CoBiDE [39], generational strategy or (and) 

parameters are associated with each individual. Therefore, as shown in the example, L2 records and updates 

strategies or (and) parameters corresponding to each individual in memory 

2{ { }, {1,2, }}LMEM i i NP throughout the entire evolutionary process. When  ,i Gx  is associated with L2, i.e. 

, 2i GIP = , strategies or (and) parameters stored in MEML2{i} will be taken to generate a trial vector ,i Gu . 

Consequently, MEML2{i} will be updated according to the fitness comparison result between ,i Gx and ,i Gu .  

For adaptive DEs, such as JADE [46] and SHADE [33], following their original designs, only 

population-wise strategies or (and) parameters are required. Given a layer using adaptive DEs, this piece of 

information will be stored and used by any individual associated with the layer. Consider the example shown 

 
 

Fig.2 Illustration of parameter adaptation in multi-layer structure. For self-adaptive DE in L2, strategy or (and) parameters 

corresponding to each individual are stored. For adaptive DE in L1, only population-wise strategies or (and) parameters are 

needed. The double-headed arrows indicate the interaction between individuals and the memory in the layer. 
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in Fig. 2, SHADE is used in L1. Hence, the memory MF and MCR [33] are used to store the values determined 

by the latest successful control parameters F and CR. For any 
,i Gx with 1, =GiIP , L1 retrieves parameters from 

MF and MCR for the generation of trial vectors. Subsequently, parameters determined by the successful update 

of 
,i Gx are archived to update MF and MCR.  

In this paper, an example of combining two adaptive DEs is described in Sec. 4.1 while another example of 

integrating an adaptive DE and a self-adaptive DE is given in Sec. 4.4.  

--------------------------------------------------------------------------------------------------------------------------------- 

Algorithm 1.  Competitive IPLS mechanism 

--------------------------------------------------------------------------------------------------------------------------------- 

1: Set generation count G = 0, initialize a population  0 ,0 , {1,2, }iP x i NP=  , initialize each method m (m = 1, 

2, …, M), initialize individual preference  ,0 ( (0,1) ), {1,2, }i iIP ceil rand M i NP=   . // ( )ceil   denotes a ceiling value.  

2: While the stopping criteria are not satisfied, Do 

3: For i = 1: NP Do 

4:  For 
,i Gx , generate a trial vector 

,i Gu  by its preference method 
,i GIP ;  

5:   If 
, ,( ) ( )i G i Gf u f x   

6:     , 1 ,i G i Gx u+ = ; 

7:     , 1 ,i G i GIP IP+ = ; 

8:  Update the generation strategies and parameter settings of the method 
,i GIP  if required by its original 

design; 

9:   Else 

10:    , 1 ,i G i Gx x+ = ; 

11:    , 1 ,( (0,1) ) \i G i i GIP ceil rand M IP+ =  ;      // “\” implies exclusion of the previous method 

12:  Update the generation strategies and parameter settings of the method 
,i GIP if required by its original 

design; 

13: End If 

14: End For 

15: Evaluate the current evolution status and update the settings of the M methods if required by their 

original designs; 

16: G = G + 1;    

17: End While 

--------------------------------------------------------------------------------------------------------------------------------- 
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3.3 Cooperative RAB mechanism 

Existing DEs allocate equal amount of computational resources to each individual, regardless of its 

potential in finding a better solution. In the following experiment, it is shown that it is more likely to generate 

new best solutions (NBS) by evolving superior solutions than inferior ones. Therefore, an even distribution of 

resources may not be efficient.  

The experiment is conducted with two classic algorithms “DE/rand/1/bin” and “DE/best/1/bin” tested with 

30-dimensional CEC2014 benchmark functions. Parameters settings for both algorithms are: F = 0.7, CR = 

0.5 and NP = 5×D, and the termination condition is set as 104×D function evaluations, where D = 30 is the 

dimension of the functions.  

A rank archive, R, is used to record the rank of individuals who produce NBS, while frequencyi indicates 

the frequency that the individual with i-th rank generates NBS. Define AR as the average rank of individuals 

contributing to NBS, one has  =
=

r

i iR
r

AR
1

1
, where r is the size of archive R. If the contribution of NBS is 

independent of individual’s rank, the expected value of AR can be computed by 

150exp

1 1
( ) / ( ) /150 75.5

NP

i i
AR i NP i

= =
= = =  . 

Fig. 3 depicts the value of AR for each function in the median trial of 51 independent runs, while the dotted 

line indicates the value of ARexp. As shown, AR is smaller than ARexp on all the functions tested for both 

“DE/rand/1/bin” and “DE/best/1/bin”. This simply implies that superior individuals have higher potentials to 

generate NBS than inferior ones. To further demonstrate this, Fig. 4 shows the value of frequencyi on 

representative unimodal functions F2 and multimodal functions F9.  It can be clearly seen that individuals 

with a higher rank produce more NBS than those with a lower rank.  

Inspired by this phenomenon, a resource allocation bias (RAB) scheme is proposed to emphasize 

high-quality individuals by using all the layers. Its pseudocode is given in Algorithm 2. At each generation, 

the fitness ranking FR(i) of each individual {1,2, }i NP  is first determined (line 1). The smaller the FR, the 

better the solution. Then, the ( (0,1) )Gtop ceil rand NP N=    high-rank solutions are regarded as high-quality 

individuals, where ]1,0[N  is a preset parameter. For each top rank individual, M trial vectors 

,
, {1,2, }mi G

u m M are generated by M methods and the settings of each method are updated by comparing  

,mi G
u  with ,i Gx (lines 4-8). Subsequently, the fittest trial vector ,i Gu is chosen to compare with the target vector 

,i Gx  (lines 9-14). In this way, the M layers work cooperatively to promote the quality of the solution. On the 

contrary, inferior individuals are to produce one offspring each (line 16).  
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The benefits of the cooperative RAB mechanism are twofold. Firstly, computational resources are 

re-distributed in a better way. At each generation, superior solutions are given M trials by M complementary 

methods. Therefore, the top individuals can be refined with a higher probability and are expected to lead the 

entire population towards more promising searching areas. Secondly, inferior solutions still have a chance to 

          
(a) 

    
(b) 

Fig. 4. Values of frequencyi on unimodal functions F2 and multimodal functions F9: (a) for 

“DE/rand/1/bin”; (b) for “DE/best/1/bin”. 

  
(a)                                                                                            (b) 

Fig. 3. Average Rank of individuals that generate new better solution (a) for “DE/rand/1/bin”; (b) for “DE/best/1/bin”. 

Experiments are conducted on thirty 30-dimensional CEC2014 benchmark functions with 51 independent runs.  
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generate one candidate to compete with the superior solutions, thus maintaining the exploratory capability of 

DE. 

--------------------------------------------------------------------------------------------------------------------------------- 

Algorithm 2. Cooperative RAB mechanism 

--------------------------------------------------------------------------------------------------------------------------------- 

1: At generation G, determine the fitness ranking FR(i), {1,2, }i NP  of each individual, set 

( (0,1) )Gtop ceil rand NP N=   ; 

2: For i = 1: NP Do 

3:   If FR(i) ≤ topG 

4:   For 
,i Gx , generate M trial vectors 

,
, {1,2, }mi G

u m M  by using M methods;  

5:     For m = 1: M Do 

6:      Compare 
,mi G

u  with 
,i Gx ; 

7:    Update the generation strategies and parameter settings of method m if required by its original design; 

8:     End For 

9: Choose the best trial vector 
,bi G

u in terms of fitness from 
,

, {1,2, }mi G
u m M ,where b indicates the index of 

the best method; 

10:   If ,,
( ) ( )b i Gi G

f u f x  

11:    , 1 ,bi G i G
x u+ = ; 

12:   Else 

13:    , 1 ,i G i Gx x+ = ; 

14:   End If 

15: Else If FR(i) > topG 

16:   For ,i Gx , generate a trial vector ,i Gu ; 

17:   If , ,( ) ( )i G i Gf u f x  

18:      , 1 ,i G i Gx u+ = ; 

19:   Else 

20:      , 1 ,i G i Gx x+ = ; 

21:   End If 

22: End If 

23: End For 

---------------------------------------------------------------------------------------------------------------------------------                                   
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3.4 The MLCC Framework 

Combining IPLS and RAB, the proposed MLCC framework is depicted in Fig. 5 and its pseudocode is 

presented in Algorithm 3. As observed, for target vectors with ranking FR ≤ topG, M methods are considered 

(lines 6-9) and if the target vectors are successfully updated, their preferences are renewed with the 

corresponding best method b (line 14). While for the inferior vectors, only their preferences are used (line 

19).  

Compared to existing methods, the novelty and characteristics of MLCC framework can be summarized 

by the following. 

(1) The influence between individuals and each layer in MLCC is bidirectional. On the one hand, an 

individual can obtain algorithmic configurations from the layers for evolving, while on the other hand, it also 

returns feedbacks to the layers. This significantly differs from CoDE [38], in which algorithmic settings can 

only influence individuals regardless of the preference of each individual. 

(2) MLCC introduces a novel multi-layer structure, which is in nature different from AMALGAM-SO [37], 

PAP [25], HDE [21] and MPEDE [44] which only uses one layer. With the multi-layer structure, each 

individual in MLCC can store, utilize and update its evolution information in multiple layers during the 

evolution, for example, they can evolve multiple layer-associated adaptive/self-adaptive F and CR 

parameters. Moreover, in MLCC, the incorporation of self-adaptive DEs [4, 22, 39] becomes much easier. 

   

 
 

Fig.5 Illustration of MLCC (M = 2). The top ranked individuals connect to all layers and are evolved by M methods, while the 

others are connected to one layer. Note: For clarity, only two layers are shown and the number indicates the rank of an 

individual. 
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 (3) The “multi-layer”, rather than “multi-population” feature in MLCC significantly increase the 

flexibility in integrating DE variants with relatively complex proposals, such as the multi-population based 

IDE [36] algorithm. 

(4) In MLCC, each layer has access to the current population. Although only part of the entire population is 

evolved by the m-th layer, where {1,2, }m M , the vectors for mutation are selected from the entire 

population, following the original design of m-th method. In this context, the M methods work in a 

collaborative manner. This is different from PAP [25] and MPEDE [44], in which individuals evolve only 

within their corresponding subpopulations. 

 (5) MLCC preserves the original design of the baselines. The procedures performed in each layer identical 

to those in the original algorithms,  making MLCC easy to implement. 

(6) RAB mechanism is introduced in MLCC to redistribute the computational resources and 

simultaneously take advantages of all the M methods to enhance performance. 

--------------------------------------------------------------------------------------------------------------------------------- 

Algorithm 3. The MLCC framework 

--------------------------------------------------------------------------------------------------------------------------------- 

1: Initialize a population  0 ,0 , {1,2, }iP x i NP=  , initialize each method m (m = 1, 2, …, M), initialize the 

individual preference  ,0 ( (0,1) ), {1,2, }i iIP ceil rand M i NP=   , set generation count G =0, set threshold value N; 

2: While the stopping criteria are not satisfied, Do 

3: Determine the fitness ranking FR(i) of each individual i in the population, set 

( (0,1) )Gtop ceil rand NP N=   ; 

4: For i = 1: NP Do 

5:   If FR(i) ≤ topG 

6:   For 
,i Gx , generate M trial vectors 

,
, {1,2, }mi G

u m M  by using M methods;  

7:    For m = 1: M 

8:     Compare 
,mi G

u  with 
,i Gx ; 

9:      Update the generation strategies and parameter settings of method m if required by its original design; 

10:   End For 

11: Choose the best trial vector 
,bi G

u in terms of fitness from 
,

, {1,2, }mi G
u m M , where b indicates the index 

of the best method; 

12:   If ,,
( ) ( )b i Gi G

f u f x  

13:    , 1 ,bi G i G
x u+ = ; 
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14:    
, 1i GIP b+ = ; 

15:   Else 

16:    
, 1 ,i G i Gx x+ = ; 

17:   End If 

18:  Else If FR(i) > topG 

19:  For 
,i Gx , generate a trial vector 

,i Gu  by its preference method 
,i GIP ;  

20:   If 
, ,( ) ( )i G i Gf u f x   

21:     
, 1 ,i G i Gx u+ = ; 

22:     
, 1 ,i G i GIP IP+ = ; 

23:  Update the generation strategies and parameter settings of method 
,i GIP  if required by its original 

design; 

24:   Else 

25:    
, 1 ,i G i Gx x+ = ;    

26:   , 1 ,( (0,1) ) \i G i i GIP ceil rand M IP+ =  ; 

27:  Update the generation strategies and parameter settings of the method 
,i GIP if required by its original 

design; 

28:   End If 

29: End If 

30: End For 

31: Evaluate the current evolution status and update the settings of the M methods if required by their 

original designs; 

32: G = G + 1; 

33: End While 

--------------------------------------------------------------------------------------------------------------------------------- 

3.5 On the Selection of the M Methods 

This subsection discusses the selection criteria of the M methods for MLCC. In general, the following 

guidelines are given. 1) The M methods are high-performers in order to construct a competitive DE; 2) the M 

methods should complement each other to ensure a stable performance for a wide range of problems.  

To determine suitable candidates, nine state-of-the-art and up-to-date DE variants, namely jDE [4], SaDE 

[29], EPSDE [22], JADE [46], CoDE [38], CoBiDE [39], MPEDE [44], SHADE [33] and IDE [36] have 

been run on 30-dimensional CEC2014 benchmark function set. The CEC2014 benchmark set is considered 
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because it covers a wide range of functions with diverse mathematical properties. Therefore, the test results 

would reflect the overall performance of an algorithm.  

Parameter settings for the DEs being considered, are summarized in Table S1 in the supplemental file. The 

mean and standard deviations of solution error values, given by f (x) – f (x*), over 51 independent runs are 

tabulated in Table S2 in the supplemental file, where f (x*) and f (x) are the global optima and the best fitness 

after 104×D function evaluations, respectively [18]. The comparison results of the DEs given by Wilcoxon 

signed-rank test [32] with a significance level of 0.05 are summarized in Table S3.  

In Table 1, the p-values obtained by comparing IDE with the other four most competitive DEs are 

presented, while the overall performance rankings of the nine considered DEs are summarized in Table 2. 

As observed in Table 1, the performance of IDE is comparable to CoDE, CoBiDE, MPEDE and SHADE at 

α = 0.05. As shown in Table 2, SHADE and IDE are the best and second best-performing DEs with ranking 

values of 3.48 and 3.53, respectively. In addition, according to single problem analysis between SHADE and 

IDE using Wilcoxon signed-rank test with 5% significance level, IDE wins, ties and loses in 13, 8 and 9 

functions respectively when compared with SHADE. This indicates that the characteristics of SHADE and 

IDE complement each other. In summary, Tables 2 and S2 show that SHADE and IDE are the appropriate 

candidates for MLCC.  

 

 

 

 

 

 

 

 

 

 

 

3.6 The MLCC-SI Algorithm 

Following Algorithm 3, the MLCC variant for two selected methods, SHADE and IDE, denoted as 

MLCC-SI is implemented and the pseudocode is provided as Algorithm S-1 in the supplemental file. It 

should be noted that procedures for SHADE and IDE used in the layers are identical to those in the original 

literature [33, 36]. 

 

Table 2 Performance ranking of the considered DE variants on 30-dimensional 

CEC2014 benchmark set using Friedman’s test 
Algorithm Ranking  

SHADE 3.48 

IDE 3.53 

CoBiDE 4.06 

MPEDE 4.21 

CoDE 4.86 

JADE 5.15 

jDE 5.76 

EPSDE 6.38 

SaDE 7.53 

 

     Table 1 P-values obtained by comparing IDE with the other four 

most competitive DEs according to multi-problem Wilcoxon’s test 
IDE v.s. R+ R- p-value α = 0.05 

CoDE 263.5 171.5 0.314 No 

CoBiDE 240.5 194.5 0.611 No 

MPEDE 267.5 167.5 0.274 No 

SHADE 271.0 194.0 0.422 No 
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4. Simulation and Discussion 

In this section, the effectiveness of the proposed MLCC framework and the performance of the MLCC 

variants is verified through comprehensive experiments conducted on the CEC2014 test set [18]. The 30 

benchmark functions in the CEC2014 test set can be classified into four categories: unimodal functions 

(F1-F3), simple multimodal functions (F4-F16), hybrid functions (F17-F22) and composition functions 

(F23-F30).  

Performance of the considered algorithms is evaluated based on solution error value, which was defined 

previously in Sec. 3.5. Following the suggestion in [18], solution error values smaller than 10-8 are reported 

as zero. In the experiments, each algorithm is run independently on every function for 51 times. In each run, 

104×D function evaluations are limited, while the final solution error values obtained are compared. It is 

noted that, to have a fair comparison, the initial populations for all algorithms are set to be the same as in a 

single run. In the tables presented, the best results achieved for each function is marked in bold.  

To have statistically sound conclusions, single problem Wilcoxon’s signed-rank test [32] with a 

significance level of 0.05, multiple problem Wilcoxon’s test [11] and Friedman’s test [11] are used in the 

performance comparison. Regarding single problem Wilcoxon’s signed-rank test, the symbols “-”, “=” and 

“+” in the tables represent that the performance of the compared algorithm is significantly worse than, similar 

to or better than that of the considered algorithm, respectively. In addition, for ease of comparison, “Positive 

subtracts Negative” value (P-N value) is also given, where “Positive” is the number of functions that the 

considered algorithm outperforms the algorithm compared while “Negative” is the number of functions for 

the opposite case. 

   

4.1 Effectiveness of the MLCC Framework 

In this subsection, the effectiveness of the proposed MLCC framework is verified through performance 

comparisons between the MLCC-SI algorithm and its two baseline DEs on the 30 and 50-dimensional 

CEC2014 test sets. Parameter settings for the algorithms are summarized as follows: 

1) SHADE：NP = 5×D, MF = {0.7}, MCR = {0.5}, and H = NP.  

2) IDE：NP = 5×D, T = 1000D/NP, GT = 5T, SRT = 0 (G < GT), and SRT = 0.1 (G ≥ GT) . 

3) MLCC-SI： MF = {0.7}, MCR = {0.5}, and H = NP (For SHADE layer); T = 1000D/NP, GT = 5T, SRT = 

0 (G < GT), and SRT = 0.1 (G ≥ GT) (For IDE layer); NP = 5×D and N = 0.05. 

The mean and standard deviations of error values achieved with 51 independent runs and the statistical 

comparison results are shown in Table 3.  
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From Table 3, it can be observed that MLCC-SI performs significantly better than SHADE and IDE. Out 

of the total 120 cases, MLCC-SI wins in 74 (=15+16+22+21) cases and only loses in 12 (=5+1+4+2) cases. 

MLCC-SI outperforms SHADE in 37 (=15+22) functions and underperforms in 9 (=5+4) functions. When 

compared with IDE, MLCC-SI is superior in 37 (=16+21) cases and inferior in 3 (=1+2) cases. 

Considering the features of the test functions, the following results can be observed:  

For unimodal functions F1-F3, SHADE performs the best while IDE is the worst.  MLCC-SI loses to 

SHADE in 3 cases but wins IDE in 4 cases. 

For simple multimodal functions F4-F16, MLCC-SI significantly outperforms SHADE and IDE. In the 

total 52 (=13×4) cases, MLCC-SI wins SHADE and IDE in 18 (=8+10) and 15 (=7+8) cases and loses in 2 

(=2+0) and 1 case, respectively.  

For hybrid functions F17-F22, Table 3 shows that MLCC-SI is again the best. MLCC-SI performs better 

than SHADE and IDE in 21 functions and only loses in 1 function.  

For composition functions F23-F30 with complex mathematical characteristics, from Table 3, MLCC-SI is 

also the best performer. It is superior to SHADE and IDE in 9 (3+6) and 7 (=2+5) cases and inferior in 3 

(=1+2) and 2 (=1+1) cases, respectively.  

Furthermore, the performance of MLCC-SI, SHADE, and IDE are compared according to multiple 

problem Wilcoxon’s test, and the results are shown in Table 4. Regarding the p-value obtained, it can be 

concluded that the overall performance of MLCC-SI is significantly better than those of SHADE and IDE 

with 5% significance level. This is also confirmed by the Friedman’s test results, as given in Table 5, that 

MLCC-SI achieves a much smaller ranking value (1.45) while SHADE and IDE perform similarly. In 

conclusion, MLCC significantly improves the performance of the baseline DEs. 

4.2 Benefits of the Components in MLCC 

This subsection studies the advantages of the two components i.e. IPLS and RAB mechanisms designed in 

MLCC. Four variants, denoted as Variants I-IV of MLCC-SI are constructed as follows. 

Variant-I:  MLCC-SI without RAB. In this variant, at each generation, each individual can connect to only 

one layer based on its preference. 

Variant-II: MLCC-SI without IPLS.  In this variant, at each generation, the superior topG individuals 

connect to M layers while the remains randomly connect to only one layer. 

Variant-III: MLCC-SI without IPLS and RAB. In this variant, at each generation, each individual 

randomly connects to only one layer. 

Variant-IV: MLCC-SI without fitness bias. In this variant, the topG individuals permitted to connect to M 

layers are randomly selected from the entire population without fitness bias. 
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Table 3 Performance comparisons of MLCC-SI with its baseline DE variants on 30- and 50-dimensional 

cec2014 benchmark set over 51 independent runs  

D = 30 D = 50 
 

SHADE IDE MLCC-SI SHADE IDE MLCC-SI 

F1 
2.59E+02 + 

(5.67E+02) 

1.18E+05 - 

(9.41E+04) 

4.76E+03 

(5.69E+03) 

1.19E+05 + 

(6.14E+04) 

1.24E+06 - 

(3.41E+05) 

2.79E+05 

(1.00E+05) 

F2 
0.00E+00 = 
(0.00E+00) 

0.00E+00 = 
(0.00E+00) 

0.00E+00 

(0.00E+00) 
0.00E+00 + 
(0.00E+00) 

2.28E+00 - 
(2.53E+00) 

2.67E-04 
(3.59E-04) 

F3 
0.00E+00 = 

(0.00E+00) 

0.00E+00 = 

(0.00E+00) 

0.00E+00 

(0.00E+00) 

0.00E+00 = 

(0.00E+00) 

1.85E+01 - 

(1.27E+01) 

2.10E-10 

(1.50E-09) 

F4 
0.00E+00 + 

(0.00E+00) 

2.08E-02 - 

(4.14E-02) 

1.63E-07 

(4.37E-07) 

8.35E+01 - 

(1.16E+01) 

7.19E+01 - 

(2.97E+01) 

6.53E+01 

(2.62E+01) 

F5 
2.03E+01 - 

(3.54E-02)  

2.02E+01 - 

(5.68E-02) 

2.02E+01 

(5.40E-02) 

2.05E+01 - 

(4.03E-02) 

2.03E+01 = 

(5.95E-02) 

2.03E+01 

(5.46E-02) 

F6 
6.41E+00 - 
(3.86E+00) 

6.20E-02 = 
(2.82E-01) 

8.71E-02 
(2.84E-01) 

1.18E+00 = 
(3.45E+00) 

9.34E-02 + 
(3.14E-01) 

3.96E-01 
(5.61E-01) 

F7 
0.00E+00 = 

(0.00E+00) 

0.00E+00 = 

(0.00E+00) 

0.00E+00 

(0.00E+00) 

0.00E+00 = 

(0.00E+00) 

2.22E-03 - 

(4.10E-03) 

0.00E+00 

(0.00E+00) 

F8 
0.00E+00 = 

(0.00E+00) 

4.33E-10 = 

(3.09E-09) 

0.00E+00 

(0.00E+00) 

1.84E-02 - 

(5.39E-03) 

4.32E-02 - 

(1.97E-01) 

0.00E+00 

(0.00E+00) 

F9 
2.75E+01 - 

(4.18E+00) 

2.46E+01 - 

(5.33E+00) 

2.14E+01 

(4.44E+00) 

8.82E+01 - 

(8.25E+00) 

5.99E+01 - 

(1.01E+01) 

4.47E+01 

(8.15E+00) 

F10 
1.57E-01 + 
(3.94E-02) 

5.68E+00 - 
(1.66E+01) 

1.12E+00 
(9.49E-01) 

6.06E+01 - 
(6.43E+00) 

3.34E+01 = 
(4.90E+01) 

9.00E+00 

(3.38E+00) 

F11 
1.97E+03 - 

(2.06E+02) 

1.92E+03 - 

(3.53E+02) 

1.63E+03 

(3.34E+02) 

6.27E+03 - 

(3.93E+02) 

4.20E+03 = 

(6.65E+02) 

4.03E+03 

(5.06E+02) 

F12 
3.08E-01 - 
(4.82E-02) 

2.91E-01 - 
(5.97E-02) 

2.60E-01 

(5.31E-02) 
6.12E-01 - 
(6.73E-02) 

3.68E-01 = 
(7.37E-02) 

3.51E-01 

(5.92E-02) 

F13 
2.15E-01 - 

(2.58E-02) 

1.87E-01 = 

(2.20E-02) 

1.83E-01 

(2.79E-02) 

3.01E-01 - 

(2.99E-02) 

2.96E-01 - 

(3.09E-02) 

2.77E-01 

(2.58E-02) 

F14 
2.14E-01 - 
(2.24E-02) 

1.82E-01 = 
(3.19E-02) 

1.94E-01 
(2.21E-02) 

2.50E-01 = 
(1.82E-02) 

2.70E-01 - 
(2.23E-02) 

2.56E-01 
(2.36E-02) 

F15 
3.83E+00 - 

(4.70E-01) 

2.69E+00 = 

(5.27E-01) 

2.47E+00 

(4.20E-01) 

1.18E+01 - 

(8.02E-01) 

7.36E+00 - 

(1.93E+00) 

6.41E+00 

(1.34E+00) 

F16 
9.55E+00 = 
(3.49E-01) 

1.00E+01 - 
(3.94E-01) 

9.52E+00 

(4.66E-01) 
1.88E+01 - 
(2.77E-01) 

1.92E+01 - 
(4.21E-01) 

1.85E+01 

(4.53E-01) 

F17 
7.62E+02 - 

(3.58E+02) 

5.97E+02 - 

(2.97E+02) 

2.31E+02 

(1.23E+02) 

2.21E+03 - 

(5.57E+02) 

7.22E+03 - 

(2.74E+03) 

1.27E+03 

(4.01E+02) 

F18 
1.44E+01 - 
(7.28E+00) 

1.90E+01 - 
(5.87E+00) 

9.79E+00 

(3.36E+00) 
8.03E+01 - 
(2.31E+01) 

3.93E+01 - 
(1.09E+01) 

3.55E+01 

(1.17E+01) 

F19 
4.01E+00 - 

(6.47E-01) 

2.91E+00 - 

(4.69E-01) 

3.02E+00 

(5.37E-01) 

1.29E+01 - 

(5.85E+00) 

1.03E+01 - 

(7.50E-01) 

9.87E+00 

(3.98E-01) 

F20 
4.96E+00 + 
(2.19E+00) 

1.08E+01 - 
(3.24E+00) 

5.91E+00 
(1.42E+00) 

4.11E+01 - 
(1.63E+01) 

4.54E+01 - 
(1.04E+01) 

2.53E+01 

(6.78E+00) 

F21 
1.29E+02 = 

(8.62E+01) 

3.30E+02 - 

(1.54E+02) 

1.04E+02 

(7.65E+01) 

9.75E+02 - 

(2.81E+02) 

1.23E+03 - 

(3.77E+02) 

5.42E+02 

(1.92E+02) 

F22 
1.23E+02 - 
(5.85E+01) 

7.30E+01 - 
(5.78E+01) 

3.55E+01 

(3.45E+01) 
4.85E+02 - 
(1.22E+02) 

3.04E+02 = 
(1.06E+02) 

2.75E+02 

(1.13E+02) 

F23 
3.15E+02 = 

(4.02E-13) 

3.15E+02+ 

(3.46E-13) 

3.15E+02 

(4.02E-13) 

3.44E+02 - 

(4.60E-13) 

3.44E+02 - 

(4.46E-13) 

3.44E+02 

(4.18E-13) 

F24 
2.23E+02 = 
(9.22E-01) 

2.23E+02 = 
(7.24E-01) 

2.23E+02 

(7.91E-01) 
2.69E+02 - 
(1.90E+00) 

2.58E+02 + 
(3.39E+00) 

2.58E+02 

(2.93E+00) 

F25 
2.04E+02 - 

(7.68E-01) 

2.03E+02 = 

(2.33E-01) 

2.03E+02 

(2.95E-01) 

2.11E+02 - 

(2.59E+00) 

2.07E+02 - 

(6.05E-01) 

2.06E+02 

(8.22E-01) 

F26 
1.00E+02 - 
(2.79E-02) 

1.00E+02 = 
(2.60E-02) 

1.00E+02 

(2.41E-02) 
1.00E+02 - 
(3.37E-02) 

1.06E+02 = 
(2.37E+01) 

1.00E+02 

(2.83E-02) 

F27 
3.00E+02 + 

(1.11E-13) 

3.30E+02 = 

(4.63E+01) 

3.47E+02 

(5.07E+01) 

3.33E+02 - 

(2.79E+01) 

3.06E+02 = 

(1.65E+01) 

3.20E+02 

(2.65E+01) 

F28 
7.92E+02 = 
(1.86E+01) 

8.26E+02 - 
(8.10E+01) 

7.89E+02 

(3.09E+01) 
1.09E+03 + 
(3.20E+01) 

1.28E+03 - 
(9.49E+01) 

1.16E+03 
(3.60E+01) 

F29 
7.20E+02 = 

(6.01E+00) 

5.75E+02 = 

(2.15E+02) 

6.94E+02 

(1.27E+02) 

8.27E+02 - 

(5.63E+01) 

1.03E+03 - 

(1.26E+02) 

6.22E+02 

(1.41E+02) 

F30 
1.22E+03 - 
(4.61E+02) 

5.18E+02 - 
(7.28E+01) 

5.20E+02 
(1.60E+02) 

8.45E+03 + 
(4.59E+02) 

9.90E+03 - 
(5.82E+02) 

8.61E+03 
(3.99E+02) 

-/=/+ 15/10/5 16/13/1  22/4/4 21/7/2  
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Parameter settings for these variants are set the same as those for MLCC-SI, as summarized in Sec. 4.1. 

Their performance comparisons with MLCC-SI are presented in Table S4 in the supplemental file and 

summarized in Table 6. As shown in Table 6, MLCC-SI performs better than all the variants in both 30 and 

50-dimensional cases. The effectiveness of RAB, IPLS, the overall performance contributions by RAB and 

IPLS, and the benefit of fitness bias can be observed by comparing MLCC-SI with Variants I-IV, 

respectively. To show further the performance improvements on the baseline DEs, the performance of the 

four variants are also compared with SHADE and IDE, as shown in Tables S5-S8 in the supplemental file and 

Table 7. It can be seen that, with respect to the “-/=/+” results and P-N values, MLCC-SI exhibits higher 

improvements than the four variants. Considering the total P-N values achieved by the five algorithms, Table 

7 shows that MLCC-SI performs the best with the maximum P-N value (62) while Variant-III without IPLS 

and RAB is the worst. 

It is interesting to investigate the individual preferences at different evolution stages. To this end, the entire 

searching process is divided into several non-overlapping intervals, each consists of 50 generations.  Figure 6 

plots the evolution of the preference of four randomly selected initial individuals to the two layers SHADE 

and IDE in three typical 50-dimensional CEC2014 benchmark functions, namely F13 (multimodal function), 

F17 (hybrid function) and F23 (composition function). It is observed that 1) for function F13, Fig. 6(a) 

indicates that the four individuals have quite different preferences. The relative percentage Pi processed by 

different layers of these four individuals varies at the same searching stages; 2) for function F17, the 

individuals demonstrate similar preferences throughout the entire process (Fig. 6(b)); 3) for function F23, Fig. 

6(c) shows that all the individuals favor more to the IDE layer at the early stage, but vary at the later stage.  

Fig. 7(a) compares the average rank AR (defined in Sec. 3.3) of MLCC-SI with that of Variant-I, while 

Fig.7(b) shows the AR of MLCC-SI, SHADE and IDE, for the thirty 50-dimensional CEC2014 functions. It 

is observed from Fig. 7(a) that MLCC-SI achieves smaller AR values than Variant-I on all the functions, 

which means that the RAB mechanism enables MLCC-SI to focus more on superior individuals. Similarly, 

Fig. 7(b) shows that MLCC-SI also achieves smaller AR values than SHADE and IDE on all the functions 

except functions F3 and F8, which indicates that MLCC-SI emphasizes more on high-quality solutions 

compared with SHADE and IDE. 

Table 5 Overall performance ranking of MLCC-SI and 

its baseline DE variants on 30- and 50-dimensional 

CEC2014 benchmark set by Friedman’s test 
Algorithm Ranking  

MLCC-SI 1.45 

IDE 2.26 

SHADE 2.28 

 

Table 4 Comparison results of MLCC-SI with its baseline 

DE variants on 30- and 50-dimensional CEC2014 

benchmark set according to multi-problem Wilcoxon’s test 
MLCC-SI v.s. R+ R- p-value α = 0.05 

  SHADE  1394.5 375.5 1.18E-04 Yes 

IDE 1512.0 258.0 2.00E-06 Yes 
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4.3 Performance Sensitivity to N 

This subsection investigates the performance sensitivity of MLCC-SI to its parameter N by comparing the 

standard MLCC-SI with N = 0.05 with four other settings, i.e. Settings I-IV with N = 0.1, 0.2, 0.5 and 1.0, 

respectively. Besides, two more settings, i.e. Settings V and VI with extreme settings of topG = 1 and topG = 

NP, respectively, are also considered. Performance comparisons on 30-dimensional CEC2014 functions are 

tabulated in Table S9 and summarized in Table 8.  

      According to Table 8, the followings can be concluded: 1) the performance of Settings-I and II are 

comparable to that of MLCC-SI, implying that MLCC-SI is robust when  N is small, such as 0.05, 0.1 or 0.2; 

2) the performance of Settings III and IV is inferior to that of MLCC-SI, indicating that N values that are too 

large will deteriorate the performance; 3) when comparing the performance of Settings-V and VI with that of 

MLCC-SI, the cases for topG = 1 and topG = NP did not perform as well as MLCC-SI. In general, a larger topG 

value enables more superior solutions to be improved. However, when topG is too large, e.g. topG = NP in 

Table 8 Comparison results of different settings on 

30-dimensional cec2014 benchmark set according to 

Wilcoxon signed-rank test with a significance level of 0.05 
 -/=/+  -/=/+ 

Setting-I 2/27/1 Setting-IV 9/18/3 

Setting-II  2/26/2 Setting-V 4/25/1 

Setting-III  6/21/3 Setting-VI 11/15/4 

 

 

 

Table 7 Comparison results of MLCC-SI and its four variants with the 

baseline des on 30- and 50-dimensional cec2014 benchmark set 

according to Wilcoxon signed-rank test with a significance level of 

0.05 
-/=/+ (P-N) v.s. 

D = 30 D = 50 Total 

 P-N value 

Variant-I   SHADE  12/11/7 (5) 18/5/7 (11) (37) 

IDE 13/13/4 (9) 18/6/6 (12) 

Variant-II    SHADE  15/11/4 (11) 18/8/4 (14) (42) 

IDE 13/13/4 (9) 15/8/7 (8) 

Variant-III    SHADE  13/11/6 (7) 16/9/5 (11) (25) 

IDE 9/15/6 (3) 15/4/11 (4) 

Variant-IV   SHADE  14/9/7 (7) 18/6/6 (12) (41) 

IDE 14/11/5 (9) 18/7/5 (13) 

MLCC-SI   SHADE  15/10/5(10) 22/4/4 (18) (62) 

 IDE 16/13/1 (15) 21/7/2 (19) 

 

 

 

Table 6 Comparison results of MLCC-SI with its four 

variants on 30 and 50-dimensional CEC2014 benchmark 

set according to Wilcoxon signed-rank test with a 

significance level of 0.05 
-/=/+ D = 30 D = 50 

Variant-I 8/21/1 7/21/2 

Variant-II  8/19/3 13/15/2 

Variant-III  13/14/3 16/12/2 

Variant-IV 7/21/2 7/19/4 
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Setting-VI, the computation resources are again uniformly distributed and the performance benefit less from 

evolving the inferior solutions. 

 

 

 

 

 

 

 

 

 

 
(a) F13                                                      

       
(b) F17                                                                                          (c) F23 

 Fig. 6 Evolution of the relative percentage Pi  processed by different layers of four randomly selected initial individuals on 

three 50-dimensional CEC2014 benchmark functions F13, F17 and F23 in the median run. 

           
(a)                                                                                             (b) 

Fig.7 Average rank on thirty 50-dimensional CEC2014 benchmark functions: (a) MLCC-SI and Variant-I; (b) MLCC-SI, 

SHADE and IDE. 



 24 

 

 

 

 

 

 

4.4 MLCC for Multi-Parameter Strategy Adaptation 

Very recently, Tanabe and Fukunaga [35] investigated the behavior and performance of different 

parameter adaptation strategies [4, 22, 33, 39, 46] proposed in DE literature. They concluded, [35] by 

pointing out that “there is still significant room for improvement in parameter adaptation methods for DE”.   

Here, this subsection demonstrates the possibility of improving the performance of DE by the cooperation 

of multiple parameter adaptation strategies under the proposed MLCC framework. The adaptive Success 

History-based Parameter Configuration (SHA) originated from SHADE [33] and Self-adaptive Bimodal 

Distribution Parameter Scheme (BiD) derived from CoBiDE [39] are considered due to their competitive 

performance and representative characteristics. Two baseline DEs, assigned to two layers are designed as 

follows. 

 SHADE: the original SHADE algorithm [33]; 

 BiDE: SHADE with SHA replaced by BiD [39]. 

     In this way, by comparing the performance of the MLCC variant, i.e. MLCC-SBi, with that of SHADE 

and BiDE, the effectiveness of MLCC in multiple  strategies adaptation can be observed. The pseudocode of 

MLCC-SBi is presented in Algorithm S-2 in the supplemental file. Parameter settings for the algorithms are 

summarized as follows. 

1) SHADE：NP = 5×D, MF = {0.7}, MCR = {0.5}, and H = NP. 

2) BiDE：NP = 5×D. 

3) MLCC-SBi：NP = 5×D, MF = {0.7}, MCR = {0.5}, H = NP, and N = 0.05. 

The experimental results on 30 and 50-dimensional CEC2014 test suite are presented in Table S10 and a 

summary is given in Table 9. As shown in Table S10 and Table 9, MLCC-SBi performs significantly better 

than SHADE and BiDE in both 30 and 50-dimensional cases. Specifically, MLCC-SBi wins the baseline DEs 

in 55 (=15+15+6+19) cases and loses in 10 cases (=2+2+3+3). Moreover, Table 9 shows that the superiority 

                       
(a) F15                                                                                       (b) F17  

Fig. 8 Distribution of the successful parameters F and CR generated by SHADE, BiDE, MLCC-SBi and RAB mechanism in 

MLCC-SBi on two 50-dimensional CEC2014 functions F15 and F17 in the median run. The darker, the higher frequency. 

 



 25 

of MLCC-SBi over BiDE is more significant in the 50-dimensional case than in the 30-dimensional case. The 

reason is that SHA is not comparable to BiD. As shown in Table S11, BiDE outperforms SHADE with the 

“-/=/+” result of “14/10/6” in the 30-dimensional case. However, when the problem dimension increases to 

50, the performance of BiD becomes comparable to that of SHA with “-/=/+” of “10/7/13”, as indicated in 

Table S11. It should also be stressed that MLCC-SBi consistently exhibits better performance than both of 

the baseline algorithms. The cases that MLCC-SBi loses to BiDE are functions F24, F25, and F29 in both 30 

and 50 dimensions. On the other functions, MLCC-SBi demonstrates significantly better or similar 

performance compared to BiDE.  

To investigate factors that contribute to the performance improvements, the distribution of successful 

parameters F and CR associating with successful updates of the target vectors generated by SHADE, BiDE, 

MLCC-SBi and RAB mechanism in MLCC-SBi on two 50-dimensional CEC2014 functions F15 and F17 are 

plotted in Fig. 8. It can be seen that MLCC-SBi produces more diverse successful parameters than single 

SHA and BiD. The successful parameters generated by RAB come from both SHA and BiD, revealing that 

the proposed RAB mechanism simultaneously takes advantages of both schemes. To conclude, MLCC 

provides an effective approach to integrate multiple parameter adaptation schemes. 

                                                

 

4.5 MLCC Versus Other Framework 

To further demonstrate the superiority of the proposed MLCC framework, another very recently proposed 

hybrid DE framework, called HDE [21] is compared. In HDE,  two algorithms are performed alternatively 

according to their fitness improvement rate. At each generation, only one algorithm is executed.  When it did 

not perform well for several generations, another would be used. In this subsection, HDE is applied to 

SHADE and IDE, SHADE and BiDE, respectively, denoted as H-SI and H-SBi. Their performance are 

compared with those of MLCC-SI and MLCC-SBi, respectively. Parameter settings for the HDE framework 

are set the same as recommended in the original literature, while parameter settings for the baseline DEs and 

the MLCC framework are the same as those used previously in Sec. 4.1 and Sec. 4.4.  

As seen from Table S12 and Table 10, MLCC framework exhibits better performance than HDE 

framework on both 30 and 50-dimensional functions. In the total of 120 cases, MLCC wins in 46 

(=10+14+8+14) cases and loses in 14 (=6+4+3+1) cases. There may be two reasons that MLCC outperforms 

HDE. On the one hand, MLCC has the entire population monitored by multiple layers, which are performed 

Table 9 Comparison results of MLCC-SBi with its baseline DE 

variants on 30- and 50-dimensional CEC2014 benchmark set 

according to Wilcoxon signed-rank test with a significance level 

of 0.05 
-/=/+ D = 30 D = 50 

SHADE 15/13/2 15/13/2 

BiDE  6/21/3 19/8/3 
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simultaneously at each generation. Thus, individuals in MLCC could quickly respond to the change of 

evolution stage. While on the other hand, the RAB mechanism proposed in MLCC simultaneously takes 

advantages of multiple layers and also re-distributes the computation resources to help the algorithm focus 

more on promising searching directions. 

                                                       

 

4.6 Comparisons with State-of-the-Art and Up-to-Date DEs 

The effectiveness of the proposed MLCC framework have been verified in previous subsections. In this 

subsection, the MLCCDE algorithm based on SHADE and IDE and the following parameter settings, is 

compared with eight well-known state-of-the-art and up-to-date DEs, namely, jDE [4], SaDE [29], EPSDE 

[22], JADE [46], CoDE [38], CoBiDE [39], SinDE [9] and MPEDE [44]. 

Parameter settings of MLCCDE: NP =100 (for D = 30) , NP =150 (for D = 50) , MF = {0.7}, MCR = {0.5}, 

H = NP, T = 1000D/NP, GT = 5T, SRT = 0 (G < GT), SRT = 0.1 (G ≥ GT), and N = 0.05. 

It is noted that MLCCDE uses different NP settings from those of MLCC-SI. This is because MLCCDE 

empirically exhibits better overall performance with these settings, as compared to other DE variants. 

Parameter settings for the compared DEs are set the same as those given in their original literature. Here, the 

experiment also includes the recent CEC2017 test suite [3], in which several new functions are introduced.  

The performance comparisons on 30 and 50-dimensional CEC2014 and CEC2017 functions are reported 

in Tables S13 -S16, and the comparison results are summarized in Table 11.  

From Table 11, it can be observed that MLCCDE performs much better than the compared DEs. More 

specifically, in the CEC2014 30-dimensional case, MLCCDE outperforms jDE, SaDE, EPSDE, JADE, 

CoDE, CoBiDE, SinDE and MPEDE in 20, 27, 20, 18, 15, 13, 16 and 16 functions and underperforms in 2, 0, 

5, 2, 4, 3, 5 and 6 functions, respectively. In the CEC2014 50-dimensional case, MLCCDE wins jDE, SaDE, 

EPSDE, JADE, CoDE, CoBiDE, SinDE and MPEDE in 22, 29, 23, 21, 22, 22, 18 and 17 functions 

respectively and loses in far fewer functions. For the CEC2017 functions, MLCCDE also exhibits much 

better performance than the compared DEs, as confirmed by the results in Table 11. 

Considering multiple problems Wilcoxon’s test, Tables 12 and 13  show that MLCCDE consistently 

achieves much larger R+ than R- when compared with other DEs. The p-values obtained also confirm that 

MLCCDE significantly outperforms all the compared DEs at α = 0.05. In addition, from the Friedman’s test 

Table 10 Comparison results of MLCC framework with 

HDE framework on 30- and 50-dimensional CEC2014 

benchmark set according to Wilcoxon signed-rank test with 

a significance level of 0.05 
-/=/+ D = 30 D = 50 

MLCC-SI v.s. H-SI 10/14/6 14/12/4 

MLCC-SBi v.s. H-SBi 8/19/3 14/15/1 
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results shown in Table 14, MLCCDE achieves the smallest ranking values of 2.78 and 2.49 on CEC2014 and 

CEC2017 functions, respectively. 

                                            

                                              

 

                                               

Table 13 Comparison results of MLCCDE with 

start-of-the-art and up-to-date DE variants on 30- and 

50-dimensional CEC2017 benchmark set according to 

multi-problem Wilcoxon’s test 
MLCCDE v.s. R+ R- p-value α = 0.05 

jDE  1764.0 66.0 0.00E+00 Yes 

SaDE 1737.0 33.0 0.00E+00 Yes 

EPSDE 1607.5 222.5 0.00E+00 Yes 

JADE 1588.0 242.0 1.00E-06 Yes 

CoDE 1700.5 69.5 0.00E+00 Yes 

CoBiDE 1578.0 252.0 1.00E-06 Yes 

SinDE 1469.5 300.5 1.00E-05 Yes 

MPEDE 1413.0 417.0 2.43E-04 Yes 

 

Table 11 Comparison results of MLCCDE with 

start-of-the-art and up-to-date DE variants on 30- and 

50-dimensional CEC2014 and CEC2017 benchmark set 

according to Wilcoxon signed-rank test with a 

significance level of 0.05 
-/=/+ CEC2014 CEC2017 

D = 30 D = 50 D = 30 D = 50 

jDE  20/8/2 22/6/2 21/9/0 23/5/2 

SaDE 27/3/0 29/1/0 26/4/0 27/3/0 

EPSDE 20/5/5 23/1/6 23/4/3 22/3/5 

JADE 18/10/2 21/4/5 22/6/2 21/4/5 

CoDE 15/11/4 22/4/4 15/13/2 23/6/1 

CoBiDE 13/14/3 22/4/4 15/10/5 24/4/2 

SinDE 16/9/5 18/7/5 18/10/2 19/5/6 

MPEDE 16/8/6 17/9/4 15/8/7 17/10/3 

 

Table 12 Comparison results of MLCCDE with 

start-of-the-art and up-to-date DE variants on 30- and 

50-dimensional CEC2014 benchmark set according to 

multi-problem Wilcoxon’s test 
MLCCDE v.s. R+ R- p-value α = 0.05 

jDE  1485.5 284.5 6.00E-06 Yes 

SaDE 1765.5 4.5 0.00E+00 Yes 

EPSDE 1372.5 397.5 2.30E-04 Yes 

JADE 1388.0 382.0 1.44E-04 Yes 

CoDE 1657.0 173.0 0.00E+00 Yes 

CoBiDE 1407.0 423.0 2.88E-04 Yes 

SinDE 1384.0 386.0 1.63E-04 Yes 

MPEDE 1275.5 494.5 3.16E-03 Yes 
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4.7 Flexibility of MLCC 

To further demonstrate the flexibility of the framework, two experiments were designed as follows. 

In the first experiment, an example of utilizing MLCC to incorporate three optimizers is presented. The 

three previously used algorithms, i.e. SHADE, IDE and BiDE are considered. It is noticed that SHADE and 

BiDE share some similarities as they adopt the same mutation strategy. The pseudocode of MLCC-SIBi is 

given in Algorithm S-3 in the supplemental file. Parameter settings for the algorithms are set the same as used 

in Sec. 4.1 and Sec. 4.4. As observed in Table S17 and Table 15, the MLCC variant MLCC-SIBi exhibits 

better performance compared to the baseline DEs. More specifically, MLCC-SIBi performs better in 40 

(=16+15+9) cases and underperforms in 15(=5+4+6) cases on the 30-dimensional functions. For the 

50-dimensional case, MLCC-SIBi wins in 56(=20+16+20) functions and loses in 7(=2+4+1) functions. 

                                                     

 

In the second experiment, MLCC was extended to incorporate the L-SHADE [34] algorithm with linear 

population size reduction (LPSR).  To this end, L-SHADE and M_IDE, are assigned to the two layers, 

respectively. M_IDE is a modified version of IDE with the original parameter strategy replaced by the 

success history-based parameter adaption (SHA) [33]. The reason for this strategy replacement is that 

performance of the original parameter strategy in IDE degrades with the LPSR scheme. 

The graphic illustration and pseudocode of the resulting MLCC-L-SI variant are shown in Fig. S1 and 

Algorithm S-4 in the supplemental file, respectively.   

Parameter settings for the algorithms are summarized as follows. 

1) L-SHADE: NPinit = 20×D, MF = {0.7}, MCR = {0.5}, and H = 5. 

Table 14 Overall performance ranking of all the considered 

DEs on 30 and 50-dimensional CEC2014 and cec2017 

benchmark set by Friedman’s test 
CEC2014 CEC2017 

Algorithm Ranking Algorithm Ranking 

MLCCDE 2.78 MLCCDE 2.49 

MPEDE 4.21 MPEDE 3.86 

CoBiDE 4.46 CoBiDE 4.73 

JADE 4.85 JADE 4.78 

SinDE 4.99 SinDE 4.84 

CoDE 5.06 CoDE 5.40 

jDE 5.10 jDE 5.76 

EPSDE 6.13 SaDE 6.33 

SaDE 7.38 EPSDE 6.77 

 

Table 15 Comparison results of MLCC-SIBi with its baseline 

DE variants on 30- and 50-dimensional CEC2014 benchmark 

set according to Wilcoxon signed-rank test with a 

significance level of 0.05 
-/=/+ D = 30 D = 50 

SHADE 16/9/5 20/8/2 

IDE 15/11/4 16/10/4 

BiDE  9/15/6 20/9/1 
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2) M_IDE: NP = 5×D, MF = {0.7}, MCR = {0.5}, and H = NP. 

3) MLCC-L-SI: NPinit = 20×D, MLSHA
F = {0.7}, MLSHA

CR = {0.5}, HLSHA = 5 (For L-SHADE layer), 

NPM_IDE = 5×D, MM_IDE
F = {0.7}, MM_IDE

CR = {0.5}, HM_IDE = 5 (For M_IDE layer), and N = 0.05. 

Remark: In our experiment, M_IDE maintains a fixed population size NP to ensure good performance and 

the history length H is set to the population size NP, as recommend in SHA [33]. While in MLCC-L-SI, the 

population size of the M_IDE layer NPTG is fixed at 5×D when the current population size NPG  5×D. 

However, when NPG < 5×D, NPTG is also adjusted according to the LPSR scheme, as shown in Fig. S1. 

Thus, the history length HM_IDE is set the same as HLSHA for simplicity. 

As shown in Table S18 and Table 16, MLCC-L-SI exhibits better performance than the constituent 

algorithms, winning in 60 (=7+19+11+23) cases and losing in 17 (=3+4+6+4) cases. It is also observed that 

the superiority of MLCC-L-SI over M_IDE is more significant than over L-SHADE. The reason lies in that 

the performance of M_IDE is significantly inferior to that of L-SHADE, as shown in Table S18.  

Nevertheless, MLCC-L-SI still achieves better performance compared to L-SHADE. 

                                                   

5. Conclusion 

In this paper, a multi-layer competitive-cooperative (MLCC) framework with a new parallel structure is 

proposed. The framework can effectively incorporate multiple competitive DE variants and combine their 

advantages. As a result, the design outperforms all of the constituents. MLCC consists of two components, 

namely the individual preference layer selecting (IPLS) mechanism and the resource allocation bias (RAB) 

scheme. The IPLS allows bidirectional information communication between population and multiple 

adaptive optimizers assigned in multiple layers, making the optimizers work in a collaborative manner. The 

RAB provides an effective resource allocation, to promote the searching capability. The effectiveness and 

advantages of the MLCC framework as well as its components are confirmed by comprehensive experiments 

carried out on the CEC benchmark functions. 

In this study, mainly two or three DE methods are incorporated into MLCC. We suggest some heuristic 

ways to demonstrate how these methods are selected. However, it is still open as to how best determine the 

set of methods. Moreover, it will be interesting to see how the proposed framework can be extended to other 

EAs, which is another direction for future work.  

The MATLAB code of MLCC can be downloaded from https://zsxhomepage.github.io/. 

Table 16 Comparison results of MLCC-L-SI with its baseline 

DE variants on 30- and 50-dimensional CEC2014 benchmark 

set according to Wilcoxon signed-rank test with a 

significance level of 0.05 
-/=/+ D = 30 D = 50 

L-SHADE 7/20/3 11/13/6 

M_IDE 19/7/4 23/3/4 
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