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Abstract

We consider mixture functions, which are a type of weighted averages for which the cor-
responding weights are calculated by means of appropriate continuous functions of their
inputs. In general, these mixture function need not be monotone increasing. For this rea-
son we study su�cient conditions to ensure standard, weak and directional monotonicity
for speci�c types of weighting functions. We also analyze directional monotonicity when
di�erentiability is assumed.
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1. Introduction

A mixture function is a particular type of weighted averaging operator. To build it, the
weights are de�ned by means of a monotone continuous weighting function and depend on
the considered inputs. In this way, it is possible to use the weighting function to give more
or less importance to some speci�c inputs, so mixture functions provide a higher degree of
�exibility than usual weighted means, for instance. In this sense, mixture functions can
be considered as related to the well-known ordered weighted averaging (OWA) functions
[36], but contrary to the latter case, in the former the weights are not assigned a priori
but calculated in a input-dependant way. There also exists a close relation between
mixture functions and other aggregation functions, such as overlap functions [10], as well
as with well-known concepts, as the ROC index [8]. Furthermore, mixture functions can
be used in a broad number of applied problems, in �elds such as multicriteria decision
making, fuzzy systems or data analytics, among others, see [23], [37], [40]. Note that,
since mixture functions extend particular instances of aggregation functions as weighted
means, for instance, they can be succesfully applied on those problems where the latter
are useful. This is specially the case in problems where a reduction of data is required
(see, for instance [30], for an application in image processing), and, in general, in any
application in machine learning where data fusion plays a relevant role, see [22].

Recall that a key property in order to de�ne aggregation functions is that of mono-
tonicity [6]. For this reason, di�erent authors have analyzed the problem of whether
monotonicity is ful�lled by mixture functions, see [6], [26], and [31], [27]. In particular,
in [28], [29] and [32], su�cient conditions to ensurer that a mixture function is monotone
increasing have been provided.

But usual monotonicity can be a very restrictive condition for applications, and, in
fact, some functions which are widely used for data processing, such as the mode function
or some kinds of means [6] are not monotone. Some authors have considered the prob-
lem of relaxing the monotonicity condition, leading, in particular, to the notion of weak
monotonicity [2], [5], [38] and [39]. Basically, a function is weakly monotone if it is mono-
tone along the ray de�ned by the vector (1, . . . , 1), specially to calculate representative
values of clusters of data when outliers exist, see [37]. If monotonicity is required along a
ray de�ned by an arbitrary non-null vector, we get the notion of directional monotonic-
ity [11]. These notions have been further extended, considering concepts such as and cone
monotonicity, monotonicity with respect to coalitions of inputs [4], as well as those of
pre-aggregation function ([24]) or ordered directional monotonicity, see [9], [13] and [15]
for more details.

Equally important are the papers related the so-called generalized mixture functions
which generalize mixture functions and extend, along with mixture functions, under cer-
tain conditions, an important class of aggregation functions, [20]. The authors in [19]
studied also directional and ordered directional monotonicity of the generalized mixture
functions, and determined some criteria for obtaining generalized mixture functions and
so-called bounded generalized mixture functions. Applications of the mentioned general-
ized mixture functions in machine learning and classi�cation can be found, for example,
in [17] and [21].

In this work, we study su�cient conditions to guarantee standard, directional and
weak monotonicity of mixture functions with some speci�c weighting functions. In par-
ticular, we consider weighting functions which are given in terms of linear and exponential
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functions, as well as by means of linear splines. Furthermore, we also analyze the problem
of directional monotonicity for di�erentiable mixture functions.

The paper consists of seven sections and the Appendix. Section 1 presents an overview
of the latest results on monotonicity of mixture functions. Section 2 presents the main
de�nitions. Because the paper introduces also su�cient conditions of standard and weak
monotonicity of mixture functions with linear spline weighting function, this section gives
presents concepts related to linear spline functions. Section 3 provides su�cient con-
ditions of standard and weak monotonicity of mixture functions with linear and expo-
nential weighting functions. Section 4 introduces su�cient conditions of standard and
weak monotonicity of mixture functions with linear spline weighting functions. Section
5 gives su�cient conditions of directional monotonicity of mixture functions with linear
and exponential weighting functions. Moreover, it also gives su�cient conditions of or-
dered directional monotonicity. Section 6 introduces su�cient conditions of directional
monotonicity of mixture functions with di�erentiable weighting functions. The Conclu-
sion summarizes the results and provides some ideas for future research. The Appendix
contains proofs of selected theorems. All calculations were made using the R software,
[35].

2. Preliminaries

Throughout the paper, the following notations are used.
We denote by I = [a, b] ⊂ R = [−∞,∞] a closed interval. In this way, In = {x =
(x1, . . . , xn) | xi ∈ I, i = 1, . . . , n} is the set of all vectors x whose components lie in the
interval I. Considering x,y ∈ In, x = (x1, . . . , xn), y = (y1, . . . , yn), we say that x ≤ y if
and only if xi ≤ yi for each i = 1, . . . , n. By increasing we do not forcibly mean strictly
increasing.

De�nition 2.1. A function A : In → I is an aggregation function if it is monotone
increasing in each variable and satis�es the boundary conditions A(a) = a, A(b) = b,
where a = (a, a, . . . , a), b = (b, b, . . . , b).

De�nition 2.2. A function Mg : In → I given by

Mg(x1, . . . , xn) =

n∑
i=1

g(xi) · xi
n∑
i=1

g(xi)
, (1)

where g : I→]0,∞[ is a continuous weighting function, is called a mixture function.

Example 2.3. For a simple illustration, let the weighting function g : [0, 1] →]0,∞[
be given by g(x) = 1 + 3x. Then the mixture function (1) for n = 2 is Mg(x1, x2) =
3x21+3x22+x1+x2

3x1+3x2+2
. Moreover, we notice that Mg(0, 1) =

4
5
= 0.8 and Mg(0.1, 1) =

4.13
5.3

=̇0.7792
and thus Mg(0, 1) > Mg(0.1, 1), i.e., Mg is not monotone increasing w.r.t. De�nition 2.4,
and hence it is not an aggregation function.
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2.1. Monotonicity

We recall now various types of monotonicity which are at the core of this paper.

De�nition 2.4. A function A : In → I is monotone increasing if for all x, y ∈ In, such
that x ≤ y, it holds that A(x) ≤ A(y).

De�nition 2.5. [39] A function A : In → I is weakly monotone increasing if A(x+k1) ≥
A(x) for all x and for any k > 0, 1 = (1, 1, . . . , 1︸ ︷︷ ︸

n times

), such that x, x+ k1 ∈ In.

Clearly, a monotone increasing function is, in particular, weakly monotone increasing,
but the converse may not hold.

The notion of weak monotonicity can be generalized considering the idea of directional
monotonicity.

De�nition 2.6. [11], [14] Let r be a real n-dimensional vector, r 6= 0. A function A :
In → I is r-increasing if for all x ∈ In and all k > 0 such that x + kr ∈ In, it holds that
A(x+ kr) ≥ A(x).

De�nition 2.7. [13], [15] Let r = (r1, r2, . . . , rn) be a real n-dimensional vector, r 6= 0.
A function A : In → I, I = [a, b], is r-ordered increasing if for all x = (x1, x2, . . . , xn) ∈ In
and for any permutation σ : {1, 2, . . . , n} → {1, 2, . . . , n} with xσ(1) ≥ . . . ≥ xσ(n) and any
k > 0 such that b ≥ xσ(1)+kr1 ≥ . . . ≥ xσ(n)+krn ≥ a ∈ In we have F (x+krσ−1) ≥ F (x);
rσ−1 = (rσ−1(1), . . . , rσ−1(n)).

Related to the notion of weak monotonicity it appears that of shift-invariance, that
we recall now.

De�nition 2.8. A function A : In → I is shift�invariant if A(x+k1) = A(x)+k, k > 0,
whenever x, x+ k1 ∈ In and A(x) + k ∈ I.

Note that a shift-invariant function A is weakly monotone increasing, [39].
In many settings, rather than using arbitrary real vectors to deal with directional

monotonicity, only vectors from the positive octant Rn
+ are considered, where Rn

+ = {z ∈
Rn

+|zi ≥ 0, i = 1, 2, . . . , n}.
Recall that vectors r 6= 0 are called directions. Weakly monotone increasing functions are
r-increasing in the direction of vector r = (1, 1, . . . , 1).
It is worth to mention that, from the idea of directional monotonicity, the concept of
pre-aggregation function has recently arisen, being a function with the same boundary
conditions as an aggregation function but which is directionally monotone instead of
monotone, see [24].

Now, we give the concept of cone monotonicity as introduced in [4]. We assume a cone
C based at the origin and lying in the positive octant Rn

+.

De�nition 2.9. [4] Let C ⊆ Rn
+ be a non-empty cone C = {x ∈ Rn

+|x ∈ C =⇒ αx ∈
C, ∀α ≥ 0}. A function A : In → I is called cone monotone with respect to C if A is
r-increasing in any direction r ∈ C. The set of functions cone monotone with respect to
C will be denoted MonC.
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Proposition 2.10. [4], [14] Let A : In → I be a function, x ∈ In, u, v be real n-
dimensional non-zero vectors and c, h, k be all positive constants such that x+cw, x+cku,
x+ chv and x+ cku+ chv ∈ In with w = ku+ hv. Then, if A is both u-increasing and
v-increasing, it is also w-increasing.

Proof With respect to De�nition 2.6, we can state

A(x+ cw) = A(x+ cku+ chv) ≥ A(x+ cku) ≥ A(x)

or
A(x+ cw) = A(x+ cku+ chv) ≥ A(x+ chv) ≥ A(x).

�

Corollary 1. If the function A is standard monotone increasing then it is r-increasing
in the positive octant.

Note that a function A : In → I is monotone if and only if it is ei-directional increasing
for each i = 1, 2, . . . , n, where ei denotes the vector whose ith coordinate is equal to 1,
and all the other coordinates are 0. Besides, if A is ei-increasing for all i = 1, 2, . . . , n,
then it is cone monotone with respect to positive octant, or r-increasing with respect to
all vectors in the positive octant.

2.2. Su�cient conditions of monotonicity

2.2.1. Standard monotonicity

For I = [0, 1], Ribeiro and Marques Pereira in [31] have shown that any increasing
di�erentiable weighting function g : [0, 1]→]0,∞[ such that

g ≥ g′ (2)

yields an increasing mixture function (1).
In [32] an in-depth study of the problem of monotonicity for mixture functions was

carried out. In particular, su�cient conditions for monotonicity were provided, more
general than (2). We recall here the most relevant results from [32].

Theorem 2.11. Mixture function Mg : In → I, I = [0, 1], given by (1), is monotone
increasing if at least one from the following conditions is satis�ed:

• for an increasing, piecewise di�erentiable weighting function g : I→]0,∞[:

g(x) ≥ g′(x), (3)

g(x) ≥ g′(x) · (1− x), (4)

for a �xed n, n > 1,

g2(x)

(n− 1)g(1)
+ g(x) ≥ g′(x) · (1− x). (5)
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• for a decreasing piecewise di�erentiable weighting function g : I→]0,∞[:

g(x) + g′(x) ≥ 0, (6)

g(x) + g′(x) · x ≥ 0, (7)

for a �xed n, n > 1,

g2(x)

(n− 1) · g(0)
+ g(x) + g′(x) · x ≥ 0. (8)

See [32] for more su�cient monotonicity conditions for mixture functions and their
generalizations.

2.2.2. Weak monotonicity of mixture functions

The problem of weak monotonicity for mixture functions and their generalizations
was considered in [5], [7], [33] and [34]. In particular, a su�cient condition for a mixture
function to be weakly monotone is the following.

Theorem 2.12. Let Mg : In → I, be a mixture function (1) with di�erentiable weighting
function g : I→]0,∞[. Then Mg is weakly monotone increasing if(

n∑
i=1

g(xi)

)2

+

(
n∑
i=1

g(xi)

)
·

(
n∑
i=1

xi · g′(xi)

)
−

(
n∑
i=1

xi · g(xi)

)
·

n∑
i=1

g′(xi) ≥ 0 (9)

for all x ∈ In.

Proof Mg is directionally di�erentiable in its domain and hence its weak monotonicity
is based on non-negativity of the directional derivative, i.e., ∇Mg ≥ 0. Without loss of
generality, we can rewrite formula (1) as follows:

Mg(x) =

g(xj) · xj +
n∑
i 6=j

g(xi) · xi

g(xj) +
n∑
i 6=j

g(xi)
, (10)

whence

∂Mg

∂xj
=

(
g(xj) + g′(xj) · xj

)
·
(

n∑
i=1

g(xi)

)
−
(

n∑
i=1

g(xi) · xi
)
· g′(x1)(

n∑
i=1

g(xi)

)2 (11)

It is obvious that by this way it is possible to write partial derivatives with respect to all
input values. If we take all their numerators, we immediately get condition (9). �
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Remark 1. On the basis of (10) and (11) standard monotonicity conditions of the mix-
ture function have been determined too. However, in this case we have to assume (stan-
dard) monotonicity of the weighting function. Therefore we mention monotonicity condi-
tions separately for mixture function with increasing and with decreasing weighting func-
tion, respectively, see Theorem 2.11.
But regarding to determination of the weak monotonicity of the mixture function, formula
(9) can be used with an application to increasing and also decreasing weighting function.

Because we discuss properties of mixture functions with a�ne, exponential, but also
with T-spline weighting functions, we give here basic information about them.

2.3. T-spline function

A spline function (of degree 1) is piecewise linear continuous function, which can be
composed of one segment, but also of two or more segments. The abscissae of the points
where the linear segments join together (plus the ends of the interval) are called the knots
of the spline. The knots may or may not be equidistant, and h spline segments result in
h+1 knots. For a �xed set of knots, the set of all linear splines forms a linear vector space
of dimension h+1. The traditional B-splines form a convenient basis to express splines as
linear combinations of the basis functions, which have the property of local support and
add to one for all x between the spline knots. Closely related T-spline functions [1, 3] form
an alternative basis in the space of splines to express monotonicity conditions in a more
convenient form, as non-negativity of spline coe�cients. Because the weighting functions
need to be monotone, we will work in the T-spline representation, formally introduced
below, and will also call the resulting linear spline a T-spline to stress its representation.

De�nition 2.13. Assume the interval I is partitioned into h segments of equal length and
de�ne the basis functions

T0(x) = 1;x ≥ 0, (12)

Ts(x) =

 min {hx− s+ 1, 1} ; x ≥ s−1
h
,

0; otherwise

for s = 1, . . . , h. Then the function

S(x) = a0T0(x) +
h∑
s=1

asTs(x), (13)

where a0 and as, s = 1, 2, . . . , h are real constants, referred to as spline coe�cients, is
called a T-spline function of degree 1.

T-spline functions are continuous and consist of individual linear segments Ss(x) on
the intervals [0, t[, [t, 2t[, . . . , [(h − 1)t, 1], where t = 1

h
. If the coe�cients a0, . . . , ah are

non-negative, then S is positive and monotone increasing. For better understanding, we
give an example of T-spline function which consists of three segments.

7



Example 2.14. Using De�nition 2.13, we present a three segment spline by

T0(x) = 1;x ≥ 0,

T1(x) =

 min {3x, 1} ; x ≥ 0,

0; otherwise,

T2(x) =

 min {3x− 1, 1} ; x ≥ 1
3
,

0; otherwise,

T3(x) =

 min {3x− 2, 1} ; x ≥ 2
3
,

0; otherwise.

The �rst segment represents the function S1(x) = a0 + 3a1x on the interval [0, 1
3
[,

the second one S2(x) = a0 + a1 − a2 + 3a2x on the interval [1
3
, 2
3
[ and the third one

S3(x) = a0 + a1 + a2− 2a3 +3a3x on the interval [2
3
, 1]. This function is shown on Figure

1.

x

S(x)

1

a0

1
3

2
3

a0 + a1

S3(x)

S2(x)

S1(x)

a0 + a1 + a2

a0 + a1 + a2 + a3

Figure 1: T-spline with three segments.

Obviously, we can construct T-spline functions with more segments in a similar way,
as well as consider segments of non-equal length.
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3. Monotonicity and weak monotonicity of mixture function with a�ne and

exponential weighting function

We discuss su�cient conditions of standard and weak monotonicity of mixture func-
tions with speci�c types of weighing functions. We start considering mixture functions
de�ned in terms of a�ne weighting functions g(x) = x+ l, l > 0.

3.1. Mixture function with a�ne weighting function

In the next result we show that we have a high degree of freedom in order to choose
the value of the parameter l.

Proposition 3.1. [33] Let Mg : [0, 1]
n → [0, 1] be a mixture function de�ned by (1), and

g : [0, 1]→]0,∞[ be a weighting function given by g(x) = x+ l, l > 0.
Then Mg is:

1. for any possible n, n > 1, standard monotone increasing for

l ≥ 1; (14)

2. for a �xed n, n > 1, standard monotone increasing for

l ≥
√
n− 1

n
; (15)

3. for n = 2, weakly monotone increasing for

l > 0; (16)

4. for a �xed n, n ≥ 3, weakly monotone increasing for

l ≥ n− 2

n
. (17)

Remark 2. One can de�ne a mixture function with g(0) = 0 by using limits, if they exist.
For example, g(x) = x produces a well de�ned mixture function called contraharmonic
mean, a special case of the Lehmer mean Lm with m = 1. This function is weakly
monotone for n = 2. For more information, see [7].

Remark 3. Let Mg : [0, 1]n → [0, 1] be a mixture function de�ned by (1). If Mg is
monotone increasing (weakly monotone increasing), then MBg, with B > 0 is also mono-
tone increasing (weakly monotone increasing). Also Mg+B is monotone increasing (weakly
monotone increasing).

Corollary 2. Let Mg : [0, 1]n → [0, 1] be the mixture function de�ned by (1) with the
weighting function g(x) = cx+ 1− c, c ∈ [0, 1]. Then Mg is:

1. for any possible n, n > 1, standard monotone increasing for

c ∈
[
0,

1

2

]
, (18)
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2. for a �xed n, n > 1, standard monotone increasing for

c ∈
[
0, n−

√
n2 − n

]
, (19)

3. for a �xed n, n > 1, weakly monotone increasing for

c ∈
[
0,

n

2n− 2

]
. (20)

Proof On the basis of Remark 3, we can divide the weighting function g(x) = cx+ 1− c
by c, c ∈]0, 1]. The conditions (18), (19) and (20) result from (14), (15) and (17) using
substitution l = 1

c
−1. Obviously, for c = 0,Mg is the arithmetic mean which is (standard)

monotone and hence weakly monotone. �

The next theorem provides a global bound on the coe�cient l in the weighting function
g(x) = x+ l so that the resulting mixture function is weakly monotone.

Example 3.2.

With respect to Corollary 2, let function g(x) = 0.8x + 0.2 be the weighting function of

the mixture function (1). Then Mg(x, y) =
0.8x2+0.8y2+0.2x+0.2y

0.8x+0.8y+0.4
and for input vectors (0, 1)

and (0.1, 1) the function values are sequentially

Mg(0, 1) =
0.8 · 0 + 0.8 · 1 + 0.2 · 0 + 0.2 · 1

0.8 · 0 + 0.8 · 1 + 0.4
=

1

1.2
= 0.8333

and

Mg(0.1, 1) =
0.8 · 0.12 + 0.8 · 1 + 0.2 · 0.12 + 0.2 · 1

0.8 · 0.12 + 0.8 · 1 + 0.4
=

1.028

1.28
= 0.8031.

Because, we have chosen coe�cients of the weighting function outside the interval [0, 1
2
]

w.r.t (18), and also outside of the interval [0, 2−
√
2] w.r.t (19), we see that monotonicity

can be violated. This situation is illustrated also on Figure 2.

0.0

0.5

1.0
x

0.0

0.5

1.0

y

0.0

0.5

1.0

Mg

Figure 2: Mg (1) with g(x) = 0.8x+ 0.2.

0.0

0.5

1.0

x

0.0

0.5

1.0

y

0.0

0.5

1.0

Mg

Figure 3: Mg (1), with g(x) = (2−
√
2)x+

√
2− 1.

Similarly, we can apply weighting function with limiting coe�cient g(x) = 0.5x+ 0.5 and
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hence Mg(0, 1) = 0.6667 and Mg(0.1, 1) = 0.6806. With respect to (19), we can apply the
weighting function g(x) = (2−

√
2)x+

√
2−1. In this case we have Mg(0, 1) = 0.7071 and

Mg(0.1, 1) = 0.7111. However, monotonicity is maintained for these two input vectors,
but, in general, monotonicity ofMg is also maintained for all input vectors what is obvious
from Figures 3, 4 and 5.

0.0

0.5

1.0

x

0.0

0.5

1.0

y

0.0

0.5

1.0

Mg

Figure 4: Mg (1), with g(x) = 0.5x+ 0.5 .

0.0

0.5

1.0

x

0.0

0.5

1.0

y

0.0

0.5

1.0

Mg

Figure 5: Mg (1), with g(x) = 0.2x+ 0.8 .

In Theorem 3.3 we give the condition of weak monotonicity of the mixture functions.
The link with this theorem is evident in the statement of Theorem 4.4.

Theorem 3.3. [7] Let Mg : [0, 1]n → [0, 1] be the mixture function de�ned by (1) with
the a�ne weighting function g(x) = x+ l, l > 0. Then Mg is weakly monotone increasing
for all n ≥ 2 for

l ≥
√
2− 1

2
. (21)

Remark 4. The right-hand side of condition (21) represents an upper bound for any �xed
n ≥ 2. For more information, see Theorem 7 in [7].

Corollary 3. Let Mg : [0, 1]n → [0, 1] be the mixture function de�ned by (1) with the
weighting function g(x) = cx+ 1− c, c ∈ [0, 1]. Then Mg is weakly monotone increasing
for

c ∈ [0, 2
√
2− 2]. (22)

Proof Using Remark 3, substitution l = 1
c
− 1 and condition (21), we get immediately

interval (22). For c = 0, Mg is the arithmetic mean. �
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3.2. Mixture function with exponential weighting function

Next we introduce conditions of standard and weak monotonicity of mixture functions
with exponential weighting function of the form g(x) = exp(cx)+a, where c ≥ 0, a > −1.
These results complement those in [5]. For statement of standard monotonicity conditions,
we used su�cient conditions (3)-(5).

Proposition 3.4. Let Mg : [0, 1]
n → [0, 1] be the mixture function de�ned by (1), and

g(x) = exp(cx) + a, c ≥ 0, a > −1, be the weighting function. Then Mg is:

1. for any possible n, n > 1, standard monotone increasing for

a > c− 1; (23)

2. for a �xed n, n > 1, standard monotone increasing for

a >
exp(c)− 1 + (n− 1)c− n(exp(c) + 1)

2n
+ (24)

+

√
(n− 1)(c2(n− 1) + (exp(c)− 1)2(n− 1) + 2c(exp(c)− 1)(n+ 1))

2n
,

whence

a) for n = 2, standard monotone increasing for

a >
c− 3− exp(c) +

√
exp(2c) + exp(c)(6c− 2) + c2 − 6c+ 1

4
, (25)

b) for n = 3, standard monotone increasing for

a >
c− 2− exp(c) +

√
exp(2c) + exp(c)(4c− 2) + c2 − 4c+ 1

3
, (26)

c) for n→∞, standard monotone increasing for a > c− 1.

Proof

1. From condition (3), we get exp(cx) + a ≥ c exp(cx). For x → 0 with respect to
boundary of coe�cients a, we get immediately a > c− 1.
From condition (4), we get exp(cx) + a ≥ c exp(cx) · (1− x). Again, with respect to
boundary of coe�cients a and for x→ 0, we obtain a > c− 1.

2. On the basis of condition (5), we get

(exp(cx) + a)2

(n− 1)(exp(c) + a)
+ exp(cx) + a ≥ c(1− x) · exp(cx),

whence

(exp(cx)+a)2+(n−1)(exp(c)+a)(exp(cx)+a) ≥ c exp(cx)(1−x)(n−1)(exp(c)+a).

After reducing and assuming x→ 0 and boundary of coe�cients a, we get

(a+ 1)2 + (n− 1)(exp(c) + a)(a+ 1− c) ≥ 0,

whence we obtain condition (24).

12



For the graphical explanation, see Figure 6. �

Now, we introduce su�cient conditions for weak monotonicity of the mixture function
with the same exponential weighting function as in previous case.

Proposition 3.5. Let Mg : [0, 1]
n → [0, 1] be the mixture function de�ned by (1), and

g(x) = exp(cx) + a, c ≥ 0, a > −1, be the weighting function. Then Mg is:

for a �xed n, n > 1, weakly monotone increasing for

a ≥ − [(n− 1 + exp(c)) · (2n− c) + cn exp(c)]

2n2
+ (27)

+

√
[(n− 1 + exp(c)) · (2n− c) + cn exp(c)]2 − 4n2(n− 1 + exp(c))2

2n2
,

whence

for n = 2, weakly monotone increasing for a > −1 and c ≥ 0,

for n = 3, weakly monotone increasing for a ≥ −0.950581 and c ≥ 0,

for n = 4, weakly monotone increasing for a ≥ −0.892938 and c ≥ 0,

for n = 100, weakly monotone increasing for a ≥ −0.491754 and c ≥ 0,

for n→∞, weakly monotone increasing for a ≥ 0 and c ≥ 0.

Proof With respect to (9), for the input vector (x1, x2, . . . , xn) , we get(
n∑
i=1

exp(cxi) + na

)2

+

(
n∑
i=1

exp(cxi) + na

)
· c

n∑
i=1

xi exp(cxi)−

−

(
n∑
i=1

xi(exp(cxi) + a)

)
· c

n∑
i=1

exp(cxi) ≥ 0.

After simpli�cation, assuming symmetry of the mixture function and the input vector
(0, 0, . . . , , 0, 1), we obtain general condition for a weak monotonicity in the form

n2a2 + a [(n− 1 + exp(c)) · (2n− c) + cn exp(c)] + (n− 1 + exp(c))2 ≥ 0. (28)

By solving the previous inequality together with the boundaries of coe�cients a > −1,
we obtain condition (27). Moreover, maximal values of the right-hand side of 27 for
individual n > 1 represent boundary value of the coe�cient a. For illustration, see Figure
7. �

Remark 5. Similarly to Remark 2, we can overcome the restriction g > 0 by using limits.
Let us assume weighting functions g(x) = exp(cx) + a and gε(x) = exp(cx) + a + ε, for
a > −1, c ≥ 0 and ε > 0. Then mixture function (1) written in the shape

Mg(x, y) =


Mg(x, y); x, y ∈]0, 1];

lim
ε→0

Mgε(x, y); (x, y) = (0, 0)
(29)

satis�es conditions in Propositions 3.4 and 3.5 also with non-sharp inequalities.
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c

a
(23), n→∞

(25), n = 2

(26), n = 3

−1

1

c = 1.15718

1.27846

Figure 6: The set of standard monotonicity of Mg : [0, 1]n → [0, 1] with g(x) = exp(cx) + a.

c

a

n = 2

n = 3

n = 4−0.892938

1.041048

−1

0

−0.950581

0.667187

Figure 7: The lower boundary of the set of weak monotonicity of Mg : [0, 1]n → [0, 1] with g(x) =
exp(cx) + a for the �xed n.

4. Monotonicity and weak monotonicity of the mixture function with T-spline

weighting function

Now we introduce properties of the mixture function with a piecewise linear weighting
function, especially with T-spline weighting function which we described in Subsection
2.3. The main reason for using T-splines is the following. It is known that any continuous
function can be approximated arbitrarily well by a piecewise linear function, i.e., by a

14



linear spline. Hence by using monotone linear splines we can model di�erent weighting
functions g, e.g., study the impact of the shape of the graph of g on the minimum value
of the constant a0 = g(0) (if monotonicity holds for g(x) = S(x) then it also holds for
g(x) = S(x) + c, c > 0, hence our interest in the smallest function g of a particular
form). Further, linear splines are piecewise di�erentiable and hence we can relate the
monotonicity conditions to the derivative of g.

Since the splines are de�ned through their coe�cients a0, a1, . . . , ah, we will look for
conditions which express (weak) monotonicity through inequalities relating these coe�-
cients with spline knots, and in particular a bound on the coe�cient a0, which can be
easily adjusted by translating the graph of the spline up or down. Furthermore, by Re-
mark 3 we have some freedom in selecting another condition on spline coe�cients, as
they are de�ned up to an arbitrary positive factor. We shall choose this extra condi-

tion in the form as = 1, for some s > 0, or
h∑
s=1

as = 1 depending on our needs in the

proofs of the following theorems. Therefore the weighting functions which we investigated
have the following conditions at the end points of the interval [0, 1]: g(0) = a0 > 0 and
g(1) = a0 + 1.

4.1. Monotonicity of the mixture function with T-spline weighting function

In the next theorem we introduce su�cient condition for a monotone increasingness
of the mixture function with the monotone increasing T-spline weighting function.

Theorem 4.1. Let Mg : [0, 1]n → [0, 1] be the mixture function de�ned by (1) with the
monotone increasing T-spline weighting function given by De�nition 2.13 with as ≥ 0 and
h∑
s=1

as = 1. Then Mg is monotone increasing for

minS(x) = a0 ≥ h =
1

t
. (30)

Proof In the Appendix. �

In particular, for a spline with h segments we have the condition S ≥ S ′, which is
consistent with Theorem 2.12. The derivative of the spline (where it exists � almost
everywhere except the knots of the spline, where we can take left or right derivative), is
a piecewise constant function which reaches its possible maximum value 1

t
= h, and by

monotonicity minS(x) = a0. So the two splines for which the condition S ≥ S ′ is tight
are given by a0 = h, a1 = 0, a2 = 1 and a0 = h, a1 = 1, a2 = 0 (in the case h = 2), or,
more generally ai = 0 for all s = 1, . . . , h except one aj = 1, and a0 = h.

4.2. Weak monotonicity of the mixture function with T-spline weighting function

Now, we introduce the basic result related to monotone increasingness of the mixture
function with the monotone increasing T-spline weighting function.

Theorem 4.2. Let Mg : [0, 1]n → [0, 1] be the mixture function de�ned by (1) with the
monotone increasing T-spline weighting function de�ned by De�nition 2.13 with as ≥ 0

and
h∑
s=1

as = 1. Then Mg is weakly monotone increasing for

minS(x) = a0 ≥
h

4
=

1

4t
. (31)

15



Proof In the Appendix. �

Analogously to our reasoning in the previous subsection, we can hypothesise that for
a piecewise di�erentiable continuous function g the condition of weak monotonicity is
g ≥ g′

4
. Furthermore, this bound is tight as follows from the proof of Theorem 4.2, i.e.,

there exists a piecewise di�erentiable monotone increasing function such that g(0) < g′(0)
4

implies lack of weak monotonicity. This bound can be used to estimate the condition
of weak monotonicity for other di�erentiable weighting functions. For example, take
g(x) = ln(x+1)+ c (cf. [5]). We immediately have c ≥ 1

4
by using our bound. A detailed

analysis of this weighting function with respect to weak monotonicity condition (9) reveals
that the actual tight bound on c is c ≥ 0.219825 (for n = 5), which is just slightly less
than our estimate.

Now, we present condition of weak monotonicity of mixture function with one segment
T-spline weighting function to show consistency with the previous results. We recall that
the following result corresponds with Theorem 3.3.

Example 4.3. W.r.t. De�nition 2.13 let us assume as a weighting function of Mg T-
spline function of degree 1 with two segments. (See also Figure 16 in the Appendix.)
We have

T0(x) = 1; x ≥ 0,

T1(x) =

 min {2x, 1} ; x ≥ 0,

0; otherwise,

T2(x) =

 min {2x− 1, 1} ; x ≥ 1
2
,

0; otherwise.

The �rst segment represents the function S1(x) = a0 +2a1x, a0 > 0, on the interval [0, 1
2
[

and the second one S2(x) = a0 + a1 − a2 + 2a2x on the interval [1
2
, 1]. For a1 = 1 and

a2 = 0, and moreover assuming violation of the boundary condition in Theorem 4.1 we
take S1(x) = 0.5 + 2x and S2(x) = 1.5. These two functions represent T-spline function
and we apply them as a weighting function g(x) of Mg which is given by (1). That means

g(x) =

 0.5 + 2x; x ∈ [0, 1
2
[,

1.5; x ∈ [1
2
, 1].

We compare two function values of Mg:

Mg(0, 1) =
(0.5 + 2 · 0) · 0 + 1.5 · 1

0.5 + 2 · 0 + 1.5
=

1.5

2
= 0.75

and

Mg(0.1, 1) =
(0.5 + 2 · 0.1) · 0.1 + 1.5 · 1

0.5 + 2 · 0.1 + 1.5
=

1.57

2.2
= 0.71364,

hence monotonicity is violated. This fact is also shown for whole domain [0, 1]2 on Figure
8.
If we assume coe�cients which satisfy the condition given in Theorem 4.1, we obtain
increasing function Mg which is illustrated on Figure 9.
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Figure 8: Mg (1), S1(x) = 0.5 + 2x, for x ∈ [0, 0.5[,
S2(x) = 1.5, for x ∈ [0.5, 1]
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Figure 9: Mg (1), S1(x) = 3 + 2x, for x ∈ [0, 0.5[,
S2(x) = 4, for x ∈ [0.5, 1]

Theorem 4.4. Let Mg : [0, 1]n → [0, 1] be the mixture function de�ned by (1) with the
monotone increasing T-spline weighting function de�ned by De�nition 2.13 with one seg-
ment. Then Mg is weakly monotone increasing for

a0 ≥
√
2− 1

2
. (32)

Proof In the Appendix. �

4.3. Weak monotonicity of the mixture function with two segment T-spline weighting func-
tion with a general knot

Now, we give a de�nition of two segment T-spline function with a general knot t ∈]0, 1[.

De�nition 4.5. Assume the functions

tT0(x) = 1; x ≥ 0, (33)

tT1(x) =


min

{
1

t
x, 1

}
; x ≥ 0,

0; otherwise,

tT2(x) =


min

{
1

1− t
x− t

1− t
, 1

}
; x ≥ t,

0; otherwise,

where t ∈]0, 1[. Then the function

tS(x) = a0 · tT0(x) +
2∑
s=1

as · tTs(x), (34)
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where a0 and as are constants, is a two segment linear T-spline function with the knot

t in general position. This T-spline function is also given by tS1(x) = a0 +
a1
t
x on the

interval [0, t[ and by tS2(x) = a0 + a1 −
a2t

1− t
+

a2
1− t

x on the interval [t, 1].

Theorem 4.6. Let Mg : [0, 1]n → [0, 1] be the mixture function de�ned by (1) with the
monotone increasing T-spline weighting function de�ned by De�nition 4.5 with as ≥ 0

and
2∑
s=1

as = 1. Then Mg is monotone increasing for

min tS(x) = a0 ≥
1

t
. (35)

Proof In the Appendix. �

Note that contrary to Theorem 4.1 t is not �xed at 1
h
= 1

2
.

Theorem 4.7. Let Mg : [0, 1]n → [0, 1] be the mixture function de�ned by (1) with the
monotone increasing T-spline weighting function de�ned by De�nition 4.5 with as ≥ 0

and
2∑
s=1

as = 1. Then Mg is weakly monotone increasing for

min tS(x) = a0 ≥
1

4t
. (36)

Proof In the Appendix. �

We can now provide the following interpretation of the above mentioned results. The
worst case scenario (in terms of the lower bound for a0) happens when t→ 0 or t→ 1, in
which case the value 1

t
approximates the derivative of the spline on one of the segments.

Taking into account the normalisation condition a1 + a2 = 1 and that S ≥ S ′, we obtain
a0
a2
≥ a1

a2
.

5. Directional monotonicity of the mixture function with a�ne and exponen-

tial weighting function

We now discuss directional monotonicity for mixture functions which are de�ned by
means of a�ne weighting functions.
Theorem 5.1. Let Mg : [0, 1]2 → [0, 1] be the mixture function de�ned by (1) with the
a�ne weighting function g(x) = x + l, l > 0. Then Mg is r-increasing for vectors
r = (r1, r2), r 6= 0, r1 + r2 > 0 which satisfy the condition

l > max
{ −r1
r1 + r2

,
−r2
r1 + r2

}
+

√
r21 + r22

2(r1 + r2)2
. (37)
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Proof Let r = (r1, r2) 6= 0. Let x = (x, y) ∈ I2 and k > 0 such that x+ kr ∈ I2.
From De�nition 2.6 we get

(x+ kr1)(x+ kr1 + l) + (y + kr2)(y + kr2 + l)

x+ y + 2l + k(r1 + r2)
≥ x(x+ l) + y(y + l)

x+ y + 2l
,

whence

(x+ y + 2l)
(
2(xr1 + yr2) + k(r21 + r22) + l(r1 + r2)

)
≥ (r1 + r2)(x

2 + y2 + l(x+ y)).

Without loss of generality, for k → 0 and after some modi�cation, we obtain inequality

(x2 − y2)(r1 − r2) + 2xy(r1 + r2) + 4l(xr1 + yr2) + 2l2(r1 + r2) ≥ 0. (38)

Assume r1 + r2 > 0. The left-hand side of inequality (38) is a quadratic function with
non-negative discriminant. We need to set maximum value for l for it to be non-negative
for all input values and corresponding vectors. Therefore we need to maximize the root
of the quadratic function

l =
−4(xr1 + yr2) +

√
16(r1x+ r2y)2 − 8(r1 + r2) · ((x2 − y2)(r1 − r2) + 2xy(r1 + r2))

4(r1 + r2)
.

It is apparent that it is su�cient to maximize −4(xr1 + yr2). On the basis of selections
r1 > 0, r2 < 0 and input (0, 1); r1 < 0, r2 > 0 using input (1, 0), we get restrictions on the
coe�cient l in the form (37). �

Corollary 4. Let Mg : [0, 1]2 → [0, 1] be the mixture function de�ned by (1) with the
a�ne weighting function g(x) = x + l, l > 0. Then Mg is r-increasing with respect to
condition (38) as follows, see Figure 10.

1. For l→ 0+, the condition r2 = r1 must be satis�ed.
Then Mg is r-increasing only in the direction (r1, r2) where r1 = r2 > 0, i.e., it is a
proper weakly monotone function;

2. For l = 0.5, we get the conditions 0.28r1 ≤ r2 ≤ 3.75r1;

3. For l =
√
2
2
, we get the conditions r1 ≥ 0 and r2 ≥ 0 (standard monotonicity);

4. For l = 1, we get the conditions r2 ≥ −7r1 and r2 ≥ −
1

7
r1;

5. For l = 2, the conditions r2 ≥ −
17

7
r1 and r2 ≥ −

7

17
r1 must be satis�ed.

6. For l→∞, the condition r2 > −r1 must be satis�ed.
Then Mg is r-increasing in all directions which are determined by the half-plane.

Proof

• Conditions 1 - 5 are obtained directly from condition (38).

• Conditions 6 can be shown by

lim
r2+r1→0+

−r1
r1 + r2

+
√

r21+r
2
2

2(r1+r2)2
=∞, lim

r1+r2→0+

−r2
r1 + r2

+
√

r21+r
2
2

2(r1+r2)2
=∞.

�
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r1

l =
√
2
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r2

l =
0

l→
∞

l = 2

l = 0.5

Figure 10: The sets of directional monotonicity of Mg : [0, 1]2 → [0, 1] with g(x) = x+ l.

Corollary 5. Let Mg : [0, 1]2 → [0, 1] be the mixture function de�ned by (1) with the
a�ne weighting function g(x) = x + l, l > 0. Then Mg is r-increasing for non-zero
vectors r = (r, 1− r), r ≥ 0 which satisfy the conditions

l > −r +

√(
r − 1

2

)2

+
1

4
for 0 ≤ r ≤ 1

2

or (39)

l > r − 1 +

√(
r − 1

2

)2

+
1

4
for

1

2
≤ r ≤ 1.

Proof Let r = (r, 1− r), r ≥ 0. Let x = (x, y) ∈ I2 and k > 0 such that x+ kr ∈ I2.
From De�nition 2.6 we get

(x+ kr)(x+ kr + l) + (y + k(1− r))(y + k(1− r) + l)

x+ y + 2l + k
≥ x(x+ l) + y(y + l)

x+ y + 2l
, (40)

whence

(x+ y + 2l)
[
2(rx+ (1− r)y) + k(r2 + (1− r)2) + l

]
≥ x2 + y2 + xl + yl. (41)

Without loss of generality, for k → 0 and after some modi�cation, we obtain inequality

2l2 + 4l (r(x− y) + y) + 2xy + (x2 − y2)(2r − 1) ≥ 0. (42)

Using the same consideration as in the proof of Theorem 5.1, we obtain for x→ 0, y →
1 or x→ 1, y → 0, conditions (39). See Figure 11. �
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Figure 11: The set of directional monotonicity of Mg : [0, 1]2 → [0, 1] with g(x) = x+ l.

Regarding the ordered directional monotonicity, mixture function Mg : [0, 1]
2 → [0, 1]

with the weighting function g(x) = x + l, l > 0, is symmetric and hence it is ordered
r-increasing for the same coe�cient l stated in Corollary 5.

Proposition 5.2. Let Mg : [0, 1]2 → [0, 1] be the mixture function de�ned by (1) with
the a�ne weighting function g(x) = x + l, l > 0 and let r = (r, 1 − r), r ≥ 0. If Mg is
r-ordered increasing, then the coe�cient l must satisfy the condition

l > −r +

√(
r − 1

2

)2

+
1

4
for 0 ≤ r ≤ 1

2
. (43)

Proof Let r = (r, 1−r), r ≥ 0. Let x = (x, y) ∈ [0, 1]2 and k > 0 such that x+kr ∈ [0, 1]2.
Using De�nition 2.7, if x > y, we get gradually (40), (41) and (42). For x → 1, y → 0,
we obtain condition (43).
If x < y, it is enough to replace x and y in inequality (42) and use boundary input vector
(0, 1), from where we obtain condition (43), again. The set of directions for which Mg is
r-ordered increasing is represented by the left part of Figure 11 which is highlighted by
dashed lines. �

Remark 6. From the symmetry of mixture function Mg : [0, 1]
2 → [0, 1], with the weight-

ing function g(x) = x+ l, l > 0, it is obvious that if we consider vector r = (1− r, r), we
obtain the second part of condition (39), i.e.,

l > r − 1 +

√(
r − 1

2

)2

+
1

4
for

1

2
≤ r ≤ 1 (44)

and graphically, the right part of Figure 11.

Remark 7. With respect to Remark 2, let us assume weighting function gε(x) = x + ε,
ε > 0. From Corollary 5 we can state that the Lehmer mean

L1(x, y) =


x2+y2

x+y
; x, y ∈]0, 1];

lim
ε→0

Mgε(x, y); (x, y) = (0, 0)
(45)
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is r-increasing only for vector r = (1
2
, 1
2
), so it is just weakly monotone increasing.

Remark 8. Let Mg : [0, 1]2 → [0, 1] be the mixture function de�ned by (1). If Mg is
r-increasing, then MBg, with B > 0 is also r-increasing.

The next corollary gives us a su�cient condition for directional monotonicity of mix-
ture function (1) with the weighting function g(x) = cx+ 1− c, c ∈ [0, 1].

Corollary 6. Let Mg : [0, 1]2 → [0, 1] be the mixture function de�ned by (1) with the
weighting function g(x) = cx + 1 − c, c ∈ [0, 1]. Then Mg is r-increasing for vectors
r = (r1, r2) which satisfy the following conditions for c:

0 ≤ c ≤
√
2(r1 + r2)√

2r2 +
√
r21 + r22

and (46)

0 ≤ c ≤
√
2(r1 + r2)√

2r1 +
√
r21 + r22

.

Proof Using Remark 8, conditions (37) together with the substitution l = 1
c
−1, c ∈]0, 1],

we get condition (46). For c→ 0+, Mg becomes the arithmetic mean, which is monotone
increasing for all r : r1 + r2 ≥ 0. �

Corollary 7. Let Mg : [0, 1]2 → [0, 1] be the mixture function de�ned by (1) with the
weighting function g(x) = cx + 1 − c, c ∈ [0, 1]. Then Mg is r-increasing for vectors
r = (r1, r2) which satisfy conditions

• for c ∈ [0, 2−
√
2[,

r2 ≥
c2 − 4c+ 2

c2 − 2
r1 and r2 ≥

c2 − 2

c2 − 4c+ 2
r1; (47)

• for c ∈]2−
√
2, 1],

r2 ≥
c2 − 4c+ 2

c2 − 2
r1 and r2 ≤

c2 − 2

c2 − 4c+ 2
r1; (48)

• for c = 2−
√
2,

r1 ≥ 0 and r2 ≥ 0. (49)

So this mixture function is directionally monotone increasing in the following cases,
for instance:

1. for c = 0 for every direction r 6= 0 in the half-plane highlighted in Figure 12;
2. for c = 2−

√
2 for every direction in the �rst quadrant;

3. for c = 0.7 for every direction in the highlighted acute angle.
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Figure 12: The set of directional monotonicity of Mg : [0, 1]2 → [0, 1] with g(x) = cx+ 1− c.

It is clear, both from our proof and from Figure 12, that the set directions for which
directionally increasing monotonicity holds becomes gradually smaller from upper half-
plane bounded by line r2 = −r1 (for c = 0) to half line r2 = r1 (for c = 1).

Corollary 8. Let Mg : [0, 1]2 → [0, 1] be the mixture function de�ned by (1) with the
weighting function g(x) = cx + 1 − c, c ∈ [0, 1]. Then Mg is r = (r, 1 − r)-increasing,
r ≥ 0, r 6= 0 for coe�cients c which satisfy conditions

0 ≤ c ≤
1− r −

√
(r − 1

2
)2 + 1

4

1
2
− r

for 0 ≤ r ≤ 1

2

or (50)

0 ≤ c ≤
r −

√
(r − 1

2
)2 + 1

4

r − 1
2

for 1 ≥ r ≥ 1

2
.

Proof Using Corollary 5, Remark 3 and substitution l = 1
c
− 1, we obtain conditions (50)

with the convention 0
0
= 1. The situation is illustrated on Figure 13. �

Example 5.3. For illustration of directional monotonicity ofMg in a direction r = (r, 1−
r) w.r.t. De�nition 2.6 and Corollary 8, assume Mg given by (1) with g(x) = cx+ 1− c
and r = (0.9, 0.1). On the basis of condition (50), the limiting case for c to maintain
directional monotonicity, is c ≤ 0.649219. Therefore, we consider two situations, one for
c = 0.9 and the other for c = 0.5. We compare two function values of Mg : [0, 1]

2 → [0, 1],
where input values are x = (x, y) = (0, 0.9), r = (0.9, 0.1), k = 0.1, and g(x) = 0.9x+0.1.
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Figure 13: The set of directional monotonicity of Mg : [0, 1]2 → [0, 1] with g(x) = cx+ 1− c.

Then Mg(x + kr) = 0.775073 and Mg(x) = 0.810891, hence directional monotonicity is
violated. If we considerMg with g(x) = 0.5x+0.5, directional monotonicity is maintained.
The visualization of these situations is in the Figures 14 and 15. Although in Figure 15 we
considered the situation with k = 0.1, but the situation is the same for all the permissible
k.
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Figure 14: Mg(x + kr) and Mg(x) (1) with
g(x) = 0.9x+ 0.1.
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Figure 15: Mg(x + kr) and Mg(x) (1), with
g(x) = 0.5x+ 0.5.

Now we consider directional monotonicity for mixture function de�ned by means of
an exponential weighting function of the form g(x) = exp(cx) + a, that we have already
commented previously.

Proposition 5.4. Let Mg : [0, 1]2 → [0, 1] be the mixture function de�ned by (1), and
g(x) = exp(cx) + a, c ≥ 0, a > −1. Let r = (r1, r2) be a two-dimensional vector with
r1, r2 ≥ 0. Then Mg is r-increasing on its whole domain.
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Proof According to De�nition 2.6, we can state

(x+ kr1) · (exp(c(x+ kr1)) + a) + (y + kr2) · (exp(c(y + kr2)) + a)

exp(c(x+ kr1)) + exp(c(y + kr2)) + 2a
≥ (51)

≥ (exp(cx) + a) · x+ (exp(cy) + a) · y
exp(cx) + exp(cy) + 2a

.

The smallest values of the left-hand side are achieved for the input vector (x, y) = (0, 1)
and, taking symmetry into account, also for the vector (x, y) = (1, 0). After standard
modi�cation, we get for the input vector (0, 1)

kr1 · (exp(ckr1) + a) + (1 + kr2) · (exp(c(1 + kr2)) + a)

2a+ exp(ckr1) + exp(c(1 + kr2))
≥ a+ exp(c)

1 + 2a+ exp(c)
. (52)

For k → 0 our condition is satis�ed. �

Remark 9. Let Mg : [0, 1]2 → [0, 1] be a mixture function de�ned by (1). If Mg is
r-ordered increasing, then MBg, with B > 0 is also r-ordered increasing.

6. Directional monotonicity of the mixture function with di�erentiable

weighting function

Now, we introduce su�cient conditions of directional monotonicity of mixture function
(1), which are based on the directional derivative of the mixture function.

Proposition 6.1. Let Mg : [0, 1]n → [0, 1] be the mixture function de�ned by (1) with
a di�erentiable weighting function g : [0, 1] →]0,∞[ and r = (r1, r2, . . . , rn) be an n-
dimensional vector, rj ≥ 0, j = 1, 2, . . . , n, r 6= 0. Then Mg is r-increasing if the
condition holds:

(
n∑
i=1

g(xi)

)
·

n∑
j=1

rj · (g(xj) + xj · g′(xj)) ≥

(
n∑
i=1

g(xi)xi

)
·

n∑
j=1

rj · g′(xj). (53)

Proof This follows directly from the partial derivation of the function Mg according to
each input value. Without loss of generality, assume

Mg(x) =
g(xj)xj +

∑n
i 6=j g(xi)xi

g(xj) +
∑n

i 6=j g(xi)
. (54)

With respect to [4], mixture functionMg is r-increasing if rT∇Mg ≥ 0 for all x ∈ [0, 1]n.
This means that

n∑
j=1

(g′(xj)xj + g(xj))
∑n

i=1 g(xi)− g′(xj)(
∑n

i=1 g(xi)xi)

(
∑n

i=1 g(xi))
2

rj ≥ 0.

It follows immediately

n∑
j=1

[
(g′(xj)xj + g(xj))

n∑
i=1

g(xi)− g′(xj)

(
n∑
i=1

g(xi)xi

)]
· rj ≥ 0.
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After small modi�cation, we obtain (53). �

Moreover, we can modify su�cient condition (53) and we get other su�cient condi-
tions of r-monotonicity of mixture functions, which are similar to su�cient conditions of
standard monotonicity of mixture functions (3)-(8).

Proposition 6.2. Let Mg : [0, 1]n → [0, 1] be the mixture function de�ned by (1) with
the di�erentiable weighting function g : [0, 1] →]0,∞[ and r = (r1, r2, . . . , rn) be an n-
dimensional vector, rj ≥ 0, j = 1, 2, . . . , n, r 6= 0. Then Mg is r-increasing if at least one
from the following conditions is satis�ed:

• for an increasing weighting function g : [0, 1]→]0,∞[:

n∑
j=1

rj · g(xj) ≥
n∑
j=1

rj · g′(xj), (55)

n∑
j=1

rj · g(xj) ≥
n∑
j=1

rj · g′(xj) · (1− xj), (56)

for a �xed n, n > 1,

n∑
j=1

rj ·
[

g2(xj)

(n− 1)g(1)
+ g(xj)

]
≥

n∑
j=1

rj · g′(xj) · (1− xj), (57)

• for a decreasing weighting function g : [0, 1]→]0,∞[:

n∑
j=1

rj · (g(xj) + g′(xj)) ≥ 0, (58)

n∑
j=1

rj · (g(xj) + g′(xj) · xj) ≥ 0, (59)

for a �xed n, n > 1,

n∑
j=1

rj ·
[

g2(xj)

(n− 1) · g(0)
+ g(xj) + g′(xj) · xj

]
≥ 0. (60)

Proof The proof follows the guidelines of that of Proposition 6.1. If we divide inequality

(53) by
n∑
i=1

g(xi), we obtain a formula for mixture function on the right-hand side. The

mixture function can have maximal value 1 on the interval [0, 1]. In this way we get
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n∑
j=1

rj · (g(xj) + xj · g′(xj)) ≥
n∑
j=1

rj · g′(xj). (61)

If the weighting function g is increasing, we can minimize the left-hand side using
xj → 0, and we obtain condition (55). In general, after modi�cation of (61), we obtain
condition (56).

If we assume again mixture function of the form (64), we can rewrite rT∇Mg ≥ 0 as
follows:

n∑
j=1

rj ·

[
g2(xj) +

(∑
i 6=j

g(xi)

)
· (g′(xj) · (xj − 1) + g(xj))

]
≥ 0. (62)

Expression

(∑
i 6=j

g(xi)

)
can be bounded in the case of increasing weighting function by

(n− 1) · g(1) and after a small simpli�cation we obtain condition (57). In the case when
the weighting function is decreasing, the boundary condition is set as (n − 1) · g(0) and
similarly we get condition (60). �

We have established several conditions of directional monotonicity of mixture func-
tions. By using Proposition 2.10 we can show that in all cases directional monotonicity
implies cone monotonicity and weak monotonicity.

Proposition 6.3. Let Mg : [0, 1]n → [0, 1] be the mixture function (1). If the mixture

function Mg is u-increasing for any n-dimensional vector u such that
n∑
i=1

ui ≥ 0, then it

is also weakly monotone increasing.

Proof From u-increasingness and symmetry of mixture functions we obtain that Mg is
also v-increasing for all vectors v whose components are permutations of the components
of u. The sum of all such vectors v and u is a multiple of 1 = (1, 1, . . . , 1). Hence
by Proposition 2.10 Mg is cone monotone with respect to the cone formed by all linear
combinations of these vectors, which includes vector 1. HenceMg is also weakly monotone
increasing. �

7. Conclusion

In this paper, we introduced su�cient conditions for three types of monotonicity of
mixture functions with selected weighting functions. Our attention has been given to lin-
ear, exponential and piecewise linear weighting functions. A signi�cant part of the paper
was devoted to the T-spline weighting functions.
We want to remark the relation between mixture functions and some other types of func-
tions, as overlap functions. Taking this fact into account, the analysis done in the present
work can be useful, for instance, in order to generalize the class of overlap functions (which
are aggregation functions) to get more general expressions (pre-aggregation functions )
with an eye kept on possible applications in �elds as image processing where directionality
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may be of great relevance (e.g., consider the edge detection problem). Furthermore, ob-
serve that any directionally monotone mixture function is an example of pre-aggregation
function, so it can be used for fusing information in applications such as classi�cation. In
fact, this usefulness has already be shown in works such as [25]. We want to go deeper
into this lines of study in the future.
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Appendix

Proofs of the Theorems.
Theorem 4.1 Let Mg : [0, 1]n → [0, 1] be the mixture function de�ned by (1) with

the monotone increasing T-spline weighting function given by De�nition 2.13 with as ≥ 0

and
h∑
s=1

as = 1. Then Mg is monotone increasing for

minS(x) = a0 ≥ h =
1

t
. (63)

Proof Without loss of generality, we can rewrite mixture function (1) as follows

Mg(x) =
g(xj)xj +

∑n
i 6=j g(xi)xi

g(xj) +
∑n

i 6=j g(xi)
.

Regarding to the partial derivative with respect to xj

(g(xj) + g′(xj) · xj)
∑n

i=1 g(xi)− g′(xj)(
∑n

i=1 g(xi) · xi)
(
∑n

i=1 g(xi))
2

≥ 0.

For determination of monotonicity conditions it is enough to study the inequality

(g(xj) + g′(xj) · xj)
n∑
i=1

g(xi)− g′(xj)

(
n∑
i=1

g(xi) · xi

)
≥ 0. (64)

We investigate this inequality for one, two and three segments and then show a general
solution. Our overall strategy is to determine the minimum of the left-hand side of (64)
with respect to inputs x, and then �nd its minimum with respect to spline coe�cients as.
The condition that the smallest value of the left-hand side of (64) is non-negative will be
expressed in terms of the smallest possible value of the coe�cient a0.

Now the problem of minimising the left-hand side of (64) with respect to x is an
inde�nite quadratic programming problem with box constraints, because g′ is a piecewise
constant function and xi ∈ [0, 1]. When expressed in standard form the objective function
is H(x) = xTQx+ cTx+D for a square matrix Q, vector c and constant D. The matrix
Q has one positive and negative eigenvalues. By Proposition 2.3 in [18], at least (n− 1)
constraints are active at a local minimum of H. As such, the minima of H happen at
the edges or vertices of the unit cube. Following, by �xing all but one variable xi, the
objective function is either concave in that variable or convex increasing (for i = j). As
such the vertices of the unit cube are the only possible minimisers of H.

In the case of splines with several segments, other critical points are the knots of the
spline. For this reason we will only consider vectors x with coordinates 0, 1 and the knots
of the spline.

1. One segment spline, hence h = 1.
Using De�nition 2.13, we can express the spline as the function S(x) = a0 + a1x,
a0 > 0, on the interval [0, 1]. Contribution of each input vector of the form x =
(0, 0, . . . , 0, 1, 1 . . . , 1, 1︸ ︷︷ ︸

k-times

) to the standard monotonicity condition (64) is

n∑
i=1

S(xi) = na0 + ka1,

n∑
i=1

xiS(xi) = (a0 + a1)k.
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Standard monotonicity condition (64) with substitution: z = k
n
and the input value

xj = 0 is given by

a0 · (a0 + a1z)− (a0 + a1)z · a1 ≥ 0,

whence for a1 = 1 we have
a0 ≥

√
z. (65)

Maximal possible z is equal to 1, so we get

a0 ≥ 1, (66)

what corresponds with our result (14) in Proposition 3.1.
2. Two segments spline, hence h = 2.

With respect to De�nition 2.13 for two segments spline, we consider the following
functions:

T0(x) = 1; x ≥ 0,

T1(x) =

 min {2x, 1} ; x ≥ 0,

0; otherwise,

T2(x) =

 min {2x− 1, 1} ; x ≥ 1
2
,

0; otherwise.

The �rst segment represents the function S1(x) = a0 +2a1x, a0 > 0, on the interval
[0, 1

2
[ and the second segment S2(x) = a0 + a1 − a2 + 2a2x on the interval [1

2
, 1].

Assuming the input vector (0, 0, . . . , 0,
1

2
,
1

2
. . . ,

1

2︸ ︷︷ ︸
l-times

, 1, 1 . . . , 1, 1︸ ︷︷ ︸
k-times

), contributions to the

standard monotonicity condition (64) are as follows:

n∑
i=1

S(xi) = na0 + a1(l + k) + a2k,

n∑
i=1

xiS(xi) =
1

2
l(a0 + a1) + k(a0 + a1 + a2).

Using normalization condition a1 + a2 = 1, we get

n∑
i=1

S(xi) = na0 + a1l + k,

n∑
i=1

xiS(xi) =
1

2
l(a0 + a1) + k(a0 + 1).

Condition (64) with substitution z = k
n
, y = l

n
and a1 = 1, for the input value

xj = 0 (which together give the smallest value of the left-hand side of (64), is as
follows:

a0 · (a0 + y + z)− (a0 + 1)(y + 2z) ≥ 0, (67)

whence

a0 ≥
1

2
(z +

√
4y + 8z + z2).
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We can determine possible extrema of the right-hand side of the previous innequality
inside the prism z + y ≤ 1 and then inside of all faces, edges and vertices. In the
case that y = 0 we get the most tight condition for a0 as follows

a0 ≥
1

2
· (z +

√
z2 + 8z). (68)

The right-hand side of previous inequality has maximum for z = 1, so

a0 ≥ 2. (69)

3. Three segments splines, hence h = 3.
With respect to De�nition 2.13, we generate spline weighting function as linear
combination of the following functions:

T0(x) = 1; x ≥ 0,

T1(x) =

 min {3x, 1} ; x ≥ 0,

0; otherwise,

T2(x) =

 min {3x− 1, 1} ; x ≥ 1
3
,

0; otherwise,

T3(x) =

 min {3x− 2, 1} ; x ≥ 2
3
,

0; otherwise.

The �rst segment represents the function S1(x) = a0 +3a1x, a0 > 0, on the interval
[0, 1

3
[ and the second segment S2(x) = a0 + a1 − a2 + 3a2x on the interval [1

3
, 2
3
[

and S3(x) = a0 + a1 + a2 − 2a3 + 3a3x on the interval [2
3
, 1]. Assuming the input

vector (0, 0, . . . , 0,
1

3
,
1

3
. . . ,

1

3︸ ︷︷ ︸
m-times

,
2

3
,
2

3
. . . ,

2

3︸ ︷︷ ︸
l-times

, 1, 1 . . . , 1, 1︸ ︷︷ ︸
k-times

), we get for individual parts of

monotonicity condition (64) the following expressions:

n∑
i=1

S(xi) = na0 + a1(m+ l + k) + a2(l + k) + a3k,

n∑
i=1

xiS(xi) =
1

3
m(a0 + a1) +

2

3
l(a0 + a1 + a2) + k(a0 + a1 + a2 + a3).

Using normalization condition a1 + a2 + a3 = 1, we get

n∑
i=1

S(xi) = na0 + a1(m+ l) + a2l + k,

n∑
i=1

xiS(xi) =
1

3
m(a0 + a1) +

2

3
l(a0 + a1 + a2) + k(a0 + 1).
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Standard monotonicity condition (64) for the input value xj = 0, coe�cients a2 =
a3 = 0, a1 = 1 and substitution z = k

n
, y = l

n
and w = m

n
, is as follows:

a0(a0 + w + y + z)− (a0 + 1)(w + 2y + 3z) ≥ 0, (70)

whence

a0 ≥
1

2
(y + 2z +

√
4w + 8y + y2 + 12z + 4yz + 4z2).

By numerical solution of extrema of the right-hand side of previous inequality, we
have maximum for y = 0, w = 0 and z = 1, so

a0 ≥
1

2
(2z +

√
4z2 + 12z), (71)

from where for z = 1 we have

a0 ≥ 3. (72)

In general, on the basis of previous investigation (conditions (65) (68), (71)), we can state
condition for a0 using number of segments of the form

a0 ≥
1

2

(
(h− 1)z +

√
(h− 1)2z2 + 4hz

)
. (73)

For z = 1, we obtain

a0 ≥ h =
1

t
. (74)

�

Remark 10. In case of normalization of constants in two segment's spline, when a1 +
a2 = 1 and moreover, a2 = 0, we get again monotone increasing T-spline (not in the
strictly sense). The same situation is in the case if we consider three segment's spline
normalization a1+ a2+ a3 = 1 and moreover, a1 = 1 and a2 = a3 = 0, see Figures 16 and
17. For these options we need to determine standard and weak monotonicity conditions,
because these situations represent the worst cases to get our conditions.

Theorem 4.2 LetMg : [0, 1]
n → [0, 1] be the mixture function de�ned by (1) with the

monotone increasing T-spline weighting function de�ned by De�nition 2.13 with as ≥ 0

and
h∑
s=1

as = 1. Then Mg is weakly monotone increasing for

minS(x) = a0 ≥
h

4
=

1

4t
. (75)

Proof With respect to De�nition 2.13, we present two and three segments splines, respec-
tively as follows. Note that we apply the same reasoning as in the proof of Theorem 4.1
regarding the inputs x, namely since the minimisation of the left-hand side of (9) is an
inde�nite quadratic programming problem with box constraints, the minima are at the
vertices or edges of the feasible domain. Fixing all variables but one we obtain a concave
function, hence the critical points are the vertices of the unit cube and at the knots of
the spline. For this reason we only consider the input vectors x in the forms mentioned
below.
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x

S(x)

1

a0

0.5

a0 + 1

S2(x)

S1(x)

Figure 16: T-spline with two segments and normalization condition a1 = 1, a2 = 0.

x

S(x)

1

a0

1
3

2
3

S3(x)S2(x)

S1(x)

a0 + 1

Figure 17: T-spline with three segments and normalization condition a1 = 1 and a2 = a3 = 0.

1. Two segments spline, hence h = 2.

T0(x) = 1; x ≥ 0,

T1(x) =

 min {2x, 1} ; x ≥ 0,

0; otherwise,

T2(x) =

 min {2x− 1, 1} ; x ≥ 1
2
,

0; otherwise.
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The �rst segment represents the function S1(x) = a0 + 2a1x, a0 > 0, on the
interval [0, 1

2
[ and the second segment S2(x) = a0 + a1 − a2 + 2a2x on the in-

terval [1
2
, 1]. Assuming normalization condition a1 + a2 = 1 and input vector

x = (0, 0, . . . , 0,
1

2
,
1

2
. . . ,

1

2︸ ︷︷ ︸
l-times

, 1, 1 . . . , 1, 1︸ ︷︷ ︸
k-times

), we get for individual parts of weak mono-

tonicity condition (9) expressions:
n∑
i=1

S(xi) = na0 + a1l + k,

n∑
i=1

xiS(xi) =
1

2
l(a0 + a1) + k(a0 + 1),

n∑
i=1

S ′(xi) = 2a1(n− 2l − 2k) + 2(k + l),
n∑
i=1

xiS
′
i(xi) = (l + 2k)(1− a1).

Weak monotonicity condition (9) can be rewritten as follows

(na0 + la1 + k)2 + (na0 + la1 + k) · (l + 2k)(1− a1)−

−
(
1

2
l(a0 + a1) + k(a0 + 1)

)
· (2a1(n− 2l − 2k) + 2(k + l)) ≥ 0.

Using the substitution z = k
n
, y = l

n
, a1 = 1, we have

(a0 + y + z)2 − (a0 + 1)

(
1

2
y + z

)
· 2 (1− y − z) ≥ 0, (76)

whence

a0 ≥
1

2
(−y − y2 − 3yz − 2z2 − (−1 + y + z)

√
4y + y2 + 8z + 4yz + 4z2).(77)

We look for maximum of the function on the right-hand side of the previous in-
equality. In this case, we can determine extrema a by numerical method. We can
determine possible extrema inside the prism z + y ≤ 1 and then on all the faces,
edges and vertices. In the case that a1 = 1 and y = 0 we get the condition

a0 ≥
1

2
· (−2z2 + (1− z)

√
8z + 4z2), (78)

which has maximum 0.5 at z0 = 0.25. Hence

a0 ≥ 0.5. (79)

On other edges and faces maximal values are smaller that 0.5. For instance, if we
look for extrema on the edge z = 0, we obtain

f(y) =
1

2
(−y − y2) + (1− y)

√
4y + y2,

where maximum is 0.257092 at y = 0.174966.

Remark 11. If we assume in normalization condition a1 = a2 = 1
2
, then we get

using the same procedure condition for weak monotone increasingness of mixture
function in the form

a0 ≥ 0.5

for z = 0.5, y = 0.
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2. Three segments spline, hence h = 3.
With respect to De�nition 2.13, we generate spline weighting function as linear
combination of the following functions:

T0(x) = 1; x ≥ 0,

T1(x) =

 min {3x, 1} ; x ≥ 0,

0; otherwise,

T2(x) =

 min {3x− 1, 1} ; x ≥ 1
3
,

0; otherwise,

T3(x) =

 min {3x− 2, 1} ; x ≥ 2
3
,

0; otherwise.

The �rst segment represents the function S1(x) = a0 +3a1x, a0 > 0, on the interval
[0, 1

3
[ and the second segment S2(x) = a0 + a1 − a2 + 3a2x on the interval [1

3
, 2
3
[ and

S3(x) = a0+a1+a2−2a3+3a3x on the interval [23 , 1]. Assuming normalization condi-

tion a1+a2+a3 = 1 and input vector x = (0, 0, . . . , 0,
1

3
,
1

3
. . . ,

1

3︸ ︷︷ ︸
m-times

,
2

3
,
2

3
. . . ,

2

3︸ ︷︷ ︸
l-times

, 1, 1 . . . , 1, 1︸ ︷︷ ︸
k-times

),

we get for individual parts of weak monotonicity condition (9) the following expres-
sions:

n∑
i=1

S(xi) = na0 + a1(m+ l) + a2l + k,

n∑
i=1

xiS(xi) =
1

3
m(a0 + a1) +

2

3
l(a0 + a1 + a2) + k(a0 + 1),

n∑
i=1

S ′i(xi) = 3a1(n− 2k − 2l −m) + 3a2m+ 3(l + k),

n∑
i=1

xiS
′(xi) = a2m+ (1− a1 − a2)(2l + 3k).

Using the substitutions z =
k

n
, y =

l

n
, w =

m

n
, weak monotonicity condition (9) is

in the form

(a0 + a1(w + y) + a2y + z)2 + (80)
+ (a0 + a1(w + y) + a2y + z) · (a2w + (1− a1 − a2)(2y + 3z))−

−
(
1

3
w(a0 + a1) +

2

3
y(a0 + a1 + a2) + z(a0 + 1)

)
·

· (3a1(1− 2z − 2y − w) + 3a2w + 3(y + z)) ≥ 0.
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Then for a1 = 1 and a2 = a3 = 0, our previous condition changes into:

(a0 + w + y + z)2 − (a0 + 1)

(
1

3
w +

2

3
y + z

)
· 3 (1− w − y − z) ≥ 0, (81)

so

a0 ≥
1

2
(−w − w2 − 3wy − 2y2 + z − 4wz − 5yz − 3z2 + (82)

+ (1− w − y − z)
√

4w + w2 + 8y + 4wy + 4y2 + 12z + 6wz + 12yz + 9z2).

Again, as in previous spline with two segments, we determined extrema on all adges
and vertices and also inside of the prism w+ y+ z ≤ 1, and we obtained maximum
for

a0 ≥ 0.75

at z0 = 0.3 and w0 = y0 = 0.
By the same procedure, we get conditions for spline weighting function with more
segments as follows:

• For h = 4, using the substitutions z =
k

n
, y =

l

n
, w =

m

n
, u =

r

n
and nor-

malization condition a1 + a2 + a3 + a4 = 1 and assuming the input vector

x = (0, 0, . . . , 0,
1

4
,
1

4
. . . ,

1

4︸ ︷︷ ︸
r-times

,
2

4
,
2

4
. . . ,

2

4︸ ︷︷ ︸
m-times

,
3

4
,
3

4
. . . ,

3

4︸ ︷︷ ︸
l-times

, 1, 1 . . . , 1, 1︸ ︷︷ ︸
k-times

), we have

(a0 + u+ w + y + z)2 − (83)

− (a0 + 1)

(
1

4
u+

1

2
w +

3

4
y + z

)
· 4 (1− u− w − y − z) ≥ 0.

We obtained a0 ≥ 1 at z = 0.3333 and u = w = y = 0.

• For h = 5, using the substitutions z =
k

n
, y =

l

n
, w =

m

n
, u =

r

n
, v =

q

n
and

a1 + a2 + a3 + a4 + a5 = 1, and the input vector

(0, 0, . . . , 0,
1

5
,
1

5
. . . ,

1

5︸ ︷︷ ︸
q-times

,
2

5
,
2

5
. . . ,

2

5︸ ︷︷ ︸
r-times

,
3

5
,
3

5
. . . ,

3

5︸ ︷︷ ︸
m-times

,
4

5
,
4

5
. . . ,

4

5︸ ︷︷ ︸
l-times

, 1, 1 . . . , 1, 1︸ ︷︷ ︸
k-times

), we get

(a0 + v + u+ w + y + z)2 − (84)

− (a0 + 1)

(
1

5
v +

2

5
u+

3

5
w +

4

5
y + z

)
· 5 (1− v − u− w − y − z) ≥ 0.

From an investigation of extrema on all edges, vertices and also inside the
corresponding prism, we obtained the condition

a0 ≥ 1.25

at z0 = 0.357143 and v0 = u0 = w0 = y0 = 0.
On the basis of previous study (see (76), (81), (83) and (84)), we found out
that it is enough to solve inequality,

(a0 + z)2 − (a0 + 1)hz(1− z) ≥ 0, (85)
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where h is the number of segments,
whence

a0 ≥
1

2

[
−2z + hz(1− z) + (1− z)

√
4hz + h2z2

]
. (86)

With respect to a number of segments h, maximum of the right-hand side of
(86) is as follows:

� h = 1, a0 ≥ 0.25, z = 0.1667;
� h = 2, a0 ≥ 0.5, z = 0.25;
� h = 3, a0 ≥ 0.75, z = 0.3;
� h = 4, a0 ≥ 1, z = 0.3333;
� h = 5, a0 ≥ 1.25, z = 0.357143;
� h = 6, a0 ≥ 1.5, z = 0.375;
...

� h = 100, a0 ≥ 25, z = 0.490196.

In fact the left-hand side of (85) vanishes for z = h
2(h+2)

and a0 = h
4
.

From these results it can be seen that the maximum of our functions represents
precisely one quarter of the number of segments and hence we get condition
(75). Now to prove this numerical suggestion analytically, we examine the left-
hand side of (85). We need to ensure that at its minimum with respect to z,
its value is non-negative. By substituting the suggested value a0 = h

4
and the

critical point z∗ = (a0+1)h−2a0
2(1+(a0+1)h)

into (85) we obtain zero, which proves that the
left-hand side of (85) is non-negative for any 0 ≤ z ≤ 1 and any a0 ≥ h

4
, and

the bound for a0 is tight.

�

Remark 12. On the basis of (85), we can determine z, and calculate limit

lim

h→∞,a0→
h

4

z = lim

h→∞,a0→
h

4

−2a0 + h+ a0h+
√

(1 + a0)2(h2 − 4a0h)

2 + 2h+ 2a0h
=

= lim
h→∞

h2 + 2h

2h2 + 8h+ 8
=

1

2
.

Theorem 4.4 Let Mg : [0, 1]n → [0, 1] be the mixture function de�ned by (1) with
the monotone increasing T-spline weighting function de�ned by De�nition 2.13 with one
segment. Then Mg is weakly monotone increasing for

a0 ≥
√
2− 1

2
. (87)

Proof With respect to De�nition 2.13 T0(x) = 1; x ≥ 0 and

T1(x) =

 min {x, 1} ; x ≥ 0,

0; otherwise.
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For the input vector (0, 0, . . . , 0, 1, 1 . . . , 1, 1︸ ︷︷ ︸
k-times

) we have spline function S1(x) = a0 + a1x.

Contribution of each input value to weak monotonicity condition (9) and for a1 = 1, we
have

n∑
i=1

S(xi) = na0 + a1k = na0 + k,

n∑
i=1

xiS(xi) = (a0 + a1)k = (a0 + 1)k,

n∑
i=1

S ′(xi) = na1 = n,

n∑
i=1

xiS
′(xi) = a1k = k.

On the basis of condition (9) and substitution z = k
n
, we have

(a0 + z)2 + (a0 + z)z − (a0 + 1)z ≥ 0,

whence
a20 + 2a0z + 2z2 − z ≥ 0

and
a0 ≥

√
z − z2 − z.

Using maximum of the right-hand side of previous inequality, we get condition for weak
monotone increasingness in the form

a0 ≥
√
2− 1

2
. (88)

�

Theorem 4.6 LetMg : [0, 1]
n → [0, 1] be the mixture function de�ned by (1) with the

monotone increasing T-spline weighting function de�ned by De�nition 4.5 with as ≥ 0

and
2∑
s=1

as = 1. Then Mg is monotone increasing for

min tS(x) = a0 ≥
1

t
. (89)

Proof For the input vector (0, 0, . . . , 0, t, t . . . , t︸ ︷︷ ︸
l-times

, 1, 1 . . . , 1, 1︸ ︷︷ ︸
k-times

) and normalization condition

a1 + a2 = 1, contributions to the monotonicity condition (64) are

n∑
i=1

tS(xi) = na0 + a1l + k,
n∑
i=1

xi · tS(xi) = tl(a0 + a1) + k(a0 + 1),

n∑
i=1

tS
′(xi) = (n− k − l)a1

t
+ (l + k)

1− a1
1− t

,
n∑
i=1

xi · tS ′(xi) =
lt+ k

1− t
(1− a1).

Standard monotonicity condition with substitution y = l
n
, z = k

n
and a1 = 1 is given by

a20 + a0z −
z

t
(a0 + 1) ≥ 0, (90)

whence
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a0 ≥
z − tz +

√
z
√
4t+ z − 2tz + t2z

2t
.

Maximums of right-hand side of this inequality for selected t are as follows:

1. For t = 1, we get the condition a0 ≥ z+z2

2
and for z = 1, we have a0 ≥ 1.

2. For t = 0.9, we get the condition a0 ≥ 1
18
(z +

√
z
√
360 + z) and for z = 1, we have

a0 ≥ 1.11111.

For others t, in a similar way we get results as follows:

for t = 0.75, a0 ≥ 1.33333;
for t = 0.1, a0 ≥ 10;
for t = 0.01, a0 ≥ 100;
for t = 0.0001, a0 ≥ 10000.

It suggests immediately that a0 ≥ 1
t
. We verify the numerical suggestion analytically by

substituting a0 = 1
t
into the equation of the critical point of the right-hand size of (90)

with respect to z, and obtaining zero on the left of (90), which proves that the bound
a0 ≥ 1

t
is also tight. �

Theorem 4.7 LetMg : [0, 1]
n → [0, 1] be the mixture function de�ned by (1) with the

monotone increasing T-spline weighting function de�ned by De�nition 4.5 with as ≥ 0

and
2∑
s=1

as = 1. Then Mg is weakly monotone increasing for

min tS(x) = a0 ≥
1

4t
. (91)

Proof For the input vector (0, 0, . . . , 0, t, t . . . , t︸ ︷︷ ︸
l-times

, 1, 1 . . . , 1, 1︸ ︷︷ ︸
k-times

) and normalization condition

a1 + a2 = 1, contributions to the weak monotonicity condition (9) are

n∑
i=1

tS(xi) = na0 + a1l + k,
n∑
i=1

xi · tS(xi) = tl(a0 + a1) + k(a0 + 1),

n∑
i=1

tS
′(xi) = (n− k − l)a1

t
+ (l + k)

1− a1
1− t

,
n∑
i=1

xi · tS ′(xi) =
lt+ k

1− t
(1− a1).

Weak monotonicity condition (9) with substitution y = l
n
, z = k

n
is given by

(a0 + ya1 + z)2 + (a0 + ya1 + z) · (yt+ z)
1− a1
1− t

− (92)

− (ty(a0 + a1) + z(a0 + 1)) ·
(
a1
t
(1− y − z) + (y + z)

1− a1
1− t

)
≥ 0.

1. For a1 = 1 and y = 0 in (92), which result in the smallest value of the right-hand
side of (92), we obtain

H(z, a0, t) = (a0 + z)2 − z

t
· (a0 + 1)(1− z) ≥ 0, (93)
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whence
a0 ≥

1

2t
(z − 2tz − z2 − (z − 1)

√
z
√
z + 4t).

We look for maxima of the right-hand side of inequality for corresponding t and we
obtain the following results:

t = 1−, a0 ≥ 0.25, z = 0.16667;
t = 0.9, a0 ≥ 0.27778, z = 0.178571;
t = 0.75, a0 ≥ 0.33333, z = 0.2;
t = 0.1, a0 ≥ 2.5, z = 0.41667;
t = 0.01, a0 ≥ 25, z = 0.3;
t = 0.0001, a0 ≥ 2500, z = 0.4999.

Analysing this pattern we come to a suggestion that for t < 1
2
we have the minimiser

at z = 1
2(1+2t)

which corresponds to a0 ≥ 1
4t
. Next we verify this numerical suggestion

analytically by considering again the left-hand side of (93). The smallest value of
a0 that ensures the mixture function is weakly monotone is such that the minimum
of the function H with respect to z is zero (for a �xed 0 < t < 1

2
and a0). The

function H is quadratic convex in z and its only critical point depends on a0, namely
z∗ = a0+1−2a0t

2(t+a0+1)
. By substituting a∗0 =

1
4t
and the critical point z∗ into H we obtain 0,

which proves that indeed the smallest value of a0 which guarantees H(a0, z, t) ≥ 0 is
a∗0 =

1
4t
, which proves the assertion of the theorem, and is consistent with Theorem

4.2.
2. With the convention 1−a1

1−t → 1 in (92) we obtain condition

a20 + 2a0z + 2z2 − z ≥ 0,

from where
a0 ≥

√
z − z2 − z.

The function on the right-hand side gets the maximum at the point z0 = 2−
√
2

4
,

whence

a0 ≥
√
2− 1

2
,

what corresponds with our result in Theorem 3.3 and Theorem 4.4.

�
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