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a b s t r a c t 

We measure the gender homophily (and other network statistics) on large-scale online 

book markets: amazon.com and amazon.co.uk , using datasets describing millions 

of books sold to readers. Large book networks are created by sales (two books are con- 

nected if many readers have bought both books) and can recommend new books to buy. 

The networks are analysed by the gender of their first author: is book consumption assor- 

tative by gender ? 

Book networks are indeed gender-assortative: readers globally prefer to read from one 

author gender (the global assortativity coefficients by gender is around 0.4). Although 33% 

of first authors among all books are female, female books are not proportionally sold to- 

gether with male books: an average of 20% (and median of 11%) of books co-bought with 

male books are female books. Instead, female books make up on average more than half 

of the books co-bought with other female books. 

The gender makeup of literary genres and structural book communities show that the 

gender homophily originates in a gender skew not only in certain literary genres (a fact 

known from prior studies), but even more strongly in certain book communities, with 

these book communities spanning multiple literary genres. 

© 2019 Elsevier Inc. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Large, English-language online book markets sell individual books to individual readers, but also provide, on the web-

pages of most books, sales-based recommendations for other books. Two large groups of people (book authors, and their

anonymous book readers) interact indirectly on these markets, via books. Book sales create salient ties among the books: if,

over a period of time, a substantial number of the readers have bought both book A and book B on amazon.com , the web-

site will record a sales-driven, co-buying tie between A and B . A link to book B will be posted by Amazon on the product

page for book A , which will essentially act as a book recommender for future readers, and is likely to be self-reinforcing.

The sales ties between books then form a book network : an information network which models our aggregated reading

habits. Our global reading preferences can be studied over these large network models, more effectively than by surveying

or measuring the reading habits of a small number of readers. 

In this study, we focus on research questions related to gender: Do readers read books from both genders of authors (in

other words, across all the readers’ preferred literary genres, is there diversity between genders?) Is there instead a statistical

preference of readers for one gender of authors, a preference which even spans literary genres, and which is measurable as

gender homophily (or gender assortativity ) in the book network? Are there gender-skewed clusters of books, or effective

‘reading bubbles’, for the readers on these online book markets? 
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Fig. 1. Female-authored books in orange, male books in blue, collectively authored books in white: examples of gender-segregated book communities 

based on amazon.co.uk book sales (British book communities C 3 and C 1 ; see Section 4 for more information). (For interpretation of the references to 

colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

These research questions are complex, and combine a number of simple questions, such as asking how many readers

prefer exactly which subset of literary genres and in what proportion, and then asking which literary subgenres are gender-

skewed in authorship. The related work has partial answers for these simpler questions: on a small number and size of

datasets, prior studies have shown that gender preferences exist in what regards the writing of books (for example, there

are literary genres where female authors dominate sales, and likewise for men), and the reading of books (male readers

tend to appreciate certain literary subgenres, such as short stories or paranormal romance, at different ratios than female

readers). However, no prior studies exist which answer the question whether global gender homophily is present in the

network of real-world book sales, and whether there exist global gender-skewed reading bubbles. 

In content networks such as those formed by book sales, research questions related to gender are important. When

clusters or communities of books in the book network are shown to be heavily segregated by the gender of their authors,

then some readers are primarily exposed to authors of a single gender, thus removing the diversity of point of view which

is otherwise available on the global book market 1 We show here that strong gender homophily exists in book networks.

Similar degrees of homophily were found before in other social networks [18] , with the lower diversity in the opinion

present in a group likely to reinforce itself in time and lead to a segregation of views [13] ). We give detail to the related

work in Section 2 . 

1.1. Summary of findings 

We find that global gender assortativity in online book networks exists, and is partly ‘baseline’ homophily, namely caused

by a difference in the ratios of male and female authors: female authors of English-language or English-translated books

with high sales ranks on amazon.com and amazon.co.uk make up around 33% of all authors, and are thus less repre-

sented as authors than in the general population. Another 6% of authors are ungendered collectives. 

Substantial homophily above the baseline is also present. The natural preference of readers for various subsets of literary

genres , combined with the often skewed gender makeup of literary genres, and also combined with further reader preference

within a genre, leads to a relatively high global gender assortativity (a nominal assortativity coefficient of 0.47-0.50, where a

value of 0 is neutral, and a value of 1 is completely assortative). We also see substantial differences in the distributions of

local assortativity metrics between male and female books (the mean and median ratio of ties to female books from male

books are only around 20% and 11%, respectively, compared to 56–62% from female books). 

Exclusively male and exclusively female book communities (so, reading bubbles) exist. These book communities are books

clustered together solely based on the sales ties created by their readers (rather than clustered on other book information,

such as its literary genre, or author name). Fig. 1 shows two gender-segregated book communities among amazon.co.uk
books: on the left, a community of 3328 fiction books (of which 99.85% female-authored), and their literary genres (of which

80% from the Romance genre); on the right, a community of 597 also fiction, but mostly male-authored books (0.50% female

authors, with 89% of all books from the Fiction genre). A detailed analysis of the data is in Section 4 . 
1 While our data does not reveal the gender of the book readers themselves, we conjecture, based on previous studies of book reviews [26] , societal 

homophily [18] and cultural preferences [7] , that the readers showing a very skewed preference for female-written books are themselves in most cases 

female, and likewise for men. 
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1.2. Data collection 

We analyse book metadata (including a book’s ISBN, author names, and literary genre) and the undirected book co-

buying relationships for over 3 million print books. This study focuses on books on sale online by Amazon on the British

and the American book markets—both large and mainly English-language markets, on which Amazon is a leading online

seller. The data for a unique ISBN was crawled from the book’s public Amazon web page. In many cases, the same book,

with the same ISBN, is on sale on both national markets; separate crawls on amazon.co.uk and amazon.com then yield

largely the same book metadata, but different co-buying relationships. In many cases, the same title is also sold as different

editions, with different ISBNs, on the two markets, so not only the co-buying relationships will differ, but also some of the

book metadata. 

We collected British data (778 005 books) and American data (1 461 206 books) in the last quarter of 2017, specifically

for this study. We denote these two datasets by UK 17 and US 17 , respectively. A third, older, American-only dataset (filtered

here down to 972 717 books) was acquired in an unspecified period between 1996 and 2014 for prior research [17] , and is

denoted here by US 14 . 

UK 17 and US 17 were crawled starting from the top 100 best-sellers across all book genres, with the collection limited to

books with good sales ranks (between 1 and 1 million, as reported by Amazon), plus all their immediate co-bought books,

regardless of the sales rank of the latter. The relatively high sales rank, at least at one end of each tie between two books,

ensures that the relationship between the books is significant, i.e., that a substantial number of readers have consumed both

books. We cannot explain the difference in size between these two crawls. Since the internal structure of the networks is

similar (for example, the average degree of the books in the two networks is similar), a likely explanation is the fact that,

on the British Amazon, items other than print books have high sales rank, in a higher proportion than on the American

Amazon. 

The crawling methodology for the raw US 14 dataset is not known; from the original dataset, we use all the books with

at least one co-bought book (which is also present in the data), regardless of any sales ranks. Despite any differences in

crawling method, we find consistent results across the three datasets. 

1.3. Summary of method 

We make use of established descriptive statistics from the area of network science [19] , suitable for the empirical study

of large network structures, including that of information networks (such as citation networks, the web, or recommender

networks similar to our book networks) and online social networks. These descriptive statistics come in two categories,

as follows. The simpler network metrics are statistics about individual vertices in the network, such as the vertex degree

(number of co-bought books), or the local clustering coefficient, which describes the density of reciprocal connections in

the immediate neighbourhood of a vertex. More complex network metrics describe instead the entire network. This is the

case for the global coefficient of assortative mixing in the network (where the mixing is studied based on any ‘category’ of

the vertex, such as its degree or, in particular, its gender). It is also the case for the global form of any metric describing

individual vertices. For more insight on the choice of descriptive statistics for networks, see [19] . 

As a preliminary step, we run a network analysis to extract common network measures and metrics for these book

networks, such as their degree distribution, their global and average local clustering metrics, and their global assortativity

by vertex degree. The results, e.g., a non-assortativity by degree and a power-law distribution of vertex degrees, confirm

prior measurements over other Amazon product networks. 

Then, the gender study of the book networks starts with a process of gender resolution , in which 88% of the books in

the datasets are assigned the true (rather than perceived) gender of their first author; the remaining books have gender

unknown. The gender resolution is done using a number of corpora of first names, full names, and collective names (i.e.,

names of associations and institutions), all annotated with their gender, and reflecting the real population in the United

States and the United Kingdom. 

On the basis of gender-annotated vertices, we compute global and local gender assortativity metrics , and run statistical

tests to show substantial differences in the local ties of, separately, male, female, and collective books. Finally, an analysis of

the gender makeup of literary genres , and a structural analysis on the communities present in the book network (including

their genre and gender makeup) show that gender homophily is local to certain genres and, in particular, it is local to certain

book communities. A detailed description of this methodology is in Section 3 . 

2. Related work 

In this section, we survey prior studies relevant to the main research question of measuring the homophily, or assortative

mixing, in recommender book networks by the gender of the authors. Three categories of prior work are described below,

and their current results are compared to those of this study. 
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2.1. Gender preferences when authoring, reading, and reviewing books 

Gender in authoring It is known that book authors do not have uniform success across the various literary genres: there

are genres where female authors are more successful than male authors, and the reverse is also true. 2012 data on the vol-

ume of UK book sales of all time, containing only the sales numbers for the top 100 best sellers, shows that female authors

sold more books than male authors in the general Fiction genre (and this genre overwhelms the list of best sellers) [8] . The

top author, J. K. Rowling, is classified as writing in the subgenre Children’s Fiction; the data shows this subgenre as being

entirely female-written: all the bestselling authors in Children’s Fiction are female. The opposite is true for another Fiction

subgenre, Crime, Thriller & Adventure, where all the bestselling authors are men. 

The gender of book authors was also surveyed more broadly, per literary genre, using a sample of 0.5 million English-

language books crawled from goodreads.com (a website popular in the US) in Thelwall [25] . Each author name was clas-

sified to a gender based on the first name, with ambiguous first-name instances removed from the data. This recent study

shows that substantial differences in authorship exist in some genres, such as romance and comics books. Male authors are

in the majority in most genres, except for children, adult, fantasy, suspense and cook books. 

A similar case to book writing is the writing of pages in online encyclopedias, such as the free-content Wikipedia, where

everyone can edit: a strong gender skew in the makeup of the editors of these pages is hypothesised to lead to systemic

biases into the content of the encyclopedia. This has recently been confirmed: the narrow gender diversity of the Wikipedia

editor community (under 10% of Wikipedia editors are women [10] ) leads to notable women being covered and featured in

many language editions of Wikipedia, but the way women are portrayed starkly differs from the way men are portrayed,

with both structural and lexical gender bias present [28] . Women’s pages are more linked to men’s pages than vice versa.

On a lexical level, romantic and family relationships are much more frequently covered in women’s articles than in men’s. 

This study adds the following value to this existing work: our statistics strengthen the knowledge that certain genders of

authors prefer (or simply are more successful in) certain literary genres, from the male-dominated Sports and Technology

genres, to the female-dominated Romance. We show this using larger data than in any previous work, and in particular

using data from different sources than before. As our Amazon data models all the real-world book sales, rather than the

books popular on Goodreads, our statistics carry with a better degree of confidence. 

Gender in reading and reviewing . For this study, we do not have access to data on the gender of the book readers them-

selves; only some prior work gained some knowledge on the question of how readers and writers associate in terms of

gender. 

The readers studied in Thelwall [25] (namely, readers who wrote reviews on Goodreads) appear close to gender-balanced

for most large literary genres. However, this result may not reflect the readers of books in the general population, since

different ratios of male and female readers may choose to write public reviews, and also since Goodreads has a 76% female

user base. Furthermore, genres overlap, are not well defined in all cases, and are composed of thematic subgenres whose

readership may be gender-biased rather than balanced. 

Also on a sample of 0.5 million Goodreads books, Thelwall [26] measures the preference and appreciation of male and

female readers towards (a) book genres, (b) the gender of authors, and (c) the book reviews written by fellow readers of

one gender or another. The reviews available per book are ranked by Goodreads with an unknown algorithm, which may

have lead to a sampling bias. Nevertheless, among the highly ranked reviews, male readers review more highly than females

(and thus, may generally prefer) books from non-fiction genres, with the most male appreciation measured in genres such

as biography, history, memoir and politics. Male readers also rate many fiction subgenres more highly than women: short

stories, horror, crime, male-male romance and general literature. Female readers are instead seen to review more highly

than men some romance subgenres (paranormal, contemporary, chick lit). 

These results show that the literary genres have internal ‘gender lines’ , namely there exist subgenres strongly appreciated

by only one gender (such as the female preference for paranormal romance), while the loosely defined genre as a whole

may instead be more highly rated by male readers (a fact found to be true in this dataset for the romance genre). Also

in Thelwall [26] , Goodreads reviewers rate authors of their own gender more highly, in most book genres. This result is

intuitive, and can be motivated by people’s inherent preference for certain cultural themes which resonate best with their

own life experience. 

2.2. Gender homophily in book networks 

While this is the first analysis of gender mixing in book networks, in our own preliminary work, we did a smaller-scale

analysis of the oldest dataset also used here, US 14 , of around 1 million amazon.com books. Those preliminary results also

showed strong local and global gender assortativity in book sales [6] , and is included in this extended study. 

2.3. Gender homophily in other information or social networks 

In the general population, gender bias when forming ties, as well as a tendency to cluster by gender, have also been

measured. For example, in an in-person Dublin community of hundreds of teenagers, males were predominantly in male-

only clusters and females in female-only clusters, with male clusters usually larger [12] . In online social networks, the

tendency towards gender segregation is clear, and more accentuated for male users [27] (on the gender-balanced Spanish
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social network Tuenti). In two samples of thousands of member profiles from MySpace, with a small female majority, both

genders prefer as friends the majority gender, a choice more marked in females for their closest friend [24] . 

Gender homophily, both at and above the baseline, is documented, in various professional or other content-based social

networks, in early studies (a number of which were surveyed in McPherson et al. [18] ): in a study (dated 1995) looking at

political discussion networks, men have much higher levels of segregation than women, with 84% of men discussing politics

only with other men. The authors of [18] conjecture that content-based relationships are more gendered than personal

relationships, and work ties with men of status are used to gain advice, respect, mentoring, and access to information

by both men and women. Other studies before 1997, surveyed in McPherson et al. [18] , also found that, at all levels in

organizations, there are strong gender differences, with the minority gender having far more gender-balanced networks

than the majority gender. 

Newer studies (as recent as 2017) confirm the existence of skewed prosociality with gender in the networks formed by

research professionals: Massen et al. [16] find that, while researchers in general are prosocial, with 60%-80% sharing their

own research material (publications and data), prosociality was most prominent from male to male, and less likely among

all other combinations of genders. The authors conclude that this pattern suggests that male-exclusive networks exist in

science, likely caused by an evolutionary history promoting strong male bonds. A study of collaboration structures in various

engineering disciplines [11] also highlights a gendered scientific production, in which female engineers, although publishing

in higher-impact journals, receive lower recognition (fewer citations) from the community. Both genders reproduce the male-

dominated scientific structures by repeatedly collaborating predominantly with men. In collaboration structures in natural

sciences, women are underrepresented in prestigious authorships compared to men, and this is accentuated in articles with

the highest citation rates; there is a large negative correlation between the female representation in an authorship and the

impact factor of the journal [2] . 

3. Method 

The book network is an undirected graph G = (V, E) , where a vertex v ∈ V is a print book, assigned an ISBN, and an edge

( v, u ) is an undirected also-bought relationship, i.e., either v was one of the books bought by the same Amazon customers as

u (on Amazon’s product web page for u ), or vice versa. Either one or both Amazon web pages (for books v and u ) may yield

such an edge. Since Amazon limits the also-bought section of each web page to 100 products, both pages are valuable to

retrieve these edges. There is no inherent directionality to this relationship, as the timeline of customers buying the books

is not recorded on the web page of any book. 

Of the metadata for each book, this study sets as vertex attributes the book’s ISBN (e.g., 0 099590 085 , a best seller at

the time of this study), the list of author names, if such a list is given on the product page (e.g., Yuval Noah Harari ), and

the book’s category (or literary genre) as annotated by Amazon (e.g., the three-level Science & Nature � Biological Sciences

� Evolution , from which we use the first level, here Science & Nature ). We analysed literary genres containing a substantial

number of books (at least 500). The genre field is not present in the older US 14 dataset, so genre-based analyses are only

done over UK 17 and US 17 . 

We made an effort to acquire good-quality author records for the books in all three datasets. The book records in the

US 14 data did not include an author field at all; author records we crawled separately for this study from Amazon, by ISBN.

The book records in the 2017 crawl ( UK 17 , US 17 ) had their author retrieved from Amazon. For all datasets, we collected

a partial second set of author names by looking up each ISBN in the public OpenISBN records. 2 In a minority of cases,

the Amazon first author was not identical with the OpenISBN first author; we carried forward the Amazon first author (as

generally this was cleaner data), except in the cases when this was empty or equivalent (e.g., Unknown, Not Available ). 

3.1. Network analysis 

We first analyse the three raw book networks structurally. We report standard graphs metrics such as the network size,

the standard global [15] and average local [29] clustering coefficients , and Newman’s global assortativity coefficient by vertex

degree [21] . We also verify that the degree distribution fits to a power-law function. 3 

The global clustering coefficient, in the range [0,1], is the probability that any two vertices are connected, conditional

on them sharing at least one neighbour; a low value can indicate a network with relatively small clusters compared to the

overall size of the network. The local variant of this coefficient computes this degree of transitive connection only within the

neighbourhood of individual vertices; the average local clustering coefficient is higher than (and need not correlate with) the

global version, as it weighs sparse neighbourhoods equally as dense ones (while in the global version, dense neighbourhoods

weigh higher). 

Newman’s global assortativity coefficient is a standard metric which measures whether vertices in the graph prefer to

link to (or mix with) similar, rather than dissimilar vertices, according to discrete characteristics of each vertex; in this case,

the characteristic is the degree of each vertex. (Later, we also calculate this metric over another characteristic: the gender
2 www.openisbn.com , accessed 2017. 
3 For power-law fitting, we use the Python powerlaw package, which implements the power-law fitting method from [9] . 

http://www.openisbn.com
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Fig. 2. Steps in resolving the gender of an author. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of book authors.) This global assortativity coefficient takes values in [ −1 , 1] ; it is zero in a network where vertices link

randomly, and takes a high positive value when high-degree vertices associate preferentially with other high-degree vertices

(and likewise for low-degree vertices). 

3.2. Gender resolution for the first author 

The first step in the gender analysis resolves each first author into a discrete gender, i.e., assigns each vertex an attribute

from the set { male, female, collective, unknown }. We aim for the true, rather then the perceived, gender of an author, so

misleading pseudonyms (pen names), gender-neutral first names, and collective names formed based on the name of an

individual are all assigned the true gender manually. 

We first obtain a list of over 10 0 0 0 collective full author names present in any of the datasets; this set consists of

authors such as Oxford University Press, Cambridge International Examinations, Department of Agriculture, Editors of Bicycling

Magazine , or Dorling Kindersley Publishing , which cannot be assigned a definite gender. This list is extracted from the book

datasets themselves, by filtering the author records for keywords which signal a collective ( Library, Press, Department, Editors ,

etc.) and then manually inspecting the entries selected to remove names not belonging to this category (e.g., Clare Press , a

female fashion journalist and author). Then, all books whose authors remain in this list are classified as collective. Doing this

as a first step is crucial, because attempting to classify some of these collective names as if they were individuals (taking the

first word as the first name) leads to incorrect gender resolution in cases such as Peter Pauper Press, Herb Lester Associates

Limited, Kenneth Grahame Society , or Marco Polo Travel Publishing , which are publishers, rather than the male individuals they

were named after. This is shown as Step 1 in Fig. 2 . 

The majority of the remaining authors are classified by extracting from the author’s full name their first name, and

querying gender-annotated corpora of first-name use in the real population ( Steps 3–4 in Fig. 2 ). Three data sources are

used: 

1. A corpus of annotated first names collected by the School of Computer Science at Carnegie Mellon University (CMU) 4 ,

which categorizes approximately 50 0 0 female and 30 0 0 male first-name variations; 

2. A probabilistic library 5 for gender detection based on first names, with data sourced across a number of years for all

births in the United States and the United Kingdom; 

3. Our own list of manually gender-annotated first names from non-English-speaking countries, present among the authors

whose books are sold (perhaps in translation) on the US and UK English-speaking markets (e.g., Björn is a decidedly

male, and Geneviève a female first name). 

This first-name lookup, if executed as such, will occasionally lead to incorrect classifications, as there exist cross-gender

pen names ( James Tiptree Jr is the pseudonym of the female science-fiction writer Alice Bradley Sheldon , and Magnus Flyte is

the male pseudonym of a duo of female fiction authors), as well as ambiguous first names: over 300 first names from the

CMU corpus are used by either gender (e.g., Evelyn, Chris, Dana ). For this reason, Step 2 in Fig. 2 precedes the first-name
4 www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/nlp/corpora/names/ , accessed 2017. 
5 www.github.com/malev/gender-detector , accessed 2017. 

http://www.cs.cmu.edu/afs/cs/project/ai-repository/ai/areas/nlp/corpora/names/
http://www.github.com/malev/gender-detector
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lookup, and it categorizes the full names of those authors in the dataset who have cross-gender or ambiguous first names,

by relying on the authors’ surnames to make a difference. 

For Step 2, we manually searched for Amazon or Internet author pages, or other concrete indication of the gender these

authors subscribe to. These results make up new annotated lists of full author names (over 10 0 0 female and 1500 male; e.g.,

Dana Andrew Jennings is a male American journalist and author, while Dana Sachs is a female American novelist). This list

includes authors who use initials exclusively, but whose gender is known despite this (e.g., P. K. Hallinan , a male author of

children’s books). It also includes authors whose first names are nicknames, or are unusual and cannot otherwise be resolved

to a gender, e.g., Shoo Rayner and Crockett Johnson are men’s pen names, and Yellow Tanabe and Banana Yoshimoto are

women’s. The list also contains a small number of collective or anonymous authors whose gender is clearly predominantly

female (e.g., Girlguiding UK ) or male (e.g., Men’s Fitness ). Note that this gender-annotated author data may (in theory) have

a small number of inaccurate entries, e.g., in the case when there exist two published authors with identical full names, an

ambiguous first name, but different actual genders and books authored. 

Other authors do use initials (at least occasionally), but their first names are publicly known (e.g., the art historian E. H.

Gombrich is Ernst Hans ). To be able to categorize the most popular such authors, we manually build a dictionary from author

name with initials to complete author name, using Wikipedia and the wider Internet; this dictionary currently contains 400

names. This first name is then used for gender classification ( Step 3 in Fig. 2 ). Two published authors with identical names

using initials may exist, in which case we have aggregated both into the name of the most popular author. 

Finally, we evaluate the overall accuracy of this process of gender resolution in a manual verification step. 

The outcome of the gender resolution is graph G with an added vertex attribute for the gender. We then denote by

G 

k = (V k , E k ) that subgraph of G = (V, E) including only vertices of known gender, i.e., from which vertices of unknown

gender (and any adjacent edges) have been eliminated ( V 

k ⊆ V and E k ⊆ E ). 

3.3. Global discrete assortativity by gender 

Once the gender of the books is resolved and vertices have genders assigned, Newman’s discrete assortativity coefficient

r [21] by categorical vertex features is applicable to the book graph G 

k . 

The definition of r ( Eq. (2) in Newman [21] , pasted as Eq. (1) below for completion) denotes by i or j any iterator over the

vertex categories (over G 

k , i, j ∈ { male, female, collective }). From among all edges in G 

k , that fraction of edges which connect

two books from any two gender categories i and j is denoted e ij . The focus of the discrete assortativity coefficient is on

assessing the actual occurrence of same-gender co-buying relationships when compared to random chance. For this, the

term �i e ii is the fraction of same-gender edges occurring in G 

k . Then, a i denotes that fraction of edges of which one end

is a book from gender category i ; for an undirected graph, this may be either end. In a randomly wired graph, the term
∑ 

i a 
2 
i 

would give the fraction of occurring same-gender edges. r k is the normalized difference between actual and random

fractions of same-gender edges in G 

k , 

r k = 

∑ 

i e ii −
∑ 

i a 
2 
i 

1 − ∑ 

i a 
2 
i 

. (1)

No assortative mixing is present in the graph if r k = 0 , such as the case of a randomly wired graph. If the graph is such

that 
∑ 

i e ii = 1 , then it has perfect assortativity, and r k = 1 . Perfect disassortative mixing occurs when 

∑ 

i e ii = 0 (and r k is

negative, but not necessarily −1 ). 

An amount of bias may seep into the calculation of r k if book buyers, after reading a book by author A , are more likely

to consume books by the same author A , which raises the value of the term �i e ii . To remove that association bias, we also

define r d , a refinement of Newman’s discrete assortativity coefficient: instead of over G 

k , r d is calculated using Eq. (1) over

the filtered graph G 

d = (V k , E d ) from which same-author edges were removed, so any edge in E d links two different author

names ( E d ⊆ E k ). 

3.4. Local discrete assortativity by gender 

In the case of graphs where assortative mixing varies wildly from subgraph to subgraph, a local discrete assortativity

coefficient by categorical vertex features is informative. For a vertex v in G 

d , we denote v ’s one-hop edge neighbourhood

(the set of all edges ending at v ) by E d v , and v ’s one-hop edge neighbourhood of category i (the set of all edges between v

and a vertex u of category i ) by E d v i . Then, φd 
v i is the fraction of edges local to v ending in a vertex of category i , 

φd 
v i = 

| E d v i | 
| E d v | 

. (2)

We provide basic statistics for these local coefficients, specifically for the vertex category i = f emale . We use the simpler

notation φv to mean φd 
v f emale 

. Table 1 summarizes the notation presented in this section. 

We compare the three samples for φv resulted from segmenting V 

k into three disjoint subsets, by gender (so, v will de-

note in turn a male, female, or collective book). A Kolmogorov-Smirnov two-sample test [30] computes a numerical distance
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Table 1 

Notation. 

G = (V, E) Full book network 

G k = (V k , E k ) G including only books with known gender, V k ⊆ V, E k ⊆ E 

G d = (V k , E d ) G k excluding same-author edges, E d ⊆ E k 

r k Global discrete (gender) assortativity coefficient over G k 

r d Global discrete (gender) assortativity coefficient over G d 

φv Local discrete ( female ) assortativity coefficient for vertex v in G d 

Table 2 

Network statistics (over graph G ). 

UK 17 US 17 US 14 

Network size | V | (number of books) 778 005 1 461 206 972 717 

Number of co-buying relationships | E | 16 182 063 32 347 573 17 588 632 

Maximum degree of a book 4 618 8 323 5 739 

Degree average, stdev 41.59 ± 73.87 44.28 ± 89.86 36.16 ± 68.38 

Size of largest connected component 777 792 1 461 081 931 318 

Global clustering coefficient 0.151 0.130 0.158 

Average local clustering coefficient 0.433 0.439 0.429 

Global assortativity coefficient by degree −0.037 −0.036 −0.031 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D between the empirical distribution functions of any two of these samples, with the null hypothesis that the samples orig-

inate from the same distribution . The test is non-parametric, and distribution-free. We run the test over all three pairs of φv 

samples, male vs. female, collective vs. female, and collective vs. male books. If the null hypothesis is rejected by the test

(low p value and a relatively high D statistic above 0), books from different genders associate differently in terms of local

ties to (here) female books. 

3.5. Book community detection by co-buying relationships 

To identify the structural communities in our large book networks, we use the efficient multilevel (Louvain) community-

detection algorithm [3] . Maximizing the modularity of a partitioning (a value between -1 and 1 measuring the density of

links inside as compared to between communities) is computationally hard [4] . Due to this fact, and the relatively large

size of our book networks, a desirable performance factor for an algorithm for community detection is its complexity; the

Louvain algorithm was shown to be particularly efficient over multi-million-vertex networks [3] . 

The Louvain technique is an iterative and hierarchical approximation suitable for multi-million vertex graphs: it first

computes small communities by optimizing the local modularity in the neighborhood of each node; these are then modelled

as “supernodes”, with the original graph becoming a smaller, weighted graph, which is also partitioned. The process repeats

until the modularity of the partitioning doesn’t increase. 

We report the modularity of the partitioning, and analyse the book communities obtained in terms of size and size

distribution, gender makeup and literary genre(s). The set of literary genres are largely, but not entirely, identical between

the US and the UK markets. While an intuitive assumption is that book communities map well over literary genres, in our

preliminary study [6] we observed that this was not necessarily the case: book communities are multi-genre, although in

some cases one genre dominates. Due to this, the mapping between communities and literary genres is two-dimensional. 

4. Results 

4.1. Network analysis: clustering, degree distribution, and degree assortativity 

Table 2 summarizes basic network statistics for the three datasets; all metrics pertain to the raw book networks (three

instances of the undirected graph G ), before resolving the gender of the first author. All networks are mostly connected.

Despite the differences in size and crawling methodology among the book networks, their average degrees and clustering

coefficients are consistent, and match the four generic Amazon co-purchasing product networks publicly available at the

time of writing in the Stanford Large Network Dataset Collection [14] . 

The clustering coefficients (low in the global, and medium in the local variant) indicate more connectivity in the neigh-

bourhoods of high-degree books, so the presence of vertex clusters in the network, with relatively small clusters compared

to the overall network size. (An analysis of the concrete graph clustering is shown later in Section 4.4 .) 

Newman’s degree-based assortativity coefficients (with values close to −0 . 03 ) show mostly non-assortative mixing by

degree. This is akin to other real-world networks, such as the web (0.065 computed over a graph of 269 504 undirected

hyperlinks among web pages from a single domain, in Newman [20] ), but is unlike the positive, and sometimes high (up to

0.400) assortativity measured in almost all human social networks, which is likely due to a higher transitivity of connection

in human societies [22] . 
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Fig. 3. Degree histograms, probability density functions (PDF), and power-law fit. 

Table 3 

Gender statistics (over graphs G k and G d ). 

UK 17 US 17 US 14 

% books with known gender 88.2% 87.9% 88.0% 

Number of books with known gender | V k | 686 507 1 284 512 855 519 

Number of co-buying relationships | E k | 13 125 164 26 507 425 14 421 568 

Gender ratios in G k (% of male, female, collective books) 61.6% 32.4% 6.0% 60.7% 33.2% 6.1% 61.0% 33.8% 5.2% 

Global gender assortativity r k 0.471 0.498 0.485 

Number of co-buying relationships | E d | 11 233 395 22 278 441 12 636 474 

Global gender assortativity r d 0.370 0.392 0.405 

Average local gender assortativity φv (among male, female, collective books) 0.198 0.562 0.234 0.203 0.577 0.250 0.197 0.590 0.257 

Median local gender assortativity φv (among male, female, collective books) 0.111 0.571 0.143 0.115 0.600 0.149 0.103 0.619 0.163 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The three degree distributions on the raw books networks fit to power-law distributions, i.e., their probability density

function (PDF, or normalised histogram) can be described asymptotically by P (d) ∼ d −α, meaning that the likelihood that a

vertex has degree d in this network decreases by a power of d . Fig. 3 shows the three degree distributions as histograms (top

row) and also as a PDF and its power-law fit, with exponents α around 3.1 and a good fit over the empirical data for mid-

range degrees above 100 (bottom row). This holds for other real-world networks, such as the web, with most exponents

between 2 and 3 [1] . Thus, online book networks are scale-free: they lack a characteristic degree, as the vertices have

dominating low degrees, but also a long tail of high degrees. 

4.2. Gender analysis: statistics and assortativity 

Around 88% of the books had their gender resolved ( Table 3 ); the remaining have their gender annotated as unknown in

graph G , and are removed to construct G 

k and G 

d . 

We evaluate to what extent the gender resolution is correct, over random samples of 100 books (whose first authors

were resolved into a gender), one from each of the three datasets. We verify the gender results for these records manually;

of the 300 instances, we found 2 wrong calls: a French first name whose gender is different in English than in French, and

a collective name misinterpreted as an individual person. We conclude that, while incorrect instances exist, their numbers

are not significant, and do not threaten the validity of the results. 

Among the books with known gender, a majority (over 60%) have a male first author, and around 33% a female first

author ( Table 3 ). Newman’s global coefficients of assortativity by gender ( r k and r d , i.e., with and without same-author links)

are above 0.47 and 0.37, respectively: the book networks display overall assortativity by gender, i.e., preferential attachment

of same-gender books, above random chance. 

The local coefficients of assortativity with female books ( φv ) in G 

d vary substantially with the gender of vertex v itself.

On average, only roughly 20% of the books co-bought with books v written by male first authors have female first authors;

the median is lower, at 10–11% across the three datasets. In contrast, both the average and the median φv over books v by

female authors are 56–62% ( Table 3 , where the φv values are given as ratios in [0,1]). 

The histograms of the three φv samples are shown in Fig. 4 ; US 14 is similar, and is omitted from the figure. The distri-

bution of φv where the gender of v is male ( Fig. 4 , left) is in contrast with that where the gender of v is female (center)

and collective (right). The Kolmogorov-Smirnov two-sample tests (statistics in Table 4 ) reject the null hypothesis that male

and female (also: collective and female) books associate similarly, with a D statistic above 0.5 in all cases. 
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Fig. 4. Histograms of three φv samples: books v of male (left), female (center) and collective (right) gender. US 14 is similar and omitted. 

Table 4 

Kolmogorov-Smirnov statistics: distance D (with confidence level p ) between the empirical distribu- 

tions of φv where v are male, female, or collective books. 

UK 17 US 17 US 14 

Distance male-female D = 0 . 500 , p < . 001 D = 0 . 506 , p < . 001 D = 0 . 517 , p < . 001 

Distance collective-female D = 0 . 445 , p < . 001 D = 0 . 434 , p < . 001 D = 0 . 429 , p < . 001 

Distance male-collective D = 0 . 059 , p < . 001 D = 0 . 074 , p < . 001 D = 0 . 094 , p < . 001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3. Genre analysis: gender distribution with literary genre 

Among the books with resolved gender (graph G 

k ), in both UK 17 and US 17 , there are a total of 34 literary genres with at

least 500 books per genre. We aggregate all books in G 

k either (a) without a stated genre, or (b) in minor genres containing

under 500 books into the default genre called Other . Amazon’s American genres differ slightly in name from the British ones

(e.g., the British Crime, Thrillers & Mystery aligns to the American Mystery, Thriller & Suspense ). 

Fig. 5 (bottom) shows the breakdown of each literary genre by the gender of the first author, for both UK 17 and US 17 ; the

genres are shown in ascending order of the percentage of female first authors per genre, and in comparison to the global

ratio of female authors across all genres in G 

k (shown as a horizontal line). Fig. 5 (top) adds the size of each genre, i.e., its

book count; these counts add up to the size of graph G 

k . A small minority of relationship-oriented genres are largely female:

British Romance (approximately 14,0 0 0 books) is 94% female, and American Romance (also 14,0 0 0 books) is approximately

95% female. On the other hand, British History (30,0 0 0 books), Comics & Graphic Novels (19,0 0 0 books), Computing & Internet

(9,0 0 0 books), and Humour (2,0 0 0 books) are all 80–85% male. Similarly, American Sports & Outdoors is 87% male, with

Computers & Technology, Comics & Graphic Novels, Science & Math , and Engineering & Transportation also above 80% male. 

4.4. Community analysis: preferential gender and genre in book communities 

While some of the literary genres are unsurprisingly gender-skewed in authorship, a fact also found earlier in Thelwall

[25] , this only translates into “bubbles” of authorship from a single gender only if readers effectively consume books limited

to one or a few genres. Our analysis of book communities over graph G 

k finds that while (a) genres are not isolated in

the readers’ buying preferences (i.e., different genres do get co-bought by readers), (b) the assortativity by gender found

in Section 4.2 is due to the existence of cross-genre book communities, with some of these book communities even more

gender-skewed than individual genres. 
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Fig. 5. The size and gender breakdown of major literary genres in UK 17 and US 17 . 

Fig. 6. Community-size histograms, probability density functions (PDF), and power-law fit. 

 

 

 

 

 

 

 

 

 

 

 

For the community analysis, the Louvain community-detection algorithm partitions the graphs G 

k , with high values for

the modularity metric: 0.86, 0.83, 0.84 for UK 17 , US 17 , and US 14 , respectively. This process of community detection comes

with limitations: (a) the problem of extracting communities from such large graphs likely has multiple similar solutions,

all of very similar modularity coefficients, and (b) the algorithm is a greedy heuristic, so does not necessarily produce an

optimal partition of the graph. In this respect, we experimented with running the community detection repeatedly over the

book networks; the resulting solutions occasionally merged a few of the clusters, but always obtained nearly indistinguish-

able, high modularity values, with insignificant change in the most gender-segregated communities. 

Fig. 6 shows the sizes of all communities found (including those of small size); the number of communities (data points

Fig. 6 ) is low, leading to data sparseness, so the histogram of community sizes ( Fig. 6 , top), is first smoothed into a probabil-

ity density function (PDF), 6 which is then fitted to a power-law density function with exponents α slightly above 1 ( Fig. 6 ,

bottom). Thus, asymptotically, communities (like vertex degrees) are also scale-free and lack a characteristic size. 

We study all communities larger than 500 books. This amounts to 45 communities for UK 17 , 61 for US 17 , and 57 for US 14 .

Maps from community to literary genre (for UK and US ) are in Fig. 7 ; this shows which ratio of books from each book
17 17 

6 The smoothed PDF of community sizes is computed as follows. Any data point ( x ; y ) from the histogram of community sizes is normalized into a PDF 

data point. Then, if this data point is adjacent on the x axis to intervals without data points, it is weighted down in y value proportionally to the width of 

the interval without data. 
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Fig. 7. Which percentage of a community comes from which literary genre? Maps from communities to literary genres. 

Fig. 8. Female-authored books in orange, male books in blue, collectively authored books in white: examples of book communities based on 

amazon.co.uk book sales; the largely single-genre community C 8 (left) and the multi-genre community C 25 (right). (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 9. The size and gender breakdown of book communities in UK 17 , US 17 , and US 14 . 

 

 

 

 

 

 

 

 

community comes from which major genre. Some book communities are dominated by one literary genre; e.g., the British

nonfiction book community C 8 (20 0 0 books) consists mostly of books from the Sports, Hobbies & Games category (92%).

Other book communities are spread across genres; e.g., in the British book community C 25 (40 0 0 books), several nonfiction

literary genres are represented substantially, e.g., Languages (43%), Society, Politics & Philosophy (25%), and Reference books

(9%). These two communities are visualised in terms of gender and genre makeup in Fig. 8 . Two other examples (the British

fiction-book communities C 1 and C 3 ) were given in Fig. 1 (of Section 1 ). 

Finally, the gender makeup of all book communities is shown in Fig. 9 , for the three datasets. In comparison with the

gender makeup of literary genres ( Fig. 5 ), notable is the fact that there exist book communities which are more gender-

segregated than all literary genres. The lowest percentage of female authors in a British literary genre is 9.38% (in Sports,
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Hobbies & Games ), yet the lowest percentage of female authors in a British book community is 0.50% (in C 1 , shown in

Fig. 1 , right). Compared to the most female British literary genre ( Romance , 93.95% female), British C 3 ( Fig. 1 , left) is 99.85%

female. Similarly for male authors: while the most male British genre is History , at 84.60% male, the most male British book

community is C 1 , at 99.33% male. The graph data and further visualisations for this study are publicly available [5] . 

5. Discussion and conclusions 

This study measured, using both global and local graph metrics over large graphs of online book co-sales, the degree to

which book readers will read the work of authors from both genders. There are limitations to the methodology: the process

of resolving the gender of the main author in millions of book records is inherently imperfect (e.g., non-English author

names and names with initials are particularly likely to remain with unresolved gender, and a small fraction of wrong calls

in gender resolution exist). 

We found gender homophily (or assortative mixing) above the expected baseline given by the overall lower ratio of

female authors. In particular, the average reader of female-authored books prefers to buy many other female books – over

half of the total number of books co-bought, a fraction which is remarkably close to the ratio of females in the general

society, and which essentially corrects the effect of the baseline homophily. On the other hand, the average reader of male

books prefers to buy substantially fewer female books than the baseline, thus reinforcing the gender homophily. 

We measured the gender makeup of all major literary genres, and (expectedly) found the sports, technical, and comic-

book categories to be substantially male, and the relationship-related, children, and cook-book genres substantially female.

Less expectedly, we found structural, sales-driven book communities which are even more binary than individual genres:

some communities are made entirely by one author gender, with examples of extreme local polarization within the main

fiction literary genres. 

These numerical results signal the existence of a substantial number of texts which are written for, marketed to, recom-

mended for, or simply appeal to, a single gender of readers – likely the same gender as that of the authors of these texts.

This supports the idea that the culturally established “binaries” of gender [23] in previous generations are still present, and

reflect into book consumption. We leave for future work the analysis of which type of content, within a literary genre,

correlates with a gender-skewed readership. 

Supplementary material 

Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.ins.2019.01.003 . 
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