
ar
X

iv
:1

80
9.

08
30

3v
1 

 [
m

at
h.

FA
] 

 2
1 

Se
p 

20
18

Sharp bounds of Jensen type
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Abstract

In this paper we provide two-sided attainable bounds of Jensen type for the gen-

eralized Sugeno integral of any measurable function. The results extend the previous

results of Román-Flores et al. for increasing functions and Abbaszadeh et al. for convex

and concave functions. We also give corrections of some results of Abbaszadeh et al. As

a by-product, we obtain sharp inequalities for symmetric integral of Grabisch. To the

best of our knowledge, the results in the real-valued functions context are presented for

the first time here.

Keywords: Jensen inequality; Sugeno integral; Shilkret integral; q-integral; seminormed

fuzzy integral; monotone measure.

1 Introduction

Let (X,A) be a measurable space, where A is a σ-algebra of subsets of a nonempty set X.

A monotone measure on A is a nondecreasing set function µ : A → R+, i.e. µ(A) 6 µ(B)

whenever A ⊂ B with µ(∅) = 0, where R+ = [0,∞]. We denote the range of µ by µ(A)

and the class of all monotone measures on (X,A) by M(X,A). The class of all A-measurable

functions f : X → Y is denoted by F(X,Y ), where Y ⊂ R+. A binary map ◦ : R+ ×R+ → R+

is said to be nondecreasing if a ◦ b 6 c ◦ d for all a 6 c and b 6 d. The generalized Sugeno

integral of f ∈ F(X,R+) on A ∈ A is defined as

∫

◦,A

f dµ := sup
t>0

{
t ◦ µ(A ∩ {f > t})

}
, (1)
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where {f > t} = {x ∈ X : f(x) > t}, µ is a monotone measure on A and ◦ is a nondecreasing

binary map. Commonly encountered examples of the generalized Sugeno integral include the

Sugeno integral [34]

−
∫

A

f dµ = sup
t>0

{
t ∧ µ(A ∩ {f > t})

}
, (2)

the Shilkret integral [32]
∫

·,A

f dµ = sup
t>0

{
t · µ(A ∩ {f > t})

}
,

the q-integral [11, 12] and the seminormed fuzzy integral [5, 33]. Here and subsequently,

a ∧ b = min(a, b) and a ∨ b = max(a, b).

One of the most important inequalities in mathematics, economics and information theory

is the Jensen inequality. The classical integral form of Jensen inequality states that
∫

X

H(f(x))P(dx) > H
(∫

X

f(x)P(dx)
)
, (3)

where (X,A,P) is a probability measure space, H is a real-valued convex function on an

interval I of the real line, f(x) ∈ I for all x and f ∈ L1(P). Numerous applications of the

Jensen inequality are presented in [25, 30].

Given a function H and nondecreasing binary operations ◦, ⋆, we say that a lower Jensen

type bound holds for the generalized Sugeno integral if there exists a function Ĥ such that

for any f ∈ F(X,Y )

∫

◦,A

H(f) dµ > Ĥ
( ∫

⋆,A

f dµ
)
. (4)

Replacing “>” with “6” in (4) gives an upper Jensen type bound. The study of Jensen

type inequalities for the Sugeno integral was initiated by Román-Flores and Chalco-Cano

[31]. They provided bounds for strictly monotone nonnegative real functions and continuous

monotone measure. Since then, the fuzzy integral counterparts of the Jensen inequality have

been studied by Caballero and Sadarangani [7], Daraby and Rahimi [9], as well as Jaddi et

al. [19]. Kaluszka et al. [21] presented necessary and sufficient conditions for the validity of

Jensen type inequalities for the generalized Sugeno integrals under monotonicity condition.

As one of the referees pointed out, the result of Theorem 3.1 in [19] is a special case of

Theorem 2.3 in [21]. Indeed, if H : Y → Y is a differentiable convex function with H ′(y) > 1

for each y ∈ Y, then it is nondecreasing and left-continuous on Y, thus the result (necessary

and sufficient condition for the Jensen integral inequality) follows from [21, Theorem 2.3].

Corollaries 3.2, 3.3 and 3.4 from [19] are in fact the results from [21] after Theorem 2.3

2



therein. Moreover, the assumption on continuity of monotone measure µ is also a superfluous

constraint in [19]. Also, the result for the discrete case (Theorem 4.1 in [19]) is immediate.

Abbaszadeh et al. [1] obtained new Jensen type inequalities using concavity/convexity

of H, but some of these results are not valid (see counterexamples below). Generalizations

of Jensen integral inequality for the pseudo-integral are proven by Pap and Štrboja [29].

Agahi et al. [2] extended the Jensen type inequality on g-expectation with general kernels.

Costa [8] provided fuzzy versions of Jensen inequalities type integral for convex and concave

fuzzy-interval-valued functions.

In this article, we use a new method of proof to establish some Jensen type inequalities for

the generalized Sugeno integral of any measurable function H. We also improve and correct

the Jensen type inequalities for the Sugeno integral previously proposed in the literature.

Moreover, we give the Jensen type bounds for the symmetric Sugeno integral introduced by

Grabisch [13], which have not been considered in the literature so far.

The paper is organized as follows. In Section 2, we derive sharp lower and upper bounds

for the generalized Sugeno integral and nonnegative function H without the assumptions

of convexity, concavity or monotonicity of H . In Section 3, we deduce some Jensen type

bounds from a Liapunov type inequality for nonnegative concave functions. Our final section

provides a Jensen type inequality for the ⋆-symmetric Sugeno integral having both upper and

lower estimates.

2 Jensen type bounds for nonnegative functions

We say that a monotone measure µ is weakly subadditive on A ∈ A, if µ(A) 6 µ(A ∩ B) +

µ(A ∩ Bc) for all B, where Bc = X\B. A measure µ is weakly superadditive on A, if “6”

is replaced by “>” in the definition of weak subadditivity on A. Clearly, any subadditive

measure is weakly subadditive on any measurable set A, but a weakly subadditive measure

need not be subadditive. For example, the monotone measure µ on X = {1, 2, 3} defined

by µ({1, 2, 3}) = 2, µ({k}) = 0.5 and µ({k, l}) = 1 for all k, l, is not subadditive while it is

weakly subadditive on A = {1, 2}.
Throughout the paper, infH(A) = inf

y∈A
H(y), supH(A) = sup

y∈A
H(y), infH = infH(R+),

and supH = supH(R+) for any function H : R+ → R+ and A ⊂ R+. Denote by H(p−) and

H(p+) the lower left-hand limit and the lower right-hand limit of H at p, respectively, that

is, H(p−) = lim
ε→0

infH((p− ε, p)) and H(p+) = lim
ε→0

infH((p, p+ ε)). Hereafter, H(0−) = 0.

First, we give lower bounds of Jensen type.

Theorem 2.1. Suppose that ◦ : R+ × R+ → R+ is a nondecreasing map such that a ◦ 0 = 0

for all a and x 7→ x ◦ y is a left-continuous function for any fixed y. Suppose also that
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f,H(f) ∈ F(X,R+) and p = −
∫
A
f dµ < ∞.

(i) The following inequality holds

∫

◦,A

H(f) dµ >
[(
H(p−) ∧ infH([p,∞])

)
◦ p

]
∨
[
infH ◦ µ(A)

]
. (5)

There is equality in (5) for f = µ(A)1A if H is left-continuous at p and H(p) =

infH([p,∞]).

(ii) If µ is weakly subadditive on A, then

∫

◦,A

H(f) dµ >
[(
H(p+) ∧ infH([0, p])

)
◦ (µ(A)− p)

]
∨
[
infH ◦ µ(A)

]
. (6)

The equality holds in (6) if f = y01A, H is right-continuous at p, H(p) = infH([0, p])

and H(y0) = infH for some y0.

Proof. (i) Assume that p > 0, as the bound (5) is trivial for p = 0. Let h(ε) = infH([p−ε,∞])

for ε ∈ (0, p). Define H0(s) = infH for s < p − ε and H0(s) = h(ε) for s > p − ε. Clearly,

H(s) > H0(s) for all s ∈ R+. Thus, we have from the monotonicity of the generalized Sugeno

integral that
∫

◦,A

H(f) dµ >

∫

◦,A

H0(f) dµ = sup
06t6inf H

{t ◦ µ(A)} ∨ sup
t>inf H

{t ◦ µ(A ∩ {H0(f) > t})}

=
[
infH ◦ µ(A)

]
∨
[
h(ε) ◦ µ(A ∩ {H0(f) > h(ε)})

]

=
[
infH ◦ µ(A)

]
∨
[
h(ε) ◦ µ(A ∩ {f > p− ε})

]
.

It is well known that µ(A ∩ {f > y}) > p for all y < p, where p = −
∫
A
f dµ (see [37, Lemma

9.7]). Therefore,
∫

◦,A

H(f) dµ >
[
infH ◦ µ(A)

]
∨
[
h(ε) ◦ p

]
.

By left-continuity of x 7→ x ◦ p and monotonicity of h(ε), we obtain
∫

◦,A

H(f) dµ >
[
infH ◦ µ(A)

]
∨ lim

ε→0

[
h(ε) ◦ p

]

=
[
infH ◦ µ(A)

]
∨
[
lim
ε→0

h(ε) ◦ p
]

=
[
infH ◦ µ(A)

]
∨
[(
H(p−) ∧ infH([p,∞])

)
◦ p

]
. (7)

Equality holds in (7) for f = µ(A)1A provided that H is left-continuous at p and H(p) =

infH([p,∞]).
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(ii) Let h(ε) = infH([0, p+ ε]) for all ε > 0. Put H0(s) = infH if s > p+ ε and H0(s) = h(ε)

if s 6 p+ ε. Weak subadditivity of µ implies that
∫

◦,A

H(f) dµ >

∫

◦,A

H0(f) dµ =
[
infH ◦ µ(A)

]
∨ sup

t>inf H
{t ◦ µ(A ∩ {H0(f) > t})}

=
[
infH ◦ µ(A)

]
∨
[
h(ε) ◦ µ(A ∩ {f 6 p+ ε})

]

>
[
infH ◦ µ(A)

]
∨
[
h(ε) ◦ (µ(A)− µ(A ∩ {f > p+ ε}))

]
.

It follows from [37, Lemma 9.7] that µ(A ∩ {f > y}) 6 p < ∞ for all y > p. By the

monotonicity of h(ε) and left-continuity of map y 7→ y ◦ (µ(A)− p), we get
∫

◦,A

H(f) dµ >
[
infH ◦ µ(A)

]
∨ lim

ε→0

[
h(ε) ◦ (µ(A)− p)

]

=
[
infH ◦ µ(A)

]
∨
[
(H(p+) ∧ infH([0, p])) ◦ (µ(A)− p)

]
. (8)

There is equality in (8) for f = y01A, if H is right-continuous at p, H(y0) = infH and

H(p) = infH([0, p]). Here and subsequently, ∞ · 0 = 0.

Remark 2.1. The bound (5) (resp. (6)) is sharp for each p, if function H is nondecreasing and

left-continuous (resp. nonincreasing and right-continuous). Moreover, if µ is a subadditive

monotone measure and H is a continuous function, then H(p−) = H(p+) = H(p) and we

have from (5) and (6) that
∫

◦,A

H(f) dµ >
[
infH([p,∞]) ◦ p

]
∨
[
infH([0, p]) ◦ (µ(A)− p)

]
∨
[
infH ◦ µ(A)

]
. (9)

Assume additionally that H is quasiconvex, that is, H is nonincreasing on [0, a] and nonde-

creasing on [a,∞] for some a ∈ (0,∞) [6, p. 99]. Then the bound (9) is attainable for every

p as H(p) = infH([p,∞]) or H(p) = infH([0, p]).

Now we provide some consequences of Theorem 2.1 for the Sugeno integral.

Corollary 2.1. Assume that H : R+ → R+ is nondecreasing and left-continuous at p, where

p = −
∫
A
f dµ < ∞ and f ∈ F(X,R+). Then the following sharp bound holds

−
∫

A

H(f) dµ > H(p) ∧ p. (10)

Proof. Apply Theorem 2.1 (i) with ◦ = ∧. Inequality (10) is attainable if f = µ(A)1A.

Corollary 2.1 generalizes Corollary 3.3 of [3], Lemma 1 of [7] and [21, Theorem 2.1] for

◦ = ⋆ = ∧ and Y = R+.

The following example shows that the equality in (10) may be achieved by a nonconstant

function f.
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Example 2.1. Let X = R+, A = {1, 2, 3, 4, 5} and µ be the counting measure on R+, which

means that µ(B) = ∞, if B is an infinite subset of R+ and µ(B) = card(B), if B is a finite

subset of R+. Take H(x) = x2/3 and f(x) = x. Then

−
∫

A

f dµ = sup
t>0

{t ∧ µ(A ∩ {f > t})} = max
i∈A

{i ∧ (6− i)} = 3,

−
∫

A

H(f) dµ = max
i∈A

{
(i2/3) ∧ (6− i)

}
= 3,

so the bound (10) is reached if f(x) = x.

The next Corollary is a corrected version of Theorem 5.1 in [1].

Corollary 2.2. Suppose that H : R+ → R+ is a convex function which attains its infimum

at point a. The sharp inequality

−
∫

A

H(f) dµ > H(p) ∧ p (11)

holds for any f ∈ F(X,R+) such that p = −
∫
A
f dµ ∈ [a,∞).

It is easy to check that Theorem 5.1 in [1] is not true without the additional assumption that

ϕ′(p) = 1, but this assumption implies that ϕ(p) 6 ϕ′(p)p = p, where we follow the notation

in [1].

Counterexample 2.1. Let us consider the space ([0, 5],A, µ) with the Lebesgue measure

µ. Take ϕ(x) = (x − 0.5)2 and f(x) = x. Clearly, ϕ is a differentiable convex function and

ϕ(x) 6 xϕ′(x) for x ∈ [0, 5]. All assumptions of Theorem 5.1 from [1] are satisfied. It is easy

to check that −
∫
[0,5]

f dµ = supt>0 {t ∧ (5− t)} = 2.5 and

−
∫

[0,5]

ϕ(f) dµ = sup
t∈[0, 0.25)

{
t ∧ (5− 2

√
t)
}
∨ sup

t∈[0.25, 4.52]

{
t ∧ (4.5−

√
t)
}

=
10−

√
19

2
∈ (2.82, 2.821).

Thus, ϕ
(
−
∫
[0,5]

f dµ
)
= 4 > −

∫
[0,5]

ϕ(f) dµ. Note that ϕ′
(
−
∫
[0,5]

f dµ
)
= 4 6= 1, but (11) holds, i.e.

−
∫

A

ϕ(f) dµ > ϕ(p) ∧ p = 2.5.

Next we provide a lower bound of Jensen type for the Shilkret integral.

Corollary 2.3. If H : R+ → R+ is nondecreasing left-continuous at p = −
∫
A
f dµ, where

f ∈ F(X,R+) and µ(A) < ∞, then the following attainable bound is valid
∫

·,A

H(f) dµ > H(p)p. (12)
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Proof. Setting ◦ = · in Theorem 2.1 (i), we get
∫

·,A

H(f) dµ >
[
(H(p) ∧H(p)) · p

]
∨
[
H(0) · µ(A)

]
> H(p)p.

Example 2.2. Let X = [0, 1] and µ = λq, where λ is the Lebesgue measure and q > 0. Take

H(x) = x1/q and f(x) = xq. Then

−
∫

X

f dµ = sup
06t61

{t ∧ (1− t1/q)q} = 0.5q,

∫

·,X

H(f) dµ = sup
06t61

{t · (1− t)q} =
1

q

(
q

1 + q

)q+1

.

We get from (12) that
∫
·,X

H(f) dµ > 0.5q+1.

Example 2.3. Using Corollary 2.3 for H(x) = ax, a > 0, we obtain the following inequality

for the Shilkret integral
∫

·,A

f dµ >

(
−
∫

A

f dµ
)2

,

where f ∈ F(X,R+). This bound is obvious (see the geometric interpretation of the Sugeno

integral and the Shilkret integral), but it shows that the equality in (5) may hold not only

for piecewise constant functions f when ◦ = ·.

Recall that a nondecreasing map ⊗ : [0, 1]2 → [0, 1] is said to be a fuzzy conjunction if

1⊗ 1 = 1 and 0⊗ 1 = 1⊗ 0 = 0⊗ 0 = 0 (see [12, Definition 2]). The special case of the fuzzy

conjunction is a semicopula, which has extra limit conditions a ⊗ 1 = 1 ⊗ a = a (cf. [16]).

Dubois et al. [11] introduced and studied the q-integral defined as
∫ ⊗

µ

f = sup
t∈[0,1]

{
µ({f > t})⊗ t

}
, (13)

where ⊗ denotes a fuzzy conjunction, f ∈ F(X,[0,1]) and X is a finite set (see also [12]). This

definition is motivated by alternative ways of using weights of qualitative criteria in min- and

max-based aggregations, that make intuitive sense as tolerance thresholds. In the literature,

we can find Jensen type bounds for q-integral if H is a nondecreasing function (see [21,

Theorems 2.1-2.3 and Theorem 3.3]). Now we give their counterparts for a quasiconvex

function H .
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Corollary 2.4. Assume that a fuzzy conjunction ⊗ is left-continuous in the second coordi-

nate, µ(A) ⊂ [0, 1] and H : [0, 1] → [0, 1] is a quasiconvex function which attains its infimum

at point a0. Then, for all f ∈ F(X,[0,1]) such that p =
∫ ⊗

µ
f ∈ [a0, 1], we have

∫ ⊗

µ

H(f) > p⊗H(p−).

Proof. Put a ◦ b = (b ∧ 1)⊗ (a ∧ 1) in (1). Note that a ◦ 0 = 0 as 0 6 0⊗ a 6 0⊗ 1 = 0 for

all a. Moreover,
∫ ⊗

µ

H(f) = sup
t∈[0,1]

{t ◦ µ({H(f) > t})} = sup
t>0

{t ◦ µ({H(f) > t})} =

∫

◦,X

H(f) dµ.

The assertion follows from Theorem 2.1 (i).

Applying Theorem 2.1 one can also obtain lower bounds by means of
∫
◦,A

f dµ instead of

the Sugeno integral.

Corollary 2.5. Assume that a semicopula S: [0, 1]2 → [0, 1] is left-continuous in the first co-

ordinate, µ(A) ⊂ [0, 1] and H : [0, 1] → [0, 1] is a left-continuous and nondecreasing function

on [a0, 1] for some a0 ∈ [0, 1]. Then the following sharp inequality for the seminormed fuzzy

integral holds for all f ∈ F(X,[0,1])

∫

S,A

H(f) dµ > S(H(pS), pS),

where pS :=
∫
S,A

f dµ ∈ [a0, 1].

Proof. Take a ◦ b = S(a ∧ 1, b ∧ 1) in (1). It is clear that
∫

◦,A

f dµ =

∫

S,A

f dµ = sup
t∈[0,1]

S
(
t, µ(A ∩ {f > t})

)
.

As S(a, b) 6 a∧ b for all a, b, we have a0 6 pS 6 −
∫
A
f dµ 6 1. Moreover, from Theorem 2.1 (i)

and monotonicity of H on [a0, 1] we get
∫

S,A

H(f) dµ > S
(
H
(
−
∫

A

f dµ
)
,−
∫

A

f dµ
)
> S(H(pS), pS).

This bound is reached for f = µ(A)1A if S(µ(A), µ(A)) = µ(A).

Next we find some upper bounds of Jensen type. Let H : R+ → R+ be a Borel measurable

function. Denote by H(p−) and H(p+) the upper left-hand limit and the upper right-hand

limit of H at p, respectively, that is, H(p−) = lim
ε→0

supH((p − ε, p)) with H(0−) = 0, and

H(p+) = lim
ε→0

supH((p, p+ ε)).
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Theorem 2.2. Let ◦ : R+ × R+ → R+ be a nondecreasing map such that x 7→ x ◦ y is

right-continuous for any fixed y and a ◦ 0 = 0 for all a. Assume that f,H(f) ∈ F(X,R+) and

p = −
∫
A
f dµ < ∞.

(i) The following bound is valid
∫

◦,A

H(f) dµ 6
[(
H(p+) ∨ supH([0, p])

)
◦ µ(A)

]
∨
[
supH ◦ p

]
. (14)

The equality holds in (14) for f = y01A if H is right-continuous at p, H(p) = supH([0, p])

and H(y0) = supH for some y0.

(ii) If µ is weakly superadditive on A, then
∫

◦,A

H(f) dµ 6
[(
H(p−) ∨ supH([p,∞])

)
◦ µ(A)

]
∨
[
supH ◦ (µ(A)− p)

]
. (15)

The equality in (15) is attained for f = µ(A)1A if H is left-continuous at p and H(p) =

supH([p,∞]).

Proof. (i) Let h(ε) = supH([0, p + ε]) for all ε > 0. Put H0(s) = supH for s > p + ε and

H0(s) = h(ε) for s 6 p+ ε. Evidently, H(s) 6 H0(s) for all s. Therefore
∫

◦,A

H(f) dµ 6

∫

◦,A

H0(f) dµ = sup
06t6h(ε)

{t ◦ µ(A)} ∨ sup
t>h(ε)

{t ◦ µ(A ∩ {H0(f) > t})}

=
[
h(ε) ◦ µ(A)

]
∨
[
supH ◦ µ(A ∩ {f > p+ ε})

]
.

As µ(A ∩ {f > y}) 6 p for y > p, we get, from the right-continuity of x 7→ x ◦ p, that
∫

◦,A

H(f) dµ 6
[(
H(p+) ∨ supH([0, p])

)
◦ µ(A)

]
∨
[
supH ◦ p

]
. (16)

The equality holds in (16), if H is right-continuous at p, H(p) > supH([0, p]), and f = y01A,

where y0 is such that H(y0) = supH.

(ii) As the bound (15) is obvious for p = 0, we assume that p > 0. Put h(ε) = supH([p−
ε,∞]) for ε ∈ (0, p). Set H0(s) = supH for s < p− ε and H0(s) = h(ε) for s > p− ε. Since

H(s) 6 H0(s) for all s, we get
∫

◦,A

H(f) dµ 6

∫

◦,A

H0(f) dµ =
[
h(ε) ◦ µ(A)

]
∨
[
supH ◦ µ(A ∩ {f < p− ε})

]
.

Clearly, µ(A) > µ(A ∩ {f < p− ε}) + µ(A ∩ {f > p− ε}) and µ(A ∩ {f > p− ε}) > p, so
∫

◦,A

H(f) dµ 6
[
h(ε) ◦ µ(A)

]
∨
[
supH ◦ (µ(A)− p)

]
.

Taking the limit as ε → 0, we obtain (15) with equality if H is left-continuous at p, H(p) >

supH([p,∞]) and f = µ(A)1A.
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Remark 2.2. The bound (14) (resp. (15)) is sharp for each p, if H is a nondecreasing right-

continuous function (resp. nonincreasing left-continuous function). Given a superadditive

monotone measure µ and a continuous quasiconcave function H, Theorem 2.2 implies that∫

◦,A

H(f) dµ 6
[
supH([0, p]) ◦ µ(A)

]
∨
[
supH([p,∞]) ◦ µ(A)

]

∨
[
supH ◦ p

]
∨
[
supH ◦ (µ(A)− p)

]
(17)

and the bound (17) is sharp for every p.

The following result is an immediate consequence of Theorem 2.2.

Corollary 2.6. Assume that a continuous function H is increasing on [0, c] and decreasing

on [c,∞], where c ∈ [a, b] ⊂ R+. If f ∈ F(X,[a,b]) and p = −
∫
A
f dµ 6 c, then

−
∫

A

H(f) dµ 6 (H(p) ∨ p) ∧H(c) ∧ µ(A).

Moreover, if c < p < ∞ and µ is a weakly superadditive monotone measure on A, then

−
∫

A

H(f) dµ 6
(
H(p) ∨ (µ(A)− p)

)
∧H(c) ∧ µ(A).

Proof. Recall that −
∫
A
f dµ 6 µ(A). Apply Theorem 2.2 with ◦ = ∧ and observe that (H(p)∧

µ(A))∨(H(c)∧p) = (H(p)∨p)∧H(c)∧µ(A) for p 6 c and (H(p)∧µ(A))∨(H(c)∧(µ(A)−p)) =

(H(p) ∨ (µ(A)− p)) ∧H(c) ∧ µ(A) for p > c.

As some nondecreasing binary maps ◦ are not left-continuous (see e.g. [23, Example 1.24]),

we provide modifications of Theorems 2.1 and 2.2, which hold true without any continuity

assumption on ◦. Let us recall that a monotone measure µ is continuous from below (resp.

from above) if lim
n→∞

µ(An) = µ( lim
n→∞

An) for all An ∈ A such that An ⊂ An+1 (resp. An+1 ⊂
An) for n ∈ N. We say that µ is continuous, if it is both continuous from below and from

above. The following result generalizes Theorem 1 in [31].

Theorem 2.3. Let H : R+ → R+ and ◦ : R+ × R+ → R+ be a nondecreasing map such that

a ◦ 0 = 0 for all a, f ∈ F(X,R+) and p = −
∫
A
f dµ < ∞. Let µ be a continuous monotone

measure on X.

(i) The following inequalities hold true
∫

◦,A

H(f) dµ >
[
infH([p,∞]) ◦ p

]
∨
[
infH ◦ µ(A)

]
, (18)

∫

◦,A

H(f) dµ 6
[
supH([0, p]) ◦ µ(A)

]
∨
[
supH ◦ p

]
. (19)

There is equality in (18) for f = µ(A)1A if H(p) = infH([p,∞]). Equality holds in

(19) if f = y01A, H(p) = supH([0, p]) and H(y0) = supH for some y0.

10



(ii) If µ is weakly subadditive on A, then
∫

◦,A

H(f) dµ >
[
infH([0, p]) ◦ (µ(A)− p)

]
∨
[
infH ◦ µ(A)

]
. (20)

The bound (20) is reached by f = y01A if H(p) = infH([0, p]) and H(y0) = infH for

some y0.

(iii) If µ is weakly superadditive on A, then
∫

◦,A

H(f) dµ 6
[
supH([p,∞]) ◦ µ(A)

]
∨
[
supH ◦ (µ(A)− p)

]
. (21)

The equality is attained in (21) for f = µ(A)1A if H(p) = supH([p,∞]).

Proof. The proof of Theorem 2.3 is similar to those of Theorem 2.1 and 2.2; just put ε = 0

and use the fact that if µ is a continuous monotone measure, then µ(A ∩ {f > p}) > p and

µ(A ∩ {f > p}) 6 p. The last statement follows easily from the bounds µ(A ∩ {f > y}) > p

for y < p and µ(A ∩ {f > y}) 6 p for y > p (see also [37, Lemma 9.5]).

Note that the bounds in Theorem 2.3 may be better than their counterparts in Theorems

2.1 and 2.2.

Example 2.4. Let µ be the Lebesgue measure on X = [0, 2]. If f(x) = x and H(x) =

0.51{1}(x) + x2
1(1,2](x), then p = −

∫
X
f dµ = 1 and −

∫
X
H(f) dµ = 1. Inequality (5) gives us

the trivial bound −
∫
X
H(f) dµ > 0, as H(1−) = 0, while from (18) we get −

∫
X
H(f) dµ > 0.5.

Remark 2.3. Corollary 3.6 of [1] gives the upper bound for the Sugeno integral of a concave

function, but the following counterexample shows that the result is false if m > 0, where

m ∈ ∂ϕ(p). We follow the notation of [1]. Let X = A = [0, 1] and µ be the Lebesgue measure.

Take ϕ(x) =
√
x and f(x) = 0.5x. Then f(X) = [0, 0.5], p = 1/3 and m = ϕ′(p) = 0.5

√
3 > 0.

By Corollary 3.6 in [1] we get

−
∫

A

ϕ(f) dµ 6
m

m+ 1
(0.5− p) +

1

m+ 1
ϕ(p). (22)

An easy computation shows that −
∫
A
ϕ(f) dµ = 0.5 and the right-hand side of (22) is approx-

imately equal to 0.39, so inequality (22) is invalid.

3 Jensen inequalities for nonnegative concave functions

In this section we give some Liapunov type inequalities, that is, we evaluate the integral
∫
◦,A

H(f) dµ by means of integrals
∫
◦,A

G(f) dµ and
∫
•,A

f dµ. As a consequence, we obtain

some new Jensen type inequalities for nonnegative concave functions.
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Theorem 3.1. Let ◦, • : R+ × R+ → R+ be nondecreasing maps such that a ◦ 0 = a • 0 = 0

for all a. Let H : R+ → R+, µ ∈ M(X,A), A ∈ A, f ∈ F(X,R+) and p =
∫
•,A

f dµ < ∞.

Assume that (a + b) ◦ c 6 (a ◦ c) + (b ◦ c) for all a, b, c. If there exists mp ∈ R such that

H(y) 6 H(p) +mp(y − p) for y > 0, then the following attainable bound holds true
∫

◦,A

H(f) dµ 6 inf
c∈R

{[(
H(p) +mp(c− p)

)+ ◦ µ(A)
]
+

∫

◦,A

(mp(f − c))+ dµ
}
, (23)

where a+ = a ∨ 0.

Proof. By the assumption on H , we obtain
∫

◦,A

H(f) dµ 6

∫

◦,A

(
H(p) +mp(c− p) +mp(f − c)

)
dµ

6

∫

◦,A

[(
H(p) +mp(c− p)

)+
+
(
mp(f − c)

)+]
dµ, (24)

where c ∈ R. It is easy to check that the generalized Sugeno integral has the scale translation

property, i.e.,
∫

◦,A

(a + f) dµ 6 (a ◦ µ(A)) +
∫

◦,A

f dµ (25)

for all a > 0 under the condition (x + y) ◦ z 6 (x ◦ z) + (y ◦ z) for all x, y, z > 0 (see

[4]). Inequality (23) follows from (24) and (25). Bound (23) is reached by the function

f = (a • µ(A))1A, where a > 0, if µ(A) • µ(A) = µ(A) and the map • is associative. This

follows from (23) applied to c = a • µ(A).

Denote by ∂H(x) the subdifferential of a concave function H at point x (see [1]).

Corollary 3.1. Let µ ∈ M(X,A), H : R+ → R+ be a concave function and mp ∈ ∂H(p),

where p = −
∫
A
f dµ < ∞ and f ∈ F(X,R+). Then

−
∫

A

H(f) dµ 6
[
H(p) ∧ µ(A)

]
+−
∫

A

(
mp(f − p)

)+
dµ. (26)

Proof. Put c = p and ◦ = • = ∧ in (23).

Corollary 3.1 shows that Theorem 3.1 is a generalization of Theorem 4.3 in [1]. Indeed,

bound (26) was given in [1, Theorem 4.3] under the assumption that H is an increasing

concave function, A = {x1, x2, . . . , xn} and f(x1) > f(x2) > . . . > f(xn). Note that for

mp > 0 we get

−
∫

A

(
mp(f − p)

)+
dµ = sup

t>0

{
t ∧ µ(A ∩ {mp(f − p)+ > t})

}

= max
i

{(
mp(f(xi)− p)+

)
∧ µi

}
= max

i

{(
mp(f(xi)− p)

)
∧ µi

}
,

12



where µi = µ({x1, . . . , xi}).

By (23) we also obtain the following inequality for the Sugeno integral

−
∫

A

H(f) dµ 6
[
(H(p)− pmp)

+ ∧ µ(A)
]
+−
∫

A

(mp)
+f dµ, (27)

where p = −
∫
A
f dµ and f ∈ F(X,R+). Further, if 0 < mp 6 1 and f ∈ F(X,[0,1]), then combining

the fact that mpy 6 mp ∧ y for mp, y ∈ [0, 1] with comonotone minitivity of the Sugeno

integral, we obtain the Jensen type bound of the form

−
∫

A

H(f) dµ 6
[
(H(p)− pmp)

+ ∧ µ(A)
]
+ (mp ∧ p).

The following example shows that the infimum in (23) can be achieved at c /∈ {0, p}.

Example 3.1. Let X = R, A = [0, 5] and µ be the Lebesgue measure. Take H(x) =
√
x

and f(x) = x. Then p = −
∫
A
f dµ = 2.5 and

−
∫

A

H(f) dµ =
−1 +

√
21

2
≈ 1.7913.

Write g(c) =
[(
H(p) +mp(c− p)

)+ ∧ µ(A)
]
+ −
∫
A

(
mp(f − c)

)+
dµ. Clearly,

g(c) =
[(√

2.5 +mp(c− 2.5)
)+ ∧ 5

]
+
[(
(−mpc)

+ ∧ 5
)
∨
( mp

mp + 1
(5− c)+

)]
,

where mp = H ′(p) = 1/
√
10. After an easy calculation we get inf

c∈R
g(c) = g(−2.5) ≈ 1.8019,

so the difference between the upper bound (23) and the exact value of integral −
∫
A
H(f) dµ is

about 0.0106.

We also give a Jensen type inequality for the Shilkret integral.

Corollary 3.2. Let H : R+ → R+ be a differentiable and concave function. Then for all

f ∈ F(X,R+) and µ ∈ M(X,A) we get

∫

·,A

H(f) dµ 6 H(p)µ(A) +
[
(H ′(p))+ −H ′(p)µ(A)

]
p, (28)

where p =
∫
·,A

f dµ < ∞. In particular, if µ(A) = 1 and H ′(p) > 0, then

∫

·,A

H(f) dµ 6 H
(∫

·,A

f dµ
)
.

Proof. Take c = 0, mp = H ′(p) and ◦ = • = · in Theorem 3.1. Observe that 0 6 H(0) 6

H(p)−H ′(p)p.
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4 Jensen type bounds for real-valued functions

Let ⋆ : R+ × R− → R be a nondecreasing map, where R = (−∞,∞) and R− = (−∞, 0].

Suppose that f ∈ F(X,R) and write f+ = f ∨0 and f− = (−f)∨0. We define the ⋆-symmetric

Sugeno integral of f on A ∈ A by the formula

Su⋆
µ,A(f) :=

(
−
∫

A

f+ dµ
)
⋆
(
− −

∫

A

f− dµ
)
, (29)

provided that −
∫
A
f+ dµ < ∞ and −

∫
A
f− dµ < ∞. Kawabe [22] examined properties of the

+-symmetric Sugeno integral while Grabisch proposed to use the symmetric Sugeno integral

defined by (29) with the operator a> b = sign(a+ b)
(
|a| ∨ |b|

)
, where a, b ∈ R (see [13, 16]).

We derive both lower and upper bound on the ⋆-symmetric Sugeno integral of H(f)

by means of the Sugeno integrals p1 := −
∫
A
f+ dµ and p2 := −

∫
A
f− dµ, where H : R → R is

a nondecreasing function such that H(0) = 0. By the assumption on H , we have H(f(x))∨0 =

H1(f
+(x)) and

(
− H(f(x))

)
∨ 0 = H2(f

−(x)) for all x ∈ X, where H1(x) = H(x) and

H2(x) = −H(−x) for x > 0. Of course, functions H1, H2 : R+ → R+ are nondecreasing,

H1(0) = H2(0) = 0 and

Su⋆
µ,A(H(f)) =

(
−
∫

A

H1(f
+) dµ

)
⋆
(
−−
∫

A

H2(f
−) dµ

)
. (30)

Since ⋆ is a nondecreasing binary map, we can apply Theorems 2.1-2.3 to obtain two-sided

bounds on Su⋆
µ,A(H(f)). Below, we provide the upper bound. Assume, for simplicity of

exposition, that µ ∈ M(X,A) is continuous. Further, assume that p1, p2 < ∞ and p1 6 supH.

Putting ◦ = ∧ in (18) and (19) we get

−
∫

A

H2(f
−) dµ > H2(p2) ∧ p2 =

(
−H(−p2)

)
∧ p2, (31)

−
∫

A

H1(f
+) dµ 6

(
H(p1) ∧ µ(A)

)
∨ (supH ∧ p1) =

(
H(p1) ∨ p1

)
∧ µ(A), (32)

because p1 6 µ(A). As a consequence of (30)-(32), we obtain the following bound

Su⋆
µ,A(H(f)) 6

[(
H(p1) ∨ p1

)
∧ µ(A)

]
⋆
[
H(−p2) ∨ (−p2)

]
. (33)

The equality is reached in (33) for f(x) = µ(B)1B(x) − µ(A\B)1A\B(x), where B ⊂ A is

such that µ(B), µ(A\B) < ∞ and H(µ(B)) = µ(B). Summing up, we arrive at the following

result.

Theorem 4.1. Let H : R → R be a nondecreasing function such that H(0) = 0. Then

the sharp inequality (33) holds true for any continuous monotone measure µ and for all

f ∈ F(X,R+) such that the integrals −
∫
A
f+ dµ, −

∫
A
f− dµ are finite and −

∫
A
f+ dµ 6 supH.

14



Example 4.1. Let X = A = {1, 2, 3}. Suppose that

µ({1}) = 0.1, µ({1, 2}) = 0.4, f(1) = −1,

µ({2}) = 0.25, µ({1, 3}) = 0.3, f(2) = 0.3,

µ({3}) = 0.2, µ({2, 3}) = 0.6, f(3) = 1

and µ({1, 2, 3}) = 1. If H(x) = x3, then

p1 = 0.3, p2 = 0.1, −
∫

A

H1(f
+) dµ = 0.2, −

∫

A

H2(f
−) dµ = 0.1.

Hence, we get from (33) that

0.1 = 0.2 + (−0.1) = Su+
µ,A(H(f)) 6 p1 + (−p2) = 0.2,

0.2 = 0.2 > (−0.1) = Su>

µ,A(H(f)) 6 p1 > (−p2) = 0.3.

Example 4.2. Assume that X = R, A = [−3, 1] and µ =
√
λ, where λ is the Lebesgue

measure. Put f(x) = x and H(x) = x1R+
(x) + 2x1R

−

(x). Then

p1 =

√
5− 1

2
, p2 =

√
13− 1

2
, −

∫

A

H1(f
+) dµ =

√
5− 1

2
, −

∫

A

H2(f
−) dµ = 1.5.

It follows from (33) that
√
5− 4

2
= Su+

µ,A(H(f)) 6 p1 − p2 =

√
5−

√
13

2
,

−1.5 = Su>

µ,A(H(f)) 6 p1 > (−p2) =
1−

√
13

2
≈ −1.3.

Similar result as in (33) can be obtained provided that H is nonincreasing and H(0) = 0.

If µ is subadditive and H : R → R+ is nonincreasing for x 6 0, nondecreasing for x > 0 and

H(0) = 0, then

−
∫

A

H(f) dµ 6 sup
t>0

{
t ∧ µ

(
A ∩ {f > 0} ∩ {H(f) > t}

)}

+ sup
t>0

{
t ∧ µ

(
A ∩ {−f > 0} ∩ {H̃(−f) > t}

)}

= −
∫

A

H(f+) dµ+−
∫

A

H̃(f−) dµ,

where H̃(x) = H(−x) for x > 0. Thus, the upper bound can be derived from (14) or (19).

Clearly, for any µ ∈ M(X,A),

−
∫

A

H(f) dµ > −
∫

A

H(f+) dµ ∨ −
∫

A

H̃(f−) dµ,
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so we can also give a lower bound on −
∫
A
H(f) dµ. Further, in a similar way as above, we can

also estimate the (⋆, ◦)-asymmetric integral defined by

Su⋆,◦
µ,ν,A(H(f)) :=

( ∫

◦,A

H(f) ∨ 0 dµ
)
⋆
(
−

∫

◦,A

(−H(f)) ∨ 0 dν
)
,

where µ, ν ∈ M(X,A). See e.g. [28] for the motivation of this definition with ◦ = ∧ and ⋆ = >.

5 Conclusions

In this paper, we have provided optimal lower/upper bounds of the Jensen type for the

generalized Sugeno integral of measurable real-valued functions. As a consequence, we have

obtained the Jensen type inequalities for the Sugeno integral, Shilkret integral and q-integral.

Our results generalize and improve a number of known results.

The Jensen type inequalities for fuzzy integrals can be a useful tool to solve both theoretical

and practical problems in many areas of research as the concept of the Sugeno integral

has numerous applications. The Sugeno integral plays important role in decision-making

problems under uncertainty and multi-criteria decision problems [10]. The famous Hirsch

index [17], which is closely related to the Sugeno integral [36], is widely used in evaluation

of research performance of individual scientists, research groups and universities. Nurukawa

and Torra [27] described the use of the Sugeno integral in decision making when modeling

auctions. An application of risk theory can be found in [20]. The Sugeno integral was

applied to describe a face recognition using modular neural networks with a fuzzy logic

method [24]. Hu [18] proposed a fuzzy data mining method with the Sugeno fuzzy integral

that can effectively find a compact set of fuzzy if-then classification rules. Some applications

to fuzzy inference systems were given in [26]. For more details about possible applications of

the Sugeno integral, we refer to [1, 14, 15, 16, 37, 38].
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