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a b s t r a c t 

Circular data jointly observed with linear data are common in various disciplines. Since 

circular data require different techniques than linear data, it is often misleading to use 

usual dependence measures for joint data of circular and linear observations. Moreover, 

although a mutual information measure between circular variables exists, the measure has 

drawbacks in that it is defined only for a bivariate extension of the wrapped Cauchy distri- 

bution and has to be approximated using numerical methods. In this paper, we introduce 

two measures of dependence, namely, (i) circular-linear mutual information as a measure 

of dependence between circular and linear variables and (ii) circular-circular mutual infor- 

mation as a measure of dependence between two circular variables. It is shown that the 

expression for the proposed circular-linear mutual information can be greatly simplified for 

a subfamily of Johnson–Wehrly distributions. We apply these two dependence measures to 

learn a circular-linear tree-structured Bayesian network that combines circular and linear 

variables. To illustrate and evaluate our proposal, we perform experiments with simulated 

data. We also use a real meteorological data set from different European stations to create 

a circular-linear tree-structured Bayesian network model. 

© 2019 Published by Elsevier Inc. 

 

 

 

 

 

 

 

1. Introduction 

Data comprising circular and linear observations are ubiquitous in science. In analysis of such data, the periodic nature

of circular data has often been ignored in the literature, and the data have been treated as being linear. However, circular

data must be analysed using special circular techniques, owing to their properties [6,12,22,24,26] . Unlike linear data, in

the circular domain, the points with module 2 π are considered to be the same point (e.g., −360 , 0, 360, 720, etc.). One

of the best-known circular distributions is the wrapped Cauchy distribution [21] , which was extended to a five-parameter

bivariate distribution for toroidal data by Kato and Pewsey [16] . Another popular distribution on the circle is the von Mises

distribution [30] , which has been extended to the bivariate case [24] and to the multivariate case by Mardia et al. [25] and

Mardia and Voss [28] . 
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Fig. 1. Flow chart for the choice of dependence measures. MI for two linear variables, CMI for two circular variables, CLMI for a pair of linear and circular 

variables. These measures allow the modelling of a tree-shaped Bayesian network with circular and/or linear variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Several models exist for data consisting of circular and linear observations, many of which focus on a circular-linear

regression [7,10,36] . In addition, Mardia and Sutton [27] proposed a bivariate distribution that combines the von Mises

distribution with Gaussian distributions on the cylinder. Abe and Ley [1] proposed the WeiSSVM, a cylindrical distribution

based on combinations of the sine-skewed von Mises distribution and the Weibull distribution. Furthermore, Johnson and

Wehrly [14] presented circular-linear distributions, and proposed a method to obtain a bivariate circular-linear distribution

with specified marginal distributions. In this work, we prove that the conditional distributions of a subfamily of Johnson–

Wehrly family are well known and mathematically tractable. 

Many studies have determined measures for the mutual dependence between linear variables [See 23 , 33 , 34, among oth-

ers] . Among them, one of the most well-known is the mutual information measure [4,38] . The latter measure is based on

the similarity between the joint density function and the product of its marginal density functions. To extend this measure

to the circular domain, Leguey et al. [20] developed a circular-circular mutual-information (CMI) measure. However, this

measure is only applicable to circular variables with marginal distributions that follow wrapped Cauchy distributions and

has to be approximated using numerical methods. Therefore, for the case when the two variables are in the circular domain,

we propose a CMI measure with no constraints on the underlying circular distributions. The CMI measure is shown to have

the nice property that it can be expressed in a closed form for a general family of bivariate distributions. 

To the best of our knowledge, there are no measures of mutual information for pairs of circular and linear variables.

Such a measure is potentially useful for learning Bayesian networks such as the tree-augmented naive Bayes model (TAN)

[9] , where the dependence between the variables is captured via probabilistic graphical models. Furthermore, the Chow–

Liu algorithm [3] , which is used to learn a TAN and based on the mutual information of all pairs of variables, guarantees

that the graph is a maximum likelihood tree. Therefore, a measure of mutual information for a pair of circular and linear

variables is necessary to allow the presence of linear and circular variables in such models. We address this problem and

propose a circular-linear mutual-information measure (CLMI) of the dependence between a circular variable and a linear

one. 

Generally, Bayesian network models that combine linear and circular variables ignore the circular nature and consider all

of them as linear-continuous, such as Gaussian Bayesian networks [see 17 , 37, among others] . Alternatively, it is also com-

mon to discretize [32] the variables (with the related loss of information) to take advantage of a plethora of learning and

inference algorithms for discrete Bayesian network models. In both models, the circular variable is not appropriately han-

dled. In this work, we develop a circular-linear Bayesian network model with a tree structure that captures the relationship

between circular and linear variables. The model is based on our proposed CLMI and CMI measures ( Fig. 1 ), together with

the traditional mutual information of linear variables and the bivariate distribution proposed by Johnson and Wehrly [14] . 

The paper is organized as follows. Section 2 reviews the wrapped Cauchy distribution and the Gaussian distribution

as representatives on the circular and linear domains, respectively. Section 3 reviews the angular-linear Johnson–Wehrly

bivariate distribution, and shows that a submodel of their distribution has tractable and well-known conditional distribu-

tions. Section 4 discusses the proposed CMI and CLMI measures. Section 5 applies the measures presented in Section 4 , and

presents the proposed circular-linear tree-structured Bayesian network model, as well as its evaluation in synthetic domains.

Section 6 compares the proposed model to a Gaussian Bayesian network model and a discrete Bayesian network model over

a real-world meteorological data set recorded from meteorological stations located in Europe. Last, Section 7 concludes the

paper and discusses possible avenues for future work. 

2. Representative distributions for circular data and for linear data 

One of the best-known distributions defined on the circle is the wrapped Cauchy distribution [21] . We use this circular

distribution as the underlying marginal model for the circular data in the proposed Bayesian networks. Similarly, we use the

Gaussian distribution as the underlying distribution for linear data and apply it to our Bayesian networks. 
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These two distributions are both well known, and share some nice properties. For example, they are both easy to simu-

late, computationally very fast and have tractable bivariate extensions. In addition, the marginal and conditional distributions

of these extensions belong to the same family and are mathematically tractable. 

In the following subsections, we review the wrapped Cauchy distribution, Gaussian distribution, and their bivariate ex-

tensions. As known properties related to the bivariate extensions, we discuss their marginal and conditional distributions,

as well as other characteristics relevant to our study. These include the complex-form expression for the wrapped Cauchy

distribution and the expression for the mutual information between two variables with a bivariate Gaussian density. 

2.1. Wrapped cauchy distributions 

2.1.1. Definitions 

A circular random variable � that follows a wrapped Cauchy distribution [21] , denoted by wC ( μ, ɛ ), has the following

density function: 

f (θ ;μ, ε) = 

1 

2 π

1 − ε 2 

1 + ε 2 − 2 ε cos (θ − μ) 
, with θ, μ ∈ (0 , 2 π ] , ε ∈ [0 , 1) , (1) 

where μ is the location parameter and ε is the concentration parameter. When ε = 0 , Eq. (1) is the circular uniform distri-

bution; otherwise, it is unimodal and symmetric about μ. Please refer to [18] and [29] for other properties of wC . 

A random vector ( �1 , �2 ) that follows the five-parameter circular bivariate wrapped Cauchy distribution [16] , denoted

by bwC ( μ1 , μ2 , ɛ 1 , ɛ 2 , ρ), has the density function 

f (θ1 , θ2 ) = c[ c 0 − c 1 cos (θ1 − μ1 ) − c 2 cos (θ2 − μ2 ) − c 3 cos (θ1 − μ1 ) 

· cos (θ2 − μ2 ) − c 4 sin (θ1 − μ1 ) sin (θ2 − μ2 )] −1 , with θ1 , θ2 ∈ (0 , 2 π ] , (2) 

where c = (1 − ρ2 )(1 − ε 2 1 )(1 − ε 2 2 ) / 4 π
2 , c 0 = (1 + ρ2 )(1 + ε 2 1 )(1 + ε 2 2 ) − 8 | ρ| ε 1 ε 2 , c 1 = 2(1 + ρ2 ) ε 1 (1 + ε 2 2 ) − 4 | ρ| (1 +

ε 2 
1 
) ε 2 , c 2 = 2(1 + ρ2 )(1 + ε 2 

1 
) ε 2 − 4 | ρ| ε 1 (1 + ε 2 

2 
) , c 3 = −4(1 + ρ2 ) ε 1 ε 2 + 2 | ρ| (1 + ε 2 

1 
)(1 + ε 2 

2 
) , c 4 = 2 ρ(1 − ε 2 

1 
)(1 − ε 2 

2 
) , μ1 ,

μ2 ∈ (0, 2 π ], ε1 , ε2 ∈ [0, 1), and ρ ∈ (−1 , 1) . Here, μ1 and μ2 are the marginal location parameters, ε 1 and ε 2 are the

marginal concentration parameters, and ρ is the parameter controlling the association between �1 and �2 . 

2.1.2. Complex form 

Using the complex form to represent univariate and bivariate wrapped Cauchy models can simplify their computation

issues [16,29] . 

Let Z = exp ( i �) , where � is distributed as the univariate wrapped Cauchy given by Eq. (1) . Then, Z has a density func-

tion given by 

f (z) = 

1 

2 π

| 1 − | λ| 2 | 
| z − λ| 2 , z ∈ �, λ ∈ 

ˆ C \ �, (3) 

where λ = ε exp ( iμ) , ˆ C = C ∪ {∞} , and � = { z ∈ C : | z| = 1 } . Similar to [29] , we denote Z distributed as in Eq. (3) as

Z ∼ C ∗( λ). 

Let (Z 1 , Z 2 ) = ( exp ( i �1 ) , exp ( i �2 ) ) , where ( �1 , �2 ) is distributed as the bivariate wrapped Cauchy in Eq. (2) . Then, the

density function of ( Z 1 , Z 2 ) is 

f (z 1 , z 2 ) = 

(4 π2 ) −1 (1 − ρ2 )(1 − ε 2 1 )(1 − ε 2 2 ) 

| a 11 ( z 1 η1 ) q z 2 η2 + a 12 ( z 1 η1 ) q + a 21 z 2 η2 + a 22 | 2 , z 1 , z 2 ∈ �, (4) 

where q ∈ {−1 , 1 } is the sign of ρ , ηk = exp ( iμk ) ∈ � with k ∈ {1, 2}, z k is the complex conjugate of z k , ε 1 , ε 2 ∈ [0, 1),

ρ ∈ (−1 , 1) , and 

A = 

(
a 11 a 12 

a 21 a 22 

)
= 

(
ε 1 ε 2 − | ρ| | ρ| ε 2 − ε 1 
| ρ| ε 1 − ε 2 1 − | ρ| ε 1 ε 2 

)
. (5) 

We denote ( Z 1 , Z 2 ) distributed as in Eq. (4) as 

( Z 1 , Z 2 ) ∼ bC ∗( η1 , η2 , ε 1 , ε 2 , ρ). 

2.1.3. Marginals and conditionals 

Theorem 1. (Kato and Pewsey [16] ) A random vector ( Z 1 , Z 2 ) with density as in Eq. (4) has marginals Z 1 ∼ C ∗( ε1 η1 ) and

Z 2 ∼ C ∗( ε2 η2 ), and conditionals Z 1 | Z 2 = z 2 ∼ C ∗(−η1 [ A ◦ (z 2 η2 ) 
q ]) and Z 2 | Z 1 = z 1 ∼ C ∗(−η2 [ A 

T ◦ (z 1 η1 ) 
q ]) , where A is defined

as in Eq. (5) , A 

T is the transpose of A , and 

A ◦ z = 

a 11 z + a 12 
. 
a 21 z + a 22 
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2.1.4. Parameter estimation 

For the bivariate wrapped Cauchy distribution, the method of moments [2] for the parameter estimation has several

advantages over the method of maximum likelihood [16] . The method of moments for the bivariate wrapped Cauchy distri-

bution is computationally very fast and easier to implement. In addition, the formulae for the parameter estimates can all

be expressed in a closed form, and all estimates are always within a range. 

Let { (θ1 j , θ2 j ) j = 1 , . . . , N} be a random sample from a bwC ( μ1 , μ2 , ɛ 1 , ɛ 2 , ρ) ( Eq. (2) ). Then, the estimators obtained

using the method of moments for μ1 , μ2 , ε1 , ε2 and ρ are [16] 

ˆ μk = arg( ̄R k ) , ˆ ε k = | ̄R k | , k = 1 , 2 , 

with R k = 

1 
N 

∑ N 
j=1 exp 

(
iθk j 

)
, and 

ˆ ρ = 

1 

N 

( 

| 
N ∑ 

j=1 

exp 

(
i (
1 j − 
2 j ) 

)| − | 
N ∑ 

j=1 

exp 

(
i (
1 j + 
2 j ) 

)| 
) 

, (6)

where 
r j = 2 arctan 

(
1+ ̂ ε r 
1 − ˆ ε r 

tan 

(
θr j − ˆ μr 

2 

))
, r = 1 , 2 . 

2.1.5. Simulation 

The simulation of data from a univariate wrapped Cauchy distribution can be performed easily. An efficient method is

to use the Möbius transformation over a circular uniform distribution, U (0, 2 π ), as explained in [29] . There is also another

method, already implemented in the “Circular” R package [40] . This method consists of wrapping (i.e., mod 360) from the

simulation of a (linear) Cauchy distribution with location parameter μ and scale parameter −log(ε) . If ε = 1 , the distribution

is a point mass at μ, whereas if ε = 0 , the wrapped Cauchy distribution is distributed as the circular uniform, U (0, 2 π ). 

The bivariate wrapped Cauchy distribution has (univariate) wrapped Cauchy marginals and conditionals. Therefore, the

random variates from the bivariate wrapped Cauchy can be generated from two circular uniform U (0, 2 π ) random variates

by using the relationship f (z 1 , z 2 ) = f ( z 1 | z 2 ) f ( z 2 ) (see Theorem 1 ). Here, once f ( z 2 ) is simulated, it is possible to simulate

f ( z 1 | z 2 ) and, hence, to obtain f ( z 1 , z 2 ). 

2.2. Gaussian distributions 

2.2.1. Definitions 

The Gaussian distribution is widely known. Please refer to [13,19,41] for good reviews on this topic. 

In this study, we denote a linear random variable X that follows a Gaussian distribution as N ( ι, σ ). Here, ι ∈ R is the

mean parameter and σ ∈ (0, ∞ ) is the variance parameter. 

Similarly, we denote a random vector ( X 1 , X 2 ) that follows a bivariate Gaussian distribution as bN ( ι1 , ι2 , σ 1 , σ 2 , γ ). In

this case, ι1 , ι2 ∈ (−∞ , ∞ ) are the mean parameters of the marginals, and σ 1 , σ 2 ∈ (0, ∞ ) are the variance parameters of

the marginal. Then, γ ∈ [ −1 , 1] is the correlation between X 1 and X 2 . 

2.2.2. Marginals and conditionals 

A random vector ( X 1 , X 2 ) that follows bN ( ι1 , ι2 , σ 1 , σ 2 , γ ) has marginals X 1 ∼ N ( ι1 , σ 1 ) and X 2 ∼ N ( ι2 , σ 2 ) and condition-

als X 1 | X 2 = x 2 ∼ N(ι1 + 

σ1 
σ2 

γ (x 2 − ι2 ) , (1 − γ 2 ) σ 2 
1 ) and X 2 | X 1 = x 1 ∼ N(ι2 + 

σ2 
σ1 

γ (x 1 − ι1 ) , (1 − γ 2 ) σ 2 
2 ) . 

2.2.3. Parameter estimation 

Let { (x 1 i , x 2 i ) i = 1 , . . . , N} be a random sample from bN ( ι1 , ι2 , σ 1 , σ 2 , γ ). 

For Gaussian distributions, the estimates from the maximum likelihood method and the method of moments of the

parameters ι1 , ι2 , σ
2 
1 
, σ 2 

2 
and γ are the same, and given by 

ˆ ιk = 

1 

N 

N ∑ 

i =1 

x ki , ˆ σk = 

√ 

ˆ σ 2 
k 
, k = 1 , 2 , 

with ˆ σ 2 
k 

= 

1 
N 

∑ N 
i =1 (x ki − ˆ ιk ) 

2 and 

ˆ γ = 

ˆ σ12 

ˆ σ 2 
1 

ˆ σ 2 
2 

, (7)

where ˆ σ12 = 

1 
N 

∑ n 
i =1 (x 1 i − ˆ ι1 )(x 2 i − ˆ ι2 ) . 

2.2.4. Mutual information 

Let X 1 and X 2 be Gaussian variables. Then, the mutual information (MI) between X 1 and X 2 is as follows [4] : 

MI (X 1 , X 2 ) = −1 

2 

log (1 − γ 2 ) , 

where γ is the correlation coefficient between X and X , as defined in Eq. (7) . 
1 2 
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3. Circular-linear distribution of johnson and Wehrly 

In this section, we review the method proposed by Johnson and Wehrly [14] to obtain angular-linear bivariate distribu-

tions with arbitrary marginal distributions. 

After reviewing the general form of the Johnson–Wehrly angular-linear distribution, we propose a subfamily of their

model in which the conditionals and marginals are mathematically tractable. 

3.1. Definition 

Let f �( θ ) and f X ( x ) be probability density functions on the circle and on the line, respectively. Suppose that F �( θ ) is the

cumulative distribution function (CDF) of f �( θ ) defined with respect to a fixed, arbitrary origin and that F X ( x ) is the CDF of

f X ( x ). Then, the distribution of Johnson and Wehrly [14] is defined by the density 

f (θ, x ) = 2 πg ( 2 πF �(θ ) − 2 πqF X (x ) ) f �(θ ) f X (x ) , (8) 

where 0 ≤ θ < 2 π , x ∈ R , q ∈ {−1 , 1 } decides the positive or negative association between the two variables, and g (.) is a

density on the circle. 

Let a random vector ( �, X ) have the density given by Eq. (8) . Then, the marginal distribution of � has the density

f �( θ ) and CDF F �( θ ), while the marginal distribution of X has the density f X ( x ) and CDF F X ( x ). However, the conditional

distributions are not tractable in general. 

3.2. Conditionals 

Let a random vector ( �, X ) follow the distribution (8) . Then, changing the variables U = 2 πF �(�) and V = 2 πF X (X ) , the

density function of ( U, V ) can be expressed as 

f (u, v ) = 

1 

2 π
g(u − q v ) , 

where g (.) is a density on the circle and q ∈ {−1 , 1 } . 
We propose the following subfamily of the family given by Eq. (8) which has tractable conditional distributions. 

Theorem 2. Let a random vector ( �, X ) follow the distribution given by Eq. (8) with g (.) being the wrapped Cauchy density given

by Eq. (1) with location parameter μg and concentration parameter εg . Assume that U = 2 πF �(�) and V = 2 πF X (X ) . Then, 

U| X = x ∼ wC(2 πqF X (x ) + μg , ε g ) and V | � = θ ∼ wC(q (2 πF �(θ ) − μg ) , ε g ) . 

In particular, if �∼ wC ( μθ , ɛ θ ), X ∼ N(ιx , σ 2 
x ) and F �(θ ) = 

∫ t 
0 f �(t ) dt , then, it holds that 

�| X = x ∼ wC(μ, ε) , 

where μ = arg( ̂  φθ | x ) , ε = | ̂  φθ | x | , 
ˆ φθ | x = 

ε g exp ( i (2 πqF X (x ) + μg − ν) ) + ε θ exp ( iμθ ) 

1 + ε g ε θ exp ( i (2 πqF X (x ) + μg − μθ − ν) ) 
, 

and ν = arg { (1 − ε θ exp ( −iμθ ) ) / (1 − ε θ exp ( iμθ ) ) } . 
Proof. The conditional density function of � given X = x and that of X given � = θ can be expressed as 

f (θ | x ) = 

f (θ, x ) 

f X (x ) 

and 

f (x | θ ) = 

f (θ, x ) 

f �(θ ) 
, 

respectively. Changing the variable U = 2 πF �(�) in f ( θ | x ), we obtain 

f (u | x ) = f (θ | x ) 
∣∣∣∣∂θ

∂u 

∣∣∣∣ = g(u − 2 πqF X (x )) , 

where q ∈ {−1 , 1 } . Similarly, changing the variable V = 2 πF X (X ) in f ( x | θ ) leads to 

f (v | θ ) = f (x | θ ) 

∣∣∣∣∂x 

∂v 

∣∣∣∣ = g(2 πF �(θ ) − q v ) . 

Let g (.) be the wrapped Cauchy density function given by Eq. (1) , with location parameter μg and concentration param-

eter εg , as defined in Kato [15] . Then, the following hold: 

U| X = x ∼ wC(2 πqF X (x ) + μg , ε g ) 
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and 

V | � = θ ∼ wC(q (2 πF �(θ ) − μg ) , ε g ) . (9)

Consider the case where �∼ wC ( μθ , ɛ θ ) and X ∼ N(ιx , σ 2 
x ) . Without loss of generality, the origin of the cumulative dis-

tribution function of � is assumed to be zero (i.e., F �(θ ) = 

∫ θ
0 f �(t ) dt ). 

The conditional of � given X = x has a wrapped Cauchy distribution. To see this, we first note that U and � have the

following relationship: 

exp ( iU ) = exp ( iν) 
exp ( i �) − ε θ exp ( iμθ ) 

1 − ε θ exp ( i (� − μθ ) ) 

or 

exp ( i �) = 

exp ( i (U − ν) ) + ε θ exp ( iμθ ) 

1 + ε θ exp ( i (U − ν − μθ ) ) 
, 

where exp ( iν) = (1 − ε θ exp ( −iμθ ) ) / (1 − ε θ exp ( iμθ ) ) . McCullagh [29] showed that if exp ( iU ) ∼ C ∗( α1 exp ( i β1 )), then 

exp ( iU ) + α2 exp ( iβ2 ) 

1 + α2 exp ( i (U − β2 ) ) 
∼ C ∗

(
α1 exp ( iβ1 ) + α2 exp ( iβ2 ) 

1 + α1 α2 exp ( i (β1 − β2 ) ) 

)
, 

where 0 ≤α1 , α2 < 1 and 0 < β1 , β2 ≤ 2 π . Using this result, we have 

exp ( i �) | X = x ∼ C ∗( ̂  φθ | x ) 
or, in polar-coordinate form, 

�| X = x ∼ wC(arg( ̂  φθ | x ) , | ̂  φθ | x | ) , 
where 

ˆ φθ | x = 

ε g exp ( i (2 πqF X (x ) + μg − ν) ) + ε θ exp ( iμθ ) 

1 + ε g ε θ exp ( i (2 πqF X (x ) + μg − μθ − ν) ) 
. 

�

For the rest of this subsection, we consider a subfamily presented in Theorem 2 in which the marginal of the circular

variable has the wrapped Cauchy and that of the linear variable has the Gaussian. 

Therefore, the conditional of the circular variable given the linear variable follows a known and tractable distribution

(i.e., a wrapped Cauchy distribution ( Eq. (1) )). It follows from Theorem 2 that the conditional X| � = θ itself does not follow

any well-known distribution. However, Theorem 2 implies that 

2 π 

(

X − ιx 

σx 

)
| � = θ ∼ wC(q (2 πF �(θ ) − μg ) , ε g ) , 

where 
 denotes the CDF of the standard Gaussian distribution N (0, 1), namely, 
(x ) = 

∫ x 
−∞ 

φ(t ) dt , where φ is the Gaus-

sian density with ιx = 0 and σx = 1 . Since it is easy to evaluate the CDF of the standard Gaussian distribution numerically,

numerical calculations associated with the conditional distribution of X given � = θ can be conducted efficiently. 

4. General circular-circular and circular-linear mutual information 

Mutual dependence measures between two linear variables have been studied at length, including the works of [23,34] ,

among many others. In the case of linear data, one of the best-known measures is mutual information (MI) [4,38] , which

determines the similarity between the joint density and the product of its marginal densities. For circular data, the first

mutual-information measure was developed recently by [20] and is called CMI. However, CMI is defined only for a bivariate

wrapped Cauchy variable. 

In this section, we redefine the CMI such that the measure can be used for any bivariate circular variables. Then, we

present a closed-form expression for the CMI for a general family of bivariate circular distributions. This study is also the

first to propose a mutual-information measure for circular and linear variables, which we call CLMI. 

4.1. Circular-circular mutual information 

In [20] , the CMI is approximated using numerical methods. Here, we present a simple expression for CMI for a general

family of distributions. 

Let �, � be a pair of circular variables. Then, the CMI between � and � is defined by 

CMI (�, �) = 

∫ 2 π

0 

∫ 2 π

0 

f (θ, ψ) log 

{
f (θ, ψ) 

f (θ ) f (ψ) 

}
d ψd θ, (10)

where f ( θ ) is the marginal density of �, f (ψ) is the marginal density of � , and f ( θ , ψ) is the joint density of ( �, �). 
� �
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Following a similar method to that in Johnson and Wehrly [14] , Wehrly and Johnson presented a general family for

circular variables in [42] . Here, we consider the following subfamily with the joint density function 

f (θ, ψ) = 2 πδ(2 πF �(θ ) − 2 πqF �(ψ)) f �(θ ) f �(ψ) , (11) 

where 0 ≤ θ , ψ < 2 π , f �(θ ) and f �(ψ) are any probability density functions on the circle, F �(θ ) and F �(ψ) are the CDFs

of f �(θ ) and f �(ψ) , respectively, q ∈ { 1 , −1 } decides the positive or negative association between the two variables, and

δ( ν) is the density of the wrapped Cauchy distribution wC ( μδ , ɛ δ). 

Assume that a random vector ( �, �) has the distribution given by Eq. (11) . Then, it holds that the marginal distribution

of � has the density f �( θ ) and the CDF F �( θ ) and that the marginal distribution of � has the density f � ( ψ) and the CDF

F � ( ψ). As pointed out in [16] , the bivariate wrapped Cauchy distribution from Eq. (2) is a special case of the Wehrly and

Johnson family [42] . 

Theorem 3. Let ( �, �) have the distribution given by Eq. (11) . Then, the CMI between � and � defined in Eq. (10) is given by 

CMI (�, �) = 2 π

∫ 2 π

0 

δ(t) log { δ(t ) } dt . 

In particular, if δ is the density of the wrapped Cauchy distribution wC ( μδ , ɛ δ), then 

CMI (�, �) = − log (1 − ε 2 δ ) . (12) 

Proof. Let f ( θ , ψ) be the joint density function given by Eq. (11) and defined in Johnson and Wehrly [42] . Then, the CMI

between � and � is given by 

CMI ( �, �) = 

∫ 2 π

0 

∫ 2 π

0 

2 πδ( 2 πF �( θ ) − q 2 πF �( ψ ) ) f �( θ ) f �( ψ ) 

× log { 2 πδ( 2 πF �( θ ) − q 2 πF �( ψ ) ) } d ψd θ . 

Changing the variables u = 2 πF �(θ ) and v = 2 πF �(ψ) , we have 

CMI (�, �) = 

1 

2 π

∫ 2 π

0 

∫ 2 π

0 

δ(u − q v ) log { 2 πδ(u − q v ) } d ud v . 

Note that ( U, V ) has the distribution of Kato [15] . It follows from the change of variables t 1 = u − q v and t 2 = v that 

CMI (�, �) = 

∫ 2 π

0 

δ(t 1 ) log { 2 πδ(t 1 ) } dt 1 . 

Since δ(.) is the density of the wrapped Cauchy wC ( μδ , ɛ δ), it follows that 

CMI (�, �) = 

∫ 2 π

0 

1 

2 π

1 − ε 2 
δ

1 + ε 2 
δ

− 2 ε δ cos (t 1 ) 
log 

{
1 − ε 2 

δ

1 + ε 2 
δ

− 2 ε δ cos (t 1 ) 

}
dt 1 

= − log (1 − ε 2 δ ) , 

where the second equality follows from Equation (4.396.16) of Gradshteyn and Ryzhik [11] . �

This CMI measure is expressed in a closed form. Therefore, it is computationally very fast and can be used for pairs of

variables having any case of the family given by Eq. (11) that allows the calculation of the CDFs. 

To estimate εδ in Eq. (12) , which is unknown, we use an estimate from [16] based on a sample of size N :

{ (θ1 , ψ 1 ) , ., (θN , ψ N ) } , given by 

ˆ ε δ = 

1 

N 

( 

| 
N ∑ 

j=1 

exp 

(
i (2 π ˆ F �(θ j ) − (2 π ˆ F �(ψ j )) 

)| − | 
N ∑ 

j=1 

exp 

(
i ((2 π ˆ F (θ j ) + (2 π ˆ F (ψ j )) 

)| 
) 

, 

where ˆ F �(θ j ) and 

ˆ F �(ψ j ) denote the empirical CDFs of � and � in the sample, respectively. 

Considering the particular case where bivariate variables follow the bivariate wrapped Cauchy distributions, as described

in Eq. (2) , the estimate of εδ simplifies to the correlation parameter ρ between � and � given in Eq. (6) . 

4.2. Circular-linear mutual information 

Following the development of the CMI, we next present the CLMI, which allows a closed-form expression for the mutual-

information measure for a general family of distributions. 

Let � be a circular variable, and let X be a linear variable. Then, the CLMI between � and X is defined by 

CLMI (�, X ) = 

∫ ∞ 

−∞ 

∫ 2 π

0 

f (θ, x ) log 

{
f (θ, x ) 

f �(θ ) f X (x ) 

}
d θd x, 0 ≤ θ < 2 π, x ∈ R , (13) 

where f ( θ ) is the marginal density of �, f ( x ) is the marginal density of X , and f ( θ , x ) is the joint density of ( �, X ). 
� X 
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Fig. 2. Structure of a tree-structured Bayesian network with four variables and V 1 as the root node. Each node has a maximum of one parent. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Theorem 4. Let ( �, X ) have the distribution density of Eq. (8) . Then, the CLMI between � and X, defined in Eq. (13) , is given

by 

CLMI (�, X ) = 2 π

∫ 2 π

0 

g(t) log { g(t ) } dt . 

In particular, if g is the density of the wrapped Cauchy distribution wC ( μg , ɛ g ), then 

CLMI (�, X ) = − log (1 − ε 2 g ) . (14)

Proof. Theorem 4 can be proved in a similar manner to Theorem 3 by changing the variables u = 2 πF �(θ ) and v =
2 πF X (x ) . �

Because εg in Eq. (14) is unknown in the usual settings, we need to estimate εg in order to estimate the value of CLMI.

Similar to the CMI, an estimate of εg based on a sample of size N : { (θ1 , x 1 ) , . . . , (θN , x N ) } is given by 

ˆ ε g = 

1 

N 

∣∣∣∣∣| 
N ∑ 

j=1 

exp 

(
i (2 π ˆ F �(θ j ) − 2 π ˆ F X (x j )) 

)| − | 
N ∑ 

j=1 

exp 

(
i (2 π ˆ F �(θ j ) + 2 π ˆ F X (x j )) 

)| 
∣∣∣∣∣, 

where ˆ F �(θ ) and 

ˆ F X (x ) are the estimated distribution functions of � and X , respectively. It can be seen that ˆ ε g is a method

of moments estimator of εg by noting that 

| E [ exp ( i (2 πF �(�) − 2 πF X (X )) ) ] | = ε g 

and 

| E [ exp ( i (2 πF �(�) + 2 πF X (X )) ) ] | = 0 . 

Similar to the CMI, the CLMI for the Johnson–Wehrly family of distributions provided by Eq. (8) is computationally very fast

because it is expressed in closed form. In addition, it can be used to compute the mutual-information measure between

circular and linear variables without needing any assumptions on their marginal distributions. 

If we consider the particular case where �∼ wC ( μθ , ɛ θ ) and X ∼ N ( ιx , σ x ), then the estimate of εg simplifies to 

ˆ ε g = 

1 

N 

∣∣∣∣∣| 
N ∑ 

j=1 

exp 

(
i (
 j − τ j ) 

)| − | 
N ∑ 

j=1 

exp 

(
i (
 j + τ j ) 

)| 
∣∣∣∣∣, 

where 
 j = 2 π ˆ F �(θ j ) = 2 arctan 

(
1+ ̂ ε θ
1 − ˆ ε θ

tan 

(
θ j − ˆ μθ

2 

))
and τ j = 2 π ˆ F X (x j ) = π erf 

(
x j −ˆ ιx 

ˆ σx 
√ 

2 

)
, where ˆ ε θ and ˆ μθ are as in

Section 2.1 , ̂  ιx and ˆ σx are as in Section 2.2 , and erf is the Gauss error function. 

5. Circular-linear tree-structured Bayesian network learning 

In this section, we show an application of the CLMI and the CMI measures presented in Section 4 . 

The study of Bayesian networks involves probability and graph theories. There are two different ways to build the struc-

ture of a Bayesian network model. The first is based on supergraphs of the network skeleton, and testing the conditional in-

dependence of given subsets of the skeleton. The best-known algorithm for this structure-learning method is the PC [39] al-

gorithm. However, this learning method is not considered here owing to the lack of conditional independence tests for

circular domains. The second, and chosen method, is the score-based search. We use a score and search algorithm as an op-

timization problem for the structure learning in a Bayesian network with a tree-structure, where nodes and arcs represent

the variables and dependence relationships between them, respectively ( Fig. 2 ). Therefore, each node is allowed to have only

one parent node. The importance of this application is that it allows the use of both linear and circular variables to develop

this kind of Bayesian network model. 
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Algorithm 1 Circular-linear tree-structure algorithm. 

1: Given �1 , �2 , . . . , �n circular random variables and X 1 , X 2 , . . . , X m 

linear random variables, 

(i) Estimate the parameters of all marginals f (θi ) and of f (x i ) 

(ii) Estimate the dependence parameters ε δ , γ , and ε g of the joint density functions f (θi , θ j ) , f (x i , x j ) , and f (θi , x j ) , 

respectively, for all pairs of variables based on the estimated parameters of the marginals 

2: Using these distributions, compute all values of CLMI (�i , X j ) , CMI (�i , � j ) and MI (X i , X j ) (i.e., the (n + m )(n + m − 1) / 2 

edge weights), and order them 

3: Assign the largest two edges to the undirected tree to be represented 

4: Examine the next-largest edge and add it to the current tree, unless it forms a loop, in which case discard it and examine 

the next largest edge 

5: Repeat step 4 until n + m − 1 edges have been selected (and the spanning undirected tree is complete). 

6: Choose a root node and follow the structure to create the maximum weight spanning directed tree structure 

Table 1 

Mean accuracy ± standard deviations of the simulation results for the circular-linear tree-structured Bayesian network for different combi- 

nations of circular and linear variables. 

Circular variables Linear variables 

3 5 7 10 15 20 30 

3 0.710 ± 0.191 0.723 ± 0.185 0.703 ± 0.185 0.691 ± 0.191 0.697 ± 0.194 0.710 ± 0.192 0.689 ± 0.208 

5 0.744 ± 0.173 0.741 ± 0.169 0.774 ± 0.166 0.749 ± 0.172 0.736 ± 0.169 0.749 ± 0.170 0.766 ± 0.163 

7 0.804 ± 0.146 0.780 ± 0.144 0.791 ± 0.139 0.796 ± 0.140 0.791 ± 0.136 0.811 ± 0.137 0.788 ± 0.147 

10 0.830 ± 0.119 0.828 ± 0.123 0.825 ± 0.120 0.808 ± 0.125 0.831 ± 0.115 0.817 ± 0.123 0.837 ± 0.122 

15 0.858 ± 0.096 0.854 ± 0.090 0.866 ± 0.094 0.867 ± 0.092 0.863 ± 0.096 0.860 ± 0.095 0.863 ± 0.095 

20 0.879 ± 0.077 0.884 ± 0.075 0.886 ± 0.079 0.876 ± 0.084 0.879 ± 0.078 0.882 ± 0.079 0.878 ± 0.084 

30 0.900 ± 0.061 0.901 ± 0.060 0.910 ± 0.067 0.903 ± 0.062 0.899 ± 0.060 0.900 ± 0.065 0.904 ± 0.060 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Our proposed algorithm ( Algorithm 1 ) is based on the algorithm introduced by Chow and Liu [3] to find a maximum

weight spanning tree structure. The weight between a pair of variables is measured as the CLMI, CMI, or MI between them,

depending on the nature of the two variables involved. Note that the range of values for the mutual-information measures

is [0, ∞ ). The complexity of this algorithm is quadratic in the number of variables. 

Given the undirected tree structure from Algorithm 1 , there are n + m possible trees, depending on the selected root

node. Note that if the estimate of the parameters method in Step 1 is performed via MLE, the generated maximum weight

spanning directed tree is also a maximum likelihood tree. Otherwise, while we can confirm that the resulting tree is a

maximum spanning tree, we cannot ensure that it is a maximum likelihood tree. 

5.1. Experimental results 

We used the R software package [40] to report the results of experiments applied over synthetic Bayesian network struc-

tures. Owing to the properties explained in Section 2 that make the structure-learning phase easier, the data used in the

experiments are simulated from Gaussian distributions and wrapped Cauchy distributions. We generate 12,250 different

simulated structures: 250 different structures for every combination of 3, 5, 7, 10, 15, 20, and 30 linear Gaussian variables

with 3, 5, 7, 10, 15, 20, and 30 circular wrapped Cauchy variables (i.e., 49 combinations of variables). From each of these

structures, we simulate a data set with N = 500 instances, where the parameters of the variables are assigned based on the

uniform distributions on the following ranges: −10 0 0 < ι < 10 0 0 and 0 < σ < 100 for the Gaussian marginal distributions

and 0 < ι< 2 π and 0 < ε < 1 for the wrapped Cauchy marginal distributions. Since σ is uniformly distributed on the wide

range, most of the linear variables are likely to have large variance; note that E(σ ) = 50 . On the other hand, the concentra-

tion of the circular variables is less likely to become too small because E(ε) = 0 . 5 . We have made this assumption in order

to ensure that our learning algorithm appropriately estimates the structures so that most of the circular variables are more

influential than most of the linear ones. 

In addition, to enforce the dependence between the parent and children nodes of the network, we assign a correla-

tion parameter between them as a uniform random value 0.5 < | ρ| < 1, with q = 1 . Then, we apply the structure-learning

algorithm proposed in Algorithm 1 over the generated data sets. To measure the accuracy of the results, we compare the

misplaced arcs of the learned structure to the initial simulated structure. The results of these experiments are displayed

in Table 1 , where the results of the 49 combinations of variables are shown as the mean accuracy ± standard deviations.

We refer to accuracy as the percentage of non-misplaced arcs (i.e., how accurate a replicated structure is when compared

against the original structure). 

To better understand the algorithm behaviour when varying the number of circular and linear variables, we apply the

Friedman test [8] (significance level α = 0 . 05 ). This statistical test evaluates equality between sets of results that follow
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Fig. 3. Demšar diagram to compare the experimental results by varying the number of (a) linear variables or (b) circular variables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

unknown distributions in order to detect significant differences among the different numbers of linear or circular variables

as a whole set. Here, the null hypothesis of equality between the sets was rejected ( p -value ≤ 0.05). Therefore, we pro-

ceeded with the Nemenyi post-hoc test [31] (significance level α = 0 . 05 ) to compare the sets of results with each other. 

Fig. 3 provides the statistical test results using Demšar’s diagram [5] . The top axis plots the average Friedman test ranks

of the sets. The lowest (best) rank classifiers are to the right and are considered to be better. Then, to show Nemenyi test

results, we connect those sets of results that are not significantly different ( p -value > 0.05 in the Nemenyi post-hoc test). 

Analysing Table 1 and Fig. 3 (a), which shows the results of changing the number of linear variables, we find that the

Friedman test is not rejected ( p -value = 0.61). This implies that there is no statistically significant difference between the

experimental results when the number of linear variables varies. Nevertheless, Fig. 3 (b), in which the number of circular

variables varies, shows that the Friedman test is rejected ( p -value = 0.0 0 0 018). Furthermore, the accuracy increases as

the number of circular variables increases. The case of 30 circular variables is the most accurate, and the case with 3

circular variables is the least accurate. In addition, conducting Nemenyi’s post-hoc tests for every pair of cases, we find no

statistically significant differences between consecutive trios of cases (i.e., 3-5-7, 5-7-10, 7-10-15, 10-15-20, and 15-20-30). 

6. Real example 

In this section, we apply the proposed structure learning for our circular-linear Bayesian network to a meteorological

data set. 

Recently, the study of wind characteristics has become an important field owing to the importance of the location and

orientation of wind turbines for profitable wind energy utilization. We use our proposed circular-linear tree-structured

Bayesian network to model the relationship between wind speed, wind direction, and other meteorological features from

various stations around Europe. 

The data include circular and linear measurements collected from seven wind stations located in Europe: Baltic Sea in

Poland, Black Sea in Romania, Dwejra in Malta, Hegyhatsal in Hungary, Lampedusa in Italy, Pallas-Sammaltunturi in Finland,

and the M Ocean station in Norway ( Fig. 4 ). Each station records wind direction and wind speed measurements. In addition,

relative humidity, atmospheric temperature, and atmospheric pressure are recorded at the Lampedusa station. These data

are available at the World Data Centre for Greenhouse Gases 1 (WDCGG). In our data set, we consider the records for the

period 16 July 1992 to 29 December 2005. Since some stations report more than one record per day, we calculate the

mean value per day for linear measurements and the mean direction per day for circular measurements. Thus, the data set

has n + m = 7 + 10 = 17 variables (i.e., wind speed and wind direction from every station, as well as the additional three

measures from the Lampedusa station) and N = 3301 instances. 

Table 2 shows the names of the variables, the numbers of samples of the variables, and the parameter estimates of

the marginal distributions. Note that some circular variables are close to circular uniformity because ˆ ε 
 0 . 05 . Owing to

the nature of the data, which are recorded over a long period, the circular data show low concentration parameters. The

highest concentration parameter is in the Dwejra station in Malta, where ˆ ε = 0 . 39 , with ˆ μ = −0 . 77 (approximately 311

degrees). Note that Lampedusa station, which is close to Dwejra station, shows a similar mean wind direction of ˆ μ = −0 . 58

(approximately 327 degrees) and a concentration parameter of ˆ ε = 0 . 20 . With regard to wind speed linear variables, note

that the highest values are shown in the M Ocean station and Baltic Sea station, both of which are located in the sea or on

the coast of the Northern Europe territory. 

The circular-linear tree-structured Bayesian network model ( Fig. 5 ) reveals the conditional relationship between the vari-

ables measured from each meteorological station. Note that most Lampedusa station nodes are connected to Dwejra station

nodes. This is because these two stations are geographically close together, as previously mentioned. The figure also shows

other geographically close node connections, such as the arc between the Pallas-Sammaltunturi and M Ocean stations, both

located at the Northern Europe territory, and the arc between the Black Sea and the Hegyhatsal stations, which are the
1 WDCGG URL: http://ds.data.jma.go.jp/gmd/wdcgg/ . 

http://www.ds.data.jma.go.jp/gmd/wdcgg/
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Fig. 4. European locations of the meteorological stations from the WDCGG data set. 

Table 2 

Station name, variable described, variable used in the model, number of non-missing cases ( N i ), circu- 

lar mean ˆ μ or linear mean ̂  ι (where applicable), unit of measure, concentration ˆ ε or standard deviation 

ˆ σ (where applicable), and type of variable (C: Circular; L: Linear) for the 17 numeric variables of the 

WDCGG data set. The circular variables range from 0 to 2 π . 

Station Variable Name N i ˆ μ/ ̂ ι Units ˆ ε / ̂ σ Type 

M Ocean Wind direction stmWD 1288 −1.86 radians 0.06 C 

Wind speed stmWS 1288 8.93 m / s 3.91 L 

Pallas- Wind direction palWD 150 −2.76 radians 0.18 C 

Sammaltunturi Wind speed palWS 150 6.4 m / s 3.21 L 

Lampedusa Wind direction lmpWD 446 −0.58 radians 0.20 C 

Wind speed lmpWS 446 6.62 m / s 3.94 L 

Relative humidity lmpRH 446 56.4 % 27.8 L 

Atmospheric pressure lmpAP 446 1010 hPa 6.29 L 

Atmospheric temp. lmpAT 446 19.59 Celsius 5.26 L 

Hegyhatsal Wind direction hunWD 557 −0.67 radians 0.07 C 

Wind speed hunWS 557 3.82 m / s 3.20 L 

Dwejra Wind direction gozWD 157 −0.77 radians 0.39 C 

Wind speed gozWS 157 2.79 m / s 2.17 L 

Black Sea Wind direction bscWD 550 0.47 radians 0.22 C 

Wind speed bscWS 550 4.73 m / s 2.56 L 

Baltic Sea Wind direction balWD 1169 −1.77 radians 0.21 C 

Wind speed balWS 1169 9.93 m / s 4.90 L 

 

 

two Eastern Europe stations. Therefore, it seems that our circular-linear model is capturing the dependence relationships

between the variables of the data set properly. 

The Schwarz Bayesian information criterion (SBIC) [35] is a model selection criterion, where the lowest value is preferred.

It is based on the likelihood function with an overfitting penalty, and is defined as 

SBIC = −2 l n ̂

 L + l n (N) w, 
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Fig. 5. Circular-linear tree-structured Bayesian network for the WDCGG meteorological data set. The names of the variables are shown in Table 2 . The 

selected root node is the wind direction at the M Ocean station. Dashed border node lines indicate circular variables, while solid border node lines 

indicate linear variables. Nodes with the same colour are recorded at the same station. Nodes with similar colour tones are located close to each other 

geographically. 

Table 3 

SBIC comparison between the circular-linear 

Bayesian network model, Gaussian Bayesian net- 

work model, and discrete Bayesian network model 

for the WDCGG data set. 

Bayesian network 

Model SBIC 

Circular-Linear −5 . 9197 ∗ 10 192 

Gaussian −2 . 0896 ∗ 10 169 

Discrete −3 . 9851 ∗ 10 4 

 

 

 

 

 

 

 

where ˆ L is the likelihood function value, N is the sample size, and w is the number of parameters to be estimated in the

model. 

We use the SBIC to compare our model to a Gaussian Bayesian network model, where we assume that all variables follow

Gaussian continuous distributions. We also compare our model to a discrete Bayesian network model using the discretization

of variables. This discretization is carried out by considering each variable as linear, and then creating 10 partitions of equal

width (these vary for each variable, depending on their corresponding domain). Note that for those cases where the variables

are circular, the linear domain is considered to be between 0 and 2 π . 

Comparing the SBIC values in Table 3 , we observe that our circular-linear model clearly outperforms the other two

models, which ignore the circular nature of the circular variables and treat them as (linear) continuous or discrete

variables. 
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7. Conclusions 

Circular data are often observed together with linear data in the sciences. In this study, we showed that our subfamily

of Johnson & Wehrly bivariate distributions has tractable properties, such as well-known marginals and conditionals and

a closed-form expression for the estimators of the parameters. We presented a CLMI measure that measures the mutual

dependence between a circular variable and a linear variable by determining the similarity between the joint density and

the product of their marginal densities. We also extended the definition of the CMI measure. We have shown that the CLMI

and CMI can be expressed in a simple and closed form for our distributions for circular-linear data and bivariate circular

data, respectively. 

In addition, we described experimental results that illustrate how to use these measures (i.e., the CLMI and CMI) with the

well-known mutual information between linear variables. To the best of our knowledge, this study is the first to develop a

circular-linear tree-structured Bayesian network model that can capture the dependence between any possible pair of linear

and circular variables. 

Then, we applied our algorithm for a tree-structured Bayesian network model to a real data set in order to model the

relationships between circular and linear measurements recorded at seven meteorological stations located in Europe. Here,

we observed that the proposed model captures the strong dependence between variables recorded in geographically close

stations well and outperforms other models, which assume all variables to be Gaussian or discrete. 

There are several potential applications of our tree-structured Bayesian network model, some of them are related to

sports (e.g., baskets in basketball or goals in football), social behaviour (e.g., hand gesture recognition, arms movement) and

meteorological events (e.g., twister progress, earthquake epicentre location and expansion), among many others. 

Working with a combination of circular and linear statistics is a non-trivial task. Applications within Bayesian networks

and machine learning research for graphical models open a challenging field. As future work, we intend to adapt the pro-

posed circular-linear graphical model to perform real-time classification. In addition, dropping the dimension constraint (of

one parent) in our model would be another interesting path to explore in order to extend this model to a more general

Bayesian network case allowing more than one parent per node. 
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