
tcc2vec: RFM-Informed Representation Learning on
Call Graphs for Churn Prediction

Sandra Mitrovića,∗, Bart Baesensa,b, Wilfried Lemahieua, Jochen De Weerdta
aDepartment of Decision Sciences and Information Management, KU Leuven, Leuven, Belgium

bSchool of Management, University of Southampton, Southampton, United Kingdom

Abstract

Applying social network analytics for telco churn prediction has become indis-
pensable for almost a decade. However, in the current literature, the uptake does not
reflect in a significantly increased leverage of the available information that these
networks convey. First, network featurization in general is a very cumbersome pro-
cess due to the complex nature of networks and the lack of a respective methodol-
ogy. This results in ad hoc approaches and hand-crafted features. Second, deriving
certain structural features in very large graphs is computationally expensive and,
as a consequence, often neglected. Third, call networks are mostly treated as static
in spite of their inherently dynamic nature. In this study, we propose tcc2vec, a
panoptic approach aiming at devising representation learning (to address the first
problem) on enriched call networks that integrate interaction and structural infor-
mation (to overcome the second problem), which are being sliced in different time
periods in order to account for different temporal granularities (hence addressing
the third problem). In an extensive experimental analysis, insights are provided
regarding an optimal choice of interaction and temporal granularities, as well as
representation learning parameters.

∗Corresponding author
Email address: sandra.mitrovic@kuleuven.be (Sandra Mitrović)

Preprint submitted to Information Science February 18, 2019

Keywords: Representation Learning, Dynamic Networks, Enriched (Social)
Networks, Churn Prediction in Telco

1. Introduction

Churn prediction (CP) using social network analytics, both in telco as well as
in other industries, relies on expert-driven featurization of underlying (call) graphs.
Apart from being cumbersome, this leads to a variety of ad-hoc solutions, as evi-
denced in the literature (Saravanan & Raajaa, 2012; Kusuma et al., 2013; Phadke
et al., 2013; Kim et al., 2014a). Even more problematic is the fact that such ap-
proaches underexploit the actual information provided by the graph. For example,
in the case of large call graphs, studies do take into account information about cus-
tomer interactions, but most of the features related to graph structure, being compu-
tationally expensive, remain neglected (Zhu et al., 2011; Phadke et al., 2013). Fur-
thermore, additional problems arise with the temporal nature of call graphs given
that only few CP studies take it into account, thus techniques and methodologies
are still largely missing. Representation learning (RL) allows to bypass the whole
feature engineering process by constructing dense but high-quality representations
(embeddings) of objects (texts, images, nodes) in a low dimensional space. Repre-
sentational learning has been shown to be useful in domains ranging from natural
language processing (NLP) (Bengio et al., 2003; Mikolov et al., 2013a), over im-
age classification (Krizhevsky et al., 2012), to social network analytics (Grover &
Leskovec, 2016). As for the latter, the uptake of graph RL techniques is mainly due
to the fact that graphs are a natural and instrumental abstraction technique for all
kinds of real-life relationships and entities. A recently proposed method for learn-
ing node representations in graphs, node2vec (Grover & Leskovec, 2016) is based
on truncated random walks and the SkipGram model (Mikolov et al., 2013a), a
renowned RL model from the NLP domain.

2

Node2vec, however, experiences two major drawbacks. First, it introduces two
random walk-related hyperparameters which not only require additional tuning, but
also negatively affect performance in case of very large graphs. Second, neither
node2vec nor other approaches by which it was inspired, such as DeepWalk (Per-
ozzi et al., 2014) and LINE (Tang et al., 2015), consider temporal graphs. This is
inconvenient as many graphs modeling real-life scenarios, such as call graphs de-
rived from Call Detail Records (CDRs), undergo constant changes throughout time.
Additionally, truncated random walks, which are applied in a series of existing ap-
proaches (Perozzi et al., 2014; Grover & Leskovec, 2016; Cao et al., 2016; Dong
et al., 2017; Zhang et al., 2017; Yang et al., 2015; Zhou et al., 2017; Yang et al.,
2016) usually require a careful selection of input parameters such as the number
and length of random walks. As such, the application of node2vec or related tech-
niques specifically for CP, albeit looking very promising, is strongly hampered by
non-existing benchmarks in the current literature with a majority of papers follow-
ing the choices propounded by Perozzi et al. (2014) (e.g. Cao et al. (2016)) or by
Grover & Leskovec (2016) (e.g. Nguyen et al. (2018)). A notable exception to this
is the study by Dong et al. (2017) in which an analysis of parameters such as walk
length and number of walks is presented. Nevertheless, this study is not consider-
ing dynamic graphs, is not looking into CP, and most importantly, only showcases
applications to at least one order of magnitude smaller graphs.

Therefore, in this work, we propose tcc2vec, a panoptic approach aiming at
devising the most appropriate RL on call graphs for CP. This work extends earlier
research presented in (Mitrović et al., 2017b) and (Mitrović et al., 2017a) in which
initial foundations for ttc2vec were proposed.

The key contributions of this work can be summarized as follows:

• We propose an integrated framework for CP modelling through RL on call

3

graphs, relying on (1) a scalable node2vec-inspired RL algorithm that al-
lows deriving embeddings for very large graphs, (2) a network augmentation
method that enables to jointly take into account behavioral interaction and
structural characteristics of customers, and (3) a windowing-based approach
to include dynamic effects of call graphs into learned representations.

• We perform an in-depth experimental evaluation based on real-life datasets,
leading to the specification of optimal parametrizations of tcc2vec. In par-
ticular, we devise a full factorial design to investigate the predictive per-
formance effect achieved by combinations of different parameters (factors)
which relate to interaction granularity, temporal granularity and characteris-
tics of the RL method, such as the number and length of walks.

• We provide guidelines both for researchers as well as practitioners regard-
ing the potential adoption of RL for CP in practice, and accentuate various
research challenges that RL on graphs is raising in this area.

The remainder of the paper is organized as follows. In Section 2, we provide
a short overview of literature concerning our topics of interest. In Sections 3 and
4, we explain our method and experimental setup, respectively. In Section 5 we
present the results of our experiments, discuss them in Section 6 and we provide a
conclusion and ideas for future research in Section 7.

2. Related Work

In this section we provide an overview of relevant related work on call-graph-
based CP, graph RL and network dynamics.

4

2.1. Call Graph-based Customer Featurization for Churn Prediction

Given the specific focus on CP in telco, this subsection addresses existing ap-
proaches that make use of the call graph.

Call-Graph-based Behavioral Interaction Features using RFM. For telco CP, be-
havioral interaction information is predominantly quantified by means of the RFM
(Recency, Frequency, Monetary) model (Hughes, 1994; Cheng & Chen, 2009),
given its simplicity and good predictive performance (Keramati et al., 2014; Benoit
& Van den Poel, 2012). Therefore, many different RFM operationalizations can
be found in the literature, ranging from summary, coarse-grained to more detailed,
fine-grained features. Summary RFM features usually only differ on the type of
measure (R/F/M) and the dimension used (calls/seconds/SMSs), e.g. total call fre-
quency/volume in (Dasgupta et al., 2008), seconds/frequency of use and SMS fre-
quency in (Keramati et al., 2014). Detailed RFM features, on the contrary, show
more variety as slicing along different dimensions (e.g. time (Owczarczuk, 2010;
Motahari et al., 2014), direction (Dasgupta et al., 2008;Modani et al., 2013)), aggre-
gation levels (e.g. incoming/outgoing for direction (Dasgupta et al., 2008; Modani
et al., 2013; Motahari et al., 2014); peak/off-peak for time (Huang et al., 2012;
Phadke et al., 2013)) is performed. In addition, applying different transformations
(e.g. average (Zhang et al., 2012); ratio/percentage (Dasgupta et al., 2008; Kusuma
et al., 2013; Phadke et al., 2013)) is quite common. Several studies also consider
slicing according to the churner related information, which can again be considered
as one of the dimensions (e.g. total interaction frequency with churners (Dasgupta
et al., 2008; Kusuma et al., 2013), and total call volume to/from churner neigh-
bors (seconds) (Dasgupta et al., 2008; Zhang et al., 2012)). We refer the interested
reader to a more comprehensive tabular overview of different variations concerning
detailed RFM in our previous study (Mitrović et al., 2017b).

5

Deriving Structural Network Features from Call Graphs. In the current literature,
structural information as conveyed by the underlying call graph topology is usually
characterized by centrality measures, most often using the simplest one, i.e. degree
centrality. More advanced (and diversified) structural features for CP include 2nd
and 3rd-order degree in Kusuma et al. (2013); 2nd-order degree and a clustering
coefficient in Zhang et al. (2012); PageRank in Huang et al. (2015); degree, close-
ness and eccentricity centrality, clustering coefficient, Shapley value, degree and
proximity prestige in Saravanan & Raajaa (2012); PageRank, diameter, number of
(strongly) connected components and cliques in Nanavati et al. (2006). However,
due to computational expensiveness, especially for very large graphs, structural
features are far from being fully exploited in the current literature (e.g. Zhu et al.
(2011) opt to completely neglect such features, despite recognizing their value). As
such, in this study, we aim at better leveraging structural information beyond hand-
engineered and computationally demanding features, by relying on the learned node
representations to incorporate the topological characteristics of nodes.

Combining Behavioral Interaction and Structural Call Graph Features. Extracting
both behavioral interaction and structural information from call graphs and trying
to leverage their predictive capacities for CP has already been investigated in sev-
eral studies (Kusuma et al., 2013; Zhang et al., 2012; Huang et al., 2015; Modani
et al., 2013; Motahari et al., 2014; Dasgupta et al., 2008). However, the issue of
limited exploitation of structural information is a constant for these attempts as
well. As such, the majority of studies exploit either only degree measures (Kusuma
et al., 2013; Modani et al., 2013; Motahari et al., 2014; Dasgupta et al., 2008) or a
slightly extended, but still limited number of structural features (Zhang et al., 2012;
Huang et al., 2015). In Raeder et al. (2011), a compound feature combining struc-
tural and interaction information is used as the authors derive the number of calls

6

that neighbors of one node make to the neighbors of another node. This is essen-
tially frequency based on 2nd-order neighborhood. As another example, Phadke
et al. (2013) use degree centrality to normalize the values of the interaction fea-
tures. Unquestionably, utilizing a set of diverse types of customer characteristics as
input features for CP model building leads to better performance (Dasgupta et al.,
2008; Kusuma et al., 2013; Zhang et al., 2012; Huang et al., 2015). Moreover, to
the best of our knowledge, no conclusion can be drawn as to which of these two
classes of features is more important for building more accurate models. However,
the fact that a couple of studies show that RFM variables tend to be more important
than structural features (e.g. Raeder et al. (2011) for edge classification in telco call
graphs and Benoit & Van den Poel (2012) for CP in banking), is an impetus for our
study to investigate the enrichment of graph topologies with RFM information.

2.2. Representation Learning on Graphs

Representation learning on graphs is a rapidly growing field of research. Stem-
ming from embedding techniques first proposed in the natural language processing
(NLP) domain (Bengio et al., 2003; Mikolov et al., 2013a), researchers have de-
veloped methods capable of learning distributed representations of nodes in graphs
(Perozzi et al., 2014; Grover & Leskovec, 2016). The recent gain in attraction is
mostly due to the fact that graphs are suitable for representing various types of com-
plex real-life data. Moreover, RL techniques have been demonstrated to allow for
deriving dense, high-quality but dataset- and task-agnostic representations enabling
automation of feature engineering. As such, RL on graphs has been successfully
applied for different unsupervised and supervised learning tasks. Examples include
link prediction (Grover & Leskovec, 2016; Wang et al., 2016; Zhou et al., 2017),
clustering (Cao et al., 2016; Zhang et al., 2017; Dong et al., 2017), visualization
(Wang et al., 2016; Cao et al., 2016; Dong et al., 2017), and recommendation (Zhou

7

et al., 2017). Moreover, an increasing popularity of classification applications can
be observed, with noteworthy studies including (multi-)label classification in social
networks (Facebook-based networks (Zhang et al., 2017), Flickr (Tang et al., 2015;
Perozzi et al., 2014; Wang et al., 2016), Google (Zhang et al., 2017), YouTube
(Tang et al., 2015; Perozzi et al., 2014; Wang et al., 2016), blogger networks de-
rived from the BlogCatalog website (Grover & Leskovec, 2016; Perozzi et al.,
2014; Wang et al., 2016)), in Wikipedia words co-occurrence networks (Grover
& Leskovec, 2016; Tang et al., 2015), in biological networks (Protein-Protein In-
teraction) (Grover & Leskovec, 2016), in collaboration networks (AMiner) (Dong
et al., 2017) and in citation networks (DBLP) (Tang et al., 2015).

Many previous works rely on random walks (Perozzi et al., 2014; Grover &
Leskovec, 2016; Cao et al., 2016; Dong et al., 2017; Zhang et al., 2017; Yang et al.,
2015; Zhou et al., 2017; Yang et al., 2016). Among these, the techniques proposed
by Zhang et al. (2017) and Yang et al. (2015) are specifically tailored towards in-
cluding additional node-related information (e.g. Yang et al. (2015) consider textual
features). Even though our approach also looks into including additional informa-
tion about nodes, the characteristics of our data are very different whichmakes these
proposed techniques not applicable. The same holds for the technique byDong et al.
(2017) which, unlike us, examines biased random walks for heterogeneous graphs.

Deepwalk (Perozzi et al., 2014) and especially node2vec (Grover & Leskovec,
2016) are instrumental for our method. Both techniques rely on the SkipGram
model (Mikolov et al., 2013b), however, node2vec was shown to perform better
than DeepWalk (Perozzi et al., 2014), spectral clustering, and LINE (Tang et al.,
2015), especially for classification purposes (Grover & Leskovec, 2016). Unlike
our work, all these methods consider only static networks for multi-class classifi-
cation. Very recently, Zhou et al. (2018) propose an approach for dynamic node
embeddings, which, unlike random walk based approaches, uses triadic closures

8

but underperforms DeepWalk in terms of recall on a telco dataset.
Other notable related works are GraphSage (Hamilton et al., 2017), which al-

lows learning representations for unseen nodes, and the approach byKipf&Welling
(2017) based on convolutional neural networks. Besides being a static approach,
GraphSage is not interesting for our work as it is particularly effective on graphs
with rich node information, which is not our case. Furthermore, drawbacks of con-
volutional approaches lie both in the static aspect and scalability. The study of Cao
et al. (2016), mentioned earlier, applies a stacked denoising autoencoder but like-
wise does not consider dynamic networks. Despite the success of deep architectures
for RL, its application for CP in particular does not seem to be worth additional in-
vestigation given that methods either perform on-par (Umayaparvathi & Iyakutti,
2017) or only slightly outperform simple traditional methods (e.g. decision trees in
Wangperawong et al. (2016)). The study by Castanedo et al. (2014) is a more suc-
cessful application of deep learning for CP, however it does not take into account
the dynamic aspect and utilizes undisclosed business-specific attributes.

2.3. Temporal Dynamics of Call Graphs

Several studies show that taking into account the temporal aspect for customer
behavior analysis is indisputably more useful than a purely static approach (Hill
et al., 2006; Eichinger et al., 2006; Chen et al., 2012). For capturing dynamics, most
studies apply time-series techniques (Lee et al., 2011; Orsenigo & Vercellis, 2010;
Chen et al., 2012), while sequence mining (Eichinger et al., 2006) and dynamic net-
works (Hill et al., 2006) are used as well. The latter are typically addressed in a two-
phase approach whereby the network is first sliced in a series of snapshots treated
as independent static graphs and only then, the extracted information is merged to-
gether (Michail, 2016; Casteigts et al., 2015; Nicosia et al., 2013). This type of
approach is applied in e.g. Saravanan & Raajaa (2012) for mobile CP, Hill et al.

9

(2006) for fraud detection and Rahman & Al Hasan (2016) for link prediction, with
certain variations. More precisely, Saravanan & Raajaa (2012) use a weekly win-
dowing frame to generate features, Rahman & Al Hasan (2016) use dataset-defined
snapshots and concatenate static features while Hill et al. (2006) use daily snapshots
and apply exponential smoothing to penalize historical data. Despite being one of
the few studies taking into account the dynamic aspect of CDR graphs, Hill et al.
(2006); Saravanan&Raajaa (2012) still, unlike our work, perform ad-hoc featuriza-
tions of static graphs. Nevertheless, even though being few in number, there exist
several other studies which reside at the intersection of dynamic networks and RL.
In line with aforementioned approaches, Kim et al. (2014b); Hamilton et al. (2016);
Hisano (2018) consider a sequence of static snapshots. In addition, similarly to our
work, Kim et al. (2014b); Hamilton et al. (2016) then apply the SkipGram model
to learn representations per snapshot. Besides considering different granularities
for snapshots and being focused on the NLP domain, these studies differ from ours
in reusing representations learned for the previous snapshot to initialize represen-
tations for the consecutive one. As opposed to these, Hisano (2018) instead uses
stochastic gradient descent to optimize customized objective functions for link cre-
ation/dissolution for dynamic link prediction. Another very recent study makes a
shift from previous approaches by using temporal random walks (Nguyen et al.,
2018). Although deep architectures are out of scope of this work, it is worth men-
tioning that these have recently been exploited for learning dynamic embeddings
as well (e.g. Goyal et al. (2017)) proposed a method based on deep autoencoders,
Trivedi et al. (2017) proposed a deep recurrent architecture, and Trivedi et al. (2018)
develops an attention based approach to model information propagation dynamics).
Observe that mentioned works (operating on graphs) perform empirical evaluations
with remarkably smaller graph sizes as compared to ours (e.g. in number of edges:
<15K (Hisano, 2018), <80K (Goyal et al., 2017), <350K (Nguyen et al., 2018)).

10

In conclusion, to the best of our knowledge, our previous work (Mitrović et al.,
2017a) is the only study in the current literature to exploit dynamic networks with
node RL for CP in telco. Additionally, as evident in Table 1, our study is the only
one in telco CP to incorporate all the aspects of call networks in an automatic way.

3. tcc2vec: RFM-informed Scalable Telco Customer Representation Learning

in Call Graphs

This section details the main building blocks of our telco customer to vector
(tcc2vec) RL technique, whose overall structure is given in Algorithm 1. The build-
ing blocks entail (1) an approach to enhance the original call graph topology with
RFM information in order to enable the joint inclusion of both behavioral interac-
tion and structural topology information for learning representations (lines 3-7 of
Algorithm 1), (2) a scalable node2vec-inspired RL algorithm capable of dealing
with networks containing millions of nodes and tens of millions of edges (line 8 of
Algorithm 1), and (3) a method to include the dynamic effects of networks in the
learned representation (lines 2 and 10 of Algorithm 1).
3.1. Enriching Call Graphs to Reinforce Comprehensive Capturing of Customer

Behaviour

Afirst crucial component of tcc2vec includes the development of RFM-informed
call graphs. The key idea is that by combining behavioral interaction information
with the original graph topology, our scalable node2vec-inspired RL algorithm will
be instigated to learn representations that jointly take into account these two differ-
ent types of information. This is a paramount innovation in the context of telco
CP, given that leveraging both types of information has posed several challenges,
as explained in Section 2.1.

11

Table 1: Summary of recent literature about CP in Telco providing an overview related to including
interaction information, including structural information, considering the dynamic aspect, using RFM
to characterize interaction information, using social network analytics (SNA) and finally providing
information whether the study avoids manual feature engineering. Studies which apply spreading
activation functions or other variants of label propagation are considered to include structural infor-
mation. For works which neither apply SNA nor consider call graphs, usage data is still treated as
interaction data. Symbol ✓–denotes that the study is only partially compliant (e.g. in Saravanan &
Raajaa (2012) only one of the features, number of calls, could be considered as RFM). Finally, symbol
✓DL denotes that the study is using deep learning architectures for RL.

Authors Interaction Structural Dynamic RFM SNA Automated FE
Eichinger et al. (2006) ✓ 7 ✓ 7 7 7

Nanavati et al. (2006) 7 ✓ 7 7 ✓ 7

Dasgupta et al. (2008) ✓ ✓ 7 ✓ ✓ 7

Owczarczuk (2010) ✓ 7 7 ✓ 7 7

Richter et al. (2010) ✓ ✓ 7 ✓ ✓ 7

Raeder et al. (2011) ✓ ✓ ✓ ✓ ✓ 7

Chen et al. (2012) 7 7 ✓ 7 7 7

Saravanan & Raajaa (2012) ✓– ✓ ✓ ✓– ✓ 7

Zhang et al. (2012) ✓ ✓ 7 ✓ ✓ 7

Kusuma et al. (2013) ✓ ✓ 7 ✓ ✓ 7

Modani et al. (2013) ✓ ✓ 7 ✓ ✓ 7

Phadke et al. (2013) ✓ ✓ 7 ✓ ✓ 7

Keramati et al. (2014) ✓ 7 7 ✓ 7 7

Kim et al. (2014a) 7 ✓ 7 7 ✓ 7

Motahari et al. (2014) ✓ ✓– 7 ✓ ✓ 7

Castanedo et al. (2014) ✓ 7 7 7 7 ✓DL

Huang et al. (2015) ✓ ✓ 7 ✓ ✓ 7

Wangperawong et al. (2016) ✓ 7 ✓ ✓ 7 ✓DL

Umayaparvathi & Iyakutti (2017) ✓ 7 7 ✓– 7 ✓DL

This study ✓ ✓ ✓ ✓ ✓ ✓

12

Algorithm 1 Algorithm
Input: Call Detail Record (CDR), Interaction granularity ig, Temporal granularity tg,

Walk length wl, Number of walks nw
1: Transform CDR into tg call graphs G1, ..., Gtg
2: for eacℎ graph Gi ∈ {G1, ..., Gtg} do:
3: for eacℎ node n ∈ Gi do:
4: RFM ig

Gi
(node) = Calc_RFM_Per_Node(node, ig);

5: end for;
6: RFM ig

Gi
=

⋃

node∈Gi
RFM ig

Gi
(node);

7: AGi = Construct_Artificial_RFM_Augmented_Graph(Gi, ig, RFM ig
Gi
);

8: Repri = Learn_Representations(AGi, wl, nw);
9: end for;
10: Repr = ||

tg
i=1Repri;11: Train and evaluate using Repr as input for predictive model;

Output: AUC and lift scores

Interaction Information. We first describe RFM model configurations (line 4 in
Algorithm 1). Given that RFM information in telco mainly resides in the CDR data,
we specify: 1) Recency (R) as the number of days between the end of the observed
period and the customer’s last call (within the same period); 2) Frequency (F) as
the number of calls of a customer during the observed period; 3) Monetary (M) as
the duration (in seconds) of customer calls during the observed period.1

Next, RFMvariables are usually subject to a particular choice in terms of slicing
or dicing according to other dimensions. We opt for two clear-cut yet powerful rep-
resentations: Summary-RFM (denoted by RFMs, i.e. ig=s in line 4 of Algorithm
1): total R/F/M per customer per observed period. Thus, the frequency per period
p of customer c is calculated as: F sGp(c) = |e(c, n) ∶ n ∈ Gp(c) ∧ e(c, n) ∈ Ep|,
where Gp = (Vp, Ep) is the undirected graph corresponding to period p andGp(c)

denotes the neighborhood of customer/node c in Gp. We proceed similarly for

1Duration is used as a proxy in order to avoid the necessity of billing information, which is not
always available, but given that in most cases, duration and billed amount are directly related, we
assume that this has no impact.

13

RsGp(c) andMs
Gp
(c) substituting the cardinality operator with the maximal recency

and the sum of all durations associated to corresponding edges, respectively.
Detailed-RFM (denoted byRFMd , i.e. ig=d in line 4 of Algorithm 1): each of

the R/F/M variables is sliced based on the direction and destination dimension into
three subcategories: outgoing towards home network, outgoing towards other net-
works and incoming, inspired by the approaches in Dasgupta et al. (2008); Modani
et al. (2013); Motahari et al. (2014). Thus, the frequency per period p of customer
c is now expressed by three variables:
1) F d∶out_ℎGp

(c) = |e(c, n) ∶ n ∈ Gp(c) ∧ n ∈ ∧ e(c, n) ∈ Ep|,
2) F d∶out_oGp

(c) = |e(c, n) ∶ n ∈ Gp(c) ∧ n ∈ ∧ e(c, n) ∈ Ep|,
3) F d∶inGp

(c) = |e(n, c) ∶ c ∈ Gp(n) ∧ e(c, n) ∈ Ep|,
where Gp = (Vp, Ep) represents the directed graph corresponding to period p,
denotes the home network, denotes other network(s), and further notation is as
before. R andM are treated correspondingly.

Integrating Interaction and Structural Information into RFM-AugmentedCall Graphs.

To conjoin interaction and structural information (Alg. 1, line 7, detailed in Alg.
2), we start with preserving the topology of the original call graph (Alg. 2, line 1).
This is motivated by the RL part of tcc2vec, which is based on random walks and
thus explicitly exploits the network topology.

Therefore, no sampling or any other manipulation which would distort struc-
tural information (or hinder the utility of interaction information) is permitted.

We proceed with the same idea and, to integrate RFM information, we con-
sider the strategies which align best with random walk traversal of the underlying
call graph. In our preliminary study (Mitrović et al., 2017b), we have demonstrated
that the most straightforward option of adding RFM variables as edge weights un-
derperforms the pure traditional RFM model (see RFM-embedded architecture in

14

Mitrović et al. (2017b)). However, another type of architecture, where RFM in-
formation is added in the form of additional artificial nodes (referred to as RFM-
augmented graphs) showed promising preliminary results (Mitrović et al., 2017b).
To devise the construction of these artificial nodes, we follow the idea frequently
used in the literature related to customer segmentation and customer lifetime value
modeling, where customers are usually segmented partitioning each of their R/F/M
variables in five equi-frequency bins2 (corresponding to very high, high, medium,
low, very low) (Hughes, 1994; McCarty & Hastak, 2007; Cheng & Chen, 2009).
Next, we assign an artificial node to each bin and connect original customer nodes
with artificial nodes of their corresponding bins (lines 3-8 in Algorithm 2). De-
pending on the level of interaction granularity, we devise four different augmented
call graph topologies, as follows:

• Augmented Graph (AGs) with Summary interaction granularity (ig=s)
Here the start from Summary-RFM (hence only 3 variables), and therefore,
after partitioning in bins, newly obtained graph has 15 new nodes and 3 ∗ |V |

more edges than the original graph G = (V ,E).

• Augmented Graph (AGd) with Detailed interaction granularity (ig=d)
In this case, since we use Detailed-RFMwhich start with three subcategories
for each of R/F/M that are further binned, up to 45 artificial nodes are used
to enrich the original graph. The number of additional edges, compared to
the original graph, increases with nine times the original number of nodes.

• Augmented Graph (AGs+cℎ) with Summary+Churn interaction granularity
(ig=s + cℎ)

2Exceptionally, due to the skewed distribution of R/F/M values, one can end up having less than
five bins per R/F/M.

15

• Augmented Graph (AGd+cℎ) with Detailed+Churn interaction granularity
(ig=d + cℎ)

Graphs AGs+cℎ and AGd+cℎ are exactly the same as graphs AGs and AGd ,
respectively, except for adding one additional artificial node representing churn (see
lines 11-14 in Algorithm 2).

Algorithm 2 Construct_Artificial_RFM_Augmented_Graph(Gp, ig, RFM ig
Gp
)

Input: Graph Gp per period p, Interaction granularity ig, RFM features of nodes in Gp:
RFM ig

Gp
= {RigGp , F

ig
Gp
,M ig

Gp
} = {RigGp (n), F

ig
Gp
(n),M ig

Gp
(n) | ∀n ∈ Gp}

1: Construct AGp, AGp := Gp;
2: for Xig

Gp
∈ {RigGp , F

ig
Gp
,M ig

Gp
} do:

3: Divide Xig
Gp

into 5 bins based on k∗20tℎ-percentile, k ∈ {1, ..., 5};
4: Assign an artificial node ig;k

Gp
to each bin bk, k ∈ {1, ..., 5};

5: Add all artificial nodes ig;k
Gp

, k ∈ {1, ..., 5} to graph AGp;
6: for eacℎ node n ∈ Gp do:
7: Find artificial node ig;k

Gp
s.t. Xig

Gp
(n) belongs to its corresponding bin bk;

8: Add edge (n, ig;k
Gp

) to graph AGp;
9: end for;
10: end for;
11: if ig ∈ {s + cℎ, d + cℎ} then:
12: Add additional artificial node to graph AGp;
13: Add edge (cℎ_n,) to graph AGp for identified churners cℎ_n;
14: end if;
Output: Graph AGp

All constructed networks are undirected given that initial attempts with directed
networks led to sub-par performance. This is a consequence of the sparsity of our
call network which resulted in random walks getting stuck at sink nodes. Further-
more, some existing studies have a preference for undirected call networks even
when their proposed methods utilize only handcrafted features (without consider-
ing random walks) (Kim et al., 2014a).

Additionally, we consider augmented graphs unweighted, for two different rea-

16

sons. First, due to a very different nature of node types (existing=customer vs. arti-
ficial=RFM), it is not straightforward how to determine the corresponding weights
without biasing (much) the process of walk generation in favor of one type or the
other. Second, determining the weights among artificial edges themselves is intri-
cate as the current RFM-related literature prioritizes among RFM variables in an
ad-hoc and domain/dataset-dependent manner. To avoid this, we opt for follow-
ing the same approach as RFM-related studies which consider R-F-M as equally
important (McCarty & Hastak, 2007; Cheng & Chen, 2009).
3.2. A Scalable node2vec-inspired Representation Learning Algorithm for Call

Graphs

The node2vec approach as proposed in Grover & Leskovec (2016) serves as the
basis of our customer RL technique deployed to call graphs. Node2vec and earlier
node RL techniques (Perozzi et al., 2014; Tang et al., 2015) rely on the similarity
of node neighborhoods to word neighborhoods in NLP, allowing to apply the Skip-
Gram neural network architecture for deriving node representations. Conceptually,
the SkipGram model consists of two steps: first, extracting word contexts from a
given corpus and second, based on extracted contexts maximizing the probability
of collocating the words from the same context using stochastic gradient descent.

In a graph setting, random walks of fixed-length wl are typically used to define
node neighborhood/context (Perozzi et al., 2014; Grover & Leskovec, 2016) and to
avoid implicit bias induced by the selection of a start node, walks are restarted nw

times from each node. We define our randomwalks as first-order Markov processes
which only take into account the (immediate) previous step. That is, a random walk
which reaching a particular node u looks only into its neighborhoodu to determine
the next node v. The transition probability is defined as:

Pr(u→ v) = Pr(v|u) =
wuv

∑

z∈u

wuz
(1)

17

where wuv denotes the weight of edge e = (u, v).
To construct a uniform distribution from the above obtained discrete distribu-

tion and allow for amore efficient sampling when performing randomwalking, alias
sampling (Kronmal & Peterson, 1979) can be applied. The only prerequisite is to
generate an alias table per node in advance. Note that in the case of unweighted
graph equation (1) further simplifies to uniform sampling from the set of adjacent
nodes which does not even require any precomputation.

Once random walks are generated, the basic idea of the SkipGram model is
used, aimed at bringing the representations of the nodes from the same context /
neighborhood closer than those of the nodes found in different contexts / neighbor-
hoods. In other words, if we denote a set of nodes in the graph by V, we are learning
a function f, f ∶ V → Rd such that: max

f

∏

v∈V

∏

c∈Cv
Pr(f (c)|f (v)), where Cv is

a set of contexts of node v.
The conditional probability Pr(f (c)|f (v)) is defined using a softmax function:

Pr(f (c)|f (v)) = ef (c)⋅f (v)
∑

c′∈C
ef (c′)⋅f (v)

, where C is a set of all available contexts. It yields
the following objective function after switching to log likelihood:

max
f

∑

v∈V

∑

c∈Cv

(

f (c) ⋅ f (v) − log
∑

c′∈C
ef (c

′)⋅f (v)
)

However, as the second factor in the objective function (inherited from the nor-
malization part in softmax) encompasses all possible contexts c′, it is computa-
tionally very expensive and therefore, typically, approximated. To this end, we use
negative sampling as suggested by Mikolov et al. (2013b) and reformulate the ob-
jective as:

max
f

∑

v∈V

(

log �(f (c) ⋅ f (v)) +
K
∑

k=1
Evk∼Pn(v)[log �(−f (vk) ⋅ f (v))]

)

,

where � is the sigmoid function, K is number of negative examples and Pn(v) is

18

noise distribution according to which negative sampling is performed.

Comparison with similar representation learning methods. Figure 1 graphically
summarizes the similarities and differences between our method and its two most
closely related methods: DeepWalk and node2vec.

Figure 1: Graphical illustration of the comparison between our method (tcc2vec, represented by the
solid circle) with its two closest existing methods (DeepWalk, dotted and Node2vec, dashed circle).
We compare according to: 1) Random walk generation (in italics), i.e., parameters wl-walk length,
nw-number of walks, p, q, and the order of Markov model required (1st vs. 2nd); 2) SkipGram imple-
mentation details (underlined), hence either negative sampling or hierarchical softmax and 3) type of
setting/graphs considered - dynamic vs. static aspect (in bold).

As for computational complexity related to random walk generation, in case
of unweighted graphs, both tcc2vec and DeepWalk require only O(1) time. It
is worth mentioning though that DeepWalk is primarily designed to handle un-
weighted graphs, hence it might not work optimally in the case of weighted graphs.
In case of weighted graphs, as we require the construction of an alias table for
each node, tcc2vec’s space and time complexity is O(|V |), while, due to consider-
ing 2nd-order Markov model and introducing additional in-out and return param-
eters p and q, node2vec requires both node and edge alias tables which leads to
O(|P | ⋅ |Q| ⋅ (|V |+ |E|)) complexity, where p∈P and q∈Q, hence the number of
all possible combinations for the values of parameters p and q has to be taken into
account. An additional question is how to define sets P andQ given that node2vec

19

doesn’t provide methodology to this end. Moreover, we suspect that at least the
return parameter is obsolete as, considering undirected graphs, we give random
walks a possibility to return, and hence no special treatment to enforce or impede
backtracking is necessary in our case.

With respect to the optimization part, unlike DeepWalk which uses hierarchi-
cal softmax, a less efficient method for approximating the normalization factor in
softmax probabilities, tcc2vec (and node2vec) use the more efficient negative sam-
pling. In a nutshell, for each node, hierarchical softmax requires O(log|V |) time
to traverse the binary tree and calculate conditional probabilities, while negative
sampling requires only O(|K|∕pk), where K is a set of negative samples and pk is
the corresponding sampling distribution which given that, pk is lower bounded and
|K| is constant (by default: |K| = 5) leads to O(1) (we refer the interested reader
to Mikolov et al. (2013b)).

It is worth mentioning that our edge weight-driven random walks used for con-
text generation is similar to the incident-edges-weighted sampling procedure per-
formed in LINE (Tang et al., 2015). However, in LINE, each context is generated
from two parts, which are constructed independently from first and second-order
neighborhoods and additionally, optimized separately using two different objective
functions.
3.3. Including Dynamic Effects in Learned Representations

As a consequence of continuous changes in customer behaviour, call networks
perpetually evolve, both in terms of (dis)appearance of nodes and links as well as
their characteristics (e.g. the interaction may persist, but its intensity and frequency
might change). Learning a single representation per customer would, therefore,
hinder valuable fluctuations in customer behaviour which happen throughout time.
Moreover, it can be expected that accurate CP is highly dependent on detecting

20

changes in customer behavior and network topology. As such, in line with previ-
ous works considering featurization based on consecutive, non-overlapping time
intervals, tcc2vec allows for the following time granularities (tg):

• Four weekly networks (tg=4);

• Two bi-weekly networks (tg=2);

• A single (monthly) network (tg=1, corresponding to a static setting).

The key idea is that by including multiple representations of different consecutive
time periods (see line 1 in Algorithm 1), the classification algorithm is provided
with the opportunity to take into account changes in the representations over time.
Once learnt, the representations corresponding to separate time periods are then
stacked together using a concatenation operator (see line 10 in Algorithm 1). This
setting has been adopted in previous studies as well, e.g. in Rahman & Al Hasan
(2016). Illustration of complete method with tg=2 and ig=s is given in Figure 2.

Figure 2: Graphical illustration of tcc2vec for tg=2 and ig=s.

4. Experimental Evaluation

Given that a key contribution of this work consists of an investigation of crucial
parameters for tcc2vec, this section details our experimental evaluation setup.

21

4.1. Data and Tools

Experiments were performed using two data sets (one for prepaid, one for post-
paid). Both consist of four months of CDR data (only calls, no SMS or other usage
types) providing only the following information: caller, callee, date/time and call
duration. For confidentiality, all call numbers are encrypted. Churn labels are not
available, although for postpaid, we are given ported-out dates of a several dozen
of ported-out customers. More details about the datasets can be found in Table 2.
Table 2: Statistics of the datasets used, for monthly (M), bi-weekly (BW) and weekly (W) level.
Notation: |V | - number of nodes, |E| - number of edges, avg(deg) - average degree, avg(cl.coeff.) -
average clustering coefficient, |CC| - number of connected components, |max_cq| - size of maximal
clique, dac - degree assortativity coefficient.

Measure Prepaid
M BW 1 BW 2 W 1 W 2 W 3 W 4

|V | 4303541 3099439 3414621 2251195 2213089 2197238 2731485
|E| 5936423 3410857 3993270 2116619 2053684 2031695 2817743

avg(deg) 2.75886 2.20095 2.33892 1.88044 1.85594 1.84932 2.06316
avg(cl.coeff.) 0.05749 0.04231 0.04756 0.03121 0.03029 0.02958 0.03950

|CC| 138509 244535 207298 314793 322511 320098 266883
|max_cq| 7 7 7 6 6 6 6

dac -0.00110 -0.00124 -0.00117 -0.00145 -0.00144 -0.00141 -0.00138

Measure Postpaid
M BW 1 BW 2 W 1 W 2 W 3 W 4

|V | 4799149 3741692 4046353 2929347 2889360 2894179 3414656
|E| 9246134 5496039 6365786 3488464 3404493 3411408 4556203

avg(deg) 3.85324 2.93773 3.14643 2.38173 2.35657 2.35743 2.66862
avg(cl.coeff.) 0.06939 0.05707 0.06138 0.04450 0.04405 0.04295 0.05370

|CC| 27392 72906 55902 143390 149481 148274 97970
|max_cq| 7 6 7 6 5 6 6

dac -0.02290 -0.02052 -0.02123 -0.01951 -0.01937 -0.01954 -0.02073

4.2. Definitions and Setting

In the absence of churn labels, we define churn as customer inactivity which can
be detected from CDRs, a method already used in previous works, e.g. Kusuma
et al. (2013). However, previous studies tend to use the complete data from one
month to predict which customers will churn immediately during the next month.
These scenarios are not applicable in real business cases as they leave no time for de-
vising appropriate retention campaigns. Therefore, in this work, we apply a differ-

22

Figure 3: Graphical illustration of the four-month CDR information usage.

ent setting using four months of data, denoted asM−1 toM+2, where we consider
customers from monthM as our customer base and try to predict their probability
of churning in monthM+2. Since we consider time periods of different length, to
label customers from month M−1 who are already churning during period pi of
monthM , we devise following definition (for illustration for weekly scenario, see
Figure 3):

• The customer appears in the CDRs during the monthM , has not ported out
during the monthM before period pi and had its last call in monthM during
period pi,

• The customer does not appear in the CDRs during the first n − 1 periods of
monthM+1, with n being number of periods or has been ported out during
the same period.

Adopting this churn definition, we end up with around 12.2% of churners for the
prepaid and 7.8% of churners for the postpaid dataset.
4.3. Experimental Design

In order to get insights in how to optimally configure tcc2vec, we set up a full
factorial experimental design consisting of the following four factors:

23

• F1: Interaction granularity with four levels: summary (s), summary+churn
(s+cℎ), detailed (d), detailed+churn (d+cℎ);

• F2: Temporal granularity with three levels: monthly (m), bi-weekly (b) and
weekly (w);

• F3: Number of random walks per node with three levels: 10, 30 and 50;

• F4: Length of random walks with three levels: 10, 30 and 50.

This results in 4∗33 = 108 different combinations per dataset. The choice of values
for factors F3 and F4 stems from both insights from several previous works (e.g.
walk length 40 is used in Perozzi et al. (2014); Zhang et al. (2017); Cheng Yang
(2017); 10 walks are used in Grover & Leskovec (2016); Cheng Yang (2017); 40
walks in Zhang et al. (2017)), as well as the need to maintain a computationally
feasible setup.

Moreover, given that the number of iterations, as an additional parameter, has
its own computational impact, we perform a supplementary analysis for the best
performing methods of the previous experiment (per dataset) in which we vary the
number of iterations with values of 1, 5, 10, 15 and 20. All computations were
performed on a high performance computing platform of VSC3 in order to fully
parallelize random walk generations and representation derivations.

Our predictive models are generated using logistic regression with l2-regular-
ization. Besides being a well-known classification technique for its interpretabil-
ity and on-par performance with more complex techniques Owczarczuk (2010);
Verbeke et al. (2010), logistic regression was also applied by previous studies per-
forming classification based on learned node representations Grover & Leskovec

3https://www.vscentrum.be/

24

(2016); Perozzi et al. (2014). We use 10-fold cross validation to tune the regular-
ization hyper-parameter. The AUC and lift scores (at 0.5%) are used for evaluation
which is performed in an out-of-sample fashion.

5. Experimental Results

Comparisonwith baselinemethods. First, we compare ourmethod tcc2vec toDeep-
Walk and node2vec methods. Obtained predictive performance, in terms of AUC
and lift (at 0.5%) as well as computational time required for each method is dis-
played in the Table 3. Obviously, tcc2vec outperforms both baselines on both
datasets by huge margin in terms of AUC and lift. We provide more detailed seg-
regation of computational time which clearly confirms the theoretical complexity
evaluation provided in the last paragraph of the Section 3.2: node2vec requires a
lot of time for calculating alias tables (preparatory phase) and generating random
walks, while DeepWalk requires a lot of time for learning node representations.
Given that tcc2vec operates on RFM-Augmented graphs, obtaining higher running
time (compared with competing methods) for certain phases seems reasonable.

Interaction and temporal granularity (F1 & F2). Secondly, we focus our analysis
on the first two factors. Results of a 10-fold cross validation experiment are reported
in Tables 4 and 5 for the postpaid and prepaid datasets respectively. Observe that
the reported values are averages over the results for all combinations of the two
other factors, i.e. number of walks per node and walk length.

Regarding the impact of the interaction granularity, we can see that this factor
indeed influences the classification result. In terms of AUC, both for prepaid and
postpaid, we can conclude that the summary+churn interaction level provides the
highest score. In terms of lift, the best results are obtained for summary+churn in-
teraction level for prepaid and detailed interaction level for postpaid. It is also worth

25

Table 3: Comparison in terms of AUC (lift at 0.5%) and run time between three methods: DeepWalk,
node2vec and tcc2vec for the prepaid and postpaid datasets (in case of DeepWalk, the preparatory
phase refers to neighborhood extraction per node). The results are averaged across 10 folds (different
from folds used for hyperparameter tuning). For all methods, monthly temporal granularity with
walk length 40, number of walks 10, 128 dimensions and window size 10 is considered. For each
method, its corresponding choice of the underlying undirected graph is applied: DeepWalk with its
original unweighted graph, node2vec with its original weighted graph, and tcc2vec with its RFM-
Augmented graph with the “s+ch” interaction granularity. For node2vec, the best result for different
(p,q) parameters is provided and computational time shown refers to the average run time required
for one (p,q) combination assuming that different combinations can run in parallel. The best score
per dataset is marked in bold.

Dataset Method
Predictive perf. Computational time (in seconds)
AUC (Lift) Preparatory

phase
Random walk
generation

Learning rep-
resentations Total time

Prepaid
DeepWalk 0.60886 (1.77355) 184.79 1346.20 62961.02 64492.01
node2vec 0.62660 (1.40002) 2240.50 10150.26 17282.40 29673.16
tcc2vec 0.68215 (1.98502) 266.96 919.03 20975.06 22161.05

Postpaid
DeepWalk 0.66589 (2.83757) 246.81 1380.01 72482.02 74108.84
node2vec 0.63975 (1.20000) 7895.24 17663.77 21706.28 47265.29
tcc2vec 0.76099 (3.54606) 343.24 938.04 25683.05 26964.33

noticing that in terms of AUC, both for prepaid and postpaid, summary+churn and
detailed+churn interaction levels always outperform summary and detailed inter-
action levels, respectively. Hence, enriching the original topology with churn infor-
mation adds value in terms of predictive performance. The same observation holds
in terms of lift for prepaid dataset.

With respect to the temporal granularity, both in terms of AUC and lift and
for both datasets, a unanimous conclusion can be derived: the weekly level always
outperforms bi-weekly one, which in turn performs better than monthly.

Number of walks and walk length (F3&F4). Thirdly, two key parameters of the RL
part of tcc2vec are investigated, i.e. the number of walks and walk length. Results
are depicted in Figures 4 and 5 for the postpaid and the prepaid datasets respec-
tively. The graphs show average AUC scores for every combination of walk length
(10, 30, 50) and number of walks (10, 30, 50) for different interaction granularity
levels (that is, different RFM-augmented graphs). From these, we can conclude

26

Table 4: Comparison in terms of AUC and lift (at 0.5%) between different methods for the post-
paid dataset. The results are averaged across 10 folds (different from folds used for hyperparameter
tuning). Horizontally, a comparison between different levels of temporal granularity for the same
interaction granularity is provided. Vertically, a comparison between the different interaction granu-
larities (summary/summary+churn/detailed/detailed+churn) for the same temporal granularity level
can be performed. Displayed are average AUC ± standard deviation and average lift ± standard de-
viation across different levels of other two factors (F3 and F4). The best score per row is marked in
bold. The best overall score is marked in bold and underlined.

Temporal Summary Summary+Churn Detailed Detailed+Churn
AUC (Lift) AUC (Lift) AUC (Lift) AUC (Lift)

Monthly 0.76308 ± 0.00306(3.61292 ± 0.02502) 0.76341 ± 0.00324(3.61359 ± 0.03348) 0.75705 ± 0.00813(3.74623 ± 0.08124) 0.75726 ± 0.00831(3.72948 ± 0.08526)
Bi-weekly 0.76501 ± 0.00234(3.84050 ± 0.01890) 0.76524 ± 0.00213(3.83400 ± 0.01624) 0.76103 ± 0.00460(3.85800 ± 0.01962) 0.76121 ± 0.00476(3.84970 ± 0.02237)
Weekly 0.76819 ± 0.00240(3.90514 ± 0.00959) 0.76841 ± 0.00232(3.90094 ± 0.00703) 0.76521 ± 0.00233(3.91296 ± 0.01392) 0.76531 ± 0.00241(3.90217 ± 0.00241)

Table 5: Comparison in terms of AUC and lift (at 0.5%) between different methods for the pre-
paid dataset. The results are averaged across 10 folds (different from folds used for hyperparameter
tuning). Horizontally, a comparison between different levels of temporal granularity for the same
interaction granularity is provided. Vertically, a comparison between the different interaction granu-
larities (summary/summary+churn/detailed/detailed+churn) for the same temporal granularity level
can be performed. Displayed are average AUC ± standard deviation and average lift ± standard de-
viation across different levels of other two factors (F3 and F4). The best score per row is marked in
bold. The best overall score is marked in bold and underlined.

Temporal Summary Summary+Churn Detailed Detailed+Churn
AUC (Lift) AUC (Lift) AUC (Lift) AUC (Lift)

Monthly 0.68214 ± 0.00276(1.91193 ± 0.01868) 0.68508 ± 0.00347(2.00588 ± 0.02560) 0.68001 ± 0.00513(1.89984 ± 0.01938) 0.68209 ± 0.00532(1.96932 ± 0.03268)
Bi-weekly 0.68707 ± 0.00102(1.94022 ± 0.00860) 0.69615 ± 0.00263(2.28452 ± 0.00816) 0.68782 ± 0.00210(1.94715 ± 0.01084) 0.69521 ± 0.00387(2.25625 ± 0.03734)
Weekly 0.69344 ± 0.00037(1.96665 ± 0.00889) 0.70313 ± 0.00207(2.30911 ± 0.01023) 0.69398 ± 0.00104(1.97686 ± 0.00893) 0.70190 ± 0.00253(2.30080 ± 0.02099)

that with increasing number of walks and walk length, the AUC score increases as
well, however, the relative increase becomes smaller as both parameters increase.
Moreover, observe that choice of length and number of walks cannot be made inter-
changeably: X walks of length Y do not have the same predictive power as Y walks
of length X. In fact, it can be observed that a higher number of shorter walks pro-
vides a better predictive performance than a lower number of longer walks, despite
having similar computational complexities.

More detailed results corresponding to the lowest level of each factor for both

27

Figure 4: Average AUC scores for different values of walk length and number of walks for postpaid
dataset. Different RFM-Augmented graphs corresponding to different levels of interaction granular-
ity (F1) are represented separately while the average is calculated over different levels of temporal
granularity (F2).

datasets can be found in the Appendix A.
Additionally, we consider all 108 different combinations per dataset as different

methods and perform a Bayesian hierarchical correlated t-test Corani et al. (2016);
Benavoli et al. (2016). This recently proposed test allows for comparing the perfor-
mances of two methods not only for statistical significance, but also with respect
to practical equivalence, which perfectly fits the purpose of this work, hence, the
motivation for using it. To apply this test, we run 10 times 10-fold cross validation
for each of 108 methods (using the same stratified folds) on both datasets and set the
region of practical equivalence (ROPE) to 1% (as suggested in Corani et al. (2016)).

The test estimates the mean difference in AUC scores between any two meth-

28

Figure 5: Average AUC scores for different values of walk length and number of walks for prepaid
dataset. Different RFM-Augmented graphs corresponding to different levels of interaction granular-
ity (F1) are represented separately while the average is calculated over different levels of temporal
granularity (F2).

odsM1 andM2 and returns as a result three posterior probabilities: P (M1>M2),
probability that method M1 performs practically better than M2, P (rope), proba-
bility that two methods are practically equivalent within ROPE and P (M2>M1),
probability thatM2 performs practically better thanM1. Results are significant if
any of the posterior probabilities is ≥ 0.95 (as suggested by Corani et al. (2016)).
A probability simplex (with corresponding posteriors) illustrating the test results
taking sch_w_30_30 as an example can be seen in Figure 6. Although there is no
single winning method, test reveals many practically different methods. Complete
results are provided in Figure A.1 in the Appendix A.

29

(a) Statistical significance. (b) Positive evidence.

(c) Practical equivalence.
Figure 6: A probability simplex illustration of different possible outcomes of the Bayesian hierarchical
correlated t-test on the example of sch_w_30_30 for ROPE=1%. For readability, s+ch is shortened
to sch. In (a) P(sch_w_30_30 > s_m_30_30) > 0.95 hence sch_w_30_30 is significantly better than
s_m_30_30. In (b) P(sch_w_30_30 > s_m_50_30) dominates but is<0.95 hence there is only positive
evidence in favor of sch_w_30_30 against s_m_50_30. In (c) P (rope) dominates (and is>0.95) hence
sch_w_30_30 and sch_w_30_30 are practically equivalent.

Number of iterations. Finally, as mentioned before, we perform a supplementary
analysis of the number of iterations parameter of the SkipGram model. To this
end, we only considered the best performing scenario in terms of interaction and
temporal granularity (i.e. the RFM-augmented graph AGs+cℎ and weekly temporal
granularity level for both datasets with 50 walks of length 50) and subsequently
performed a sensitivity analysis by instantiating the number of iterations parameter
with values 1, 5, 10, 15, and 20. The results are provided in Figure 7 for both
datasets. We can observe that after five iterations the performance remains stable
irrespective of the chosen number of iterations in the SkipGram model.

30

Figure 7: AUC scores for the SkipGram parameter number of iterations i ∈ {1, 5, 10, 15, 20} using
the best interaction granularity, i.e. AGs+cℎ and optimal temporal granularity, i.e. the weekly level as
an example. AUC scores are stable for varying i ≥ 5.

6. Discussion

Wewould like to emphasize that preliminary results fromMitrović et al. (2017a)
demonstrated that classical RFM (RFM) features perform sub-par compared to
RFM-augmented networks with adapted node2vec (AG), even when the latter were
calculated using fewer and shorter walks (10 walks of length 30) than what has been
considered in this study. Given the evidence that the performance increases with
increased number and length of walks, it is obvious that the achieved performance
tremendously outperforms the one obtained using traditional RFM features, hence
the reason for omitting them.

Furthermore, in this studywe demonstrate that a higher number of shorter walks
provides better predictive performance than a lower number of longer walks. We
would like to draw attention that this insight goes in line with the homophily as-
sumption in social networks, which implies that similar nodes tend to link together

31

while similarity decreases with increases in distance. Moreover, this both over-
comes graph sparsity and eliminates the need for force-steering random walks as
done in node2vec (using parameters p and q). Hence, we can claim that our adaption
of node2vec is justified not only in terms of computational efficiency, but predictive
performance-wise as well.

7. Conclusion

In this work, we proposed tcc2vec, a panoptic approach aiming at devising the
most appropriate RL on call graphs for CP. This work extends earlier research pre-
sented in Mitrović et al. (2017b) and Mitrović et al. (2017a) in which initial foun-
dations for tcc2vec were proposed.

This paper contributes to the literature in three different ways. First, we devel-
oped an integrated RL-based CP framework, based on a scalable node2vec-inspired
embedding algorithm for large graphs, which can learn node representations based
on augmented CDR-graphs. These augmented graphs allow us to conjoin both
structural and behavioral characteristics of customers. Furthermore, our approach
allows to include dynamic effects into the learned representations. Second, based on
a thorough experimental evaluation, we give insight into the optimal parametriza-
tion of tcc2vec in terms of interaction granularity, temporal granularity and char-
acteristics of the RL method, such as the number and length of walks. Finally, this
study provides guidelines both for researchers as well as practitioners regarding the
potential adoption of RL for CP in practice. Furthermore, it gives insight into the
various research challenges that RL on graphs is raising in this area.

For our future work, we would like to explore more sophisticated ways of cap-
turing call dynamics (e.g. the ordering of calls, their inter-event time distribution).
Additionally, it would be interesting to verify whether different ways of biasing ran-
dom walks influence the predictive performance. Finally, different ways of creating

32

artificial nodes and their effect on predictive performance could be explored as well.

References

Benavoli, A., Corani, G., Demšar, J., & Zaffalon, M. (2016). Time for a change:
a tutorial for comparing multiple classifiers through bayesian analysis. ArXiv

e-prints, abs/1606.04316.

Bengio, Y., Ducharme, R., Vincent, P., & Jauvin, C. (2003). A neural probabilistic
language model. Journal of machine learning research, 3, 1137–1155.

Benoit, D. F., & Van den Poel, D. (2012). Improving customer retention in financial
services using kinship network information. Expert Systems with Applications,
39, 11435–11442.

Cao, S., Lu, W., & Xu, Q. (2016). Deep neural networks for learning graph repre-
sentations. In Proceedings of the Thirtieth AAAI Conference on Artificial Intel-

ligence AAAI’16 (pp. 1145–1152). AAAI Press.

Castanedo, F., Valverde, G., Zaratiegui, J., & Vazquez, A. (2014). Using deep
learning to predict customer churn in a mobile telecommunication network.

Casteigts, A., Flocchini, P., Mans, B., & Santoro, N. (2015). Shortest, fastest, and
foremost broadcast in dynamic networks. Int. J. Found. Comput. Sci., 26, 499–
522.

Chen, Z.-Y., Fan, Z.-P., & Sun, M. (2012). A hierarchical multiple kernel support
vector machine for customer churn prediction using longitudinal behavioral data.
European Journal of operational research, 223, 461–472.

Cheng, C.-H., & Chen, Y.-S. (2009). Classifying the segmentation of customer

33

value via rfm model and rs theory. Expert systems with applications, 36, 4176–
4184.

Cheng Yang, Z. L. C. T., Maosong Sun (2017). Fast network embedding enhance-
ment via high order proximity approximation. InProceedings of the Twenty-Sixth
International Joint Conference on Artificial Intelligence, IJCAI-17 (pp. 3894–
3900).

Corani, G., Benavoli, A., Demšar, J., Mangili, F., & Zaffalon, M. (2016). Statistical
comparison of classifiers through bayesian hierarchical modelling. In Technical

report IDSIA.

Dasgupta, K., Singh, R., Viswanathan, B., Chakraborty, D., Mukherjea, S., Nana-
vati, A. A., & Joshi, A. (2008). Social ties and their relevance to churn in mobile
telecom networks. In Proceedings of the 11th conference on Extending database
technology: Advances in database technology (pp. 668–677). ACM.

Dong, Y., Chawla, N. V., & Swami, A. (2017). Metapath2vec: Scalable represen-
tation learning for heterogeneous networks. In KDD.

Eichinger, F., Nauck, D. D., & Klawonn, F. (2006). Sequence mining for customer
behaviour predictions in telecommunications. In Proceedings of the Workshop

on Practical Data Mining at ECML/PKDD (pp. 3–10).

Goyal, P., Kamra, N., He, X., & Liu, Y. (2017). Dyngem: Deep embedding method
for dynamic graphs. In IJCAI International Workshop on Representation Learn-

ing for Graphs.

Grover, A., & Leskovec, J. (2016). node2vec: Scalable feature learning for net-
works. In Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (pp. 855–864). ACM.

34

Hamilton, W., Ying, R., & Leskovec, J. (2017). Inductive representation learning
on large graphs. In 31st Conference on Neural Information Processing Systems

(NIPS 2017).

Hamilton, W. L., Leskovec, J., & Jurafsky, D. (2016). Diachronic word embeddings
reveal statistical laws of semantic change. CoRR, abs/1605.09096.

Hill, S., Agarwal, D. K., Bell, R., & Volinsky, C. (2006). Building an effective
representation for dynamic networks. Journal of Computational and Graphical

Statistics, 15, 584–608.

Hisano, R. (2018). Semi-supervised graph embedding approach to dynamic link
prediction. In S. Cornelius, K. Coronges, B. Gonçalves, R. Sinatra, & A. Vespig-
nani (Eds.), Complex Networks IX (pp. 109–121). Cham: Springer International
Publishing.

Huang, B., Kechadi, M. T., & Buckley, B. (2012). Customer churn prediction in
telecommunications. Expert Systems with Applications, 39, 1414–1425.

Huang, Y., Zhu, F., Yuan, M., Deng, K., Li, Y., Ni, B., Dai, W., Yang, Q., & Zeng,
J. (2015). Telco churn prediction with big data. In Proceedings of the 2015

ACM SIGMOD International Conference on Management of Data (pp. 607–
618). ACM.

Hughes, A. (1994). Strategic Database Marketing: The Master Plan for Starting

and Managing a Profitable, Customer-Based Marketing program. Probus Pub-
lishing Co., Chicago, IL.

Keramati, A., Jafari-Marandi, R., Aliannejadi, M., Ahmadian, I., Mozaffari, M., &
Abbasi, U. (2014). Improved churn prediction in telecommunication industry
using data mining techniques. Applied Soft Computing, 24, 994–1012.

35

Kim, K., Jun, C.-H., & Lee, J. (2014a). Improved churn prediction in telecommuni-
cation industry by analyzing a large network. Expert Systems with Applications,
41, 6575–6584.

Kim, Y., Chiu, Y.-I., Hanaki, K., Hegde, D., & Petrov, S. (2014b). Temporal anal-
ysis of language through neural language models. In LTCSS@ACL.

Kipf, T. N., & Welling, M. (2017). Semi-supervised classification with graph con-
volutional networks. In ICLR.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with
deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou,
& K. Q. Weinberger (Eds.), Advances in Neural Information Processing Systems
25 (pp. 1097–1105). Curran Associates, Inc.

Kronmal, R. A., & Peterson, A. V. (1979). On the alias method for generating
random variables from a discrete distribution. The American Statistician, 33,
214–218.

Kusuma, P. D., Radosavljevik, D., Takes, F. W., & van der Putten, P. (2013). Com-
bining customer attribute and social network mining for prepaid mobile churn
prediction. In Proc. the 23rd Annual Belgian Dutch Conference on Machine

Learning (BENELEARN) (pp. 50–58).

Lee, H., Lee, Y., Cho, H., Im, K., & Kim, Y. S. (2011). Mining churning behaviors
and developing retention strategies based on a partial least squares (pls) model.
Decision Support Systems, 52, 207–216.

McCarty, J. A., & Hastak, M. (2007). Segmentation approaches in data-mining: A
comparison of rfm, chaid, and logistic regression. Journal of business research,
60, 656–662.

36

Michail, O. (2016). An introduction to temporal graphs: An algorithmic perspec-
tive. Internet Mathematics, 12, 239–280.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013a). Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., &Dean, J. (2013b). Distributed
representations of words and phrases and their compositionality. In Advances in
neural information processing systems (pp. 3111–3119).

Mitrović, S., Baesens, B., Lemahieu, W., & De Weerdt, J. (2017a). Churn pre-
diction using dynamic rfm-augmented node2vec. In R. Guidotti, A. Monreale,
D. Pedreschi, & S. Abiteboul (Eds.), Personal Analytics and Privacy. An Indi-

vidual and Collective Perspective (pp. 122–138). Cham: Springer International
Publishing.

Mitrović, S., Singh, G., Baesens, B., Lemahieu, W., & de Weerdt, J. (2017b). Scal-
able rfm-enriched representation learning for churn prediction. In 2017 IEEE

International Conference on Data Science and Advanced Analytics (DSAA) (pp.
79–88).

Modani, N., Dey, K., Gupta, R., & Godbole, S. (2013). Cdr analysis based telco
churn prediction and customer behavior insights: A case study. In International
Conference on Web Information Systems Engineering (pp. 256–269). Springer.

Motahari, S., Jung, T., Zang, H., Janakiraman, K., Li, X.-Y., & Hoo, K. S. (2014).
Predicting the influencers on wireless subscriber churn. InWireless Communica-

tions and Networking Conference (WCNC), 2014 IEEE (pp. 3402–3407). IEEE.

Nanavati, A. A., Gurumurthy, S., Das, G., Chakraborty, D., Dasgupta, K., Mukher-
jea, S., & Joshi, A. (2006). On the structural properties of massive telecom call

37

graphs: findings and implications. In Proceedings of the 15th ACM international

conference on Information and knowledge management (pp. 435–444). ACM.

Nguyen, G. H., Lee, J. B., Rossi, R. A., Ahmed, N. K., Koh, E., & Kim, S. (2018).
Continuous-time dynamic network embeddings. In 3rd International Workshop

on Learning Representations for Big Networks (WWW BigNet).

Nicosia, V., Tang, J., Mascolo, C., Musolesi, M., Russo, G., & Latora, V. (2013).
Graph metrics for temporal networks. In Temporal networks (pp. 15–40).
Springer.

Orsenigo, C., & Vercellis, C. (2010). Combining discrete svm and fixed cardinality
warping distances formultivariate time series classification. Pattern Recognition,
43, 3787–3794.

Owczarczuk, M. (2010). Churn models for prepaid customers in the cellular
telecommunication industry using large data marts. Expert Systems with Ap-

plications, 37, 4710–4712.

Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of so-
cial representations. In Proceedings of the 20th ACM SIGKDD international

conference on Knowledge discovery and data mining (pp. 701–710). ACM.

Phadke, C., Uzunalioglu, H., Mendiratta, V. B., Kushnir, D., & Doran, D. (2013).
Prediction of subscriber churn using social network analysis. Bell Labs Technical
Journal, 17, 63–75.

Raeder, T., Lizardo, O., Hachen, D., & Chawla, N. V. (2011). Predictors of short-
term decay of cell phone contacts in a large scale communication network. Social
Networks, 33, 245–257.

38

Rahman, M., & Al Hasan, M. (2016). Link prediction in dynamic networks using
graphlet. In Joint European Conference on Machine Learning and Knowledge

Discovery in Databases (pp. 394–409). Springer.

Richter, Y., Yom-Tov, E., & Slonim, N. (2010). Predicting customer churn in mo-
bile networks through analysis of social groups. In SDM (pp. 732–741). SIAM
volume 2010.

Saravanan, M., & Raajaa, G. V. (2012). A graph-based churn prediction model
for mobile telecom networks. In International Conference on Advanced Data

Mining and Applications (pp. 367–382). Springer.

Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). Line: Large-
scale information network embedding. In Proceedings of the 24th International

Conference on World Wide Web (pp. 1067–1077). ACM.

Trivedi, R., Dai, H., & Wang, Y. (2017). Know-evolve: Deep temporal reasoning
for dynamic knowledge graphs (supplementary material). In ICML.

Trivedi, R., Farajtabar, M., Biswal, P., & Zha, H. (2018). Representation learning
over dynamic graphs. CoRR, abs/1803.04051.

Umayaparvathi, V., & Iyakutti, K. (2017). Automated feature selection and churn
prediction using deep learning models. International Research Journal of Engi-
neering and Technology (IRJET), 4.

Verbeke, W., Dejaeger, K., Martens, D., & Baesens, B. (2010). Customer churn
prediction: does technique matter? In Proceedings of the Joint Statistical Meet-

ing, JSM2010, Vancouver, Canada.

Wang, D., Cui, P., & Zhu, W. (2016). Structural deep network embedding. In
Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge

39

Discovery and Data Mining KDD ’16 (pp. 1225–1234). New York, NY, USA:
ACM.

Wangperawong, A., Brun, C., Laudy, O., & Pavasuthipaisit, R. (2016). Churn
analysis using deep convolutional neural networks and autoencoders. CoRR,
abs/1604.05377.

Yang, C., Liu, Z., Zhao, D., Sun, M., & Chang, E. Y. (2015). Network representa-
tion learning with rich text information. In Proceedings of the 24th International
Conference on Artificial Intelligence IJCAI’15 (pp. 2111–2117). AAAI Press.

Yang, Z., Cohen, W., & Salakhutdinov, R. (2016). Revisiting semi-supervised
learning with graph embeddings. CoRR, abs/1603.08861.

Zhang, D., Yin, J., Zhu, X., & Zhang, C. (2017). User profile preserving social net-
work embedding. In Proceedings of the Twenty-Sixth International Joint Con-

ference on Artificial Intelligence, IJCAI-17 (pp. 3378–3384).

Zhang, X., Zhu, J., Xu, S., & Wan, Y. (2012). Predicting customer churn through
interpersonal influence. Knowledge-Based Systems, 28, 97–104.

Zhou, C., Liu, Y., Liu, X., Liu, Z., & Gao, J. (2017). Scalable graph embedding for
asymmetric proximity. In AAAI Conference on Artificial Intelligence.

Zhou, L., Yang, Y., Ren, X. T., Wu, F., & Zhuang, Y. (2018). Dynamic network
embedding bymodeling triadic closure process. InAAAI Conference on Artificial
Intelligence.

Zhu, T., Wang, B., Wu, B., & Zhu, C. (2011). Role defining using behavior-based
clustering in telecommunication network. Expert Systems with Applications, 38,
3902–3908.

40

Appendix A.

41

Ta
ble

A.1
:C

om
par

iso
ni

nt
erm

so
fA

UC
(lif

tat
0.5

%)
am

on
gd

iffe
ren

tm
eth

od
sfo

rth
ep

re
pa

id
dat

ase
t.T

he
res

ult
sa

re
slic

ed
per

diff
ere

nt
int

era
cti

on
gra

nu
lar

ity
(su

mm
ary

,su
mm

ary
+c

hu
rn,

det
ail

ed,
det

ail
ed+

chu
rn)

,te
mp

ora
lg
ran

ula
rity

(m
on

thl
y,b

i-w
eek

ly,w
eek

ly)
,w

alk
len

gth
(10

,30
,50

)an
dn

um
ber

of
wa

lks
(10

,30
,50

).T
he

bes
tsc

ore
per

int
era

cti
on

typ
eis

ma
rke

di
nb

old
.T

he
bes

to
ver

all
sco

re
ism

ark
ed

in
bo

ld
and

un
der

lin
ed.

Int
era

cti
on

Te
mp

ora
l

Wa
lk

Le
ng
th

(w
l)&

Nu
mb

er
of

Wa
lks

(nw
)

wl1
0_
nw

10
wl1

0_
nw

30
wl1

0_
nw

50
wl3

0_
nw

10
wl3

0_
nw

30
wl3

0_
nw

50
wl5

0_
nw

10
wl5

0_
nw

30
wl5

0_
nw

50

Su
mm

ary
m

0.6
78
01

(1.
88
15
1)

0.6
80
99

(1.
90
62
0)

0.6
82
10

(1.
94
87
1)

0.6
78
47

(1.
89
58
4)

0.6
83
11

(1.
89
69
6)

0.6
84
95

(1.
92
38
7)

0.6
80
47

(1.
91
16

1)
0.6

84
75

(1.
91

75
0)

0.6
86

42
(1.

92
51
4)

b
0.6

86
39

(1.
93
78
8)

0.6
87
08

(1.
94
17
0)

0.6
86
97

(1.
94
63
2)

0.6
85
42

(1.
92
89
7)

0.6
87
26

(1.
95
17
4)

0.6
88
00

(1.
93
62
9)

0.6
85
78

(1.
95
44

4)
0.6

88
06

(1.
92

92
8)

0.6
88

68
(1.

93
53
3)

w
0.6

93
11

(1.
96
27
2)

0.6
93
78

(1.
95
06
2)

0.6
93
76

(1.
95
71
5)

0.6
92
86

(1.
98
05
6)

0.6
93
24

(1.
96
87
7)

0.6
93
56

(1.
96
30
4)

0.6
92
97

(1.
96
79

8)
0.6

93
68

(1.
97

70
5)

0.
69

39
5
(1.

97
19
6)

Su
mm

ary
+C

hu
rn

m
0.6

80
48

(1.
96
70
2)

0.6
82
97

(2.
00
46
0)

0.6
84
53

(2.
00
38
1)

0.6
80
11

(1.
98
59
7)

0.6
86
67

(2.
01
68
6)

0.6
88
72

(2.
03
99
5)

0.6
83
42

(1.
97
05

3)
0.6

88
65

(2.
03

85
2)

0.6
90

20
(2.

02
56
2)

b
0.6

91
76

(2.
26
75
0)

0.6
94
42

(2.
29
05
9)

0.6
95
79

(2.
27
88
0)

0.6
93
42

(2.
28
94
7)

0.6
97
26

(2.
28
97
9)

0.6
98
95

(2.
29
23
4)

0.6
94
92

(2.
28
51

7)
0.6

98
92

(2.
29

13
8)

0.6
99

91
(2.

27
56
2)

w
0.6

99
23

(2.
31
43
1)

0.7
01
83

(2.
31
03
3)

0.7
02
97

(2.
31
87
7)

0.7
01
54

(2.
29
47
3)

0.7
04
02

(2.
29
31
3)

0.7
04
84

(2.
31
11
3)

0.7
02
19

(2.
29
91

9)
0.7

05
09

(2.
31

79
8)

0.
70

62
3
(2.

29
39
3)

De
tai

led
m

0.6
66
99

(1.
84
83
9)

0.6
80
20

(1.
90
76
3)

0.6
81
71

(1.
90
85
8)

0.6
77
75

(1.
90
19
0)

0.6
81
78

(1.
90
01
4)

0.6
83
93

(1.
90
09
4)

0.6
78
93

(1.
90
25

3)
0.6

83
56

(1.
92

33
9)

0.6
85

22
(1.

90
50
8)

b
0.6

82
90

(1.
92
08
4)

0.6
87
81

(1.
94
83
9)

0.6
89
01

(1.
95
22
1)

0.6
86
03

(1.
95
71
5)

0.6
88
64

(1.
96
11
3)

0.6
89
35

(1.
94
37
7)

0.6
87
23

(1.
94
25

0)
0.6

89
33

(1.
95

01
4)

0.6
90

12
(1.

94
82
3)

w
0.6

92
10

(1.
98
51
8)

0.6
94
35

(1.
98
96
3)

0.6
94
67

(1.
98
24
7)

0.6
92
44

(1.
95
77
9)

0.6
94
18

(1.
97
72
1)

0.6
94
63

(1.
97
49
8)

0.6
93
42

(1.
97
69

0)
0.6

94
70

(1.
96

79
8)

0.
69

53
3
(1.

97
96
0)

De
tai

led
+C

hu
rn

m
0.6

68
53

(1.
88
31
1)

0.6
82
14

(1.
96
41
6)

0.6
83
37

(1.
96
51
1)

0.6
80
06

(1.
97
30
7)

0.6
83
98

(1.
99
29
8)

0.6
86
42

(1.
99
25
0)

0.6
81
16

(1.
97
57

8)
0.6

85
70

(1.
97

76
9)

0.6
87

45
(1.

99
95
1)

b
0.6

87
27

(2.
17
24
3)

0.6
93
94

(2.
24
12
2)

0.6
95
70

(2.
26
70
2)

0.6
91
51

(2.
22
53
0)

0.6
96
78

(2.
28
07
1)

0.6
98
74

(2.
28
58
1)

0.6
93
88

(2.
24
80

7)
0.6

98
58

(2.
29

07
5)

0.7
00

53
(2.

29
48
9)

w
0.6

97
77

(2.
26
04
9)

0.7
00
78

(2.
30
77
8)

0.7
02
06

(2.
29
37
7)

0.6
98
72

(2.
27
62
6)

0.7
02
76

(2.
31
39
9)

0.7
04
23

(2.
31
06
5)

0.7
00
66

(2.
30
36

4)
0.7

04
05

(2.
30

30
1)

0.
70

60
2
(2.

33
75
6)

42

Ta
ble

A.2
:C

om
par

iso
ni

nt
erm

so
fA

UC
(lif

tat
0.5

%)
am

on
gd

iffe
ren

tm
eth

od
sfo

rth
ep

os
tp

ai
d
dat

ase
t.T

he
res

ult
sa

re
slic

ed
per

diff
ere

nt
int

era
cti

on
gra

nu
lar

ity
(su

mm
ary

,su
mm

ary
+c

hu
rn,

det
ail

ed,
det

ail
ed+

chu
rn)

,te
mp

ora
lg
ran

ula
rity

(m
on

thl
y,b

i-w
eek

ly,w
eek

ly)
,w

alk
len

gth
(10

,30
,50

)an
dn

um
ber

of
wa

lks
(10

,30
,50

).T
he

bes
tsc

ore
per

row
ism

ark
ed

in
bo

ld.
Th

eb
est

ove
ral

lsc
ore

ism
ark

ed
in

bo
ld

and
un

der
lin

ed.

Int
era

cti
on

Te
mp

ora
l

Wa
lk

Le
ng
th

(w
l)&

Nu
mb

er
of

Wa
lks

(nw
)

wl1
0_
nw

10
wl1

0_
nw

30
wl1

0_
nw

50
wl3

0_
nw

10
wl3

0_
nw

30
wl3

0_
nw

50
wl5

0_
nw

10
wl5

0_
nw

30
wl5

0_
nw

50

Su
mm

ary
m

0.7
58
55

(3.
60
50
6)

0.7
61
92

(3.
62
74
5)

0.7
62
12

(3.
62
76
9)

0.7
58
76

(3.
56
99
0)

0.7
64
61

(3.
61
08
4)

0.7
66
31

(3.
63
20
3)

0.7
61
82

(3.
57
08

6)
0.7

66
53

(3.
63

05
8)

0.7
67

12
(3.

64
19
0)

b
0.7

58
55

(3.
60
50
6)

0.7
61
92

(3.
62
74
5)

0.7
62
12

(3.
62
76
9)

0.7
58
76

(3.
56
99
0)

0.7
64
61

(3.
61
08
4)

0.7
66
31

(3.
63
20
3)

0.7
61
82

(3.
57
08

6)
0.7

66
53

(3.
63

05
8)

0.7
67

12
(3.

64
19
0)

w
0.7

63
89

(3.
91
42
7)

0.7
67
08

(3.
91
33
1)

0.7
68
12

(3.
90
60
8)

0.7
65
56

(3.
91
49
9)

0.7
69
06

(3.
90
00
6)

0.7
70
38

(3.
91
25
8)

0.7
67
26

(3.
88
53

7)
0.7

70
47

(3.
89

47
6)

0.
77

19
1
(3.

90
48
8)

Su
mm

ary
+C

hu
rn

m
0.7

58
08

(3.
60
55
4)

0.7
62
83

(3.
61
32
5)

0.7
63
37

(3.
59
97
6)

0.7
58
68

(3.
55
20
8)

0.7
64
97

(3.
63
20
3)

0.7
66
69

(3.
61
61
3)

0.7
61
88

(3.
58
70

0)
0.7

66
47

(3.
68

06
7)

0.7
67

73
(3.

63
58
8)

b
0.7

62
07

(3.
84
87
7)

0.7
64
91

(3.
81
98
7)

0.7
65
09

(3.
84
97
3)

0.7
62
10

(3.
81
77
0)

0.7
66
29

(3.
83
86
5)

0.7
67
30

(3.
82
05
9)

0.7
63
86

(3.
80
87

9)
0.7

67
01

(3.
84

68
4)

0.7
68

47
(3.

85
50
3)

w
0.7

64
66

(3.
90
12
6)

0.7
67
17

(3.
89
45
2)

0.7
68
21

(3.
89
69
3)

0.7
65
59

(3.
89
98
2)

0.7
69
32

(3.
90
68
0)

0.7
70
56

(3.
89
30
8)

0.7
67
36

(3.
89
52

4)
0.7

70
78

(3.
91

25
8)

0.
77

19
9
(3.

88
80
2)

De
tai

led
m

0.7
36
61

(3.
52
51
1)

0.7
55
48

(3.
78
03
7)

0.7
58
60

(3.
77
79
7)

0.7
53
09

(3.
72
06
5)

0.7
61
05

(3.
75
53
3)

0.7
63
16

(3.
78
85
6)

0.7
56
97

(3.
77
98

9)
0.7

63
53

(3.
78

76
0)

0.7
64

92
(3.

80
06
0)

b
0.7

51
42

(3.
81
65
0)

0.7
58
98

(3.
87
02
0)

0.7
61
50

(3.
89
42
8)

0.7
56
97

(3.
85
14
1)

0.7
63
55

(3.
86
22
5)

0.7
65
40

(3.
86
73
1)

0.7
59
62

(3.
84
73

2)
0.7

64
95

(3.
85

84
0)

0.7
66

91
(3.

85
43
0)

w
0.7

61
50

(3.
89
64
5)

0.7
64
13

(3.
90
17
5)

0.7
64
85

(3.
91
09
0)

0.7
63
04

(3.
90
05
4)

0.7
65
51

(3.
93
66
6)

0.7
67
41

(3.
93
35
3)

0.7
63
83

(3.
90
12

6)
0.7

67
11

(3.
91

47
5)

0.
76

95
2
(3.

92
07
7)

De
tai

led
+C

hu
rn

m
0.7

36
41

(3.
50
17
5)

0.7
55
57

(3.
76
18
3)

0.7
58
71

(3.
77
94
1)

0.7
53
70

(3.
70
30
7)

0.7
61
63

(3.
74
40
1)

0.7
63
54

(3.
78
27
8)

0.7
56
57

(3.
73
29

3)
0.7

63
43

(3.
75

53
3)

0.7
65

79
(3.

80
42
1)

b
0.7

51
21

(3.
80
03
6)

0.7
59
23

(3.
86
73
1)

0.7
61
68

(3.
87
59
8)

0.7
57
03

(3.
85
50
3)

0.7
63
32

(3.
86
56
2)

0.7
65
71

(3.
82
68
5)

0.7
59
99

(3.
84
51

5)
0.7

65
17

(3.
84

61
2)

0.7
67

54
(3.

86
49
0)

w
0.7

61
35

(3.
88
58
5)

0.7
64
01

(3.
90
53
6)

0.7
65
11

(3.
93
45
0)

0.7
63
10

(3.
90
70
4)

0.7
65
60

(3.
89
11
5)

0.7
67
63

(3.
89
42
8)

0.7
63
94

(3.
90
34

3)
0.7

67
47

(3.
88

92
2)

0.
76

95
7
(3.

90
87
3)

43

Figure A.1: Results of pairwise Bayesian hierarchical correlated t-test represented in the form of
upper triangular matrix. The color bar ranges from -1 to 1, whereby negative values (in blue) denote
that row method performs practically better than the column one and positive values (in red) denote
that column method performs practically better than the row one. The absolute value (i.e. intensity
of the color) corresponds to originally obtained posterior probability. Methods which are practically
equivalent within ROPE=1% have posterior probability around 0 (in gray).

