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1   Introduction 

Cloud computing delivers computing services from large, highly virtualized network environments to 

many independent users, using shared applications and pooled resources.  One may distinguish between 

Software-as-a-Service (SaaS), in which case software is offered on-demand through the Internet by the 

provider and it is parameterized remotely (like for example on-line word processors, spreadsheets, Google 

Docs and others), Platform-as-a-Service (PaaS), in which case customers are allowed to create new 

applications that are remotely managed and parameterized and the platform offers tools for development 

and computer interface restructuring (like for example Force, Google App Engine and Microsoft Azure 

[29]) and Infrastructure-as-a-Service (IaaS), in which case virtual machines, computers and operating 

systems may be controlled and parameterized remotely. Cloud computing can also be classified based on 

their deployment models; public cloud, where everyone may register and use the services, private cloud - 

that is accessible through a private network - and partner cloud - that offers services to specific 

partners/users. A hybrid cloud is a combination of private/internal and external cloud resources that 

enables outsourcing of noncritical functions whilst keeping the remainder internal. Modern virtualized 

cloud environments promote the aspects of elasticity and resource transparency that are enabled by 

service and Virtual Machine (VM) migration. The majority of cloud management software ensures that a 

VM retains its network identity and connectivity by initiating a “live” or “cold” migration strategy. 

“Live” migration allows to move the entire running VM (i.e. its active memory and execution state) from 

one physical node of the cloud to another without significant downtime as an effective newline resource-

management strategy empowering workload balancing. On the other hand, a VM should be powered off 

before migration during the so called “cold” migration. Migration is a key feature of cloud environments 

that introduces novel security and resilience challenges [23]. There are several standards that refer to 

secure cloud computing. They require that anomaly activity should be detected in a timely manner and 

potential impact of events should be analyzed. A baseline of network operations and expected data flows 

for users and systems should be established and managed whereas attack targets and methods have to be 

evaluated regarding their potential impact. Event data should be aggregated and correlated from multiple 

sources and sensors. Incident alert thresholds should be established. An anomaly detector applied to 

network traffic visible at the cloud infrastructure level could be misled by the effect of migration on that 

traffic in two ways. First, legitimate migration could be misidentified as an anomaly. Second, migration 

could occur simultaneously with a genuine challenge, and thus mask its detection [38]. Furthermore, the 

elasticity also generates a huge volume of monitoring data (big-data problem), which can be considered 

as overhead for underlying detection mechanisms. Due to these issues anomaly detection in the cloud is a 

challenging area of active research and several software tools have been developed to this end [1]. These 

systems aim at identifying anomalous events with respect to normal system behavior. Such systems 

assume a model of normal behavior and issue alerts whenever operational characteristics deviate from the 

prescribed “normal” behavior making a suitable assumption that such changes are frequently caused by 

malicious or disruptive events. Anomaly detection techniques for cloud environments are still evolving 

due to the fact that the topic presents several challenging aspects as discussed earlier.  

An hybrid NN-expert system in artificial intelligence is a computer system that emulates the decision-

making ability of a human expert. Subsystems include the inference engine and the knowledge base. The 

knowledge base represents facts and rules. The inference engine applies the rules to the known facts to 

deduce new facts. Inference engines can also include explanation and debugging abilities. Such hybrid 

systems include Neural Networks [14], blackboard systems, belief (Bayesian) networks, case-based 

reasoning and rule-based systems and can be implemented in a variety of ways. Anomalies, on the other 

hand, are classified as point anomalies – if an individual data instance can be considered as anomalous 

with respect to the rest of the data – contextual anomalies – if an information occurrence is anomalous in 

a precise context – and collective anomalies – if collections of data instances are anomalous with respect 

to the entire data set. Table 1 summarizes various anomaly scenarios and their types related to cloud 

implementations. Generally there are many anomaly detection techniques: Principal Component Analysis 

(PCA) [31], clustering-based methods [31,49], Naive Bayesian approaches [50] and Expectation-

Maximization Gaussian Mixture Models [9]. Self-Organizing Maps (SOM) have been used for detection 



as well (see, for example, [36]). Ordered sequences, i.e. continuous and discontinuous pattern matching, 

constitute an alternative proposition [2]. A survey of anomaly detection approaches is given in [26,32]. 

Several approaches for anomaly detection have been tested within the framework of current EU projects 

[19]. Most of the above mentioned techniques require clustering high dimensional data addressing, thus, 

specific challenges inherent in cloud operation. This is really a challenging task since all sampling points 

tend to become outliers as dimensionality increases and clustering algorithms falter. Full space clustering 

becomes computationally expensive and inefficient since it is easy to miss clusters. A number of 

approaches to subspace clustering have been proposed in the past two decades. A review of the methods 

from the data-mining community can be found in [30]. One may also see [46] for subspace clustering 

techniques. They include matrix factorization-based algorithms [42], algebraic-geometric generalized 

PCA [47,27], Gaussian Mixture Models [21] and mixtures of probabilistic PCA [45], locally linear 

manifold clustering [16] and sparse subspace clustering  (SSC) [13] as well as local density approaches as 

data clouds [3] and dimension induced clustering [15]. The SECCRIT Consortium has developed an 

architectural framework for deploying critical infrastructure services in the cloud, which provides a basis 

for the development of our Cloud Resilience Management Framework. Several architectures for anomaly 

detection based upon the cloud have been investigated. We can apply D2R2 to the SECCRIT architectural 

framework to provide a resilience view (Fig. 1), see for example [39].  At the physical layer, the cloud 

infrastructure operator has access to physical nodes and the network, which can be monitored to inform 

the detection process. The operator can also reconfigure these devices, in response to detected challenges 

using policies. In a cloud infrastructure, D2R2 may exist as monitoring and reconfiguration points on 

physical hosts and networks as well as on some virtual components. Resilience managers and detectors 

need not exist on any physical equipment used directly to provide virtual resources to the above layer. At 

the tenant infrastructure layer, the tenant has access to VMs, and possibly virtual taps on VNs, which can 

inform detection. In response to challenges, the tenant may reconfigure the hosted machines, and some 

functionality of the virtual networks might also be exposed. Thus, tenant-infrastructure D2R2 is spread 

across components visible to this layer. Within the inner D2R2 loop, some interaction between these layers 

may exist in the form of events and reconfigurability exposed by the lower layer.  

 

The contribution of this paper consists mainly of presenting a novel approach of producing Self-

Organizing Feature Maps (SOFMs) of sets of ordered structures. The structures within a set may contain 

binary as well as vector components and may be considered as parameterizations of distinctive subspace 

clusters of a distributed high dimensional input space. The input space entails measurements from the 

entire cloud that pertain to normal operation. Subspace measurements refer to a set of cloud servers and 

local traffic monitoring. Section 2.1 deals with the challenges for anomaly detection in cloud 

environments and the modular architecture of a state-of-the-art platform for such a system. Literature 

references for several approaches are cited. Section 3 outlines the basic notions of subspace clustering 

and presents the well-known algorithm of Expectation Maximization (EM) for Gaussian Mixture Model 

and non-parametric representations of clusters based upon Reduced (aggregate) ordered sets. Each 

ordered set can be regarded as a granule of information with internal structure featuring scalar, vectorial 

as well as categorical attributes [34]. Section 4 elaborates upon the representation of subspace clusters by 

the nodes of a SOFM, defines the structure of multiset inputs for binary and vectorial measurements and 

describes distance measures between ordered mulisets based on the Cross-Order Distance matrix. The 

details of the proposed algorithm and its training are given in Section 5. Numerical simulations for 

structured measurements pertaining to anomaly detection in cloud environment are illustrated in Section 

6. This work is concluded by discussing results of anomaly detection which are obtained by the 

application of the proposed method and provides suggestions for further research.  

2   The Structure Of A Cloud-Based Anomaly Detection NN Hybrid System   

2.1 Knowledge base and the neighborhood model– Causes of Anomalies   

 

An anomaly detection system is formally considered as an information system [11], which can be written 

as a quadruple IS=(U, A, V, f), where: U is a non-empty finite set of objects, called a universe, A is a non-
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empty finite set of features, V is a union of feature domains such that 𝑉 =∪𝑎∈𝐴 𝑉𝑎 where Va denotes the 

value domain of feature a, 𝑓: 𝑈 × 𝐴 → 𝑉  is an information function such that 𝑓(𝑥, 𝛼) ∈ 𝑉𝛼  

 

for 

every  𝛼 ∈ 𝐴 and 𝑥 ∈ 𝑈. 𝑓(𝑥, 𝛼) can be defined upon scalar, vectorial or  binary-word attributes. One may 

split set A of features into two subsets 𝐶 ⊂ 𝐴  and  𝐷 = 𝐴 − 𝐶

 

conditional set of features and decision (or 

class) features respectively. The condition features represent measured features of the objects, while the 

decision features are a posteriori outcome of classification. The value difference metric (VDM) was 

introduced by [41] to provide an appropriate distance function  D(x,y) on nominal attributes. A simplified 

version (without the weighting schemes) of the VDM is defined as follows:                                            

𝑉𝐷𝑀 = ∑ 𝑑𝑓𝑓∈𝐹 (𝑥𝑓 , 𝑦𝑓)  𝑤here F is the set of all features in the problem domain, and x and y are any 

two objects between which distance is calculated. For any feature 𝑓 ∈ 𝐹, 𝑑𝑓(𝑥𝑓 , 𝑦𝑓) is defined as the 

distance between the probability density of object x on feature f at xf , P(xf), and the probability density of 

object y on feature f at yf , P(yf). A system for anomaly detection recognizes two possible decision features 

{normal traffic, anomaly}. We try to determine a set of  objects {𝑥1, 𝑥2 , 𝑥3 …… } ∈ 𝑈

 

- along with their 

corresponding subspaces {𝐵(𝑥1), 𝐵(𝑥2), 𝐵(𝑥3)…… } ⊆ 𝐶

  

- that provide a representation of class normal 

traffic as a superposition of local clusters defined upon various feature metrics. Anomalies are due to 

malicious activities or application-level malfunctioning.  

 

Intrusion Detection System (IDS) is a software application or device that implements an expert system 

and monitors the activities of a network for policy violations or malicious activities. It generates reports to 

the management system. A number of systems may try to prevent an intrusion attempt but this is neither 

required nor expected from a conventional monitoring system. The main focus of Intrusion Detection and 

Prevention Systems (IDPS) is to identify possible incidents, log information about them and report 

attempts. Organizations use IDPS for other purposes as well, like - for example - identifying problems 

with security policies, deterring individuals and documenting existing threats from infringing security 

policies. IDPS have become an essential addition to the security infrastructure of nearly every 

organization. Various techniques can be used to detect intrusions. 

 

 

Public and private clouds can be affected both by malicious attacks and infrastructure failures (like for 

example power outages). Such events may have an impact upon cloud operations.  The authors in [8] 

attempt to develop an understanding of the challenges faced by customers of an Infrastructure-as-a-

Service (IaaS) cloud, along with their experience in resolving related problems. Their work is based on 

actual user problems and everyday practices as reported to the open support forum of a large IaaS cloud 

provider. They found that - exempt from problems related to application-level malfunctioning - the 

observed problems are closely related to the introduction of virtualization, i.e. connectivity issues, virtual-

image management, performance, poor isolation between users, hardware degradation and others. These 

findings are supported by suplamental literature documenting virtualization-specific attacks by attackers 

gaining control over installed VMs, (like for example, DKSM [4] and “bluepill” [37]). 

 

Cloud providers usually install anomaly detection among other detection mechanisms [40] in order to 

tackle these challenges However, the increasing size and complexity of applications – along with the 

large scale of data centers in which they operate - make anomaly detection extremely challenging. Each 

computer server hosts hundreds of VMs, and each VM hosts hundreds of application processes resulting 

in very large monitoring metrics which may obscure detection. Determining applicable metrics in order to 

achieve efficient detection is another challenge. A metric of high dimensionality may yield poor detection 

results; it is complex as well as computationally expensive. Dynamic invocation of VMs, VM migration, 

frequent installations and removals of applications result in an ever-changing workload pattern. These 

variations in workload make it extremely difficult to detect and identify anomalies. Extracting knowledge 

from data streams in real-time or almost real-time is essential in order to avoid failures. Executions of 

remediation and recovery strategies have to be prompt. Inherent properties of cloud-computing make 

anomaly detection complex and challenging. 

 
 



2.2 State-of-the-art Anomaly Detection in The Cloud 

 

Anomaly detection in the context of virtualized data centers is a rather new research problem. An 

anomaly-based technique to detect intrusions at different layers of the cloud was proposed in [17]. 

However, it was not sufficiently demonstrated how to operationally apply such a technique. In [22], the 

authors propose a multi-level approach, which provides fast detection of anomalies discovered in the 

system logs of each guest OS. One of its disadvantages is the apparent lack of scalability, since it requires 

increasingly more resources under high system workload. Tree-Augmented Naive (TAN) Bayesian 

network is used in PREPARE in order to predict online anomalies and proactively take prevention actions 

[43].  

Recent approaches tend to combine flexible scalable analytics and Monitoring-as-a-Service (MaaS) for 

next generation monitoring and anomaly detection systems. Such systems implement real-time anomaly 

detection as well as continuous and distributed pattern analysis [6,25]. Furthermore anomaly detection 

methods may be classified as parametric ones [44] and non-parametric ones [35]. Parametric approaches 

adopt simple statistical models for anomalous and background traffic in time domain. Model parameters 

are estimated in real time and there is no need for a long training phase or manual parameter training. 

Such examples include spectral methods [18,20] as well as multiple and sequential hypothesis testing 

(like for example sequential probability ratio tests SPRT tests combined with bivariate Parameter 

Detection Mechanism (bPDM) [48]. Non-parametric methods do not assume an underling model but 

rather depend upon the inherent structure of the data and composite indicators (see for example the 

CUSUM algorithm [7] as well as Shewhart charts based upon Mann-Whitney statistics and the Wilcoxon 

Signed-Rank Test). The literature on composite indicators offers several examples of aggregation 

techniques. The most used are additive techniques that range from summing up to aggregating weighted 

normalised indicators. Yet, additive aggregations imply requirements and properties, both of the 

indicators and of the associated weights, which are often not desirable and, at times, difficult to meet or 

burdensome to verify. To overcome these difficulties the literature proposes other, and less widespread, 

aggregation methods such as multiplicative (e.g. geometric) aggregations or non-compensatory 

aggregations, such as the multi-criteria analysis [28].  
 

2.3 Virtualized Architecture of a Cloud Based Anomaly Detection System Based on Mining And 

Clustering Approaches 

 

Anomaly Detection Systems in the cloud can be modeled as distributed information systems which are 

implemented as Network-Function Virtualizations (NFN) (which use the technologies of IT virtualization 

in order to virtualize entire classes of network node functions into building blocks). Such building blocks 

may connect, or chain together, in order to create communication services. Clustering of the sets of 

measurements pertaining to such information systems are implemented using the aforementioned 

techniques (SOFM, neural networks, EM-GMM). The attributes of the sets of measuremants comprise a 

long list of scalar, vector and binary-word features. One may use a set of local clusters to indicate normal 

operation. Local subspace distributions of measurements upon conditional attributes are used to 

represented clusters. One may use one representative set of measurements for a cluster or two 

representative sets of measurements or more. The subspaces which are defined upon conditional attributes 

may vary depending upon the representative measurement. Anomalies are detected as outliers of such an 

expert  database.  
 

Virtualized network functions (VNF) consist of one or more VM running different software and 

processes, on top of standard high-volume servers. A reference architecture used in a cloud based 

anomaly detection system divides activities in a cloud environment into four layers (see Fig. 1.a). 

Anomaly detection gets input from network and system activity, which is measurable at the physical 

(cloud-infrastructure provider) layer, which consists of physical networks and machines, and has an 

external view of system activity in VMs. Additionally, network activity can be measured in the tenant-

infrastructure layer by monitoring traffic on virtual networks. Tenants running anomaly detectors on VMs 
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accessing these networks implement such a modular architecture. The proposed approach carries out 

distributed sampling at various cloud sites and assigns a structured set of local measurements to a specific 

server/client connected to the cloud. The block diagram of the proposed approach based on such an 

architecture is illustrated in Fig. 1.b. It consists of six (6) algorithmic steps. Structured sets of 

measurements throughout the cloud are ordered according to their similarity and their VDM distance 

from each other in a subsequent step of the algorithm. We distinguish between orders pertaining to 

normal and abnormal (anomalous) network traffic. An ordered set of measurements featuring dissimilar 

distribution over the VDM distance may be indicative of an anomaly. As a final step one may compare 

the ordered set with ordered sets of measurements pertaining to normal operation (which are used as 

reference sets). The ordered sets used as references are the nodes of a trained Self-Organizing-Feature-

Map (SOM) for normal cloud operation.  

3    Different Inference Engines For Subspace Clustering – Representing Clusters as Ordered Sets 

of Features   

All subspace clustering methods can be used for determining clusters of measurements indicating normal 

operation by assuming that a subspace corresponds to selected features (as defined by the mesurements  

taken from the servers connected to the cloud). VDM distance are used. The proposed approach is 

intended as a non-parametric alternative of such algorithms as the Expectation Maximization algorithm 

for Gaussian Mixture Models (EM-GMMs) [12]. The basic idea of the EM algorithm is to estimate an 

updated model if the probability of the new model is greater than or equal to the previous estimate. The 

new model then becomes the initial model for the next iteration and process is repeated until some 

convergence threshold is reached. One may consider the problem of representing a collection of data 

points as a union of subspaces. Let samplesall

j

Din

j R  

1}{ x  be a given set of points drawn from an unknown 

union of subspaces 𝑆𝑖 = {𝐱 ∈ 𝑅
𝐷𝑖𝑛: 𝐱 = 𝛍 + 𝐔𝑖𝐲}, i=1,…m, where 𝛍𝑖 ∈ 𝑅

𝐷𝑖𝑛 is an arbitrary point in 

subspace Si.  Should G(x; ) stand for the probability density function of a Din-dimensional Gaussian 

with mean  and covariance matrix , then 𝑝(𝑥) = ∑ 𝜋𝑖
𝑚
𝑖=1 𝐺(𝑥; 𝛍𝑖 , 𝐔𝑖𝐔𝑖

T + σ𝑖
2𝐈)) and ∑ 𝜋𝑖

𝑚
𝑖=1 = 1  where 

parameter ι, called the mixing proportion, represents the a priori probability of drawing a point from 

subspace Si). The ML estimates of the parameters of this mixture model can be found using expectation 

maximization (EM) during normal traffic conditions. Anomaly detection is carried out by performing the 

expectation step during anomalous network operation. Gaussian distributions may overlap as illustrated in 

Fig. 2a. This feature is useful in cases in which a specific state of the network is represented by a complex 

subspace in the domain of the measurements. Alternative approaches for representing distributions of data 

are the non-parametric ones. Such an approach used in the context of this research for comparison 

purposes is based upon the concept of data density [3]. It requires a small amount of data namely the 

mean of all data samples and a scalar product quantity calculated dynamically over time that indicates the 

spread of the data around the estimated center of a cluster, i.e.  𝑑𝛼 =  
1

1+
1

𝑁𝛼
∑ ‖𝑥𝛼 −𝑐𝑛

𝑐𝑙𝑜𝑠𝑒𝑠𝑡‖
2𝑁𝛼

𝑖=1

 . Obviously index 

dα ranges from zero to one. The concept of this approach is illustrated in Fig. 2.b whereas training and anomaly 

detection are depicted in Fig. 2.c The following steps outline the aforementioned approach based on data 

density:  
 

 Estimate cluster centers derived from measurements indicating normal operation.  

 Set a goal (threshold 1) for the value of local data density. Start with one cluster and add one cluster 

at a time.  

 Stop adding clusters should you exceed a predetermined threshold. 

 Check a data distribution over the set of estimated cluster centers. 

 Should local data density fall below a pre-specified threshold (threshold 2) detect anomaly (positive 

indication). 
 

This approach is used for comparison purposes in Section 6.  

 



Our proposed non-parametric approach is based upon ordered sets of features as well as specific norms in 

order to represent. There is no universally accepted method for ordering multivariate data. Widely known 

multivariate ordering methods include [5]: 

 Marginal ordering (M-ordering) according to which feature vectors are ordered in each component 

independently. This scheme produces a set of ordered output vectors that is usually not the same as the 

set of input vectors.  

 Conditional ordering (C-ordering) according to which vectors are ordered based on the marginal 

ordering of one of their components. This scheme disregards the vectorial nature of the multichannel 

data. 

 Partial ordering (P-ordering) according to which vectors are partitioned into smaller groups that are 

then ordered. Despite its theoretical appeal, this scheme is computationally demanding. Since partial 

ordering is difficult to perform in more than two dimensions, it is not appropriate for three-component 

signals.   

 Reduced (aggregate) ordering (R-ordering) according to which the feature vectors are first reduced to 

scalar representatives using a suitable distance or similarity measure. The ordering of these scalars is 

then taken as the ordering of the corresponding vectors. This is the most common ordering scheme in 

the literature. 

The reduced ordering scheme is the most attractive and widely used in signal processing since it relies an 

overall ranking of the original set of input samples and the output is selected from the same set. The 

ordered sequence of scalar values D(1) ≤ D(2) ≤… ≤ D(i) ≤ …≤ D(N) for i = 1,2 … N implies the same 

ordering of the corresponding vectors xi , i.e. {x (1), x (2) … x (i) … x (N)}. R-ordering non-linear 

processing is based on the ordering of aggregated distances, i.e. 𝐷𝑖 = ∑ 𝑑(𝐱𝑖, 𝐱𝑗)
𝑁
𝑗=1  or aggregated 

similarities 𝐷𝑖 = ∑ 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐱𝑖, 𝐱𝑗)
𝑁
𝑗=1  [10]). Let us assume that 𝑥𝑘 ∈ 𝑆𝑛, where Sn consist of n 

repetitions of ordering experiments in normal or anomalous conditions, then it is assumed that 

lim
𝑆𝑛→∞

(Pr{𝑜𝑟𝑑𝑒𝑟(𝑥) = 𝑐}) = 1. This is condidered as a crisp ordering case. Nevertheless fuzzy outcomes 

are possible as well. One may define histograms upon such aggregate distances in order to distinguish 

between normal and anomalous traffic conditions. A bin by bin comparison of the probability 

distributions of the histograms over several value-difference metrics (VDMs) defines the neighbourhood-

based object outlier factor of x in S as 𝑁𝑂𝑂𝐹(𝑥𝑖) = ∑ 𝑉𝐷𝑀𝑎𝑙𝑙 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠(𝐱𝑖, 𝐱𝑗)𝑥𝑖,𝑥𝑗∈𝑆

𝑖≠𝑗

. Attributes that 

feature different histograms under normal and anomalous conditions should be selected. This implies that 

a selection of a set of value-difference metrics (VDMs) has to be made. One may arrange objects x in a 

neighbourhood according to their neighbourhood-based object outlier factor, i.e.                             

NOOF(x(1)) ≤ … ≤ NOOF(x(i)) ≤ …≤ NOOF(x(N)). A representation of overlapping clusters by 

reduced/aggregate ordered sets of points in 2-D is illustrated in Figs. 3. Histograms of the number of 

ordered vectors over distance are presented in Figs. 3b to 3d for the three distributions (for twenty 

ordered 2-D vectors). Lower order vectors tend to occupy the central part and most probable part of a 

local distribution.  

4 A Model of Self-Organizing Feature Map (SOFMs) Based on Reduced/Aggregate Ordering of 

Subspace Features   

4.1  Cloud Distributive Environment And Input Subspaces  

Sampling of binary and vector features is carried out over all host and client servers connected to the 

cloud for a time window [t1, t2] according to Fig. 4. Hence a ranking of all host and client servers 

connected to the cloud results after aggregate ordering of their feature vectors as explained in the previous 

paragraph. The spreading of feature vectors over a considerable distance range is indicative of an 

anomaly. Ordered sequences of feature vectors during normal cloud operation are clustered in nodes 

using a SOFM. Analyses using EM-GMM as well as local data densities are carried out for comparative 

purposes.   
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The proposed approach (Fig. 1b) consists of sampling the cloud network during operation for small time 

windows [t1 t2], [t3 t4], [t5 t6] …… and selecting samples of the form 

𝑥𝑠(𝛼𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝛼𝑏𝑦𝑡𝑒𝑠   𝛼𝑎𝑐𝑡𝑖𝑣𝑒 𝑓𝑙𝑜𝑤𝑠 𝛼𝑠𝑜𝑢𝑟𝑐𝑒/𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝑃    𝛼𝑠𝑜𝑢𝑟𝑐𝑒/𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑟𝑡 𝛼𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒; [𝑡1 𝑡2]) 
where 𝑠 ∈ {𝑈: 𝑠 indicates a specific network condition}. The samples that correspond to host and client 

servers connected to the cloud are then ordered in ascending distance order according to the reduced 

ordering scheme described in Section 3. One may use selected members of the ordered set, like for 

example the first K members in order to train a SOFM as described in the sequel. Each vector represents a 

structured record comprising binary (or octal or hex) information along with multivalued data. The 

proposed approach is directly applicable to data-base records. SOFM clusters the universe knowledge of 

the anomaly detection hybrid system.  

4.2   Definition of the Cross-Order Distance Matrix Between Ordered Objects 

The Cross-Order Distance Matrix is defined along with a distance or similarity measure and a method of 

selecting the elements of the Cross-Order Distance Matrix (or operating upon them) in order to estimate 

the distance between two ordered sets of feature vectors, denoted as S={x (1), x (2) … x (i) … x (N)} 

where 𝑠 ∈ {𝑈: 𝑠 indicates an anomaly} and S’={x’ (1), x’(2) … x’ (i) … x’ (N)} 𝑠′ ∈
{𝑈: 𝑠′ indicates normal conditions}. Each element of the matrix is a value difference metric (VDM) as 

defined in Section 3. Thus,  

𝐷𝑆𝑆′ = [𝑑𝑖𝑠𝑡(𝑥𝑖 , 𝑥𝑗) 𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗 = 1……𝑁;𝑚𝑒𝑎𝑠𝑢𝑟𝑒,𝑚𝑒𝑡ℎ𝑜𝑑] =

=

(

 
 
𝑑(𝑥𝑆(1), 𝑥𝑆

′
(1)) 𝑑(𝑥𝑆(1), 𝑥𝑆

′
(2))

𝑑(𝑥𝑆(2), 𝑥𝑆
′
(1)) 𝑑(𝑥𝑆(2), 𝑥𝑆

′
(2))

    
⋯ 𝑑(𝑥𝑆(1), 𝑥𝑆

′
(𝑁))

⋯ 𝑑(𝑥𝑆(2), 𝑥𝑆
′
(𝑁))

⋮ ⋮

𝑑(𝑥𝑆(𝑁), 𝑥𝑆
′
(1)) 𝑑(𝑥𝑆(𝑁), 𝑥𝑆

′
(2))

    
⋱ ⋮

⋯ 𝑑(𝑥𝑆(𝑁), 𝑥𝑆
′
(𝑁)))

 
 

 
(1) 

A method (see Table 2) can be the sum of all elements of the Cross-Order Distance Matrix, its trace 

(defined as  𝑡𝑟𝑎𝑐𝑒{𝐃𝑆𝑆′} = ∑ 𝑑(𝑥𝑆(𝑘), 𝑥𝑆
′
(𝑘)𝑁

𝑘=1 ), constant thresholding of all elements of the matrix 

(i.e. setting all elements below the threshold equal to zero and carry out summation over all non-zero 

elements), non-constant threholding using a rule such as  

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = min (𝑑(𝑥1
𝑆, 𝑥𝑁

𝑆), 𝑑(𝑥1
𝑆′ , 𝑥𝑁

𝑆′)),  (2) 

Let us consider sets of data that are indicative of the state of the cloud within time interval [t1 t2], i.e. 

𝑥𝑠(𝛼𝑠𝑜𝑢𝑟𝑐𝑒/𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝑃, 𝛼𝑠𝑜𝑢𝑟𝑐𝑒/𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑟𝑡 ……  ; [𝑡1 𝑡2]) and refers to some host/server 

connected to the cloud. Each node of the SOFM in Fig. 5 consists of an ordered set of samples {xS(1), 

xS(2), xS(3), xS(4)…} of feature vectors which corresponds to servers/hosts connected to the cloud. 

Distributions of measurements within an interval [t1 t2] may refer to binary (octal or hex) words of data - 

like for example IP addresses or ports - or scalar data, like for example packet sizes. Comparisons are 

carried out between ordered sets pertaining to interval [t’1 t’2], i.e. {xS’(1), xS’(2), xS’(3), xS’(4) … }, and 

ordered sets pertaining to interval [t1 t2], i.e. {xS(1), xS(2), xS(3), xS(4) … }. The Cross-Order Distance  

Matrix  between two such ordered  sets is defined in order to quantify the similarity-distance between 

them. 

 

Feature measurements during normal operation are clustered to the nodes of the SOFM according to some 

method applied upon the Cross-Order Distance Matrix. Measurements during an intrusion attack yield 

outliers of the trained SOFM and irregular histograms over VDM distances. The proposed approach may 

use all or selected rank samples during training.  

Ordering of the sample set is a necessary preprocessing step. We use value difference metric (VDM) in 

order to find the distance between xs’ and xs, i.e.                                                                       

                                                                                                                                                                                                                          (3) 

𝑑(𝑥𝑆′ , 𝑥𝑆; [𝑡1 𝑡2]) = {𝑑(𝛼𝑠𝑜𝑢𝑟𝑐𝑒/𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝑃 𝑎𝑑𝑑𝑟𝑒𝑠𝑠(𝑠
′), 𝛼𝑠𝑜𝑢𝑟𝑐𝑒/𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝑃 𝑎𝑑𝑑𝑟𝑒𝑠𝑠(𝑠); [𝑡1 𝑡2]) + 



                                      + 𝑑(𝛼𝑠𝑜𝑢𝑟𝑐𝑒/𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑟𝑡(𝑠
′), 𝛼𝑠𝑜𝑢𝑟𝑐𝑒/𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑟𝑡(𝑠); [𝑡1 𝑡2])              

+ 𝑑(𝛼𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒(𝑠
′), 𝛼𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒(𝑠); [𝑡1 𝑡2]} = 

 
               = (

|𝛼𝑠𝑜𝑢𝑟𝑐𝑒/𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝑃 𝑎𝑑𝑑𝑟𝑒𝑠𝑠(𝑠
′) − 𝛼𝑠𝑜𝑢𝑟𝑐𝑒/𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝑃 𝑎𝑑𝑑𝑟𝑒𝑠𝑠(𝑠)|

|𝛼𝑠𝑜𝑢𝑟𝑐𝑒/𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝑃 𝑎𝑑𝑑𝑟𝑒𝑠𝑠(𝑠
′)| + |𝛼𝑠𝑜𝑢𝑟𝑐𝑒/𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝑃 𝑎𝑑𝑑𝑟𝑒𝑠𝑠(𝑠)|

+ 

 
                                      +

|𝛼𝑠𝑜𝑢𝑟𝑐𝑒/𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑟𝑡 (𝑠
′) − 𝛼𝑠𝑜𝑢𝑟𝑐𝑒/𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑟𝑡(𝑠)|

|𝛼𝑠𝑜𝑢𝑟𝑐𝑒/𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑟𝑡(𝑠
′)| + |𝛼𝑠𝑜𝑢𝑟𝑐𝑒/𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑟𝑡(𝑠)|

+ 

 
                                                                       +

|𝛼𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒(𝑠
′) − 𝛼𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒(𝑠)|

|𝛼𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒(𝑠
′)| + |𝛼𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒(𝑠)|

) 

 

One constructs the histogram over the lowest and the highest value of some object attribute in the training 

set in order to estimate the differences within interval [t1 t2] between servers and clients connected to the 

cloud for normal traffic conditions or anomalies. The differences between histograms are obtained using 

the Canberra distance over all histogram bins 

1

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 𝑧𝑒𝑟𝑜 𝑏𝑖𝑛𝑠
∑

|ℎ𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒
𝑆′ (𝑏𝑖𝑛𝑙)−ℎ𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒

𝑆 (𝑏𝑖𝑛𝑙)|

|ℎ𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒
𝑆′ (𝑏𝑖𝑛𝑙)+ℎ𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒

𝑆 (𝑏𝑖𝑛𝑙)|
𝑙=1…𝐿 . For binary (or octal or hex) data within              

[t1 t2] one may use the Jaccard distance in Eq. 4, which measures the dissimilarity between sample sets. It 

is obtained by dividing the difference of the sizes of the union and the intersection of two sets by the size 

of the union, 

𝑑𝐽(𝑆, 𝑆
′) = 1 − 𝐽(𝑆, 𝑆′) =

|𝑆∪𝑆′|−|𝑆∩𝑆′|

|𝑆∪𝑆′|
.   (4) 

Distances that are obtained using some process upon the Cross-Order Distance Matrix should allow for 

discerning between ordered sets. Ordered sets of eight feature vectors are used, i.e sets consisting entirely 

of samples of measurements taken during normal operation and sets consisting of measurements taken 

during abnormal operation. Thresholded distance matrix allows for better results should one consider 

clustering anomalies using a SOFM. The distances between distributions A, B and C in Fig. 3.a for three 

different methods (i.e. “sum of all elements”, “trace-sum of diagonal zone elements” and “thresholded 

cross-order matrix”) are given in Table 2a. The values of distances are mean values of ten (10) instances 

of ordered sequences (featuring forty vectors/objects each). The variance internal is provided as well. A 

thresholded cross-order matrix appears to be the best choice whereas the sum of all elements fails to 

distinguish distribution B from A and B in some cases. Rough set theory [33] can be used as well in order 

to fuzzify the sums of elements within blocks of the Order Distance Matrix. The blocks may overlap or 

not. One can specify the order number as {low, medium, high}, i.e. the ordered members around the mean 

value, the middle ordered members and the higher ordered members (which are indicative of the outskirts 

of the information cluster granule). The rough set membership functions are defined upon the aggregate 

distance of ordered elements belonging to predefined subsets as µindex low order, µindex medium order and          

µindex high order  for possible distributions. One may consider, for example, the aggregate distance of the   

low-order elements in a set as the sum of all possible distances between pairs of elements in a predefined              

low-order subset, the aggregate distance of the median-order elements in a set as the sum of all possible 

distances between pairs of elements in a predefined median-order subset and the aggregate distance of the 

high-order elements in a set as the sum of all possible distances between pairs of elements in the                  

high-order subset. A binary relation defined upon a threshold can be used in order to determine the rough 

set membership functions for known distributions. Should the aggregate sum of similarities or distances 

between the subsets of ordered members fall within a lower and an upper threshold an indexlow (or 

indexmedium or indexhigh respectively) will assume the value of 1. Thus the values of the elements of the 

Order Distance Matrix can be regarded as rough functions ranging from zero (0) to one (1). The distance 

between different distributions is defined accordingly as a function of an initial first order estimate dXY 

and higher order estimets based upon the logical terms (1-µX
a µY

b), where X,Y stand for the different 

distibutions {A,B,C} and a, b stand for specific subsets, i.e. {low, medium, high}. Several choices are 
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available for the specific metric function to be employed [24]. Table 2b illustrates the outcome for the 

distributions in Fig. 3.a. The proposed SOFM can be trained for such a matrix metric. An estimation of 

the rough membership functions has to be made at start. A proper parametrization implies that should one 

draw the same number of elements from the very same underling distribution and, subsequently, order 

them in subsets, the resulting elements of the fuzzified distance matrix will obtain the value of zero (0).   

5   Anomaly Detection Using SOFMs with Multiset Inputs   

5.1  Outline of the Proposed Approach     

The proposed approach (Fig. 1b) consists of sampling the cloud network during abnormal conditions for 

small time windows [t1 t2], [t3 t4], [t5 t6] …… and selecting samples of the form  

𝑥𝑠(𝛼𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝛼𝑏𝑦𝑡𝑒𝑠   𝛼𝑎𝑐𝑡𝑖𝑣𝑒 𝑓𝑙𝑜𝑤𝑠 𝛼𝑠𝑜𝑢𝑟𝑐𝑒/𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝑃    𝛼𝑠𝑜𝑢𝑟𝑐𝑒/𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝑝𝑜𝑟𝑡 𝛼𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒; [𝑡1 𝑡2])
for each server 𝑠 ∈ 𝑈. The samples that correspond to host and client servers connected to the cloud are 

then ordered in ascending distance order according to the reduced ordering scheme described in Section 

3. One may use selected members of the ordered set, like for example the first K members in order to 

train a SOFM as described in the sequel. Our proposed approach suggests training of local clusters using 

a SOFM. These clusters indicate normal operation. Anomalies are detected as local deviations from such 

clusters.  An initial check is carried out for irregular histogram distributions (which is indicative of an 

anomaly) before estimating the distance between the input vector and the nodes of the trained SOFM.   

 

5.2  Aggregating Multiset Inputs into Clusters – Training  

There are three basic steps involved in the application of the SOFM algorithm after initialization; namely, 

sampling, similarity matching and updating. Reduced/aggregated ordering of sample structured vectors 

within time windows can be regarded as an intermediate step. The sum of the aggregated distances 

between fields of an ordered structure (i.e. VDM distances) and a set of K feature vectors corresponding 

to a node of the SOFM is evaluated for all L nodes of the map. The Cross-Order Distance Matrix - as 

defined in Section 4 - is used to derive the sum of the aggregated distances. The result of the application 

of the selected method upon the Cross-Order Distance Matrix is used to determine the winning neuron. 

The aforementioned steps are described in detail as follows:  

1. Initialization of the partial sets. Choose the initial values for the weight vectors wj(0). Assume that 

each weight vector wj that corresponds to a neuron consists of a set of K representative host and client 

servers samples for the time window, i.e. 𝐰𝑗 = (𝐰𝑗,1 𝐰𝑗,2    …… 𝐰𝑗,K)  where index j equals           

1, 2,…, L (where L stands for the total number of neurons).  

2. Sampling.  Sample     cloud     and     server     conditions     for     time     window           [t1 t2], 𝐯(𝑡) =

(𝑥𝑈1(𝑡), 𝑥𝑈2(𝑡), 𝑥𝑈3(𝑡) …… ). 

3. Reduced/aggregated ordering of the samples corresponding to the host/client servers connected to the 

cloud. Arrange vectors samples in a group 𝐯(𝑡) = (𝑥1
𝑆(𝑡),  𝑥2

𝑆(𝑡), 𝑥3
𝑆(𝑡)…… )

 

in such a way that                    

𝐷𝑘 = ∑ 𝑑(𝑥𝑆(𝑘), 𝑥𝑆(𝑗)) ≤𝑁
𝑗=1,𝑗≠𝑘  𝐷𝑙 = ∑ 𝑑(𝑥𝑆(𝑙), 𝑥𝑆(𝑗))𝑁

𝑗=1,𝑗≠𝑙      for k<l. VDM distance 

𝑑(𝑥𝑆(𝑙), 𝑥𝑆(𝑗)) aggregates the partial metrics between attribute fields                                                                     

within the objects, i.e. ∑ 𝑑𝛼𝑎𝑙𝑙 𝛼 (𝑓𝛼 (𝑥
𝑆(𝑙)), 𝑓𝛼 (𝑥

𝑆(𝑗))) where  𝛼 ∈

{𝑝𝑎𝑐𝑘𝑒𝑡𝑠, 𝑏𝑦𝑡𝑒𝑠, 𝑎𝑐𝑡𝑖𝑣𝑒 𝑓𝑙𝑜𝑤𝑠, 𝑠𝑜𝑢𝑟𝑒 & 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛 𝐼𝑃 & 𝑝𝑜𝑟𝑡 𝑎𝑑𝑑𝑟𝑒𝑠𝑠𝑒𝑠, 𝑝𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒 …  }.  
4. Similarity Matching. Find the best-matching (winning) neuron 𝑖(𝑥𝑆1 , 𝑥𝑆2 , 𝑥𝑆3 ……  𝑥𝑆𝐿)  at time t by 

aggregating the distances between the samples in the set and the K vectors at each of the L nodes, i.e.   

𝑖(𝐯) = argmin
𝑗
(𝑚𝑒𝑡ℎ𝑜𝑑(𝐃(𝐰𝒊,𝒌, 𝐯(𝑡))))   

                      where 𝑗 = 1,2, …… , 𝐿                                                                     (5) 
 

5. Updating. Adjust the synaptic weight vectors of all neurons, using the update formula 

  



𝐰𝑗(𝑡 + 1)={

𝐰𝑗(𝑡) + 𝜂(𝑡) ([𝑥1
𝑠(𝑡) 𝑥2

𝑠(𝑡) 𝑥3
𝑠(𝑡)     … 𝑥𝑘

𝑠(𝑡)]−𝐰𝑗(𝑡)) , 𝑗 ∈ Λ𝑖(𝜈)(𝑡)

𝐰𝑗(𝑡), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (6) 

 

      where the ordered lowest K ranks of the training set are used, (t) is the learning-rate parameter and 

i(v)(t) is the neighbourhood function centred around the winning neuron. i(v)(t) is varied dynamically 

during learning for best results.      

6.  Continuation. Continue with Step 2 until no noticeable changes in the feature map are observed. 

Samples pertaining to abnormal and normal network conditions are presented to the SOFM after training 

in order to detect anomalies. Similarity matching is carried out as described in Step 4 of the algorithm 

summing all elements of a thresholded Cross-Order Distance Matrix. An anomaly is detected should the 

aggregate distance be higher than a threshold determined during training, i.e. anomalies are detected as 

outliers should the minimum distance from the nodes of the SOFM exceed a specified threshold. One 

assumes normal operation should minimum distance be lower than the threshold.  

6   Experimental Setup And Numerical Simulations 

We have evaluated our technique against network traces obtained from a controlled testbed resembling a 

cloud environment, featuring VM migration as a normal cloud operation, plus network attacks that should 

be regarded as anomalies. The testbed allows the traces to be labelled with ground truth, about both the 

expected anomalies and the presence of a migration. The testbed consists of two hosts, which serve as 

compute nodes running multiple VMs. Another host acts as a controller which initiates migrations and 

generates background traffic. A fourth host generates attack traffic. Each physical node runs KVM as 

virtualization infrastructure, and QEM provides hardware emulation. Migration is achieved with libvirt. 

Traces obtained at the virtual bridges are fed into detector to observe its reactions to normal/anomalous 

traffic. Data collector is composed of various scripts providing feature extraction and normalisation, 

which is achieved using tcpStat.c and featExract.pl scripts with configurable binning period. At the 

network level, the data collector collects traffic data through tcpdump1 from each host network at bridge 

interface. This traffic is then passed on to a Summary Extraction Script, which is based on libpcap and 

converts the traffic into normalised statistical properties on a per packet basis. We extracted both volume-

based features (e.g., count of bytes and packets) and distribution-based features (like the Shannon entropy 

of all values observed in the bin) in order to capture the dynamics of varying attack types. Network traces 

are split into 1-second bins for the experimental results that are presented in the sequel. A set of statistical 

properties (features) of the traffic in each bin is computed (Table 3) and  each feature vector with 

measurements is submitted to the detector. Background traffic is created by running several HTTP servers 

and several clients repeatedly requesting dynamically created documents of varying size. Several 

anomalies are introduced during VM migration like network and port-scan attacks and Denial-of-Service 

under high and low intensities (see Table 1). Denial-of-Service attacks are realized using LOIC (an open 

source network stress testing tool). Experiments are characterized by background traffic and anomaly 

type. Expectation Maximization (EM) for Gaussian Mixture Model (EM-GMM) is employed as a 

conventional, parametric method for anomaly detection for the sake of comparison with the proposed 

approached. Indicative detection statistics are illustrated in Table 4 for different anomalies as well as for 

different patterns of background traffic. Results are poor and depend upon the selection of feature vectors 

used in the measurements. The log-likelihood is simply the log of the probability density function of the 

Expectation Maximization (EM) mixture model which is used to calculate the anomaly score. The 

parameters of the Gaussian Mixture Models are estimated from traffic measurements corresponding to 

normal network operation. The log-likelihood values versus time stamps for the same data that are used to 

test the proposed algorithm (low intensity net scan - NS) are presented in Fig. 6a (two clusters), Fig. 6.b 

                                                           
1 Description of tcpdump/libpcap is given at http://www.tcpdump.org/ and for libpcap API at 

http://www.tcpdump.org/  

http://www.tcpdump.org/
http://www.tcpdump.org/
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(three clusters) and Fig. 6.c (four clusters). The results pertain to non-normalized data. The more clusters 

used to implement the EM-GMM method the less stable is the convergence of the algorithm. Good results 

may be obtained using two clusters (solid red line) for the general case. Values of log-likelihood below a 

certain threshold indicate an anomaly at time t. The corresponding diagrams of True Positive Rate (TPR) 

vs False Positive Rate (FPR) are given in Fig. 12.a. They are extracted from various threshold values 

ranging from -102 to -104. Anomaly detection using non-parametric data density for the same set of 

experimental data (low intensity net scan - NS) is presented in Fig. 6.d (one cluster) and Fig. 6.e (four 

clusters) for one measurement as well as a group of measurements within a sliding window of ten 

timestamps in Fig. 6.f (one cluster) and Fig. 6.g. (four clusters). True Positive Rate (TPR) vs False 

Positive Rate (FPR) curves are given in Fig. 12.b (for a single measurement) and Fig. 12.c for a group of 

ten consecutive measurements. Normalization of data is carried out as a preprocessing step. Local density 

values per cluster for normal as well as abnormal operation are depicted in Table 5. Low values indicate 

some type of anomaly.  Average local density values per cluster (as defined in Section 3) are illustrated in 

Fig. 7. Detection results do not improve for more than four (4) static clusters determined from 

measurements during normal operation. Additional anomaly detection results using a 10x10 SOFM and 

measurements from a single (cloud) server featuring the number of packets per bin, the number of bytes 

per bin, the number of active flows, the entropies of source IP addresses, the entropies of destination IP 

addresses, the entropy of destination port distribution and the entropy of packet size distribution (as 

indicated in Table 3) are given in Fig. 6.h and in Fig. 12.d (TPR vs. FPR in Fig. 12.d). The Canberra 

distance as defined in Section 4.2 is used to train the SOFM. Detection results are good and support such 

a choice.     

A typical ordering of six samples is given in the sequel in order to test the proposed algorithm under 

similar cloud conditions (for low intensity net scan anomalies). Ordered sets include a feature vector 

(expert DB object) with anomaly measurements at t, where t ranges from 301 to 599 (an attack is 

introduced during Virtual Machine migration after t=300), and five feature vectors (expert DB objects) 

corresponding to normal conditions ordered in ascending distance order (a distributed scenario). The 

feature vector ranked as sixth corresponds to anomalous conditions whereas the five first feature vectors 

correspond to normal conditions. The splitting of the histogram over distance in two parts is indicative of 

an anomaly according to the block diagram in Fig. 1.b. One set of measurements corresponds to outgoing 

traffic from a server during VM migration whereas the other set of measurements corresponds to 

incoming traffic to a server during VM migration (see Figs. 8 for ranking typical feature vectors 

corresponding to single time-stamps for outgoing and incoming traffic). Splitting of the histogram is a 

first indication of an anomaly according to our approach. Nevertheless one has to compare ordered 

sequences of measurements with anomalies against ordered sequences of measurements during normal 

network conditions. A 10x10 SOFM featuring nodes that represent six rank sequences of measurement 

vectors during normal operation is trained using the Canberra distance. The projected maps for the first 

three ranks as well as the attribute planes of the # of bytes vs the # of packets and the entropy of source IP 

addresses vs the # of active flows are illustrated in Figs. 9. Spreading of the distributions from lower to 

higher ranks is observed.  

 

It turned out that the accuracy of the proposed method is increased by taking a window of multiple             

time-stamps and extracting separately histograms for each feature. The number of packets over ten (10) 

consecutive time-stamps is used to construct a histogram of ten bins, the number of bytes is used to 

construct a histogram of twenty bins, the number of active flows is used to construct a histogram of 

fifteen bins, the entropies of source IP addresses is used to construct a histogram of twelve bins and so on 

(see Table 3). Ordering multiple histogram samples (which are obtained as described) using the Canberra 

distance in ascending order is given in Figs. 10 (for low intensity net scan anomalies). The top five 

histograms are indicative of normal network conditions whereas the lower histograms correspond to the 

higher distance and are indicative of an anomaly. The overall histogram over VDM distance for inward 

and outward migration is split in two parts as expected (see Figs. 11). A 10x10 SOFM is used in order to 

cluster ordered histogram samples. We consider sets of multiple feature vectors consisting of six different 

vectors selected at random. The Self-Organizing Feature Map (SOFM) is trained using six feature vectors 



corresponding    to    normal    conditions   ordered   in   ascending distance order. Six multiple histograms 

samples corresponding to normal network conditions (from t to t+9, where t ranges from 1 to 291 in Fig. 

6.i) are ordered using the cumulative Canberra distance for all eight (8) feature histograms (Table 3). A 

total of four hundred multiple histogram samples are used in order to train the SOFM. The sum of all 

elements of the Cross-Order Distance Matrix is used in order to train a SOFM using the Canberra 

distance (i.e. ‘measure’=’Canberra’ and ‘method’=’all’).  The minimum distance from a node of the 

SOFM after training is given in Fig. 6.i for all time stamps (t ranges from 1 to 590). The multiple 

histogram set includes five more samples corresponding to normal conditions. The sum of all elements of 

the Cross-Order Distance Matrix after thresholding is used to obtain the illustrated result, i.e. if 

𝑎𝑏𝑠 (𝑑 (𝑥𝑆(𝑖), 𝑥𝑆
′
(𝑗)) − 𝑑(𝑥𝑆

′
(𝑖), 𝑥𝑆

′
(𝑗))) ≤ 𝑑(𝑥𝑆

′
(𝑖), 𝑥𝑆

′
(𝑗)) and 

𝑎𝑏𝑠 (𝑑 (𝑥𝑆(𝑖), 𝑥𝑆
′
(𝑗)) − 𝑑(𝑥𝑆(𝑖), 𝑥𝑆(𝑗))) ≤ 𝑑(𝑥𝑆(𝑖), 𝑥𝑆(𝑗)) 

the corresponding element (VDM) of the Cross-Order Distance Matrix is set to zero (this thresholding 

rule is used to obtain the values in Table 2a as well). The ratio of True Positive Rate vs False Positive 

Rate is evaluated by taking different thresholds and assuming that a value higher than the threshold 

indicates an anomaly (see Fig. 12.e). A SOFM featuring more nodes yields better results in real world 

scenarios since local clusters of multidimensional measurements are better represented, nevertheless 

detection improvements are minor in the artificial experiments which are presented in this paper. 

Anomaly detection results using a 4x4 SOFM according to the proposed approach for ordered sets of 

measurements for different anomaly types (Host port scan, Netport post scan, net scan and UDP Denial-

of-service (UDoS) yield very good results for our experimental setup (see Figs. 13) for mixed training 

scenarios (histograms of attributes within a sliding of ten time stamps for distributed measurements at six 

network points).       
 

SOFMs are based upon unsupervised clustering and render the inherent structure of data without regard of 

specific models for the density function (PDFs) of the parameters. Our approach assumes that each node 

represents a separate PDF of distributed variables (a subset of the total measurements) that indicate 

normal network operation. The setup assumes a null hypothesis test Ho, where an anomaly is detected if 

the distribution of a subset of measurements is significantly different from the distributions corresponding 

to the nodes of the trained SOFM. The SOM method can be viewed as a non-parametric regression 

technique. Much like a regression plane being an abstraction of the original data, the proposed SOM of 

ordered sequences generates a non-linear representation of the multiple data distributions (the universe of 

a hybrid system). Thresholding using different measures defined upon a Cross-Order Distance Matrix 

may be regarded as a non-parametric inference method using generalized statistics. Cross-Order Matrices 

are directly related to cross-classification tables of preprocessed (i.e. ordered) data. 

7   Conclusion   

Anomalies are classified according to their type and intensity. A novel hybrid system approach for 

detecting anomalies during typical cloud operation is proposed (see Fig. 1.b). The proposed method is 

based upon ordering histogram feature vectors from several monitoring sites of the network and using 

them to train a SOFM (which supports the inference logic of the expert system). Each node of the SOFM 

represents a granule of information. A conventional Expectation Maximization Gaussian Mixture Model 

(EM-GMM) as well as a non-parametric data density approach are used for anomaly detection for 

comparison purposes. The proposed approach yields better results. An anomaly is detected should the 

minimum distance from some node of the SOFM exceed a specified threshold. Estimation of the 

distances between the nodes of the SOFM and the ordered set (which contains a feature vector with 

anomaly measurements) is carried out according to a “method” applied upon the so-called Cross-Order 

Distance Matrix. One has to specify a certain distance measure - like the Canberra distance, which is used 

in the context of this work - in order to estimate the similarity of histograms of feature values within a 

sliding time window. Rough set measures can be used along with the Cross-Order Distance Matrix and 

SOFM training. Rough set membership functions are determined as well during training along with the 
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nodes of the SOFM. The proposed approach yields the server-under-attack and the existence of a network 

anomaly at the same time since a subspace cluster involves certain servers of the cloud. The direct 

analogy of local histograms over the aggregate ordering distance and value-difference metrics (VDM) is 

investigated. The so-called Neighborhood-based Outlier Factor (NOOF) is defined for reduced/aggregate 

ordered sets featuring attributes of different types. 
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Table 1. Typical cyber-attack methods that generate anomaly states within IT systems 

 

Anomaly  Definition 

ALPHA Unusually high rate point-to-point 

byte transfer1 

DOS, DDOS (Distributed) Denial of service 

attack against a single victim 

FLASH 

CROWD 

Unusually large demand for 

resource/service emerging from 

common set of sources 

SCAN Scanning a host for a vulnerable 

point (port scan) or scanning the 

network for a target port (network 

scan) 

WORM Self-propagating code that spreads 

across a network 

POINT to 

MULTIPONT 

Distribution of content from one 

server to many servers 

OUTAGE Equipment related events that 

decrease traffic exchange by an 

Origin-Destination  pair 

INGRESS-

SHIFT 

Customer shifts traffic from one 

ingress point to another 

 

 

  

                                                           
1 Alpha flows are high-rate flows from a single source to a single destination which account for a dominant fraction 

of byte traffic. These can be distinguished from DoS and DDoS attacks, which feature a dominant fraction of packet 

or flow traffic, all to a single destination. 
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Table 2a. Distances between the three (3) partially overlapping distributions in Fig. 3a used as an example (mean values and variance 

intrerval of ten instances of ordered sequences featuring forty vectors – mean distance between instances of the same distribution should 

be the lowest)  

 Distribution A Distribution B Distribution C 

D
is

tr
ib

u
ti

o
n

 A
 





1,139 

[1,080-1,220] 

1,734 

[1,556-2,030]


 

4,747 

[4,015-5,102] 

10,512 

[8,989-11,309] 

12,420 

[11,220-13,304] 

5,597 

[4,952 -5,959] 

12,418 

[11,214-13,304] 

D
is

tr
ib

u
ti

o
n

 B
 



 

4,747 

[4,015 -
5,102] 

10,512 

[8,989-11,309] 


- 

3,690 

[3,476-3,846] 

3,204 

[2,882-3,987] 

9,102 

[8,321-9,845] 

3,944 

[3,524 -4,231] 

7,813 

[6,861-8,527] 

D
is

tr
ib

u
ti

o
n

 C
 

12,420 

[11,220-13,304] 

5,597 
[4,952 -

5,959] 

12,418 
[11,214-

13,304] 

9,102 

[8,321-9,845] 

3,944 

[3,524 -4,231] 

7,813 

[6,861-8,527] 


- 

2,900 

[2,626-3,166] 

4,416 

[4,114-5,280]

 sum of all 
elements 

trace thresholded 
sum of all 
elements 

trace thresholded 
sum of all 
elements 

trace thresholded 

 

Table 2b. Distances between the three (3) partially overlapping distributions in Fig. 3a used as an example 

(rough set fuzzification of the cross distance matrix using elements of low {1-16}, medium {12-28} and high 

order {24-40} intervals within the brackets are defined upon the sum of all distances between pairs of elements in 

relative subsets of both distributions)  

    Distribution A  Distribution B Distribution C 

Distribution A 

µA
low ([0.67  0.84])=1  µA

low,medium ([1.08  1.30])=1  µA
low,high ([1.72  2.02])=1   

                                    µA
medium ([1.22  1.52])=1  µA

medium,high ([1.83  2.18])=1 
                                                                                      µA

high ([2.13  2.51])=1 

















 

Distribution B 

µB
low ([2.00  3.11])=1  µB

low,medium ([3.33 4.54])=1  µB
low,high ([5.27   7.17])=1 

µB
medium ([3.81  5.28])=1  µB

medium,high ([5.54  7.66])=1 

µB
high ([6.09  8.85])=1 

 









 

Distribution C 

µC
low ([1.47  2.03])=1  µC

low,medium ([2.45  3.01])=1  µC
low,high ([3.93  5.24])=1 

µC
medium ([2.85  3.57])=1 µC

medium,high ([4.12  5.49])=1 

µC
high ([2.13  4.71])=1 

 

 







 

 

 

 

 

 



 

 

 

 

 

 

Table 3. Feature histograms for a sliding time window 

 
 
 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Centers of histogram bins 

Number of packets 

x10,000) 

404   984   1,563   2,142   2,722   3,301  3,880           4,460  

5,039  5,618   6,198   6,777  7,356 7,936   8,515  9,094   
9,674   10,253   10,832  11,412 (20 bins)  

Number of bytes 
3,787    4,975    6,162    7,350    8,538    9,726    10,914   

12,102  13,289  14,477 15,665  16,853    18,040    19,228     
20,416  (15 bins) 

Number of active flows in 

time stamp 
283.5   354.4   425.3  496.2   567.1   638  709  779.9   

850.8   921.7   992.6   1,063.5                 (12 bins) 

Entropy of source IP 

address distribution 2.4423    2.6608    2.8792    3.0978                 (4 bins) 

Entropy of destination IP 

address distribution 3.0266    3.6158    4.2050    4.7942    5.3834 (5 bins) 

Entropy of source port 

distribution 2.9906    3.5558    4.1210    4.6862    5.2514 (5 bins) 

Entropy of destination port 

distribution 
3.1532   3.8196    4.4860    5.1524    5.8188 (5 bins) 

Entropy of packet size 

distribution 
3.1231    3.7693    4.4155    5.0617    5.7079 (5 bins) 
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Table 4. Anomaly detection statistics using EM-GMM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5. Anomaly detection using local data densities (typical values per cluster) vs the number of 

clusters for the method depicted in Fig. 2.d (low values indicate anomalies) 

 One cluster Two clusters Three clusters Four clusters  

 
 

Normal 
operation 

0.9922    

0.9954     0.9928   

0.9964     0.9921 0.9983  

           0.9978     0.9961 0.9986 0.9918 

 
Insertion 

of 
anomaly  

      0.0091    

0.9780 0.0064   

0.9752 0.0056 0.9854  

0.9855 0.9712 0.9749 0.0048 

Background traffic with high anomaly intensity 

(host port scan) 
Without 

migration 

With 

migration 

                                                          Error rate 55.89% 55.06% 

                                                   Detection rate 44.11% 44.94% 

Background traffic with low anomaly intensity 

(host port scan) 

  

                                                          Error rate 50.13% 50.33% 

                                                   Detection rate 49.87% 49.67% 

Background traffic with low anomaly intensity 

(denial of service-anomaly directed at migrated host) 
  

                                                          Error rate       69.42% 0.4887 

                                                   Detection rate 30.58% 51.13% 

Background traffic with low anomaly intensity 

(denial of service-anomaly directed at static host) 

  

                                                          Error rate 35.41% 26.76% 

                                                   Detection rate 64.59% 73.24% 

Background traffic with high anomaly intensity 

(denial of service-anomaly directed at migrated host) 
  

                                                          Error rate 57.26% 26.79% 

                                                   Detection rate 42.74% 73.21% 

Background traffic with high anomaly intensity 

(denial of service-anomaly directed at static host) 

  

                                                          Error rate 55.56% 53.71% 

                                                   Detection rate 44.44% 46.29% 

Background traffic with high anomaly intensity 

(network port scan) 
  

                                                          Error rate 13.40% 27.44% 

                                                   Detection rate 86.60% 72.56% 

Background traffic with low anomaly intensity 

(network port scan) 

  

                                                          Error rate 48.81% 35.04% 

                                                   Detection rate 51.19% 64.96% 



 
Figures 

 

 
 

 

 

 

Fig. 1.a Reference architectural framework for cloud anomaly detection (SECCRIT) 
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Sample cloud network at N points. 

\/ 

Extract structured information for each set of measurements 
corresponding to sampling locations, i.e. windowed 

histograms of scalar measurements, local distributions of 
binary-hex data                                                                                        

(IP addresses and ports) 

\/ 

Arrange N sets of structured data as an ordered sequence of 
local sets. 

\/ 

Apply simple tests upon  the outliers of the ordered 
sequence in order to determine if some set of local 

measurements suggest abnormal network conditions (rule 
based). 

\/ 

Match ordered sequence of local sets of measurements with 
the nodes of a trained SOFM suggesting normal operation 
conditions at all sampling points. SOFM nodes indicate 
global knowledge within the DB of the expert system.  

\/ 

Detect an anomaly should a specified threshold be exceeded. 

 

Fig. 1.b Block diagram of the proposed approach based upon ordered local sets of measurements per 

cluster site, SOFM clustering and thresholding  
 
 



 

       Fig. 2.a A mixture of Gaussians may be used to cluster measurements indicating normal network 

operation - Anomalies are detected as outliers using log likelihood distance 

 

Fig. 2.b Local data densities of groups of points indicating anomalies (denoted as A) with respect to 

cluster centers of measurements indicating normal (denoted as N) operation (which is estimated as 







aN

i

closest

na

a

a

cx
N

d

1

21
1

1
) is low 
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Fig. 2.c Anomaly detection (using local data densities of groups of points (training is carried out 

during normal network operation) – Thresholds for index da which ranges from zero to one 

 
Fig. 3a Reduced/aggregate ordering of features along with a measure can be used to represent a 

local cluster 

 

 
Fig. 3b Histogram over distance for Distribution A (o) Fig. 3a (20 points) 

 



 
Fig. 3c Histogram over distance for Distribution B  (+) of Fig. 2a (20 points) 

 
 

 
Fig. 3d Histogram over distance for Distribution C (x) of Fig. 3a (20 points) 

 
 
 

 
 

Fig. 4 Sampling binary and vector features in the cloud 
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Fig. 5 SOFM for ordered sets - Each node consists of some ordered set of 

hosts 

 

 

 

 

 
Fig. 6.a Log likelihood (EM-GMM for two Gaussians) vs time stamp (an attack is introduced during 

Virtual Machine migration after t=300) 



 
Fig. 6.b Log likelihood (EM-GMM for three Gaussians) vs time stamp (an attack is introduced during 

Virtual Machine migration after t=300) 
 
 
 
 
 

 
Fig. 6.c Log likelihood (EM-GMM for two, three and four Gaussians) 

vs time stamp (an attack is introduced during Virtual Machine migration 

after t=300) 
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  Fig. 6.d Local data density over timestamp (for one measurement and one cluster) -  

Clusters are estimated using the data density criterion (an attack is introduced during Virtual Machine 

migration after t=300) 

 
 
 

 
Fig. 6.e Local data density over timestamp (for one measurement and four clusters) - 

Clusters are estimated using the data density criterion (an attack is introduced during Virtual Machine 

migration after t=300) 
 



 
Fig. 6.f Local data density over timestamp (sliding window of ten timestamps and one cluster) - 

Clusters are estimated using the data density criterion (an attack is introduced during Virtual Machine 

migration after t=300) 

 

 
 

 
Fig. 6.g Local data density over timestamp (sliding window of ten timestamps and four clusters) - 

Clusters are estimated using the data density criterion (an attack is introduced during Virtual Machine 

migration after t=300) 
 
 



14 

 

 
Fig. 6.h Closest Canberra distances from a 10x10 SOFM used to 

cluster single vectors of measurements (an attack is introduced during 

Virtual Machine migration after t=300) 
 
 

 
Fig. 6.i Outlier distance (proposed method) vs time stamp                                                           

(an attack is introduced during Virtual Machine migration after t=300) 
 
 
 
 



 
Fig. 7 Average values of local data density per cluster for normal (solid line) as well as abnormal 

operation (dashed line) for all measurements 
 
 
 
 
 

 
Fig. 8a Distances vs rank of elements – 6th rank element corresponds to anomaly (single-stamp feature 

vector for inward - red circles - and outward - green circles - migration) 
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Fig. 8b Number of objects (sets of local measurements) over aggregate distance as a histogram – 6th rank 

corresponds to anomaly (single stamp feature vectors, background traffic with low anomaly intensity - net 

scan - and inward migration)  

 

 

 

 

 

 

 
Fig. 8c Number of objects (sets of local measurements) over aggregate distance as a histogram – 6th rank 

corresponds to anomaly (single stamp feature vectors, background traffic with low anomaly intensity - net 

scan - and outward migration)   



  
Fig. 9a SOM projected upon the plane of the # of 

bytes vs the # of packets for 1st  rank vector  

Fig. 9b SOM projected upon the plane of the 

entropy of source IP addresses vs the # of active 

flows for 1st  rank vector 

  

Fig. 9c SOM projected upon the plane of the # of 

bytes vs the # of packets for 2nd  rank vector 

Fig. 9d SOM projected upon the plane of the 

entropy of source IP addresses vs the # of active 

flows for 2nd  rank vector 

 
 

Fig. 9e SOM projected upon the plane of the # of 

bytes vs the # of packets for 3rd  rank vector 

Fig. 9f SOM projected upon the plane of the 

entropy of source IP addresses vs the # of active 

flows for 3rd  rank vector 
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1st rank 

2nd rank 

3rd rank 

4th rank 

5th rank 

6th rank 

(anomaly) 

Fig. 10a Histograms of features for a ten (10) stamp sliding window for ordered sets of local 

measurements (background traffic with low anomaly intensity - net scan - and inward migration)     
                                 

 

1st rank 

2nd rank 

3rd rank 

4th rank 

5th rank 

6th rank 

(anomaly) 

Fig. 10b Histograms of features for a ten (10) stamp sliding window for ordered sets of local 

measurements (background traffic with low anomaly intensity - net scan - and outward migration) 

 from left to right # of packets, # of bytes, # of active flows, entropy of source IP addresses, entropy of 

destination IP addresses, entropy of source ports, entropy of destination ports, entropy of packet sizes 
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Fig. 11a Distances vs rank of elements – 6th rank corresponds to anomaly 

(for the histogram feature vectors depicted in Fig. 9.a - red circles corresponding to inward migration - 

and Fig. 9.b - green circles corresponding to outward migration) 

 
Fig. 11b Distribution of histogram feature vectors (depicted in Fig. 9.a) over ordering distance (NS 

inward migration) 

 

 

 
Fig. 11c Distribution of histogram feature vectors (depicted in Fig. 9.b) over ordering distance (NS 

outward migration) 
 
 
 
 
 
 
 



 

 

 
 

Fig. 12.a  True Positive Rate (TPR) vs False Positive Rate (FPR) for low 

intensity net scan (EM-GMM using EM-GMM for two (solid red), three 

(dashed red) and four (solid blue) Gaussians in Fig. 6.a to Fig. 6.c) 

 
 
 

 
Fig. 12.b  True Positive Rate vs False Positive Rate for anomaly detection using data density for one 

measurement-timestamp - low intensity net scan (solid red line four clusters, dashed blue three clusters, 

dotted blue two clusters, dashed green one cluster)  
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Fig. 12.c  True Positive Rate vs False Positive Rate for anomaly detection using data density for a sliding 

window of ten timestamps - low intensity net scan (solid red line four clusters, dashed blue three clusters, 

dotted blue two clusters, dashed green one cluster) 

 

 

 

 
Fig. 12.d  True Positive Rate (TPR) vs False Positive Rate (FPR)                    

for anomaly detection using a 10x10 SOFM to cluster single vectors of 

measurements - low intensity net scan (an attack is introduced during 

Virtual Machine migration after t=300, closest distances from the SOFM 

using the Canberra distance are given in Fig. 6.h) 
 
 
 
 
 



 
Fig. 12.e  True Positive Rate (TPR) vs False Positive Rate (FPR) for 

anomaly detection using ordered vectors of histograms - low intensity net 

scan (for threshold values ranging from 90 to 190 in Fig. 6.i) 
 
 
 

 
 
 

 
 

Fig. 13.a  Outlier distance for anomaly detection 
(high intensity Network Port Scan) using ordered 

vectors of histograms over a sliding window of then 
timestamps (a set of three ordered vectors for a 4x4 

neural network) 

Fig. 13.b  True Positive Rate (TPR) vs False 
Positive Rate (FPR) for anomaly detection (high 

intensity Network Port Scan) using ordered 
vectors of histograms over a sliding window of 
then timestamps (a set of three ordered vectors 

for a 4x4 neural network) 
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Fig. 13.c  Outlier distance for anomaly detection 
(high intensity UPD Denial of Dervice) using 

ordered vectors of histograms over a sliding window 
of then timestamps (a set of three ordered vectors for 

a 4x4 neural network) 

Fig. 13.d  True Positive Rate (TPR) vs False 
Positive Rate (FPR) for anomaly detection (high 
intensity UDP Denial of Service) using ordered 
vectors of histograms over a sliding window of 
then timestamps (a set of three ordered vectors 

for a 4x4 neural network) 
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