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Abstract

It is known that Pareto dominance encounters difficulties in many-objective
optimization. This strict criterion could make most individuals of a popula-
tion incomparable in a high-dimensional space. A straightforward approach
to tackle this issue is modify the Pareto dominance criterion. This is typically
done by relaxing the dominance region. However, this modification is often
associated with one or more parameters of determining the relaxation de-
gree, and the performance of the corresponding algorithm could be sensitive
to such parameters. In this paper, we propose a new dominance criterion,
angle dominance, to deal with many-objective optimization problems. This
angle dominance criterion can provide sufficient selection pressure towards
the Pareto front and be exempt from the parameter tuning. In addition,
an interesting property of the proposed dominance criterion, in contrast to
existing dominance criteria, lies in its capability to reflect an individual’s ex-
tensity in the population. The angle dominance is integrated into NSGA-II
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(instead of Pareto dominance) and has demonstrated high competitiveness in
many-objective optimization in comparison with a range of peer algorithms.

Keywords: Angle dominance criterion, Pareto dominance criterion,
many-objective optimization, evolutionary algorithms.

1. Introduction

Many real-world optimization problems are composed of multiple con-
flicting objectives which need to be optimized simultaneously. For a multi-
objective optimization problem (MOP), an improvement of the performance
on one objective often leads to the deterioration on other objective(s). There-
fore, Multi-objective optimization algorithms (MOEAs) can only search for
a set of trade-off solutions to approximate Pareto optimal solutions.

In three-decades, MOEAs have attracted great attention for being able
to solve a class of real-world optimization problems that have multiple cri-
teria or objectives [30, 7, 43]. However, traditional Pareto-based MOEAs
can only effectively solve two- or three-dimensional optimization problems.
In real world, the number of considered objectives can be larger (i.e., over
three), and these problems are known as many-objective optimization prob-
lems (MaOPs). When facing MaOPs, it’s not easy for traditional Pareto-
based MOEAs to converge into the Pareto front. The main reason is that
the proportion of non-dominated solution increases rapidly with the num-
ber of objectives. Consequently, the density based second selection crite-
rion in Pareto-based algorithms plays a leading role in the selection process
of Pareto-based MOEAs [33]. However, the studies in [24] indicate that a
diversity-based selection criterion has a detrimental impact on the popula-
tion’s convergence. This criterion prefers the dominance resistant solutions
(DRSs) which have “good” diversity over the objective space but are far away
from the desired Pareto front [33]. Therefore, balancing the convergence and
diversity of the population for MaOPs has become a challenging research
topic in the field of many-objective optimization.

To solve the problems above, many methods have been proposed, and
can be divided into the following categories:

Loosening Pareto-dominance approach. With the increase of the number
of objectives, the Pareto-dominance relationship is difficult to distinguish
between solutions in terms of convergence [19]. By loosening the Pareto
dominance relation (i.e., increasing solutions’ dominance area). That the
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solutions approach the Pareto front more rapidly will be identified. For
example, the controlling dominance area (CDAS) approach [38] adjusts the
dominance area of solutions by setting an appropriate parameter. The grid
dominance [44] adds the selection pressure by adopting an adaptive grid
construction. The ε-dominance based MOEA (ε-MOEA) [9] can obtain good
convergence and uniformity performance by dividing the objective space into
hyper-boxes, each of which is assigned at most one solution.

Decomposition-based approach. Using a set of uniformly distributed
weight vectors, these approaches decompose a MOP into a number of single-
objective sub-problems and then uses a search heuristic to optimise these
sub-problems simultaneously and cooperatively. In contrast to the Pareto
dominance criterion, decomposition-based approaches can rank the entire
population and form a total order among the solutions and thus providing
sufficient selection pressure in a high-dimensional objective space. Recently,
some decomposition-based MOEAs, such as the MOEA with decomposition
(MOEA/D) [45], multiple single-objective Pareto sampling (MSOPS) [22]
and MOEA/D based on localized weighted sum (MOEA/D-LWS) [40], have
been found to work well on MaOPs.

Ranking-based approach. Ranking-based algorithms can distinguish be-
tween solutions by defining a new sorting method. Similar to decomposition-
based approaches, ranking-based approaches can form a total order among
the solutions. In [13], the relation favour is to rank the solutions by compar-
ing the numbers of their superior objectives. Therefore, the relation favour
will prefer those solutions if most of their objectives are superior to that
of others. Additionally, the average ranking (AR) [5] is another ranking
method. Firstly, on each objective, it ranks all the non-dominated solutions
on the basis of their objective values, and the number of ranking values of a
solution equals to the number of the objectives of the problem. Then, AR
sorts the solutions by means of their average ranking values.

Density estimation based approach. Recently, some researches have shown
that some modification of diversity maintenance in Pareto-based algorithms
can also promote the convergence of population, e.g., the diversity man-
agement operator (DMO) [1] and shift-based density estimation (SDE) [33].
DMO uses one indicator (i.e., the maximum extensity indicator) to evaluate
the population’s convergence. This approach relies on the true Pareto front
of the problem. However, in practical applications, the Pareto front of most
problems is unknown. SDE, as a diversity estimation, takes two aspects into
account: convergence and diversity. In contrast to DMO, SDE has a high
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usability, and does not need to know the Pareto front of the problem. Ex-
perimental results show that it can significantly improve the performance of
Pareto-based algorithms.

To evaluate the performances of the above MOEAs, the diagnostic as-
sessment framework [17, 37] is another research hotspot in the evolutionary
computation community. It contains three important elements. The first one
is multiple performance metrics. They mainly evaluate the effectiveness, re-
liability, efficiency, and controllability of an MOEA [37]. Effectiveness checks
whether an MOEA achieves high level of performance. Reliability captures
performance changes in the parametric process and random seed testing. Effi-
ciency refers to achieving high levels of performance in the minimum number
of function evaluations. Controllability measures the ease-of-use or sensi-
tivity of MOEAs’ to their parameterizations. Then, an adequate sample of
problems is another element. A number of test problem have been developed
to benchmark the performance of MOEAs, such as Deb-Thiele-Laumanns-
Zitzler (DTLZ) [11], Walking Fish Group (WFG) [21] and multiline distance
minimization problem (ML-DMP) [32]. Among them, the most widely-used
element are DTLZ and WFG. And the last one is the ability to uncover perti-
nent parameter controls and dynamic search behavior within the algorithm.

Although the above studies clearly enhance the search ability of MOEAs
and various methods were proposed to tackle MaOPs, the area of evolution
many-objective optimization is far from being mature. Furthermore, the
loosening Pareto-dominance approaches inevitably encounter difficulties in
determining the degree of slack in the new dominance relation for difference
problems, leading to the emergence of dynamic tuning methods. For the
decomposition-based approaches, two critical issues need to be considered.
One of which is that the specified weights’ distribution needs to be consistent
with a given problem’s Pareto front. The other is that the configuration of
weight vectors suffers the curse of dimensions in many-objective space. Due
to the lack of a diversity maintenance strategy, the ranking-based approaches
may lead the evolutionary population to converge into a small part of the
Pareto front. As mentioned above, the true Pareto front of the problem
affects the performance of the density estimation based approach. Although
the SDE is off the hook, parts of the solution near the boundary are easily
eliminated by it.

In this paper, we focus on the first approach and wish to propose a domi-
nance relationship (named as angle dominance) that is insensitive to param-
eters. One interesting property of the angle dominance is its capability of
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reflecting the convergence and extensity of solutions in the population. This
is in contrast to existing dominance criteria, which typically only involve
convergence (e.g., Pareto dominance) or both convergence and uniformity
(e.g., ε-dominance). The basic idea of the angle dominance is simple. By
substituting the objective vector of a solution with an angle vector, the an-
gle dominance enlarges the dominance area of the solution. This not only
increases the selection pressure towards the Pareto front but also is able to
maintain boundary solutions very well. In addition, the angle dominance can
be easily applied to any Pareto dominance based algorithms.

The rest of this paper is organized as follows. Section 2 briefly reviews
the work related to dominance relationships and angle-based environmental
selection. Section 3 is devoted to description of the proposed angle domi-
nance criterion and introduces the framework of the angle dominance based
NSGA-II which is denoted as NSAG-II+AD. Section 4 presents the algo-
rithm settings, test functions, and performance metrics used for performance
comparison. The experimental results and relevant analyses are presented in
section 5. Finally, section 6 concludes the paper and gives our study priorities
in the future work.

2. Related Works

2.1. Related Dominance Criteria

It has been demonstrated that traditional Pareto dominance generally
fail to solve MaOPs. Therefore, in past decades, a number of loosening dom-
inance criteria have been proposed, such as α-Dominance [23], ε-Dominance
[9], CDAS [38], Cone ε-Dominance [4] and Grid-Dominance [44], etc. In this
section, we will analyze the methods mentioned above in detail. For simplic-
ity, we assume that the optimization problems mentioned are minimization
ones throughout the paper.

A. Pareto Dominance
In 1896, Pareto proposed the concept of Pareto dominance, as shown

in Fig. 1(a). Suppose that there are two solutions p and q, p dominates q
(denoted as p ≺ q) if the following conditions hold:

{
fi (p) ≤ fi (q) , ∀i ∈ {1, 2, · · · ,m}
fj (p) < fj (q) ,∃j ∈ {1, 2, · · · ,m} , (1)
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Figure 1: Illustration of six dominance relationships among points in a two-dimensional
objective space: (a) Pareto dominance, where the grey area is the objective space where
solutions are Pareto-dominated by p1; (b) α-dominance, where the α-dominance area of p1
is clearly larger than that in the Pareto dominance; (c) ε-dominance, where p∗1 is the shift
point of p1 by means of ε1 and ε2; (d) CDAS, where the shape of the grey area is quite
similar to that in ε-dominance. The angles ϕ1 and ϕ2 are used to control the dominance
area; (e) Cone ε-dominance, where the grey area is cone ε-dominated by p1, and the shape
of the dominance area is a cone; (f) Grid-dominance, where the grid is divided by the
current population {p1, p2}. The shape of the grey area is similar to that in ε-dominance.

where m is the number of objectives. In other words, all objectives in p are
not greater than the corresponding objectives of q, and at least one objective
of p is less than that of q.

The Pareto dominance relationship can divide the original population into
multiple sub-populations, then the sub-populations with high priorities will
be preserved in the environmental selection. However, Pareto dominance is
generally effective to handle two- and three-objective MOPs. When a MOP
has more than three objectives, Pareto dominance will lose its effectiveness
in most cases. This is because with the increase of the dimensionality, the
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proportion of non-dominance individuals will grow exponentially. As can be
seen in Fig. 2, when the number of objectives reaches 20, all the solutions
are non-dominated and belong to the same sub-population. That is to say,
Pareto dominance can not maintain the population’s diversity. To solve that,
the distribution mechanisms, such as the crowding distance [10] and archive
truncation procedure [49], need be applied in the environmental selection.

Figure 2: Percentage of the number of non-dominated solutions over that of objectives in
a set of randomly generated 200 solutions. Where the abscissa represents the objective
dimension and the ordinate represents the average percentage over 30 runs.

B. α-Dominance
In multi-objective optimization, the solutions, which are far from the

Pareto front but are hardly dominated, are defined as dominance resistant
solutions (DRSs) [23]. These solutions may have a detrimental effect on the
convergence of the population. In order to solve this issue, Ikeda et al. [23]
proposed a relaxed form of the dominance relation, called α-dominance, as
shown in Fig. 1(b).

In α-dominance, the upper αi,j and lower 1
αi,j

bounds of trade-off rates

between two objectives fi and fj are pre-defined, and the trade-off rates be-
tween two objectives fi and fj of any two solutions are strictly controlled
within the pre-defined bounds. Before judging the dominance relations be-
tween two individuals, the following definition is considered:

gi(p, q) := fi (p)− fi (q) +
K∑

j 6=i
αij (fj (p)− fj (q)) , p, q ∈ P, (2)
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where p and q are two solutions in population P. The p dominates the q
(p ≺α q) if and only if the following conditions hold:

{
gi(p, q) ≤ 0,∀i ∈ {1, 2, · · · ,m}
gj(p, q) < 0,∃j ∈ {1, 2, · · · ,m} , (3)

where m is the number of objectives.
In Fig. 1(b), two Pareto non-dominated solutions p1 and p2 are regarded

as p1 α-dominating p2. According to the definition of α-dominance criterion,
when α is larger, the population can converge more easily to the Pareto front,
but it is more prone to be trapped in a local optimum. On the contrary,
when α is smaller, a wider Pareto front will be found, but more solutions
far from the Pareto front will be preserved. Therefore, it is hard to find a
well-distributed and well-converged trade-off solution set for α-dominance.

C. (1-k)-based Dominance
The (1-k)-based criterion [14] has been considered when addressing MaOPs.

By comparing a solution to another and counting the number of objectives
where it is better than, the same as, or worse than the other, this crite-
rion uses these numbers to distinguish the relations of domination between
individuals. Suppose that there are two solutions p and q, and nb, ne, nw
respectively represent the number of objectives where p is better than, equal
to, or worse than q. p is said to k-dominate q if and only if:

ne < m ∧ nb ≥
m− ne
k + 1

, (4)

where 0 ≤ k ≤ 1, and m is the number of objectives.
Obviously, if k = 0, the (1 − k)-dominance will be consistent with the

traditional Pareto-dominance, and if k is larger, the (1 − k)-dominance is
looser. In addition, there are some extensions on (1 − k)-dominance. For
example, fuzzy numbers can be applied to compare the dominance relation
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between solutions. In fuzzy dominance, nb, ne, nw are defined as follows:





nFb (p, q) =
M∑
i=1

u
(i)
b (fi(pi)− fi(q2))

nFe (p, q) =
M∑
i=1

u
(i)
e (fi(pi)− fi(q2))

nFw(p, q) =
M∑
i=1

u
(i)
w (fi(pi)− fi(q2))

nFb + nFw + nFe =
M∑
i=1

(u
(i)
b + u

(i)
e + u

(i)
w ) = m

. (5)

In terms of the above expressions, the (1− kF )-dominance considers the
convergence of the population according to the above three situations. As
a matter of fact, the (1 − kF )-dominance can be seen as a dimensionality
reduction strategy, so it is unavoidable to lose some target information.

D. ε-Dominance
Deb et al. proposed a steady-state MOEA, named as ε-MOEA. The ε-

dominance is illustrated in Fig. 1(c). In the figure, within each box, only one
non-Pareto dominated solution is preserved, with the following condition:

(1− ε) · fi(p) ≤ fi(q), ∀i ∈ {1, 2, · · · ,m} , (6)

where p and q are two non-Pareto dominance solutions and m is the number
of objectives.

The ε-dominance criterion could maintain the uniformity of population.
However, the extreme solutions are also easily ε-dominated by other solu-
tions, which can affect the extensity of the population. In addition, different
problems generally require distinct ε values.

E. Controlling Dominance Area of Solution (CDAS)
In 2007, Sato et al. proposed a new dominance, CDAS, which is defined

as follows:

f ′i (x) =
r · sin (ωi + Si · π)

sin (Si · π)
, (7)

where r is the norm of f(x) and ωi is the declination angle between f(x) and
the coordinate axis. Fig. 1(d) shows the meaning of CDAS.

From Eq. (7), the dominance area of solution x can be controlled by the
parameter Si. It is obvious that if Si = 0.5, then f ′i(x) = fi(x) which cor-
responds to the classical definition of Pareto dominance; if Si < 0.5, then
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f ′i(x) > fi(x); and if Si > 0.5, then f ′i(x) < fi(x). Such objective modifica-
tion changes the dominance area of solutions. Therefore, a suitable parameter
Si can effectively promote the convergence of the population. However, as the
same as ε-dominance, the parameter of CDAS is also not easily determinable
when facing different problems.

F. Volume Dominance
The volume dominance criterion was proposed by Khoi Le et al.. It

uses the strength of solutions to analyze the dominance relations between
solutions. For two solutions p and q, the dominated volume of each solution
(V (p) and V (q)) needs to be calculated as follows:

V (p) =
m∏

i=1

(fi(p)− ri) , (8)

where r is a reference point. And the shared dominated volume of p and q
is defined as:

SV (p, q) =
m∏

i=1

(min(fi(p), fi(q))− ri) . (9)

It is said that p volume-dominates q (p ≺V q) if either:

{
V (q) = SV (q, p) and V (p) < SV (p, q) or

V (p) < V (q) < SV (p, q) and V (p)−V (q)
SV (p,q)<rSV

. (10)

As described by Eq. (10), when V (p) is smaller, the solution p is closer to
the Pareto front, and vice versa. Therefore, the volume-dominance criterion
can make the population quickly converge to the Pareto front. But the
disadvantage of volume-dominance is that its performance relies heavily on
the shape of the Pareto front.

G. Cone ε-Dominance
When dealing with MOPs, it has been found that ε-dominance may elim-

inate several viable solutions (See appendix A for explanation), which affects
the convergence and extensity of population. Batista et al. proposed the cone
ε-dominance. In Fig. 1(e), p1 ε-dominates p2 and both of them are non-cone
ε-dominated. Cone ε-dominance introduces a parameter k (k ∈ [0, 1)), and k
is applied to control the shape of dominance area of a solution. When k → 0,
the cone ε-dominance is consistent with the traditional Pareto-dominance.

10
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When k > 0, the shape of the dominance area is a cone. As for two solu-
tions p and q, p cone ε-dominates q (denoted as p ≺coneε q) if the following
condition holds:

(p ≺ q) ∨ (Ψλ = z|λi ≥ 0,∀i ∈ {1, · · · ,m}) , (11)

where Ψ is the cone ε-dominance matrix, z = q − [p− ε], and εi > 0.
According to the above description, the cone ε-dominance could improve

both convergence and uniformity of population (See appendix B for explana-
tion). However, to improve the performance of an algorithm, except for the
parameter ε, the cone ε-dominance has to add another parameter k into the
algorithm. This parameter, together with ε, can limit the application of the
algorithm.

H. Grid Dominance
Yang et al. modified the traditional ε-dominance and proposed a grid

dominance criterion in the grid-based evolutionary algorithm (GrEA), as
shown in Fig. 1(f). Inspired by the ideas in [27], GrEA adaptively constructs
grids. Comparing with traditional grid-based approaches, GrEA adopts in-
dividually centered calculations of the grid by depicting the locations of so-
lutions. This could determine the mutual relationship of solutions in a grid
environment so as to increase the diversity. Nevertheless, the individually
centered calculation of the grid suffers from potential deterioration of con-
vergence since the adjacent well-converged solutions are eliminated.

Table 1: The properties of nine domination relations.

Dominance Criterion Convergence Uniformity Extensity Irreflexive Asymmetric Transitive Strict Partial Order

Pareto-Dominance
√ √ √ √ √

α-Dominance
√ √ √ √ √

(1− k)-Dominance
√ √ √

ε-Dominance
√ √ √

CDAS
√ √ √ √ √

Volume-Dominance
√ √ √ √ √

Cone ε-Dominance
√ √ √

Grid-Dominance
√ √ √ √ √ √

Angle Dominance
√ √ √ √ √ √

”
√

” in the cell indicates that the domination relation has a corresponding property.

Table 1 summaries the properties of all the dominance criteria. In this
table, the diversity of solution set is subdivided into the uniformity and ex-
tensity of the solution set. In general, uniformity quantifies the distance
between neighboring points in the solution set, and extensity refers to the
range of the solution set. It worth mentioning that a uniformly-distributed
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solution set does not necessarily mean that the solution set spread very well.
As a complement to uniformity, extensity considers the spread of the solution
set. This table shows that all the existing dominance criteria focus on the
convergence of population, a few of which involve the uniformity of popula-
tion, and no one of them involve the extensity of population. In this paper,
we propose an angle dominance criterion that takes both the convergence
and extensity into account. In this strategy, the angle vector is applied to re-
place the objective vector of a solution to reflect its position in the objective
space. This will lead to two characteristics of the proposed criterion. The
first one is that, it retains the basic information (like its objective position)
of a solution. For each solution, the position of the angle vector corresponds
to the position of the objective vector. And the other one is that, the an-
gle dominance strategy flexibly enlarges the dominance area of a solution.
Consequently, it can increase the selection pressure in terms of convergence
so as to make the population move towards the Pareto front. As for the
extensity, the angle dominance uses the angle vectors to determine the mu-
tual relationships between solutions. When a solution is closer to the Pareto
front, its angle becomes smaller, which makes it a higher fitness. In addition,
angle dominance and Pareto dominance share some common properties, such
as the irreflexive relation, asymmetric relation, transitive relation and strict
partial order.

2.2. The Angle-based Environmental Selection

In recent years, the angle-based environmental selection is widely consid-
ered in EMO. For instance, in [48], MOEA/D-ADCP uses angle to determine
the dominance relationship between two solutions. If the angle of the two
solutions is greater than a given threshold, they are considered to be non-
dominated by each other. In the decomposition-based approaches [26], the
angle of solution and weight is used to judge their similarity in the search
directions. In other words, the larger their angle, the smaller their similarity.
The angle-based selection is also used to improve the diversity of Pareto-
based approaches. In [42], VaEA first uses the maximum-vector-angle-first
principle to guarantee the extensity and uniformity of the solutions, and
then ensure the convergence of the solutions through the worse-elimination
principle. In addition, in MOEA/VAN, the angle-based selection is exploited
during mating and environmental selection by determining the neighborhood
and the most crowded region in the objective space, respectively [12].
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Figure 3: The angle dominance in a two-objective scenario. p is a solution, znad is the worst
point, and the shaded region is the dominance area of p. α1 and α2 are the components
of the angle vector of p. z′ is constructed by k · znad, where k is a preset parameter.

Although this paper also uses the angle-based selection criterion to select
excellent individuals, this criterion is significantly different from the above
methods. Firstly, the angle of this paper is composed of the solution and each
axis node, and most of the angle-based selection criteria are to calculate the
angle between each pair of solutions. Secondly, the purpose of our angle-
based selection is to increase the convergence pressure of the solutions, while
most of the other criteria based on angle selection are to improve the diversity
of the solutions.

3. Proposed Angle Dominance Criterion

In this section, we first introduce the concept of angle dominance and
analyze its properties, and then integrate the angle dominance criterion into
NSGA-II.

3.1. Concept of Angle Dominance

In order to interpret the concept of the proposed angle dominance cri-
terion, Fig. 3 presents two-objective scenario of the criterion. Solution p is
assigned an identification angle vector anglep = (α1, α2), and the shaded
region is the dominance area of p. More specifically, in Fig. 3, znad is the

13



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

worst point of the current population, defined as znad = (znad1 , znad2 ), where

znadi =
n

max
j=1

fi(xj) (n is the size of the population). The point z′ is con-

structed by means of a preset parameter k and the worse point znad, and
it is defined as z′ = (k · znad1 , k · znad2 ), where k is designed to control the
dominance area of a solution. The smaller k is, the larger the dominance
area of the solution is. For instance, if k is less than 1 and very close to
0, it means the z′ is near to the origin of coordinate and dominates all the
solutions. It will result in the solutions dominate each other. Inversely, with
the k increasing, the dominance area of the solutions is gradually decrease.
The detailed analysis is in Subsection 5.1. After that, Pi = (a1, a2, · · · , am)
is determined as the components of the point z′, where ai is set to k · znadi

while other elements are set to 0. Finally, the angle vector anglep = (α1, α2)
can be computed by Def. 1.

Definition 1. By calculating the i-th node point Pi = (0, · · · , kznadi , 0), αi
in the angle vector anglep = (α1, α2, · · · , αm) is defined as follows:

αi = arccos

−→
Pio ·

−→
Pip

| −→Pio | · |
−→
Pip |

, (12)

where point o is the origin of coordinate or the ideal point of the current
population that defined as zideal =

(
zideal1 , zideal2

)
where

zideali =
n

min
j=1

fi(pj). (13)

Definition 2. Assuming two solutions x and y, x is said to angle dominate
y (denoted as x ≺angle y) if the following condition holds:

∀i ∈ {1, 2, · · ·M} : αxi ≤ αyi ∧ ∃i ∈ {1, 2, · · · ,m} : αxi < αyi . (14)

The properties of the angle dominance criterion will be introduced, and
the premise of these properties is that the parameter k has to be greater
than 1. Suppose there are three different solutions p1, p2 and p3. Their
angle vectors are respectively denoted as follows: anglep1 = (α1, α2, · · · , αm),
anglep2 = (β1, β2, · · · , βm), and anglep3 = (θ1, θ2, · · · , θm).

Property 1. The angle dominance is an irreflexive relation on the popula-
tion.
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Proof. For any solution p1, assuming its angle vector is anglep1 = (α1, α2, · · · , αm),
then ∀i ∈ {1, 2, · · · ,m}, αi = αi. Thus, the conditions for p1 ≺angle p1 in
Def. 2 do not hold. Hence, the angle dominance relation is irreflexive.

Property 2. The angle dominance is an asymmetric relation on the popu-
lation.

Proof. If p1 ≺angle p2, then p2 does not dominate p1. From Def. 2, p1 ≺angle
p2 ↔ αi ≤ βi, ∀i ∈ {1, 2, · · · ,m} and αk < βk, ∃k ∈ {1, 2, · · · ,m}. Hence,
if p1 ≺angle p2, then p2 does not dominate p1. Therefore, the angle dominance
is asymmetric.

Property 3. The angle dominance is a transitive relation on the population.

Proof. If p1 ≺angle p2 and p2 ≺angle p3, from Def. 2, αi ≤ βi, βi ≤ θi, ∀i ∈
{1, 2, · · · ,m} and αk < βk, βl < θl, ∃k, l ∈ {1, 2, · · · ,m}, so p1 ≺angle p3.
That is, the angle dominance is transitive.

Property 4. The angle dominance defines a strict partial order on the pop-
ulation.

Proof. Since the angle dominance is an irreflexive, asymmetric and transitive
relation on the population, it defines a strict partial order on the population.

It is well-known that the traditional Pareto dominance criterion can not
easily handle MaOPs, and the most effective way is to increase the dom-
inance area of solutions. In terms of Def. 2, by amplifying the solutions’
dominance area, the solutions that are far away from the Pareto front which
are hardly eliminated by the Pareto dominance will be eliminated by the
angle dominance. Therefore, angle dominance could effectively improve the
convergence of population. Moreover, as with most dominance criteria, the
angle dominance is Pareto compliant.

More specifically, in the angle dominance criterion, the solution closer to
the Pareto front have higher priority and are first selected, and the solution
far away from the Pareto front have larger dominance area. For example, in
Fig. 4(a), it can be seen that p1 and p2 are non-Pareto dominated, and p′1 and
p′2 are also non-Pareto dominated, while p1 and p2 Pareto dominate both p′1
and p′2. However, in the sense of angle dominance, p1 and p2 angle dominate
both p′1 and p′2, which verifies that the solutions having good convergence
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Figure 4: Properties of the angle dominance (a) An illustration of the ability of angle
dominance to promote the convergence. There are four solutions p1 = (2, 2), p2 = (3, 1.7),

p′1 = (4, 4) and p′2 = (5, 3.7). It is easy to know that
−−→
p1p
′
1 =
−−→
p2p
′
2; (b) An illustration of the

ability of angle dominance to promote extensity. There are three solutions p1 = (1.5, 1.5),
p2 = (2.5, 2), p3 = (0.5, 3).

own higher priority for selection. Moreover, p1 non-angle dominates p2, but
p′1 angle dominates p′2, which denotes that the solution far away from the
Pareto front have larger dominance area, and vice versa. Consequently, in the
fast sorting selection method [10], that of the non-angle dominated solutions
in the layers will be decreased, which corresponds to the evolution of the
population.

This work also investigated the number of solutions in each layer during
the fast sorting selection between the angle dominance and Pareto domi-
nance. Fig. 5 presents the experimental results on the DTLZ3 instances [11]
with 2, 3, 5, 10, and 15 objectives. In Figs. 5(a) and (b), most solutions
are crowded in the first layers. Specifically, from Fig. 5(a), with the increase
of the number of objectives, the number of non-angle dominated solutions
in each layer stays stable. But most non-Pareto dominated solutions are
crowded in the first layer, as shown in Fig. 5(b). This phenomenon implies
that the angle dominance can differentiate the solutions whereas Pareto dom-
inance can not. The main reason is that the dominance area of the solution
in the angle space is greater than it is in the objective space. It will result
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in the angle dominance criterion having greater selection pressure than the
Pareto dominance in the process of non-dominating sorting.
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(a) Nondominated sorting of angle-dominance(b) Nondominated sorting of Pareto-dominance

Figure 5: The average number of solutions in all the nondominated layers under (a)
the angle nondominated sorting and (b) the Pareto nondominated sorting, where the
population size is 100, the number of runs is 30, and the test instance is DTLZ3.

Finally, except for the solutions close to the Pareto front, angle dominance
also prefers the solutions close to the boundaries, which can promote the
population’s extensity. For example, there are three solutions located in
different objective regions in Fig. 4(b), p1 and p3 are non-angle dominated
but both of them dominate p2. Notably, p1 and p3 are close to the Pareto
front and the boundary respectively. Thus, the solutions close to the Pareto
front and boundaries have high priority in the environmental selection.

3.2. Integrating Angle Dominance into NSGA-II

In this section, we take NSGA-II as an example to illustrate how to
integrate the angle dominance criterion into its framework. This integration
can also be applied to other Pareto dominance based MOEAs, e.g., SPEA2
[49].

The angle dominance based NSGA-II is denoted as NSGA-II+AD, whose
framework is presented in Algorithm 1. Firstly, in line 2, the NSGA-II+AD
randomly generates an initial population P with | P |= n. For each itera-
tion, the NSGA-II+AD applies some genetic operators, like mating selection
[29], crossover [2] and mutation [6], as shown in lines 4-5, to generate the off-
spring population Q. Then, NSGA-II+AD mixes P and Q into an interim
population R = Q ∪P, where | R |= 2n. Finally, it uses the environmental
selection from lines 7-20 to sort the mixed population and select the elite
solutions into the next generation.
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Algorithm 1 NSGA-II+AD Framework

Input: Number of objectives m, population size n, terminate condition T
Output: The new population: P;
1: P = Ø, i = 1;
2: P = RandomInitiate(P);
3: while ¬T do
4: Q = MatingSelection(P);
5: Q = V ariation(Q);
6: R = P ∪Q;
7: ComputeAngle(R);
8: (F1, F2, · · · , Fl) = NonDominatedSort(R);
9: while | P | + | Fj |≤ n do

10: ComputeCrowdingDistance(Fi);
11: P = P + Fj and i = i+ 1;
12: end while
13: The last front to be included: Fl = Fi;
14: if | P |= n then
15: return P;
16: else
17: ComputeCrowdingDistance(Fl);
18: Calculate the number of points to be chosen from Fl: k = n− | P |;
19: Choose k members one at a time from Fl to construct P;
20: end if
21: end while

In the environmental selection, firstly, we need to compute the angle
vector for each solution according to Def. 1. Here, the nadir point of R is
determined by identifying the maximum value (znadi ) of each objective, so the

nadir point is znad =
(
znad1 , znad2 , · · · , znadm

)
, where znadi =

n
max
j
f(xi). Finally,

from lines 8-20 in Algorithm 1, the elite solutions are selected into the next
generation P.

To achieve P, first, the angle dominance criterion is used to sort the
population R into different non-domination layers (F1, F2, · · · , Fl). Here, we
assume that the last layer is Fl. Then, each non-domination layer is selected
one at a time to construct a new population P and the crowding distance of
each individual in Fi is computed, starting from F1 and until the size of P is
equal to n or is greater than n for the first time. In most situations, the last
layer is only partially accepted. So, we should introduce a kind of distribution
mechanism for selection of the last layer Fl. In lines 17-19, as in NSGA-
II, we also apply the crowded-comparison approach, which computes the
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crowding distance for every last layer member as the summation of objective-
wise normalized distance between two neighboring solutions. Thereafter,
the solutions with larger crowding distance values are chosen. When the
termination condition is reached, the algorithm stops.

4. Experiment Design

This section is dedicated to the experimental design for investigating the
performance of NSGA-II+AD. We first give the two well-defined test prob-
lem suites and performance metrics used in the experiment. Then, we briefly
introduce eight MOEAs: NSGA-II [10], GrEA [44], MOEA/D [45], ε-MOEA
[9], CDAS [38], PICEAg [39], MaOEARD [18], VaEA [42] and KnEA [47]
which are used to validate the proposed criterion. Finally, the general exper-
imental setting is provided for the comparative studies of these algorithms.

4.1. Test problems and Performance Metrics

Table 2: Properties of test problems and parameter setting in GrEA and ε-MOEA. The
setting of div and ε corresponds to the different numbers of objectives of a problem. m
denotes the number of tested objectives.

Problem m Properties div in GrEA ε in ε-MOEA S in CDAS

DTLZ1 5,8,10,15,20 Linear, Multimodal 10,10,11,11,11 0.059,0.055,0.056,0.342,0.485 0.49,0.42,0.39,0.39,0.38
DTLZ2 5,8,10,15,20 Concave 10,10,11,11,11 0.192,0.290,0.308,0.320,0.320 0.49,0.40,0.38,0.32,0.30
DTLZ3 5,8,10,15,20 Concave, Multimodal 10,10,11,11,11 0.200,0.157,0.850,0.850,0.850 0.45,0.37,0.39,0.37,0.34
DTLZ4 5,8,10,15,20 Concave, Biased 10,10,11,11,11 0.193,0.290,0.308,0.380,0.382 0.49,0.45,0.45,0.45,0.45
DTLZ5 5,8,10,15,20 Concave, Degenerate 29,11,11,11,11 0.079,0.127,0.129,0.132,0.132 0.42,0.41,0.41,0.39,0.39
DTLZ6 5,8,10,15,20 Concave, Degenerate, Biased 24,50,50,50,50 0.355,1.150,1.450,1.800,1.800 0.42,0.40,0.39,0.38,0.38
DTLZ7 5,8,10,15,20 Mixed, Disconnected, Biased 9,8,5,4,4 0.158,0.225,0.560,0.565,0.569 0.49,0.48,0.48,0.48,0.48
WFG1 5,8,10,15,20 Mixed, Biased, Scaled 10,10,11,11,11 0.210, 0.322, 0.330, 0.353, 0.355 0.49,0.49,0.49,0.49,0.49
WFG2 5,8,10,15,20 Convex, Disconnected, Multimodal, Scaled 10,10,11,11,11 0.253,0.423,0.426,0.492,0.611 0.49,0.49,0.49,0.49,0.49
WFG3 5,8,10,15,20 Degenerate, Non-separable, Scaled 35,29,11,11,11 0.420,0.762,0.900,1.502,2 0.49,0.45,0.45,0.45,0.45
WFG4 5,8,10,15,20 Concave, Multimodal, Scaled 10,10,11,11,11 0.600,1.349,2.082,4.793,6.746 0.49,0.47,0.47,0.47,0.47
WFG5 5,8,10,15,20 Concave, Deceptive, Scaled 10,10,11,11,11 0.600,1.349,2.082,4.793,6.746 0.49,0.48,0.48,0.48,0.48
WFG6 5,8,10,15,20 Concave, Non-separable, Scaled 10,10,11,11,11 0.600,1.349,2.082,4.793,6.746 0.49,0.48,0.48,0.48,0.48
WFG7 5,8,10,15,20 Concave, Biased, Scaled 10,10,11,11,11 0.600,1.349,2.082,4.793,6.746 0.49,0.48,0.48,0.48,0.48
WFG8 5,8,10,15,20 Concave, Biased, Non-separable, Scaled 10,10,11,11,11 0.600,1.349,2.082,4.793,6.746 0.49,0.48,0.48,0.48,0.48
WFG9 5,8,10,15,20 Concave, Biased, Multimodal, Deceptive, Non-separable, Scaled 10,10,11,11,11 0.600,1.349,2.082,4.793,6.746 0.49,0.48,0.48,0.48,0.48

As a basis for the comparisons, two well-known test suites for many-
objective optimization, DTLZ [11] and WFG [21], are selected in the exper-
iments. All these problems can be scaled to any number of objectives and
decision variables. For each problem, the number of objectives is set to 5, 8,
10, 15 and 20, respectively. As recommended in [21], the number of decision
variables is set to s = m+K−1, where m is the objective number, K = 5 for
DTLZ1, K = 10 for DTLZ2 to DTLZ6 and K = 20 for DTLZ7. According to
[21], the number of decision variables is set to s = K+L for WFG test suite,
where the position-related variable K = 2 · (m− 1), and the distance-related
variable L = 20. The two test suites have been used to challenge different

19



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

abilities of algorithms, and the properties of the tests problems are shown in
Table 2.

In order to compare the performance of the selected algorithms, two
widely-used quality metrics, inverted generational distance (IGD) [50] and
hypervolume (HV) [41], are introduced.

The former is a metrics to measure the distance of a solution set from
the Pareto front, and is used to analyze the influence of different values k
on the performance of NSGA-II+AD. However, it is almost always the case
that the true Pareto front is unknown in real-world applications. In this
case, a common practice is to specify a set of reference point based on the
Pareto dominance as an approximation of the Pareto front, and then calculate
the average distance from each reference point to the nearest solution in the
solution set. Mathematically, let P ∗ be a reference set representing the Pareto
front, and P be an obtained solution set. Then, the IGD value of the obtained
solution set P is defined as follows:

IGD (P ) =

∑
x∗∈P ∗ d(x∗, P )

|P ∗| , (15)

where |P ∗| denotes the size of P ∗ (the number of points in P ∗) and d (x∗, P ) is
the minimum Euclidean distance from x∗ to P (d (x∗, P ) = minx∈P‖f(x∗)−
f(x)‖). A low IGD value is preferable, which indicates that the obtained
solution set is close to the Pareto front and that it has good diversity.

The last one is used to evaluate the performance of algorithms on DTLZ
and WFG, which measures the volume of the objective space enclosed by a
Pareto front approximation and a reference point in the objective space. The
Pareto front approximation with larger HV values is better. Then, the HV
metrics can be described as the Lebesgue measure Λ of the union hypercubes
hi defined by a solution pi in the approximation and the reference point xref
as follows:

HV = Λ

(
{
⋃

i

hi | pi ∈ P}
)

= Λ

(⋃

pi∈P
{x | pi ≺ x ≺ xref}

)
. (16)

Following the recommendation in [25], that reference point xref is slightly
larger than znadi is suitable since the balance between convergence and diver-
sity of the solution set is well emphasized. In our experiments, We first
normalize the objective value of obtained solution according to the range
of the problem’s PF, then set the reference point to 1.1 times of the znadi .
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Otherwise, considering that the exact calculation of the HV measure is com-
putationally highly demanding, and current algorithms are exponential in
the number of objectives. we suggest a methodology based on Monte Carlo
sampling 1 to estimate the HV result of a solution set [3], where the number
of sampling points is set to 1,000,000.

4.2. Nine Other Algorithms in Comparison

To verify the performance of NSGA-II+AD, the following nine peer algo-
rithms are considered:

NSGA-II [10]: It is the most well-known and frequently-used MOEA in
the literature. In NSGA-II, the population is sorted based on non-domination
into each front. The first front being completely non-dominated set and the
second front being dominated by the individuals in the first front and the
front goes so on. Moreover, the secondary ranking criterion for solutions on
the same front is called crowding distance. Large average crowding distance
will result in better diversity in the population. It is worth pointing that
NSGA-II as a well-established algorithm in the area, its performance has
been outperformed by many other algorithms, as shown in [17].

GrEA [44]: It adopts the adaptive construction of grids to strengthen the
selection pressure toward the PF while maintaining an extensive and uniform
distribution among solutions. To this end, two concepts (i.e., grid dominance
and grid difference), three gird-based criteria (i.e., grid ranking, grid crowding
distance, and coordinate point distance), and a fitness adjustment strategy
are incorporated into GrEA.

MOEA/D [45]: It is a representative decomposition-based algorithm us-
ing a decomposition method to decompose the MOP into a number of scalar
optimization problems. In this paper, considering that penalty-based bound-
ary (PBI) [45] is more effective than other decomposition methods for many-
objective optimization in a recent study [46], we select it as the aggregation
function for MOEA/D.

ε-MOEA [9]: It is a steady-state algorithm using the ε-dominance cri-
terion. The objective space is divided into hyperboxes, whose size can be

1The main idea is that not the actual indicator values are important, but rather the
rankings of solutions induced by the hypervolume indicator. To this end, samples of ob-
jective vectors are randomly drawn and the proportion of objective vectors that are solely
dominated by a specific individual represents an estimate for the hypervolume contribution
of this individual.
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adjusted by the choice of ε. Each hyperbox is assigned at most a single point
by the ε-dominance and the distance from solutions to the utopia point in
the hyperbox. ε-MOEA has been verified to perform well for many-objective
optimization problems in a recent study [36].

CDAS [38]: It can control the degree of expansion or contraction of the
dominance area of solutions using a user-defined parameter S. Modifying
the dominance area of solutions changes their dominance relation inducing
a ranking of solutions that is different to conventional dominance. In this
paper, we integrated CDAS into NSGA-II for comparison experiments with
the proposed algorithms.

PICEAg [39]: It introduces a new concept of preference-based coevolu-
tionary algorithm (PICEA), which coevolves a family of decision-maker pref-
erences together with a population of candidate solutions. In PICEAg, the
preferences gain higher fitness by being satisfied by fewer candidate solutions,
and the candidate solutions gain fitness by meeting as many preferences as
possible.

MaOEARD [18]: It includes two stages: 1) search for the target points
around the true Pareto area and constrain the objective search space and
2) a diversity improvement strategy is then applied to facilitate the extent
and distribution of the population while constantly updating target points to
ensure convergence. In MaOEARD, the performance improvement is gained
directly by overcoming two fundamental challenges existing in MaOPs: 1)
extremely large objective space and 2) ineffectiveness of Pareto-dominance.

VaEA [42]: It is a vector angle based evolutionary algorithm and uses
two principles: the maximum-vector-angle-first principle is used in the envi-
ronmental selection to guarantee the extensity and the uniformity of solution
set; the worse-elimination principle replaces worse solutions in terms of the
convergence.

KnEA [47]: It is knee point driven evolutionary algorithm, and the ba-
sic ideal of it is that knee points are naturally most preferred among non-
dominated solutions if no explicit user preferences are given. The preference
of knee points can be seen as a bias towards larger hypervolume which assists
in achieving good convergence and diversity.

4.3. General Experimental Setting

In this section, the general parameter settings for all conducted experi-
ments are given as follows:
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Table 3: Terminate condition (the number of evaluations allowed).

Problem DTLZ(1,3,6) DTLZ(2,4,5,7) WFG1-WFG9
Evaluations 100,000 30,000 30,000

Table 4: The settings of the reference point of MOEA/D based on the normal-boundary
intersection (NBI) method and its two-layered version (NBI2).

Number-of-objectives (m) 5 8 10 15 20
Partitions (p) 5 3 2,2 2 2

Number-of-reference-point 126 120 55+55=100 120 210
Population-size 128 120 112 120 210

1. Number of runs and termination Criterion: All algorithms are run 30
times independently for each test instance. The number of termination
criterion of an algorithm is a predefined number of evaluations. As
shown in Table 3, for the DTLZ1, DTLZ3 and DTLZ6, it is set to
100,000, and for the other test problems (DTLZ2, DTLZ4, DTLZ5,
DTLZ7 and WFG1-WFG9), it is set to 30,000.

2. Parameters for crossover and mutation: A crossover probability pc = 1
and a mutation probability pm = 1

n
(where n denotes the number of

decision variables) are used. The distribution index is set as η = 20 for
both the SBX and PM operators.

3. Population and archive size and parameter setting in selected algo-
rithms : For all selected algorithms, the population size is set to 100,
and the archive is also maintained with the same size if required. In
ε-MOEA, the size of the archive set is determined by a parameter ε.
To guarantee a fair comparison, this paper set ε as shown in Table 2,
and the archive size is approximately the same as that of the other
algorithms. GrEA requires a grid division parameter div, and the set-
tings of div are shown in Table 2. Meanwhile, Table 2 also gives the
parameter S of CDAS. The number of goals is set to m·100 in PICEA-g
[39]. For MOEA/D [45], a preset of weight vectors are needed to main-
tain the diversity of population. The normal-boundary intersection
(NBI) method [35] and the two-layered version (NBI2) [8] are used in
MOEA/D. In consideration of the combinatorial nature of uniformly
distributed weight vectors, the population size should be as close as
possible to the number of weight vectors. As shown in Table 4, the
number of objectives and the division parameter of NBI are m and p,
respectively.
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5. Results and Discussions

5.1. Parameter Sensitivity Analysis

In most of the improved dominance criteria, a series of parameters must
be set. But, these parameters bring some difficulties to the application of
algorithms. For example, ε-dominance needs the user to set difference param-
eters for varying MOPs with different dimensions, and so does the CDAS.
In angle dominance criterion, there is a specific parameter k which is the
magnification factor of the nadir point. In this section, we investigate the
effect of parameter k on the performance of the angle dominance criterion.

In the experiments, angle dominance was combined with NSGA-II, which
is denoted as NSGA-II+AD (presented in Section 3 in detail). The algorithm
was run for 30 times independently with varying values of k, where k ∈
[1, 100], on the set of DTLZ instances, respectively. Fig. 6 presents the
experimental results regarding the IGD values on 5-, 8- and 10-objective
DTLZ1, DTLZ2 and DTLZ6 with linear Pareto front, spherical Pareto front
and one-dimensional linear manifold, respectively. The population size was
set to 100, and the maximum number of generations was set to 1000 on
DTLZ1 and DTLZ6 and 300 on DTLZ2, respectively.

From Fig. 6, the trend of the change of IGD values is similar on varying
problems. Note that in the figure the IGD values are displayed in logarithm.
The IGD values first decrease sharply, and then begin to level out and fluc-
tuate in a very small range. Specifically, on DTLZ1 problems with 5, 8 and
10 objectives, the IGD values are stable about 0.221, 0.400 and 0.470 respec-
tively with the increase of the k from 2 to 100. This shows that when k is
greater than 2, the performance of the algorithm on the DTLZ1 test problem
is relatively stable. When it comes to DTLZ2 in 5, 8 and 10 objectives, the
IGD values level out and fluctuate around 0.065, 0.025 and 0.47 respectively
when k > 10. In addition, the IGD values on DTLZ2 tend to be more sta-
ble than that on DTLZ1. This shows that the sensitivity of parameter k on
DTLZ2 is smaller than that of parameter k on DTLZ1. Finally, when k > 10,
the IGD vales level out around 0.0071, 0.0077 and 0.0082 on DTLZ6 with 5,
8 and 10 objectives, respectively.

According to the above parametric analysis, it can be found that, when
k > 10, the performance of the algorithm is stable and the change of pa-
rameter k has very little effect on the performance of the angle dominance.
In fact, when k = 1, an individual has the largest angle dominated space.
In this case, there may be a total order relationship between solutions. As
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Figure 6: Study of different settings of the k parameter. Where the abscissa represents
the k parameter and the ordinate indicates the IGD value. The smaller the IGD value,
the better the performance.

parameter k increases, the solution’s angle dominant space will gradually
decrease, and the angle dominance progressively approximates Pareto domi-
nance. Thus the k cannot be set too small or too large. Given that when k is
between [10, 100], the performance of angle dominance on different problems
is stable, we consider a value (50) near the media position of [10, 100] as the
magnification factor of the angle dominated space.
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Table 5: IGD results (mean and SD) of the NSGA-II and NSGA-II+AD on the DTLZ
series of problems. The best mean of the algorithms for each problem instance is shown
with a gray background and the values in parentheses are the SDs

.
Problem

5-objective 8-objective 10-objective
NSGA-II NSGA-II+AD NSGA-II NSGA-II+AD NSGA-II NSGA-II+AD

DTLZ1 2.2573e-1 (2.75e-1) - 7.5862e-2 (1.78e-3) 6.8256e+0 (1.32e+1) -1.1755e-1 (1.56e-3) 9.8175e+0 (1.05e+1) - 1.2408e-1 (1.08e-3)
DTLZ2 2.6194e-1 (3.60e-2) - 2.2136e-1 (4.08e-3) 1.9706e+0 (3.80e-1) - 4.0175e-1 (3.67e-3) 1.8670e+0 (4.14e-1) - 4.7152e-1 (4.13e-3)
DTLZ3 9.8325e+0 (2.24e+1) -1.3318e+0 (3.49e+0) 7.6080e+2 (2.59e+2) -4.0164e-1 (5.35e-3) 1.0940e+3 (3.81e+2) - 4.7375e-1 (5.09e-3)
DTLZ4 2.5532e-1 (1.32e-2) - 2.2062e-1 (3.19e-3) 1.7507e+0 (2.72e-1) - 3.9981e-1 (2.55e-3) 1.7775e+0 (3.34e-1) - 4.7425e-1 (5.44e-3)
DTLZ5 1.0950e-1 (3.71e-2) - 7.0084e-3 (1.74e-4) 2.4631e-1 (9.11e-2) - 7.5029e-3 (6.14e-4) 4.1743e-1 (1.87e-1) - 8.0859e-3 (7.19e-4)
DTLZ6 3.1606e+0 (9.20e-1) - 7.1727e-3 (4.83e-4) 6.0747e+0 (9.88e-1) - 7.7340e-3 (8.06e-4) 6.2883e+0 (7.80e-1) - 8.2108e-3 (1.07e-3)
DTLZ7 4.9868e-1 (1.27e-1) ≈ 4.6150e-1 (9.97e-2) 2.5557e+0 (1.82e+0) -8.6303e-1 (1.62e-1) 5.8761e+0 (3.57e+0) -1.1052e+0 (2.17e-1)
+/− / ≈ 0/6/1 0/7/0 0/7/0

”+”, ” -” and ”≈” indicate that the result is significantly better, significantly worse and statistically similar to that obtained by NSGA-II+AD,
respectively.

5.2. NSGA-II vs. NSGA-II+AD

Table 5 shows the results of the two algorithms on the DTLZ test suite
regarding the mean and standard deviation (SD) values, where IGD was used
for DTLZ problem. The better result regarding the mean for each problem
is highlighted. Moreover, in order to have statistically sound conclusions,
Wilcoxon’s rank sum test [16] at a significance level of 0.05 was conducted
on the experimental results by two competing algorithms, where the symbols
”+”, ”−” and ”≈” indicate that the result by NSGA-II is significantly better,
significantly worse and statistically similar to the obtained by NSGA-II+AD,
respectively.

As can be seen from Table 5, the performance of NSGA-II has a clear im-
provement when the angle dominance is applied to the algorithm, achieving
a better value for all the 21 test instances. Also, for most of the problems
on which NSGA-II+AD outperforms NSGA-II, the results have statistical
significance (20 out of the 21 problems). Fig. 7 shows the final solutions
of a single run of NSGA-II and NSGA-II+AD on the 10-objective DTLZ1
by parallel coordinates 2 [34]. The global optimal front of this problem is a
linear hyper-plane satisfying

∑M
i=1 fi = 0.5 in the range fi ∈ [0, 0.5]. This

particular run is associated with the result which is the closest to the mean
IGD value. It is clear from the figure that the convergence performance of
NSGA-II is significantly improved when the angle dominance is applied to
the algorithm.

2Parallel coordinates display multidimensional data (a set of vectors) in a two-
dimensional graph, with each dimension of the original data being translated onto a vertical
axis in the graph, and a vector is represented as a polyline with vertices on the axes.
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Through the above analysis, we can show that integrating the angle dom-
inance criterion into NSGA-II is going to be effective.
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(a) NSGA-II (b) NSGA-II+AD

Figure 7: The final solution set of the two algorithms on the ten-objective DTLZ1, shown
by parallel coordinates. Where the abscissa represents the objective dimension and the
ordinate indicates the objective value.

5.3. Comparison with well-established algorithms

In this section, NSGA-II+AD is applied to compare with four well-established
MOEAs to demonstrate whether the NSGA-II+AD is competitive when ad-
dressing MaOPs. The compared MOEAs are GrEA, MOEA/D, ε-MOEA
and CDAS, respectively.

Table 6 shows the comparative results of the investigated algorithms on
the DTLZ problem suite regarding the mean and standard deviation (SD) of
the HV values, where the gray background and bold represent the best and
second best results, respectively. On the whole, NSGA-II+AD is the best
performing algorithm and followed closely by CDAS. The former gains 8 best
results and 25 second-best results, and the latter owns 14 best results and 7
second-best results. Although the number of best results obtained by NSGA-
II+AD is lightly less than that obtained by CDAS, the sum of the best and
second-best results of the former far exceeds that of the latter. In particular,
NSGA-II+AD only performs worse than GrEA and MOEA/D on DTLZ2 but
performs better on other problems, while CDAS does best on DTLZ3 and
degradation problems (e.g., DTLZ5 and DTLZ6). GrEA is the third-best
algorithm, and it performs better on DTLZ2 and DTLZ4 compared to other
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four algorithms. It was followed by MOEA/D, which produced three and one
of the best results on DTLZ1 and DTLZ3, respectively. Compared with the
above four algorithms, ε-MOEA is inferior in DTLZ test problems. The sum
of its best and second-best results is zero. As for the statistical significance
analysis, it can be observed that the difference between NSGA-II+AD and
the peer algorithms is significant on most of the test instances. Specifically,
the proportion of the test instances where NSGA-II+AD outperforms GrEA,
MOEA/D, ε-MOEA and CDAS with statistical significance is 23/35, 28/35,
35/35 and 14/35, respectively. Conversely, the proportion of the instances
where NSGA-II+AD performs worse than GrEA, MOEA/D, ε-MOEA and
CDAS with statistical significance is 9/35, 7/35, 0/35 and 7/35, respectively.

Table 6: HV results (mean and SD) of the five algorithms on the DTLZ test suite. The
best and the second mean among the algorithms for each problem instance are highlighted
in gray background and bold, respectively.

Problem M D NSGA-II+AD GrEA MOEA/D ε-MOEA CDAS

DTLZ1

5 9 4.5874e-2 (2.34e-4) 4.3054e-2 (5.20e-3) ≈ 4.8845e-2 (1.33e-5) + 4.0278e-2 (2.44e-3) − 4.4901e-2 (1.76e-4) −
8 12 8.1246e-3 (1.90e-5) 5.0269e-3 (2.10e-3) − 8.1721e-3 (5.71e-5) + 6.7463e-3 (2.35e-4) − 8.0541e-3 (2.41e-5) −
10 14 2.4945e-3 (5.31e-6) 9.8809e-4 (4.37e-4) − 2.5203e-3 (2.16e-6) + 6.8710e-4 (8.30e-4) − 2.4814e-3 (6.04e-6) −
15 24 1.2705e-4 (7.42e-8) 7.7048e-6 (1.39e-5) − 1.1155e-4 (9.71e-7) − 1.0507e-5 (1.12e-5) − 1.2691e-4 (8.21e-8) −
20 29 6.4082e-6 (3.72e-9) 1.0412e-6 (2.08e-6) − 5.3096e-6 (5.08e-8) − 2.2039e-8 (2.62e-8) − 6.3263e-6 (2.77e-8) −

DTLZ2

5 14 1.1529e+0 (1.14e-2) 1.2636e+0 (2.71e-3) + 1.2453e+0 (8.43e-4) + 8.0239e-1 (6.70e-2) − 1.1545e+0 (1.07e-2) ≈
8 17 1.7675e+0 (1.64e-2) 1.9544e+0 (2.37e-3) + 1.8574e+0 (8.56e-3) + 1.1385e+0 (4.94e-2) − 1.7699e+0 (1.66e-2) ≈
10 19 2.2489e+0 (2.09e-2) 2.4650e+0 (4.66e-3) + 2.3893e+0 (1.86e-2) + 1.1831e+0 (6.06e-2) − 2.2471e+0 (1.77e-2) ≈
15 24 3.8630e+0 (3.09e-2) 3.9967e+0 (4.44e-2) + 7.7519e-1 (3.10e-1) − 1.4541e+0 (3.25e-1) − 3.9005e+0 (2.03e-2) +
20 29 6.3982e+0 (4.21e-2) 6.3005e+0 (3.93e-2) − 4.0909e+0 (1.57e-1) − 2.4917e+0 (6.33e-1) − 6.3836e+0 (4.88e-2) ≈

DTLZ3

5 14 1.1393e+0 (1.61e-2) 4.6010e-1 (1.93e-1) − 1.2343e+0 (1.24e-2) + 9.9742e-1 (6.30e-2) − 1.1379e+0 (1.61e-2) ≈
8 17 1.7496e+0 (3.05e-2) 1.6729e-1 (1.64e-1) − 1.1804e+0 (6.74e-1) ≈ 6.4395e-1 (1.12e+0) − 1.7500e+0 (3.04e-2) ≈
10 19 2.2231e+0 (3.68e-2) 0.0000e+0 (0.00e+0) − 1.6018e+0 (1.02e+0) ≈ 0.0000e+0 (00e+0) − 2.2293e+0 (3.31e-2) ≈
15 24 3.8375e+0 (6.73e-2) 0.0000e+0 (0.00e+0) − 3.7533e-1 (4.32e-3) − 0.0000e+0 (00e+0) − 3.8456e+0 (8.05e-2) ≈
20 29 6.3332e+0 (1.34e-1) 0.0000e+0 (0.00e+0) − 2.9665e+0 (1.77e+0) − 0.0000e+0 (00e+0) − 6.3747e+0 (6.35e-2) ≈

DTLZ4

5 14 1.1774e+0 (9.44e-3) 1.2484e+0 (4.85e-2) + 7.8540e-1 (3.52e-1) − 8.2801e-1 (1.75e-1) − 1.1728e+0 (9.42e-3) −
8 17 1.8037e+0 (1.28e-2) 1.9578e+0 (1.48e-3) + 1.5218e+0 (2.00e-1) − 1.5929e+0 (1.40e-1) − 1.7952e+0 (1.55e-2) −
10 19 2.2857e+0 (1.91e-2) 2.4632e+0 (1.87e-2) + 1.5752e+0 (3.72e-1) − 2.2299e+0 (3.56e-2) − 2.2768e+0 (1.56e-2) −
15 24 3.9393e+0 (2.37e-2) 4.0581e+0 (2.89e-3) + 1.7627e+0 (7.44e-1) − 3.5952e+0 (4.42e-2) − 3.9342e+0 (1.59e-2) ≈
20 29 6.6009e+0 (1.03e-2) 6.4635e+0 (9.78e-2) ≈ 3.0669e+0 (1.15e+0) − 6.5034e+0 (8.81e-2) − 6.5939e+0 (1.14e-2) −

DTLZ5

5 14 9.1838e-3 (2.29e-5) 8.6099e-3 (1.83e-4) − 8.8915e-3 (1.98e-5) − 5.0025e-3 (1.58e-3) − 9.2124e-3 (2.31e-5) +
8 17 1.9553e-5 (5.01e-8) 2.0733e-6 (2.51e-6) − 1.8214e-5 (2.31e-6) − 1.2127e-6 (1.58e-6) − 1.9610e-5 (5.72e-8) +
10 19 6.1910e-8 (1.57e-10) 7.3977e-10 (1.92e-9) − 6.0942e-8 (1.83e-10) − 4.5008e-9 (6.94e-9) − 6.2169e-8 (1.93e-10) +
15 24 8.7763e-17 (3.28e-19) 1.1816e-20 (3.54e-20) − 8.5604e-17 (3.79e-19) − 5.1899e-18 (8.98e-18) − 8.8195e-17 (2.87e-19) +
20 29 2.2299e-29 (6.74e-32) 0.0000e+0 (0.00e+0) − 2.2018e-29 (5.15e-32) − 8.7874e-30 (4.54e-30) − 2.2397e-29 (7.58e-32) ≈

DTLZ6

5 14 9.1955e-3 (2.67e-5) 7.4988e-3 (4.50e-4) − 8.8448e-3 (4.35e-5) − 6.3572e-3 (2.03e-4) − 9.2175e-3 (2.96e-5) ≈
8 17 1.9550e-5 (4.72e-8) 0.0000e+0 (0.00e+0) − 1.8264e-5 (1.96e-6) − 1.1121e-6 (1.93e-6) − 1.9593e-5 (6.81e-8) ≈
10 19 6.2084e-8 (1.39e-10) 0.0000e+0 (0.00e+0) − 6.0896e-8 (1.16e-10) − 0.0000e+0 (0.00e+0) − 6.2115e-8 (1.64e-10) +
15 24 8.7977e-17 (3.34e-19) 0.0000e+0 (0.00e+0) − 8.5313e-17 (2.74e-19) − 0.0000e+0 (0.00e+0) − 8.8216e-17 (2.34e-19) +
20 29 2.2346e-29 (9.71e-32) 0.0000e+0 (0.00e+0) − 2.1928e-29 (2.63e-31) − 0.0000e+0 (0.00e+0) − 2.2388e-29 (6.46e-32) ≈

DTLZ7

5 24 2.0167e+0 (3.51e-2) 2.2262e+0 (1.99e-2) + 1.3316e-1 (1.26e-1) − 1.6548e+0 (1.71e-2) − 1.9838e+0 (7.22e-2) ≈
8 27 2.3221e+0 (1.61e-2) 1.7276e+0 (1.08e-1) − 2.7269e-2 (4.43e-2) − 1.2244e-0 (2.62e-1) − 2.2132e+0 (2.91e-2) −
10 29 2.4041e+0 (3.75e-2) 9.0524e-1 (1.67e-1) − 7.1790e-2 (1.73e-1) − 1.5370e-1 (1.49e-1) − 2.1785e+0 (8.57e-2) −
15 24 2.2840e+0 (1.72e-1) 1.9208e+0 (1.06e-1) ≈ 3.6223e-1 (9.43e-2) − 4.3057e-2 (4.34e-2) − 1.3168e+0 (3.57e-1) −
20 29 1.7842+0 (1.98e-1) 1.6866e+0 (6.00e-2) − 1.0922e-5 (1.96e-5) − 2.4452e-3 (1.96e-3) − 3.5167e-1 (1.14e-1) −

+/− / ≈ 9/23/3 7/28/2 0/35/0 7/14/14

”+”, ”-” and ”≈” indicate that the result is significantly better, significantly worse and statistically similar to that obtained by NSGA-II+AD, respectively.

Table 7 gives the comparative results of the four well-established algo-
rithms on the WFG problems with 5, 8, 10, 15 and 20 objectives. As shown,
the best-performing algorithm is GrEA, which has a clear advantage over the
other 4 algorithms on more of the test instances. In addition, NSGA-II+AD
is second only to GrEA. Specifically, GrEA obtains the best and second-best
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HV results on 26 and 5 out of the 45 instances respectively, and NSGA-
II+AD on 17 and 14 respectively. In fact, GrEA, despite being brought up
several years ago, has shown to be very competitive against state of the arts
on this particular type of problems (i.e., WFG4-WFG9) [31]. NSGA-II+AD
is less than GrEA in terms of the number of best results, but the sum of
the best results and the second-best results obtained by the two algorithms
is the same. For other three algorithms, they are inferior to the above two
algorithms in WFG test problems. CDAS and ε-MOEA only have the second-
best solutions, while MOEA/D performs poorly on all instances. Concerning
the statistical results, in addition to GrEA which is significantly better than
our method on 25 instances and worse than our method on 20 instances, our
proposed method outperforms other algorithms in most of the test instances.
For example, NSGA-II+AD performs significantly better than MOEA/D, ε-
MOEA and CDAS, respectively on 41, 36 and 30 test instances over all 45
problems.

5.4. Comparison with state-of-the-art algorithms

In this section, we select four state-of-the-art algorithms for comparison
tests with NSGA-II+AD. The four algorithms are PICEAg, MaOEARD,
VaEA and KnEA, respectively.

As can be observed from Table 8, NSGA-II+AD performs best, presenting
a clear advantage over the other four algorithms on the majority of the test
instances. More specifically, It obtains the best and second best HV results
on 24 and 7 out of the 35 test instances respectively. KnEA works well for
some relatively simple problems (e.g., DTLZ2 and DTLZ4). For multi-mode
problems (e.g., DTLZ1 and DTLZ3), the performance of KnEA is far inferior
to other algorithms. The main reason is that it is difficult to converge on
this problem. For other three algorithms, they obtain worse HV values on
almost all the test instances, except for five-objective DTLZ1. Statistically,
NSGA-II+AD shows significant improvement over other algorithms on most
of the test instances. Specifically, the proportion of the test instances where
NSGA-II+AD performs better than PICEAg, MaOEARD, VaEA and KnEA
is 30/35, 32/35, 30/35 and 25/35, respectively. Conversely, the proportion
that NSGA-II+AD is defeated by the peer algorithms only is 1/35, 1/35,
4/35 and 10/35 for PICEAg, MaOEARD, VaEA and KnEA, respectively.

Different from the performance on the DTLZ test problem, NSGA-II+AD
is not as good as the other algorithms on the WFG test problem. As shown
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Table 7: HV results (mean and SD) of the five algorithms on the WFG test suite. The
best and the second mean among the algorithms for each problem instance are highlighted
in gray background and bold, respectively.

Problem M D NSGA-II+AD GrEA MOEA/D ε-MOEA CDAS

WFG1

5 28 5.8425e+3 (1.20e+2) 4.9280e+3 (4.65e+2) − 4.5726e+3 (4.43e+2) − 2.1211e+3 (4.41e+1) − 5.7515e+3 (1.68e+2) −
8 34 2.0632e+7 (9.97e+3) 1.5161e+7 (2.31e+6) − 1.3706e+7 (1.94e+6) − 7.2539e+6 (9.04e+5) − 2.0264e+7 (7.46e+5) −
10 38 8.6472e+9 (3.12e+6) 6.3780e+9 (6.78e+8) − 3.1680e+9 (5.92e+8) − 2.7023e+9 (3.06e+8) − 8.3454e+9 (4.99e+8) −
15 48 1.3899e+17 (3.42e+13) 1.3785e+17 (9.59e+14) − 4.8927e+16 (7.88e+15) − 3.4102e+16 (1.49e+15) − 1.2142e+17 (1.37e+16) −
20 58 1.0837e+25 (5.48e+23) 1.0029e+25 (6.47e+23) − 2.4862e+24 (2.81e+23) − 2.2694e+24 (3.39e+23) − 1.0589e+25 (5.90e+23) −

WFG2

5 28 6.0775e+3 (5.10e+0) 5.9312e+3 (3.17e+1) − 5.6273e+3 (9.99e+1) − 5.7445e+3 (7.87e+1) − 6.0452e+3 (1.04e+1) −
8 34 2.1991e+7 (2.89e+4) 2.1401e+7 (1.05e+5) − 1.8859e+7 (1.18e+6) − 1.9385e+7 (3.69e+6) − 2.1580e+7 (1.08e+5) −
10 38 9.5767e+9 (1.91e+7) 9.3151e+9 (6.73e+7) − 8.3644e+9 (3.66e+8) − 8.6920e+9 (1.04e+9) − 9.3715e+9 (4.84e+7) −
15 48 1.7696e+17 (2.46e+14) 1.7341e+17 (1.08e+15) − 1.5288e+17 (7.28e+15) − 1.7499e+17 (2.00e+15) − 1.7040e+17 (1.60e+15) −
20 58 1.6937e+25 (7.42e+22) 1.6559e+25 (1.19e+23) − 1.2975e+25 (8.31e+23) − 1.5137e+25 (1.22e+24) − 1.6273e+25 (1.69e+23) −

WFG3

5 28 2.8919e+0 (7.87e-2) 1.8652e+0 (3.52e-1) − 3.8335e-1 (3.99e-1) − 1.2746e-1 (2.21e-1) − 2.7400e+0 (1.18e-1) −
8 34 1.2908e-2 (3.55e-3) 1.8515e-2 (6.70e-3) + 0.0000e+0 (0.00e+0) − 0.0000e+0 (0.00e+0) − 5.6306e-3 (3.97e-3) −
10 38 1.0244e-5 (1.23e-5) 1.5611e-5 (8.00e-6) + 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 5.5192e-7 (2.65e-6) −
15 48 0.0000e+0 (0.00e+0) 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈
20 58 0.0000e+0 (0.00e+0) 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈

WFG4

5 28 4.0058e+3 (6.91e+0) 4.6981e+3 (1.80e+1) + 3.4758e+3 (1.51e+2) − 4.1242e+3 (8.31e+1) + 3.9922e+3 (8.48e+0) −
8 34 1.6917e+7 (5.65e+4) 1.9374e+7 (1.84e+5) + 6.5549e+6 (8.80e+5) − 1.0100e+7 (1.40e+6) − 1.6843e+7 (7.21e+4) −
10 38 7.8040e+9 (2.22e+7) 7.6770e+9 (3.02e+8) − 3.0285e+9 (4.91e+8) − 5.7940e+9 (4.73e+8) − 7.7590e+9 (4.99e+7) −
15 48 1.6394e+17 (9.19e+14) 1.6035e+17 (1.21e+15) − 2.2562e+16 (8.85e+15) − 8.1631e+16 (2.81e+16) − 1.5473e+17 (1.48e+15) −
20 58 1.5522e+25 (2.91e+23) 1.5416e+25 (3.26e+23) ≈ 8.9956e+24 (1.98e+24) − 1.0987e+25 (1.20e+24) − 1.4951e+25 (2.72e+23) −

WFG5

5 28 3.7015e+3 (6.11e+0) 4.4965e+3 (1.29e+1) + 3.4749e+3 (1.48e+2) − 3.9569e+3 (8.11e+1) + 3.7072e+3 (7.60e+0) +
8 34 1.5620e+7 (5.19e+4) 1.8484e+7 (7.66e+4) + 7.1593e+6 (6.89e+5) − 9.6277e+6 (9.83e+5) − 1.5651e+7 (4.34e+4) ≈
10 38 7.1934e+9 (2.36e+7) 8.1664e+9 (2.28e+8) + 2.4829e+9 (2.14e+8) − 4.8907e+9 (4.87e+8) − 7.2052e+9 (2.71e+7) ≈
15 48 1.4525e+17 (4.62e+14) 1.4429e+17 (2.17e+15) ≈ 2.8521e+16 (6.35e+15) − 1.0243e+17 (1.22e+16) − 1.4457e+17 (7.84e+14) ≈
20 58 1.4464e+25 (6.16e+22) 1.3774e+25 (1.76e+23) − 7.2635e+24 (1.24e+24) − 8.2017e+24 (2.35e+24) − 1.4045e+25 (1.54e+23) −

WFG6

5 28 3.5749e+3 (1.15e+2) 4.4569e+3 (7.48e+1) + 2.6684e+3 (2.38e+2) − 3.6444e+3 (1.39e+2) + 3.5874e+3 (9.99e+1) ≈
8 34 1.5341e+7 (5.06e+5) 1.8063e+7 (4.72e+5) + 2.3162e+6 (2.89e+5) − 8.6665e+6 (9.89e+5) − 1.4928e+7 (6.07e+5) −
10 38 6.8342e+9 (1.91e+8) 7.8934e+9 (2.02e+8) + 9.2613e+8 (3.31e+8) − 6.6464e+8 (4.00e+8) − 6.8186e+9 (2.58e+8) ≈
15 48 1.3419e+17 (1.02e+16) 1.4817e+17 (4.01e+15) + 9.0731e+15 (2.09e+15) − 2.6149e+15 (6.03e+14) − 1.3571e+17 (5.85e+15) ≈
20 58 1.4053e+25 (5.95e+23) 1.3987e+25 (4.67e+23) − 9.9388e+24 (9.12e+23) − 2.8717e+23 (6.25e+22) − 1.3619e+25 (5.53e+23) ≈

WFG7

5 28 3.9858e+3 (9.53e+0) 4.8225e+3 (8.82e+0) + 3.1898e+3 (2.21e+2) − 4.1663e+3 (4.16e+1) + 3.9854e+3 (9.32e+0) ≈
8 34 1.6659e+7 (5.30e+4) 1.9781e+7 (9.28e+4) + 5.5036e+6 (1.55e+6) − 9.0292e+6 (2.49e+5) − 1.6864e+7 (4.28e+4) +
10 38 7.7112e+9 (3.00e+7) 8.7758e+9 (2.08e+8) + 1.4770e+9 (6.95e+8) − 4.1598e+9 (1.93e+9) − 7.7684e+9 (7.23e+7) +
15 48 1.5784e+17 (4.49e+14) 1.6123e+17 (3.55e+15) + 2.5056e+16 (1.27e+16) − 5.7846e+16 (4.64e+16) − 1.5749e+17 (1.25e+15) ≈
20 58 1.5078e+25 (3.64e+23) 1.5554e+25 (2.09e+23) + 3.4001e+24 (1.53e+24) − 6.4296e+24 (1.07e+24) − 1.3944e+25 (3.61e+23) −

WFG8

5 28 2.7521e+3 (2.14e+1) 4.0357e+3 (2.43e+1) + 1.8859e+3 (8.95e+2) ≈ 3.5402e+3 (1.43e+1) + 2.7845e+3 (3.91e+1) ≈
8 34 1.1255e+7 (3.14e+5) 1.6637e+7 (2.79e+5) + 7.6165e+5 (1.29e+6) − 1.1786e+7 (7.96e+5) − 1.1603e+7 (6.36e+5) ≈
10 38 5.3731e+9 (4.30e+8) 7.6851e+9 (1.18e+8) + 8.9075e+8 (2.30e+9) − 3.3513e+9 (1.03e+9) − 5.4055e+9 (2.73e+8) ≈
15 48 1.2511e+17 (9.49e+15) 1.5210e+17 (1.31e+15) + 0.0000e+0 (0.00e+0) − 5.6088e+16 (4.75e+16) − 1.1852e+17 (8.70e+15) −
20 58 1.3141e+25 (1.13e+24) 1.4651e+25 (8.57e+22) + 1.4114e+22 (2.82e+22) − 3.4150e+24 (1.86e+24) − 1.2479e+25 (1.01e+24) −

WFG9

5 28 3.9126e+3 (1.63e+1) 4.5151e+3 (1.50e+1) + 2.9949e+3 (3.85e+2) − 4.0479e+3 (4.40e+1) + 3.8707e+3 (5.86e+1) −
8 34 1.6211e+7 (2.65e+5) 1.7957e+7 (2.68e+5) + 5.8459e+6 (1.72e+6) − 1.0749e+7 (9.21e+5) − 1.5595e+7 (1.09e+6) −
10 38 7.3481e+9 (2.07e+8) 8.0696e+9 (2.48e+8) + 8.3015e+8 (9.01e+8) − 3.8171e+9 (2.17e+9) − 7.0520e+9 (4.97e+8) −
15 48 1.3562e+17 (8.85e+15) 1.4881e+17 (1.48e+15) + 2.6361e+16 (1.67e+16) − 1.1232e+17 (3.25e+15) − 1.2886e+17 (7.97e+15) −
20 58 1.3019e+25 (5.80e+23) 1.4093e+25 (2.43e+23) + 4.4725e+24 (1.60e+24) − 8.1349e+24 (1.18e+24) − 1.2517e+25 (7.66e+23) −

+/− / ≈ 25/20/4 0/41/4 6/36/3 3/30/12

”+”, ”-” and ”≈” indicate that the result is significantly better, significantly worse and statistically similar to that obtained by NSGA-II+AD, respectively.
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Table 8: HV results (mean and SD) of the five algorithms on the DTLZ test suite. The
best and the second mean among the algorithms for each problem instance are highlighted
in gray background and bold, respectively.

Problem M D NSGA-II+AD PICEAg MaOEARD VaEA KnEA

DTLZ1

5 9 4.5874e-2 (2.34e-4) 1.6019e-2 (3.99e-3) − 4.7362e-2 (4.78e-4) + 3.3939e-2 (1.84e-2) − 3.4511e-2 (7.40e-3) −
8 12 8.1246e-3 (1.90e-5) 1.9150e-3 (3.82e-4) − 7.3150e-3 (4.86e-4) − 6.6560e-3 (2.12e-3) − 6.8324e-3 (1.88e-3) −
10 14 2.4945e-3 (5.31e-6) 4.9511e-4 (5.95e-5) − 1.1518e-3 (8.73e-4) − 1.7113e-3 (8.65e-4) − 0.0000e+0 (0.00e+0) −
15 24 1.2705e-4 (7.42e-8) 1.8075e-5 (7.01e-6) − 1.0258e-4 (1.07e-5) − 1.0154e-4 (3.77e-5) − 0.0000e+0 (0.00e+0) −
20 29 6.4082e-6 (3.72e-9) 1.1205e-6 (7.62e-7) − 4.9711e-6 (4.29e-7) − 2.8170e-6 (2.15e-6) − 0.0000e+0 (0.00e+0) −

DTLZ2

5 14 1.1529e+0 (1.14e-2) 1.1677e+0 (2.38e-2) + 1.0446e+0 (2.30e-2) − 1.2575e+0 (5.68e-3) + 1.2657e+0 (1.15e-2) +
8 17 1.7675e+0 (1.64e-2) 1.5222e+0 (8.39e-2) − 1.2337e+0 (7.42e-2) − 1.8721e+0 (2.46e-2) + 1.8947e+0 (2.23e-2) +
10 19 2.2489e+0 (2.09e-2) 1.8171e+0 (1.10e-1) − 1.1735e+0 (1.43e-1) − 1.2929e+0 (3.83e-1) − 2.3431e+0 (8.29e-2) +
15 24 3.8630e+0 (3.09e-2) 2.7683e+0 (1.73e-1) − 1.5435e+0 (3.44e-1) − 3.3761e+0 (2.06e-1) − 4.1027e+0 (1.16e-2) +
20 29 6.3982e+0 (4.21e-2) 4.3959e+0 (2.82e-1) − 2.2676e+0 (3.14e-1) − 4.4919e+0 (4.31e-1) − 6.3468e+0 (9.68e-1) −

DTLZ3

5 14 1.1393e+0 (1.61e-2) 3.8450e-1 (1.13e-1) − 1.1067e+0 (3.13e-2) ≈ 9.7596e-1 (1.47e-1) − 6.6070e-1 (2.39e-1) −
8 17 1.7496e+0 (3.05e-2) 3.4042e-1 (6.62e-2) − 8.6162e-1 (6.59e-1) − 3.2048e-2 (1.52e-1) − 0.0000e+0 (0.00e+0) −
10 19 2.2231e+0 (3.68e-2) 3.7802e-1 (6.46e-2) − 7.0236e-1 (6.31e-1) − 0.0000e+0 (0.00e+0) − 0.0000e+0 (0.00e+0) −
15 24 3.8375e+0 (6.73e-2) 3.2125e-1 (3.13e-2) − 1.0456e+0 (1.05e+0) − 0.0000e+0 (0.00e+0) − 0.0000e+0 (0.00e+0) −
20 29 6.3332e+0 (1.34e-1) 4.6535e-1 (6.18e-2) − 6.5421e-1 (1.02e+0) − 0.0000e+0 (0.00e+0) − 0.0000e+0 (0.00e+0) −

DTLZ4

5 14 1.1774e+0 (9.44e-3) 1.0650e+0 (2.06e-1) ≈ 1.0790e+0 (5.25e-2) ≈ 1.2550e+0 (8.07e-3) + 1.2773e+0 (1.24e-2) +
8 17 1.8037e+0 (1.28e-2) 1.7904e+0 (5.91e-2) ≈ 1.5641e+0 (9.10e-2) − 1.8404e+0 (2.96e-2) + 1.9371e+0 (1.86e-2) +
10 19 2.2857e+0 (1.91e-2) 2.1585e+0 (1.71e-1) ≈ 1.9399e+0 (7.49e-2) − 2.0004e+0 (1.43e-1) − 2.4627e+0 (1.96e-2) +
15 24 3.9393e+0 (2.37e-2) 3.7050e+0 (8.66e-2) − 3.3898e+0 (1.33e-1) − 3.6023e+0 (1.50e-1) − 4.0854e+0 (1.92e-2) +
20 29 6.6009e+0 (1.03e-2) 5.9393e+0 (1.23e-1) − 5.7553e+0 (2.14e-1) − 5.1063e+0 (3.37e-1) − 6.6437e+0 (1.86e-2) +

DTLZ5

5 14 9.1838e-3 (2.29e-5) 6.4987e-3 (8.63e-5) − 6.4704e-3 (4.09e-8) − 6.9137e-3 (3.76e-4) − 3.9186e-3 (2.02e-3) −
8 17 1.9553e-5 (5.01e-8) 1.7218e-5 (4.60e-7) − 1.6815e-5 (5.37e-9) − 1.6259e-5 (8.47e-7) − 6.2703e-6 (5.35e-6) −
10 19 6.1910e-8 (1.57e-10) 5.6908e-8 (1.15e-9) − 5.6188e-8 (2.56e-11) − 5.2471e-8 (4.54e-9) − 1.7660e-8 (1.72e-8) −
15 24 8.7763e-17 (3.28e-19) 8.4304e-17 (1.72e-20) − 8.3949e-17 (5.44e-19) − 8.3122e-17 (1.76e-18) − 1.2456e-17 (2.07e-17) −
20 29 2.2299e-29 (6.74e-32) 2.1826e-29 (5.56e-33) − 2.1818e-29 (2.71e-32) − 1.6586e-29 (3.10e-30) − 2.6653e-30 (6.27e-30) −

DTLZ6

5 14 9.1915e-3 (2.78e-5) 7.2682e-3 (5.42e-4) − 6.4705e-3 (0.00e+0) − 5.4077e-3 (2.15e-3) − 4.7887e-3 (2.87e-3) −
8 17 1.9550e-5 (4.72e-8) 1.6831e-5 (5.89e-13) − 1.6821e-5 (0.00e+0) − 1.6779e-6 (5.12e-6) − 2.2198e-6 (5.61e-6) −
10 19 6.2084e-8 (1.39e-10) 5.6231e-8 (6.94e-24) − 5.6218e-8 (0.00e+0) − 3.7559e-9 (1.43e-8) − 2.4005e-9 (1.06e-8) −
15 24 8.7977e-17 (3.34e-19) 8.4335e-17 (1.29e-32) − 8.4321e-17 (1.31e-32) − 2.8109e-17 (4.04e-17) − 2.5103e-18 (1.37e-17) −
20 29 2.2346e-29 (9.71e-32) 2.1862e-29 (5.88e-45) − 2.1834e-29 (2.97e-45) − 2.9152e-30 (7.56e-30) − 0.0000e+0 (0.00e+0) −

DTLZ7

5 24 2.0167e+0 (3.51e-2) 1.6028e+0 (3.33e-1) − 1.5284e+0 (5.80e-2) − 1.9821e+0 (3.94e-2) ≈ 2.2666e+0 (3.10e-2) +
8 27 2.3221e+0 (1.61e-2) 1.4317e+0 (6.02e-2) − 2.6157e-1 (1.58e-1) − 1.3323e+0 (1.77e-1) − 1.5039e+0 (1.93e-1) −
10 29 2.4041e+0 (3.75e-2) 1.4387e+0 (5.79e-2) − 5.4562e-2 (5.82e-2) − 1.4074e-1 (3.05e-1) − 9.3581e-1 (2.80e-1) −
15 24 2.2840e+0 (1.72e-1) 1.4484e+0 (5.74e-2) − 6.4608e-4 (1.12e-3) − 7.0452e-1 (2.14e-1) − 3.1193e-4 (1.09e-3) −
20 29 1.7842+0 (1.98e-1) 1.2521e+0 (2.98e-2) ≈ 4.7367e-5 (1.09e-4) − 1.5099e-2 (3.36e-2) − 0.0000e+0 (0.00e+0) −

+/− / ≈ 1/30/4 1/32/2 4/30/1 10/25/0

”+”, ”-” and ”≈” indicate that the result is significantly better, significantly worse and statistically similar to that obtained by NSGA-II+AD, respectively.
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in Table 9, the HV results of WFG test instances are given. The best per-
forming algorithm is KnEA, which gets 25 best results and 5 second-best
results, respectively. It was closely followed by the VaEA. Although the
number of VaEA’s best results is far less than KnEA’s, its second-best solu-
tions account for the vast majority. For NSGA-II+AD, what we can observe
is that for problems with complicated fronts (such as WFG1 and WFG2),
and with higher dimensional objective space (such as 15-objective WFG4
and WFG9, 20-objective WFG4-WFG8, etc.), NSGA-II+AD achieve better
performance. For PICEAg, it performs best on the WFG3 with 8-objective
and 10-objective but struggles on other problems with high dimension. For
MaOEARD, it obtains worse HV values on almost all the test instances. Ac-
cording to statistical test, NSGA-II+AD is significantly superior to PICEAg,
MaOEARD, VaEA and KnEA on 24, 39, 15 and 12 test instances while it is
inferior to PICEAg, MaOEARD, VaEA and KnEA on 12, 0, 25 and 29 test
instances.

5.5. Visualization of Experimental Results

To intuitively illustrate the results in terms of convergence and diversity,
we chose 20-objective DTLZ5 and 10-objective WFG1 as examples. As shown
in Fig. 8, this figure plots the final solutions of one run with respect to the
20-objective DTLZ5 by the parallel coordinate [34]. This test problem has
a degenerate Pareto front. This particular run is associated with the result
which is the closest to the mean HV value. It is clear from Fig. 8 that the
solutions of GrEA, ε-MOEA, PICEAg, VaEA and KnEA fail to converge
into the optimal front. Although MOEA/D and MaOEAD can converge,
they struggle to maintain diversity, with their solutions converging into the
local area of the Pareto front. NSGA-II+AD and CDAS perform similarly.
The only difference is that the solutions obtained by the latter is slightly
more distributive than that of the former.

For the 10-objective WFG1, the final solutions obtained by all the al-
gorithms are shown in Fig. 9. It is clear from this figure that solutions of
NSGA-II+AD are with highest quality in terms of both the convergence
and extensity and the upper and lower bounds of obtained objective i are 0
and 2 · i, respectively. However, what needs to be pointed out is that some
middle regions of the Pareto front have not been covered by NSGA-II+AD.
For GrEA, MOEA/D and MaOEARD, their solutions converge to the local
area of Pareto front. The solutions obtained by PICEAg are better than the
above algorithms in terms of diversity, but fail to reach some regions of the
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Table 9: HV results (mean and SD) of the five algorithms on the DTLZ test suite. The
best and the second mean among the algorithms for each problem instance are highlighted
in gray background and bold, respectively.

Problem M D NSGA-II+AD PICEAg MaOEARD VaEA KnEA

WFG1

5 28 5.8425e+3 (1.20e+2) 5.5932e+3 (2.10e+2) ≈ 2.9457e+3 (9.42e+2) − 3.6534e+3 (3.27e+2) − 5.3553e+3 (2.17e+2) −
8 34 2.0632e+7 (9.97e+3) 2.0556e+7 (2.04e+5) ≈ 8.7541e+6 (2.84e+6) − 1.0082e+7 (6.91e+5) − 1.7777e+7 (1.07e+6) −
10 38 8.6472e+9 (3.12e+6) 8.6147e+9 (1.66e+7) − 3.0679e+9 (5.13e+8) − 3.8692e+9 (5.29e+8) − 7.4835e+9 (9.82e+8) −
15 48 1.3899e+17 (3.42e+13) 1.3780e+17 (3.51e+14) ≈ 3.4310e+16 (5.27e+15) − 5.2126e+16 (8.78e+15) − 9.5304e+16 (3.10e+16) −
20 58 1.0837e+25 (5.48e+23) 9.3357e+24 (9.63e+23) − 2.2579e+24 (4.35e+23) − 2.2954e+24 (1.93e+23) − 5.5775e+24 (1.79e+24) −

WFG2

5 28 6.0775e+3 (5.10e+0) 5.8561e+3 (1.18e+2) − 5.8616e+3 (7.37e+1) − 6.0942e+3 (1.27e+1) + 6.1076e+3 (9.39e+0) +
8 34 2.1991e+7 (2.89e+4) 2.0986e+7 (3.30e+5) − 2.0996e+7 (4.39e+5) − 2.1871e+7 (7.70e+4) − 2.1869e+7 (4.82e+4) −
10 38 9.5767e+9 (1.91e+7) 8.9992e+9 (7.87e+7) − 9.1639e+9 (9.48e+7) − 9.5260e+9 (3.12e+7) − 9.5188e+9 (2.85e+7) −
15 48 1.7696e+17 (2.46e+14) 1.6198e+17 (2.88e+15) − 1.6755e+17 (2.71e+15) − 1.7685e+17 (5.82e+14) − 1.7321e+17 (4.33e+15) −
20 58 1.6937e+25 (7.42e+22) 1.4574e+25 (1.96e+24) − 1.5722e+25 (1.39e+23) − 1.6994e+25 (8.08e+22) + 1.5911e+25 (5.28e+23) −

WFG3

5 28 2.8919e+0 (7.87e-2) 2.1822e+0 (2.36e-1) − 4.1796e-1 (5.60e-1) − 1.2350e+0 (1.88e-1) − 6.6087e-1 (2.44e-1) −
8 34 1.2908e-2 (3.55e-3) 2.0237e-2 (1.40e-3) + 0.0000e+0 (0.00e+0) − 5.5873e-3 (3.21e-3) − 0.0000e+0 (0.00e+0) −
10 38 1.0244e-5 (1.23e-5) 5.4966e-5 (4.30e-6) + 0.0000e+0 (0.00e+0) − 3.4609e-6 (5.45e-6) ≈ 0.0000e+0 (0.00e+0) −
15 48 0.0000e+0 (0.00e+0) 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈
20 58 0.0000e+0 (0.00e+0) 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈ 0.0000e+0 (0.00e+0) ≈

WFG4

5 28 4.0058e+3 (6.91e+0) 4.6777e+3 (5.79e+1) + 3.6140e+3 (2.85e+2) ≈ 4.5928e+3 (2.96e+1) + 4.7239e+3 (2.01e+1) +
8 34 1.6917e+7 (5.65e+4) 1.5379e+7 (1.59e+6) ≈ 1.1883e+7 (1.77e+6) − 1.8841e+7 (2.03e+5) + 1.9570e+7 (4.31e+1) +
10 38 7.8040e+9 (2.22e+7) 6.3983e+9 (9.73e+8) − 5.4068e+9 (6.07e+8) − 8.4124e+9 (7.01e+7) + 9.0679e+9 (2.10e+7) +
15 48 1.6394e+17 (9.19e+14) 1.0426e+17 (1.76e+16) − 9.7469e+16 (8.64e+15) − 1.5849e+17 (1.90e+15) − 1.7427e+17 (5.68e+14) +
20 58 1.5522e+25 (2.91e+23) 2.8922e+24 (1.48e+24) − 8.7864e+24 (7.92e+23) − 1.4978e+25 (2.10e+23) − 1.5953e+25 (1.18e+24) +

WFG5

5 28 3.7015e+3 (6.11e+0) 4.3438e+3 (7.25e+1) + 3.2694e+3 (9.48e+1) − 4.4000e+3 (3.11e+1) + 4.4746e+3 (2.37e+1) +
8 34 1.5620e+7 (5.19e+4) 1.3892e+7 (1.45e+6) − 1.1198e+7 (6.74e+5) − 1.7980e+7 (1.28e+5) + 1.8264e+7 (2.14e+5) +
10 38 7.1934e+9 (2.36e+7) 5.3548e+9 (4.91e+8) − 4.2400e+9 (5.70e+8) − 7.9657e+9 (5.48e+7) + 8.5046e+9 (1.84e+7) +
15 48 1.4525e+17 (4.62e+14) 8.0010e+16 (1.40e+15) − 7.3247e+16 (6.61e+15) − 1.4826e+17 (1.42e+15) + 1.6209e+17 (5.19e+14) +
20 58 1.4464e+25 (6.16e+22) 1.3207e+24 (5.01e+23) − 7.2920e+24 (1.51e+24) − 1.3868e+25 (1.53e+23) − 1.5656e+25 (5.44e+22) +

WFG6

5 28 3.5749e+3 (1.15e+2) 4.1717e+3 (9.65e+1) + 3.1614e+3 (1.42e+2) − 4.2615e+3 (1.27e+2) + 4.3131e+3 (9.29e+1) +
8 34 1.5341e+7 (5.06e+5) 1.5467e+7 (3.95e+5) + 1.0588e+7 (2.09e+6) − 1.7666e+7 (3.05e+5) + 1.7313e+7 (5.42e+5) +
10 38 6.8342e+9 (1.91e+8) 6.4936e+9 (4.02e+8) ≈ 3.8789e+9 (8.58e+8) − 7.8409e+9 (1.90e+8) + 8.2036e+9 (2.90e+8) +
15 48 1.3419e+17 (1.02e+16) 9.8257e+16 (1.25e+16) − 7.5573e+16 (1.35e+16) − 1.5069e+17 (6.68e+15) + 1.5742e+17 (5.62e+15) +
20 58 1.4053e+25 (5.95e+23) 1.1473e+24 (5.75e+23) − 5.9903e+24 (1.03e+24) − 1.3898e+25 (4.71e+23) ≈ 1.4872e+25 (3.97e+23) +

WFG7

5 28 3.9858e+3 (9.53e+0) 4.5915e+3 (8.07e+1) + 3.0065e+3 (1.93e+2) − 4.6946e+3 (3.23e+1) + 4.7836e+3 (2.67e+1) +
8 34 1.6659e+7 (5.30e+4) 1.8293e+7 (9.37e+5) + 8.7424e+6 (1.72e+6) − 1.9519e+7 (1.92e+5) + 1.9401e+7 (1.76e+5) +
10 38 7.7112e+9 (3.00e+7) 7.3057e+9 (6.83e+8) ≈ 2.6565e+9 (1.22e+9) − 8.7427e+9 (7.63e+7) + 9.0369e+9 (9.53e+7) +
15 48 1.5784e+17 (4.49e+14) 1.2212e+17 (1.60e+16) − 4.5887e+16 (1.48e+16) − 1.6464e+17 (3.06e+15) + 1.7526e+17 (7.36e+14) +
20 58 1.5078e+25 (3.64e+23) 1.1376e+25 (1.36e+24) − 4.2140e+24 (1.74e+24) − 1.5866e+25 (1.99e+23) + 1.5743e+25 (8.52e+23) +

WFG8

5 28 2.7521e+3 (2.14e+1) 3.7763e+3 (9.54e+1) + 2.7978e+3 (2.50e+2) ≈ 3.8525e+3 (7.94e+1) + 3.9084e+3 (7.31e+1) +
8 34 1.1255e+7 (3.14e+5) 1.5377e+7 (7.81e+5) + 1.0218e+7 (2.75e+6) ≈ 1.5410e+7 (2.48e+5) + 1.5959e+7 (4.45e+5) +
10 38 5.3731e+9 (4.30e+8) 6.8649e+9 (3.97e+8) + 4.6810e+9 (9.20e+8) ≈ 7.2276e+9 (1.09e+8) + 7.1055e+9 (6.84e+8) +
15 48 1.2511e+17 (9.49e+15) 1.1882e+17 (1.53e+16) − 8.1001e+16 (1.14e+16) − 1.4664e+17 (4.41e+15) + 1.3008e+17 (2.29e+16) ≈
20 58 1.3141e+25 (1.13e+24) 1.1328e+25 (1.73e+24) − 7.0935e+24 (1.22e+24) − 1.5167e+25 (1.84e+23) + 1.1869e+25 (2.86e+24) ≈

WFG9

5 28 3.9126e+3 (1.63e+1) 4.4570e+3 (6.68e+1) + 2.9265e+3 (1.58e+2) − 4.2752e+3 (1.20e+2) + 4.5746e+3 (2.80e+1) +
8 34 1.6211e+7 (2.65e+5) 1.5357e+7 (1.72e+6) ≈ 8.0088e+6 (8.92e+5) − 1.6527e+7 (1.20e+6) + 1.8495e+7 (8.91e+5) +
10 38 7.3481e+9 (2.07e+8) 5.7145e+9 (6.97e+8) − 3.4804e+9 (6.69e+8) − 6.9523e+9 (5.79e+8) − 8.1776e+9 (6.50e+8) +
15 48 1.3562e+17 (8.85e+15) 8.0756e+16 (1.63e+16) − 5.9948e+16 (1.15e+16) − 1.2948e+17 (1.13e+16) − 1.5123e+17 (1.32e+16) +
20 58 1.3019e+25 (5.80e+23) 8.2074e+24 (9.28e+23) − 5.5214e+24 (1.42e+24) − 1.3294e+25 (5.74e+23) + 1.3761e+25 (1.11e+24) +

+/− / ≈ 12/24/9 0/39/6 25/16/4 29/12/4

”+”, ”-” and ”≈” indicate that the result is significantly better, significantly worse and statistically similar to that obtained by NSGA-II+AD, respectively.
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Figure 8: The final solution set of the nine algorithms on the 20-objective DTLZ5, shown
by parallel coordinates. Where the abscissa represents the objective dimension and the
ordinate indicates the objective value.

Pareto front. For VaEA and KnEA, the solutions obtained by the former
is more extensive than the latter, but the latter is more uniform than the
former. The distribution of solutions obtained by CDAS is similar to that of
NSGA-II+AD, while our algorithm is better than CDAS in extensity.

In addition, this section extends the study on the selection pressure of
angle dominance in the objective space. Here we consider eight instances
based on the Pareto front of the problems 3 to demonstrate the average

3In the test instances selected in this paper, DTLZ2,DTLZ3 and DTLZ4 have the same
Pareto front, DTLZ5 and DTLZ6 have the same Pareto front, and the Pareto front of
WFG4-WFG9 are consistent.
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Figure 9: The final solution set of the six algorithms on the ten-objective WFG1, shown
by parallel coordinates. Where the abscissa represents the objective dimension and the
ordinate indicates the objective value.

number of solutions for all the nondominated layers. As shown in Fig. 10,
the distribution curve of nondominated solutions on all problems but WFG4
is consistent with that in Fig. 3(a). The phenomenon shown in the figure
is highly correlated with the results of HV. They all showed that NSGA-
AD is better than other algorithms in DTLZ1-7 and WFG1-WFG3, but its
performance is slightly inferior to the compared algorithms when facing the
same Pareto front as WFG4.

5.6. Discussions

The impressive results of NSGA-II+AD motivate us to deeply explore the
shortcomings of NSGA-II.
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Figure 10: The average number of solutions in all the nondominated layers under the angle
nondominated sorting, where the population size is 100, the number of runs is 30.

It is well known that as the number of objective increases, an increasingly
larger fraction of a population becomes non-dominated. Since NSGA-II dis-
tinguishes between solutions mainly by the Pareto dominance criterion, in
many-objective optimization there are not much room for identifying promis-
ing solutions. This slows down the search process and therefore NSGA-II
could become ineffective.

In addition, the crowding distance of NSGA-II does not provide good di-
versity of solutions in many-objective optimization, as the considered crowd-
ing distance fails to accurately evaluate the crowding degree of solutions
when the number of the objectives is greater than two. For the case M = 2,
crowding is simply measured as the Manhattan distance between neighboring
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solutions pi−1 and pi+1. For M ≥ 3, however, the analogy does not hold, be-
cause objectives are processed independently and nearest neighbor solutions
may change for each objective.

In this paper, our main work is to alleviate the first difficulty mentioned
above by using angle dominance that appropriately expands the solution’s
dominance area. For the second difficulty mentioned above, the improvement
measures can be found in [15].

6. Conclusions

Many-objective optimization brings enormous challenges to the EMO
community because the Pareto dominance criterion is ineffective in a high-
dimensional space. In this paper, we have proposed an angle dominance
approach to deal with MaOPs. Converting many objectives of a given prob-
lem into angle vectors, angle dominance can achieve a good balance between
convergence and extensity.

Systematic experiments have been carried out based on the two test suites
(e.g., DTLZ and WFG). From the comparative results, it has been shown
that after the implementation of angle dominance, NSGA-II achieves an im-
provement of performance with varying dimensions. Moreover, five state-of-
the-art MOEAs (i.e., GrEA, PICEAg, MaOEARD, MOEAD and ε-MOEA)
have been used to compare with the angle dominance based NSGA-II (de-
noted NSGA-II+AD). The experimental results show that NSGA-II+AD is
very competitive against the peer algorithms in terms of providing a good
balance between convergence and diversity.

As a new dominance approach in EMO, angle dominance takes account
of convergence and extensity. Angle dominance divides the population into
many smaller sub-populations by comparing angle vectors, where the con-
vergence and extensity of solutions are kept in the first layers.

Despite the high competitiveness of angle dominance shown in our first
attempt, more work is needed to further investigate its benefits and limita-
tions. Although angle dominance is not sensitive to the parameter, an adap-
tive technology on the parameter would be better when addressing varying
problems. Taking uniformity into consideration will also be a focus of our
subsequent study.
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Appendix A. Explain Why ε-Dominance May Eliminate Several
Viable Solutions

This appendix provides a detailed description why ε-dominance may elim-
inate several viable solutions.

In 2002, Laumanns et al. proposed a loosening dominance for MOEAs,
called ε-dominance. Subsequently, many ε-dominance-based algorithms have
been proposed, such as ε-NSGA-II [28] and ε-MOEA [9], etc. This criterion
serves as an archiving strategy to ensure both properties of convergence to-
wards the Pareto-optimal front and properties of diversity among the solu-
tions found. Since this criterion guarantees that no two archived solutions are
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within an εi value from each other in the i-th objective, the ε value is usually
provided by the decision maker to control the size of the solution set. Nev-
ertheless, due to the geometrical characteristics of the Pareto-optimal front
are commonly unknown by the decision maker, the ε-dominance criterion
may lose a large number of viable solutions when the ε value is imperfectly
estimated.

Another limitation of ε-dominance is the fact that it may lose solutions
located on segments of the Pareto front that are almost horizontal or almost
vertical, as well as the extreme points of the Pareto front. This has a negative
impact on the spread of solutions along the Pareto front.

To illustrate the above phenomenon more directly, we referenced the ex-
ample in [20].
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Figure A.11: Illustration of the limitations of ε-dominance, where the objective space
is divided into 400 grids (maximum capacity of 20 points) and the objective function is
x2 + y2 = 1 in the figure. This grid allows a maximum of 12 points; the other 8 points are
lost because either the extreme points are easily ε-dominated.)

As shown in Figure A.11, the objective space are divided into 400 grids,
which means that the objective space can accommodate up to 20 points (here
the example in [20], However being borrowed). The ε-dominance only gets up
to 12 points in the space and other 8 points are lost because either the extreme
points are easily ε-dominated or the precision of the grid is insufficient.

Appendix B. Explain Why Cone ε-Dominance Can Promote Both
Convergence And Uniformity

In this appendix, we will analyze in detail why cone ε-dominance can
promote both convergence and uniformity.
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(a) concave front (b) convex front (c) Disconnected front

Figure B.12: Illustration of the characteristic of cone ε-dominance, where the objective
space is divided into 25 grids and the optimal Pareto fronts given are concave, convex and
disconnected, respectively. (a) In the concave front, the size of obtained points equals to
the maximum non cone ε-dominated points. (b) In the convex front, It can also get the
largest non cone ε-dominated points. (c) In the disconnected front, as the same as (a) and
(b), each grid touched by the front has one point.

The cone ε-dominance criterion has been proposed by Batista et al. [4].
Similar to the ε-dominance, the cone ε-dominance criterion guarantees that
no two achieved solutions are within an εi value from each other in the i-
th objective. Besides, if two points share the same grid, the point is only
replaced by a dominating one or by another point closest to the origin of the
grid. These characteristics show that the cone ε-dominance can maintain
a good distribution and convergence of the population. Besides, the cone
ε-dominance introduces a parameter k to control the dominance area so that
the loss of extreme points of the Pareto front and points located in segments
of the Pareto front that are almost horizontal or vertical can be avoided.

In general, if any connected monotonic front exists between the extreme
grids of the hypergrid, then the number of grids that are touched by this front
is maximum. Figure B.12(a),(b) illustrate two possible situations in which
the number of estimated cone ε-Pareto solutions is maximum, i.e., convex
Pareto front and concave Pareto front. For both cases, the number of esti-
mated points is nine (the maximum of non cone ε-dominated points is nine).
Figure B.12(c) presents a possible situation in which a disconnected front has
been stated. For this case, the maximum size of non cone ε-dominated points
cannot be reached. However, it is likely to estimate one solution from each
gird touched by the front. The ε-dominance criterion, on the other hand,
can only achieve the upper bound for the number of points allowed by a grid
when the real Pareto front is linear [20].
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