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Abstract

In early classification of time series the objective is to build models which are able
to make class-predictions for time series as accurately and as early as possible,
when only a part of the series is available. It is logical to think that accuracy and
earliness are conflicting objectives, since the more we wait, more data points from
the series are available, and it is easier to make accurate class-predictions. Con-
sidering this, the problem can be very naturally formulated as a multi-objective
optimization problem, and solved as such. However, the solutions proposed in the
literature up to now, reduce the problem into a single-objective problem by com-
bining both objectives somehow. In this paper, we present a novel multi-objective
formulation of the problem of early classification, and we design a solution us-
ing multi-objective optimization techniques. This method will provide a variety
of solutions which find different trade-offs between both objectives, allowing the
user to select the most suitable solution a-posteriori, depending on the accuracy
and earliness requirements of the problem at hand. To prove the usefulness of our
proposal, we carry out an extensive experimentation process using 45 benchmark
databases and we present a case study in the financial domain.
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1. Introduction

Lately, the analysis and pattern extraction from temporally ordered data, has
become one of the most popular areas in data mining, due mainly to the prolifera-
tion of databases containing this type of data. Time series, ordered and real valued
sequences of finite length [36], are among the most typical type of temporal data,
and over the years, researchers have tried to extend many classical data mining
solutions and algorithms to databases in which the instances are time series [9].
The main characteristic of this type of data is the temporal correlation between
the measurements [12].

In this paper, we will focus on a supervised learning problem denominated
early classification of time series, a variant of the classic classification problem.
This problem appears when the new instances which are to be classified are time
series and they are collected over time. In this context, the main objective is to
learn a classification model, using a training set of complete and labeled time se-
ries, which will be able to predict the classes of new unlabeled time series as accu-
rately and also as early as possible, preferably before their full-length is available
[27].

As can be seen, this problem can be quite naturally understood as a multi-
objective problem, where the accuracy and earliness of the class-predictions must
be optimized simultaneously. These two objectives are conflicting, but equally
important and different trade-offs between them can be useful on each occasion:
some users may be interested in very early predictions, even if they must sacrifice
on accuracy, and other more conservative users, may be willing to wait more in
order to ensure the accuracy of the predicted labels. As such, it makes sense to
try to find a set of solutions which range over all the possible trade-offs instead of
just finding one solution. Then, the user can choose the solution which is more
suitable for the specific application at hand.

The early classification methods proposed in the literature can be divided into
two main groups. The first group of methods is based on shapelets [38], which
are subsections of the time series which are useful to discriminate between the
classes. In early classification, the aim is to search for shapelets which appear
early in time [14, 16, 37]. The second group combines a set of classifiers, built
in different timestamps, with one or various conditions or trigger functions which
will evaluate the reliability of the predictions at different timestamps and help
us decide whether the obtained prediction must be considered or discarded [13,
15, 26, 27, 28, 36]. Most of these methods focus on obtaining the 100% of the
accuracy that would be obtained if the full time series were available, but earlier

2



in time. As such, they are not designed to treat the two objectives equally and
they tend strongly towards one of the objectives: accuracy. Some of them such as
[6, 26, 27, 28, 32], include some user-defined parameters which somehow enable
modifying this stiff trade-off between the two objectives, but these parameters are
usually difficult to tune in advance, and, additionally, in order to obtain solutions
with varying trade-offs, we must execute the algorithms more than once. Indeed,
to the best of our knowledge, all the proposed solutions reduce the problem of
early classification to a single-objective problem by combining the two objectives
in some manner.

In this context, and with the aim of dealing with these drawbacks, we formu-
late the problem of early classification of time series as a multi-objective problem
for the first time and analyze the multiple benefits of this approach. Then, de-
parting from a single-objective early classification method proposed in [27], we
propose a framework which deals with the problem of early classification of time
series using multi-objective optimization techniques. For the first time, an early
classification method will provide a set of solutions which will offer different
trade-offs between accuracy and earliness in only one execution of the algorithm.
This will enable the user to choose the solution which best suits his/her needs, in
advance.

The rest of the paper is organized as follows. In Section 2, we define the prob-
lem of early classification of time series and introduce some other basic concepts
and definitions. In Section 3, we present our proposal based on a multi-objective
definition of the early classification problem. In Section 4 we perform extensive
experiments to prove the validity of our approach and in Section 5 we summarize
the obtained results. Next, in Section 6, we propose a real case study, based on the
analysis of financial data from the Spanish Market, which will serve as an illus-
tration of the applicability of the method. Finally, in Section 7 we draw the final
conclusions and propose some research lines for the future.

2. Early classification of time series: problem setting

In order to properly define the problem of early time series classification, we
must first define some basic concepts:

Definition 1. A time series is an ordered sequence of pairs (timestamp, value) of
finite length L [36]:

TS = {(ti, xi), i = 1, ..., L}, (1)
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where the timestamps {ti}Li=1 take positive and ascending real values and the val-
ues of the time series (xi) take univariate or multivariate real values.

Definition 2. We will denominate TS|t to the time series TS, truncated, so that
only the first t pairs are available, that is, TS|t = {(ti, xi), i = 1, ..., t}.

Definition 3. Suppose we have a training setX = {(TS1, CL1), (TS2, CL2), . . . ,
(TSn, CLn)} of labeled time series, where TSi are time series, and CLi ∈ {1, 2,
. . . , k} their respective class labels. Time series classification is a supervised
learning task in which the objective is to build a mapping from the time series
to their class labels by using X [2], which will be able to predict the classes of
new unlabeled time series as accurately as possible (see Figure 1).

C1

C2

C3

C2
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ALGORITHM

CLASSIFIER? C2

TRAINING SET

Figure 1: Supervised classification of time series.

With these definitions at hand, we are now able to understand the definition of
early classification of time series as defined initially by [36]:

Definition 4. Suppose we have a training setX = {(TS1, CL1), (TS2, CL2), . . . ,
(TSn, CLn)} of labeled time series, where TSi are time series, and CLi ∈ {1, 2,
. . . , k} their respective class labels. Early time series classification is a supervised
learning task which attempts to build a mapping from the time series to their class
labels by using X , which will be able to predict the classes of new unlabeled time
series as early as possible, using only a part of the series TS|t∗ , but maintaining
the accuracy that would be obtained if the whole time series were available.
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Figure 2: Early classification of time series.

As can be seen in Figure 2, usual early classifiers, do not always output a
prediction. On the contrary, as new data becomes available, they evaluate if a
reliable prediction can be made at that time, and if not, they abstain.

If we analyze the definitions and Figures 1 and 2, we can understand the dif-
ference between time series classification and early time series classification. In
the first problem, the sole objective is to make accurate predictions, whereas in
the second problem, we introduce the concept of earliness. It is quite logical to
think that accuracy and earliness are usually conflicting objectives: the more data
points are available from the time series, the more information we have and it is,
thus, easier to make accurate predictions. On the contrary, if we want to make
very early predictions, we will not have a lot of information about the series and
so, it will be difficult to make accurate predictions.

In this context, early classification is of special interest when collecting ad-
ditional measurements from the time series incurs in costs or when making late
predictions has negative consequences [27]. Some examples are monitoring hos-
pital patients and trying to identify crises as soon as possible [10], classifying
different types of faults in an industrial plant [4], predicting stock crisis as early
as possible [14] or trying to identify different bird species as early as possible
using their songs, with the aim of automatically triggering recording devices [26].

In the original definition of the problem of early classification of time series
proposed in [36], the accuracy which must be obtained is fixed in advance, and
so the objective of many methods has focused essentially on minimizing the earli-
ness. Typically, researchers have adopted this definition of the problem and, thus,
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they have given more importance to accuracy. However, this requirement is quite
strict, and it is possible that, on many application domains, users are willing to
sacrifice a bit on accuracy in order to obtain earlier predictions. Some recent so-
lutions [6, 26, 27, 28, 32] include parameters or mechanisms to tune the weight
associated to the accuracy and the earliness, finding different trade-offs between
these two objectives. However, all these methods combine both objectives in some
manner, formulating the problem as a single-optimization problem. The weight
assigned to each objective must be defined in advance and, in order to obtain dif-
ferent trade-offs, the algorithms must be executed more than once with varying
weight parameters. In summary, early classification of time series has never been
dealt with using multi-objective methods, where all the possible trade-offs are
sought simultaneously.

In this context, we propose a novel and more general definition of the problem
of early classification:

Definition 5. Suppose we have a training set X = {(TS1, CL1), (TS2, CL2),
. . . , (TSn, CLn)} of labeled time series, where TSi are time series, and CLi ∈
{1, 2, . . . , k} their respective class labels. Early time series classification is a
supervised learning task in which the objective is to build a mapping from the
time series to their class labels by using X , which will be able to predict the
classes of new unlabeled time series as early and as accurately as possible.

This definition inevitably leads us to treat the problem as a multi-objective
problem, where the goal is to optimize the costs of accuracy and earliness at the
same time.

3. Early time series classification using multi-objective optimization tech-
niques

In this section, we will introduce our early classification framework, which
will be an extension of a previous approach presented in [27], which we will call
the baseline method.

The aim of the baseline method was to obtain a pair ((h1, h2, ..., hL), sγ∗),
where (h1, h2, ..., hL) is an ordered sequence of classifiers, one for each times-
tamp, and sγ∗ is a trigger function, optimized taking accuracy and earliness into
account. The purpose of the classifiers is to output class predictions at each times-
tamp, and the trigger function will be in charge of deciding whether these class
predictions should be considered or not.
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Contrary to the baseline method, in our proposal, the goal is to obtain a set of
pairs {((h1, h2, ..., hL), sγ1), ((h1, h2, ..., hL), sγ2), ..., ((h1, h2, ..., hL), sγg)}. In
this case, instead of providing only one optimized trigger function, the method
will yield a set of trigger functions, {sγ1 , sγ2 , ..., sγg}, all of them optimized con-
sidering accuracy and earliness, but based on the multi-objective perspective, ex-
plained in the previous section. Each of these trigger functions will acquire a dif-
ferent trade-off between earliness and accuracy. The user will then choose, based
on the obtained results, one of these trigger functions based on the requirements
of the problem at hand.

Both the baseline method and our proposal are built following three steps.
First, a set of probabilistic classifiers are trained (Section 3.1). Then, in the sec-
ond step, a specific shape for the trigger functions is chosen (Section 3.2). Finally,
in the third step, shown in Section 3.3, these trigger functions are optimized. The
first two steps will be identical in the baseline method and in our proposal; how-
ever, they will be explained in detail because they are essential aspects of both
frameworks. The main novelty of our approach lies in the third step: the baseline
method will formulate and solve a single-objective optimization problem while
in this work an alternative multi-objective formulation is introduced. Both ap-
proaches will be presented for comparison and the benefits of using our proposal
will also be discussed in this section.

3.1. Training the classifiers
The first step is to obtain a set of classifiers which will be used to obtain class-

predictions at each timestamp. Recall that this step is identical in the baseline
method and our proposal. As formulated above, we will train a set of classifiers
(h1, h2, ..., hL), one for each timestamp, using the training set of labeled time
series X , following the procedure shown in Figure 3.

...

...

... ... ......

...

... ... ... ...

Figure 3: Construction of the probabilistic classifiers

As can be seen, in order to build a classifier for timestamp t, we take all the
training series in X and truncate them to this timestamp. Note that this timestamp
t can be defined as an absolute value, or as a percentage of the length of the series.
This second formulation must be used, for example, if the database contains series
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of different lengths. Then, instead of building the classifier using the raw time
series, we build a distance matrix first by using a distance measure d of choice.

This technique has been used in studies such as [19, 27, 26] and it allows to
include specific time series distance measures such as Dynamic Time Warping
(DTW) [29] into the framework. Since typical learning algorithms for classifica-
tion require an input of a fixed dimension, learning with the distance matrix, in-
stead of the raw values of the series, allows working with databases which contain
series of different lengths. For this, we must simply choose a distance measure
which is able to compare series of different lengths, such as DTW. Additionally,
learning with the distance matrix also has many other benefits such as including
time-flexibility into the classification framework, dealing with noise or outliers,
etc. [1]. Finally, the classifier is trained using this distance matrix as input.

In order to train the classifiers, we can choose any learning algorithm of our
choice. The only requirement, which will be understood better in the following
sections, is that the classifier must be able to output class-probabilities (probabili-
ties of membership to each class), instead of outputting only a class prediction.

3.2. Definition of the trigger function
The next step is to define the trigger functions. As mentioned earlier, and

as can be seen in Figure 4, the trigger functions will be responsible for deciding
whether a class prediction issued by a given classifier ht at a given timestamp t
is reliable and should be considered, or we should not trust it, and wait for more
data. For making this decision, the trigger functions will use certain information
regarding the prediction. In this case, as can be seen in Figure 4, we will use
the class-probabilities, pt = (pt1, p

t
2, ..., p

t
k) outputted by the selected classifier ht,

at the given timestamp t, together with the timestamp in which the prediction is
made (t). The main reason for using the class-probabilities is that we suppose that
the distribution of the class probabilities over time will provide us information
about the reliability of the prediction. Indeed, this intuition has shown to be well-
founded in previous studies [26, 27], so it has been directly adopted.

Figure 4: Schema of early classification framework
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As can be seen in Figure 4, the trigger function outputs a value of 0 or 1. If the
trigger function decides that the prediction is reliable (output 1), then, the class
prediction is made by choosing the class with the highest predicted probability.
On the contrary, if the trigger function determines that the prediction is not yet
reliable (output 0), then we will have to wait until we collect more data.

With these input variables we could construct many different trigger functions,
with different shapes. However, we have decided to use a linear stopping rule of
the following shape, which was proposed as part of the the baseline method in
[27]:

sγ(pt, t) =

{
0 if γ1p

t
1:k + γ2(p

t
1:k − pt2:k) + γ3

t
L
≤ 0

1 otherwise (2)

where pt1:k and pt2:k are the first and second largest probabilities obtained at time t
and γ = (γ1, γ2, γ3) is a vector of parameters with γi ∈ [−1, 1], which has to be
chosen.

This trigger function has shown a competitive performance when used within
the baseline method in comparison to other more complex rules and has outper-
formed the results of the state-of-the-art methods [27]. As such, as in the baseline
method, all the trigger functions obtained by our proposal will have this shape,
and the difference between them will be the γ selected in each case.

Now, a method must be designed to select the γ parameters which will allow
us to obtain optimal results in terms of accuracy and earliness.

3.3. Finding the optimal set of trigger functions
As mentioned, in order to completely define a trigger function defined as in

Equation 2, the γ parameter vector must be chosen. If we substitute the γi param-
eters by randomly chosen values in [−1, 1], the trigger function may already be
used. However, probably, the classification results that will be obtained with this
trigger function will not be optimal in terms of earliness and accuracy. But what
does it mean to be optimal in terms of earliness and accuracy? First we must find
a manner to evaluate a given trigger function in terms of these two objectives, and
then, we can focus on finding the optimal one or ones.

3.3.1. Evaluation of a trigger function
To evaluate a trigger function in terms of accuracy and earliness, we will use

two evaluation measures, which have been previously used in all the previous
early classification studies for evaluation purposes. On the one hand, the evalua-
tion of the earliness, will be carried out using the following measure:
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Ce(X, sγ) =
1

|X|
∑
x∈X

t∗x
Lx

· 100 (3)

t∗x being the earliest timestamp in which a class-prediction is obtained for series
x, and Lx being the length of x. In our case, t∗x corresponds to the first time that
the chosen trigger function sγ outputs a value of 1. As can be seen, this measure
measures the average time that we must wait to obtain class-predictions for the
series in X with trigger function sγ , and it is represented as a percentage of the
length of the series in X .

On the other hand, the accuracy is typically evaluated by calculating the clas-
sification error, or percentage of incorrectly classified time series:

Ca(X, sγ) =
1

|X|
∑
x∈X

I( ˆCLx 6= CLx) · 100. (4)

where ˆCLx is the predicted class at instant t∗x for time series x, and CLx is its true
class value. I(·) takes a value of 1 if the condition is true, and 0 otherwise. In our
case, since the classifiers output class-probabilities, ˆCLx corresponds to the class
with the highest assigned probability at instant t∗x.

In order to calculate Ce(X, sγ) and Ca(X, sγ) for a given trigger function we
will use the training set of time series X . Note that, in order to calculate Ce, we
must obtain the first timestamp in which the trigger function sγ would return 1 for
each of the series in X . For this, we need the class-probabilities of all the series
in X at all the possible timestamps.

To obtain these class-probabilities we could use the (h1, h2, ..., hL) classifiers
presented in Section 3.1, but recall that these were trained by using the same
training set X . So if we use these classifiers to evaluate the trigger functions, we
might overfit and the results might be overly optimistic. Instead, we have followed
a 5-fold cross-validation procedure: the training set is divided into 5 folds, and 5
classifiers are built at each timestamp by leaving one fold out in each iteration. The
procedure used to build these classifiers will be identical to that followed to train
(h1, h2, ..., hL). Then, the class-probabilities for each x ∈ X are obtained with a
classifier which has not seen this instance before, and, thus, we avoid overfitting.

3.3.2. Optimization of the trigger functions
Now that we know how to evaluate a specific trigger function in terms of

accuracy and earliness, we can focus on trying to find a trigger function which
minimizes these two objectives simultaneously. However, as mentioned on more
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than one occasion, earliness and accuracy are conflicting objectives. So, how do
we optimize them simultaneously?

In the baseline method [27], the authors proposed a single-objective formula-
tion of the problem which combined the measures Ce and Ca in a unique linear
cost function, where each of the objectives was weighted by a user-defined pa-
rameter α which ranged between 0 and 1. Once this cost function was defined, it
was minimized using a genetic algorithm.

With this approximation, the baseline method only provides one solution, sub-
ject to a certain parameter (α) that the user must define in advance. Something
similar happens in every other early classification method proposed in the liter-
ature until now. However, which early classifier is better, one which obtains an
accuracy of 80% and predicts using only 20% of the length of the series, or a so-
lution which yields an accuracy of 90% but needs 30% of the length of the series?
It depends on the needs and requirements of the application area at hand and the
interests of the user, but, other than that, we can not say that one is better than the
other. Indeed, even if the user has a clear idea of the accuracy and earliness values
that the problem requires, this α parameter does not provide any intuition regard-
ing the exact accuracy or earliness values that will be obtained by the method,
only the importance that will be given to each objective. In this sense, it is quite
difficult to choose a specific value in advance.

The Pareto Optimality criterion states that one solution is better than another
(dominates), if it is better in at least one objective, while obtaining at least equal
solutions in all the rest of the objectives. Thus, the goal is to find the set of non-
dominated solutions also called Pareto optimal solutions, which dominate all the
rest of the solution space.

So, if the early classification problem can be seen as a multi-objective opti-
mization problem, why not try to obtain all the possible non-dominated trigger
functions at the same time? Then, the user can choose the most suitable on each
occasion based on the obtained solutions, instead of having to decide beforehand.
Precisely in this aspect lies the main novelty of the proposed method: for the first
time, we will solve the problem of early classification using techniques from the
multi-objective optimization area of knowledge. As such, instead of finding one
optimal trigger function sγ∗ , we will find a set {sγ1 , sγ2 , ..., sγg}, which will pro-
vide non-dominated results in accuracy and earliness. For this, we will consider
the cost functions defined in Equations 3 and 4, simultaneously and separately and
we will try to solve the following optimization problem:
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min
γ

(Ce(X, sγ), Ca(X, sγ)) (5)

As in the baseline method [27], in this case, we will also solve this multi-
objective optimization problem using meta-heuristic algorithms due to the com-
plexity of the two objective functions.

The advantages of the multi-objective approach are evident. Firstly, if we
combine the two cost function as in the baseline method, Ca andCe must be scaled
into the same interval, so that one of them does not dominate the search. Secondly,
in the single-objective approach, the weight assigned to each of the objectives has
to be decided in advance, and the α parameter is usually not easy to choose, since
the two cost functions do not vary in the same manner and its meaning is different
in each database. Finally, in order to obtain various solutions with different trade-
offs between the two objectives, in the single-objective case, the algorithm must
be executed more than once, whereas in the multi-objective case a set of non-
dominated solutions is obtained in only one execution. The user can decide with
much more information at hand, which solution is the most suitable for its needs.
All these arguments could be used similarly with other state-of-the art methods
such as [26, 28] which also include parameters which allow to tune the trade-off
between the two objectives.

3.4. Usage of the proposed early classification framework
Now that we know how our early classification framework can be built, we

will remember what type of solutions are obtained and how they can be used. As
mentioned, in our proposal, we will obtain a set of pairs {((h1, h2, ..., hL), sγ1),
((h1, h2, ..., hL), sγ2), ..., ((h1, h2, ..., hL), sγg)}. So, instead of having only one
trigger function the method will output a Pareto set of trigger functions. For ex-
ample, in Figure 5, each of the points represents one of the trigger functions in the
Pareto set, obtained by the proposed multi-objective early classification frame-
work. The accuracy and earliness values obtained by this trigger function are
represented by its values in the two coordinate-axes. For example, the solution
shown in red is a trigger function which obtains a 65% of accuracy approximately
and uses the 13% of the length of the time series to make predictions on average.
Note, of course, that these performance values are calculated on the training set,
which is the dataset we use to build the Pareto set. As can be seen, the methodol-
ogy, provides us with a set of solutions with different trade-offs between the two
objectives.
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Figure 5: Example of Pareto front obtained by our proposal for an early classification problem.

Once the Pareto set of solutions is obtained, the user can choose the trigger
function (sγ∗) which best fits to its accuracy and earliness requirements by ana-
lyzing the different solutions (see Figure 6). Of course, we must emphasize again
that the results shown to the user are calculated on the training set, and, thus, it
can not be guaranteed that the same exact values will be obtained for new time
series. However, if the training and testing sets are independent but similarly dis-
tributed, the approximation should be good enough to make this decision and they
can be used as a reference when choosing one solution over another. In this con-
text, given the Pareto set in Figure 5, a user with high accuracy requirements will
choose a solution which is located on the right top-side of the graphic and, on the
contrary, a user with high earliness requirements will choose a solution on the left
bottom-side of the graphic.

Once a specific solution is chosen, we can use this trigger function together
with the (h1, h2, ..., hL) classifiers to make early class predictions of new time
series using the procedure shown in the gray rectangle of Figure 6.

4. Experiments

In this section, we present the experimental setup used to evaluate our multi-
objective early classification framework, we define the parameter settings of our
method and the state-of-the-art methods we will use for comparison, and we ex-
plain how the early classification proposals will be evaluated.

4.1. Data
The UCR archive [5], is a large repository of time series databases, specifi-

cally prepared for experimenting with new time series classification and cluster-
ing methods. Most of the previous early classification methods, as well as most
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Figure 6: Usage of the multi-objective early classification framework

time series classification and clustering proposals are evaluated and tested on these
datasets.

In this experimentation 45 databases from this archive have been used, which
will be specified in the following sections. These databases have been chosen
because results for various early classification state-of-the-art methods, which we
will use for comparison, are available and published for these 45 databases. All
these datasets are conformed of univariate time series and the lengths of the series
within each database are equal. However, the datasets are obtained from differ-
ent contexts, they are of different dimensions and they contain variate number
of classes. Additionally, bear in mind that the framework can also be used for
databases which contain series of different lengths. For this, the step-size for
learning the classifiers must be defined as a percentage of the length of the series,
and a suitable distance measure such as DTW must be used (see Section 3.1).

4.2. Comparison with other state-of-the-art methods
To begin with, we have a special interest in comparing our methodology with

the performance of the method from which we have departed: the baseline method
[27]. The main reason for this is that the two methods are both based on cost
minimization techniques, but the baseline method proposes a solution based on
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single-objective optimization, while this work proposes a multi-objective gener-
alization. The idea is to directly analyze if the multi-objective approach provides
better and more useful results than the single-objective solution approach.

The parameter settings of the baseline method are set based on the original
paper. Firstly, the posterior probabilities are obtained from Gaussian Process
classifiers, using an extension of the vbmp package in R [21], since these clas-
sifiers report the best results in the study. The classifiers are built every %5
of the length of the series, as in the original paper, choice which will be dis-
cussed more in depth in the following section. The optimization is carried out
using the genetic algorithm with default parameters implemented in the GA pack-
age of R [30]. A real-valued vector codification is used and the initial pop-
ulation is chosen uniformly at random. Selection is carried out by using fit-
ness proportional selection with linear scaling, arithmetic crossover operator is
applied with a probability of 0.8, and mutation is performed with a probabil-
ity of 0.1 using the nonuniform random mutation operator. At each iteration
(100 in total), 5% of the best individuals from the initial population will sur-
vive and will replace the worst 5% obtained from the genetic operations. Next,
the α parameter, which tunes the trade-off between earliness and accuracy has to
be chosen. In this case, since the objective is to compare these solutions with
the set of solutions obtained by the multi-objective framework, we will select a
more comprehensive set of α values, in comparison to the original work, which
only considered values which benefited the accuracy. Indeed, we will consider
α ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75,
0.8, 0.85, 0.9, 0.95}. Finally, since the genetic algorithm has a random compo-
nent, for each α, we have executed the algorithm 30 times, as in the original
experimentation, and in the last step, we have chosen the solution with the median
cost.

Additionally, to further validate our proposal, we have also compared it with
the four most relevant state-of-the-art early classification methods with available
source codes: ECTS 1, EDSC 2 Rel.Class.3 and ECDIRE 4. These methods have
different variants and the selection of the parameters for these methods has been
made based on the original papers (see Table 1 for details). Note that for some
methods we obtain only one solution per database, and for others, due to different

1http://zhengzhengxing.blogspot.com.es/p/research.html
2http://zhengzhengxing.blogspot.com.es/p/research.html
3http://www.mayagupta.org/publications/Early Classification For Web.zip
4http://www.sc.ehu.es/ccwbayes/members/umori/ECDIRE/ECDIRE.html
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parameter configurations, we obtain more than one. However, in all cases, the
methods give more importance to accuracy, so the obtained solutions tend towards
high accuracy values.

Method Variants Parameter name Values
ECTS [36] -Strict

-Loose
Minimum support 0, 0.05, 0.1, 0.2, 0.4,

0.8
EDSC [37] Chebyshev Inequality version Chebyshev bound 2.5, 3, 3.5
RelClass [28] -Naive Gaussian Quadratic set

-Gaussian Naive Bayes box
Reliability threshold
τ

0.001, 0.1, 0.5, 0.9

ECDIRE [26] acc perc 100%

Table 1: Combinations and variants of the comparison methods.

4.3. Parameter settings of our proposal
In order to completely define our early classification framework, we must

make two important decisions. On the one hand, we must select a multi-objective
optimization algorithm to solve the problem. On the other hand, we need to select
a learning algorithm to build the classifiers (see Figure 3).

With regards to the first aspect, we have mentioned that we will use meta-
heuristic algorithms. Analyzing the performance of different evolutionary algo-
rithms to solve this task is beyond the scope of this paper, and, indeed, different
algorithms will probably obtain varying solutions in different databases. In this
context, in order to perform our experimentation, we have chosen the NSGA II op-
timization algorithm [7], a fast and elitist multi-objective genetic algorithm which
is one of the most popular multi-objective meta-heuristics. Note that we have
made this choice simply based on the popularity of the algorithm and in order to
establish a parallelism with the baseline method, which also uses genetic algo-
rithms. However, this is a parameter of the framework and, thus, the choice of the
evolutionary algorithm could be modified by the user when looking for the best
performing configuration for a particular problem or database.

The NSGA II algorithm, has been implemented using the mco package from R
[25]. As in the baseline method, the parameter settings of the optimization method
have not been tuned, we have used the default values of function nsga2 of R. As
in the baseline method, a vector representation is used and the initial population is
chosen randomly. Then, the default genetic operators and parameters of the nsga2
function are applied: binary tournament selection, binary simulated crossover and
polinomial mutation with parameters cprob = 0.7 (crossover probability),mprob =

16



0.2 (mutation probability), cdist = 5 (crossover distribution index) andmdist = 10
(mutation distribution index). Only the population size has been changed to 56 for
similarity with the baseline method, which uses a population size of 50 by default
5. Note that the population size will influence the final number of trigger functions
provided by the method. Since genetic algorithms are randomized heuristics, we
have executed the NSGA II algorithm 30 times, as in the baseline method. Since
in the multi-objective case it does not make sense to calculate the median cost
of the obtained solution set, we have chosen the solution set with the median
hypervolume, which is an evaluation measure for multi-objective solutions, which
will be explained more in detail in the next section. As with the choice of the
evolutionary algorithm, the choice of the parameters of the evolutionary algorithm
could also be adapted to each database or fine-tuned, also possibly obtaining even
better results.

In relation to the second decision, the choice of the classifiers, we have se-
lected the same type of probabilistic classifiers used in the baseline method, Gaus-
sian Process classifiers trained using vbmp, also with the objective of being fair in
the comparisons.

Also following the choices made in the baseline method, the classifiers are
built every 5% of the length of the series, instead of on each timestamp. This is
mainly done in order to limit the computational burden associated to the exper-
imentation. Additionally, the reason for choosing a percentage of the length as
the step-size and not an absolute number of data-points is that the experimenta-
tion has been carried out using many different databases, each of them containing
series of very different lengths (some contain series of only 24 data-points whilst
others contain series of more than 1000 data-points). In this context, choosing an
absolute value which is valid for all databases and which is affordable in terms of
computational time is not possible. Nevertheless, when applying this framework
to only one database, this step-size could be better tuned, choosing an absolute
number of data points, or even considering uneven sampling rates, based on do-
main knowledge.

Finally, since the databases that we use in the experimentation do not contain
series of different lengths, the distance matrices, which will be the input to the
classifiers are built using the Euclidean distance. This distance measure was also
used in the baseline method and we also maintain it to be fair in the comparative.

5The nsga2 function of package mco requires the population size to be a multiple of 4, for here
the small difference with the baseline method.
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However, remember that if our database contained series of different lengths, the
framework could be easily accommodated by simply choosing another distance
measure which is capable of working with this type of database, such as DTW.

4.4. Evaluation
As in previous early classification studies, we have used the train/test evalu-

ation framework, using the pre-defined splits provided in the UCR archive. This
means that the early classification framework is built using training set X and
then, these solutions are applied to an independent testing set.

In order to measure the quality of the solutions, we use the two costs asso-
ciated to the problem: Ce and Ca defined in equations 3 and 4. However, since
we want to take into account the bi-objective nature of the problem, we will use
different evaluation measures obtained from the multi-objective optimization area
of knowledge:

• Number of non-dominated solutions: these values will be obtained by fol-
lowing the Pareto optimality criterion, which as mentioned previously tells
us that a solution dominated another if it improves in at least one objective,
while obtaining equal results in the others. We will compare the methods
pairwise: we will consider all the solutions obtained by both methods, we
will evaluate them on the testing set, and finally, we will count the number
of non-dominated solutions obtained by each of the methods. See Figure 7,
to view an example of this process: in the first figure, the solutions obtained
by the baseline method for a specific database and evaluated on the test-
ing set are plotted; in the second figure, the same process is followed for
our proposed method; in the last figure, we combine the results of the two
methods and plot only the non-dominated ones.

Since the number of solutions provided by each method is different, we will
base our analysis regarding domination counts on the proportion of non-
dominated solutions.

• Spread and diversity: In addition to obtaining good results in terms of
domination counts, we are also interested in obtaining well-spread solution
sets, which will take over a large part of the search space and which are
as diverse as possible. To measure the goodness of the obtained solution
sets regarding these aspects we use different measures. To begin with, we
calculate the ∆ method as proposed in [7]:
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Figure 7: Computation of domination counts for the CBF database from the UCR, when comparing
the baseline method with our proposal

∆ =
df + dl +

∑N−1
i=1 |di − d̄|

df + dl + (N − 1)d̄
(6)

where dl and df are the Euclidean distances to the two extreme solutions,
the di values are the Euclidean distances between neighboring solutions,
and d̄ is the mean of all the di values (see Figure 8). This measure takes a
value of 0 in the best possible case, when all the solutions are distributed
uniformly over the solution space. This measure will only be considered
when the number of solutions is higher than 2.

Additionally, we calculate the maximum spread, M3 as the Euclidean dis-
tance between the two most extreme solutions (see solutions shown in red in
Figure 8). Logically. we will only calculate this measure when the number
of solutions is at least 2.

• Dominated hypervolume: this measure measures the hypervolume of the
space that a solution set dominates with respect to a reference point [7] (see
grayed area in Figure 8). A solution set which yields a higher hypervolume
is considered better, since it dominates a larger part of the solution space and
covers a larger part of it. In this sense, the hypervolume is a quite general
measure, which measures both the quality and the diversity of the solution
set. In our case, we have used the hypervolume calculator from the mco
package [25]. As can be seen in Figure 8 we have taken (100,100) as the
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reference point, since this is the worst possible solution, considering that
we are minimizing costs Ca and Ce. Based on its formulation, we will only
calculate this measure when the number of solutions is at least 2.

Figure 8: Performance measures for multi-objective optimization.

Note that the hypervolume and the spread will only be calculated when com-
paring to the baseline method. The reason is that the rest of the methods are aimed
at obtaining high accuracy values, and so, they obtain very few solutions in most
cases, all situated in a specific zone of the solution space. Additionally, as can be
seen in Figure 7, we must emphasize that the solutions, when applied to the test-
ing set, might not all be non-dominated. However, when calculating the spread
metrics and the hypervolume, we will remove the dominated solutions within each
method.

5. Results

To begin with, in Table 2 we show the proportions of non-dominated solutions
obtained when comparing our method and the other state-of-the-art methods pair-
wise. These are calculated following the procedure shown in Figure 7. In each
case, we show the number of non-dominated solutions/the total number of solu-
tions that the corresponding the method provides. The first column always refers
to our method and the second to the competitor which is named in the column
header. In bold we highlight the highest proportion in each comparison. Addi-
tionally, we have carried out a paired Wilcoxon test with an alternative hypothe-
sis stating that the mean proportion of non-dominated solutions obtained by our
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Table 2: Number of non-dominated solutions obtained from pairwise comparisons between meth-
ods. For each of the competing methods, the first column refers to our multi-objective method
and the second column to the competitor. Each pair of numbers represents the following: number
of non-dominated solutions of the method/ number of total solutions of the method. In bold we
show the method which obtains a higher proportion of non-dominated points for each pairwise
comparison.

.
Baseline ECDIRE Rel.Class. ECTS EDSC

50words 32/51 9/18 34/51 0/1 34/51 0/8 34/51 0/12 34/51 0/3
Adiac 24/49 5/17 28/49 1/1 28/49 4/8 28/49 0/12 28/49 0/3
Beef 3/12 4/10 5/12 0/1 1/12 5/8 5/12 0/12 5/12 0/3
CBF 14/26 7/17 16/26 1/1 16/26 3/8 16/26 0/12 16/26 1/3
ChlorineConcentration 20/37 0/12 20/37 0/1 20/37 3/8 20/37 0/12 20/37 0/3
CinC ECG torso 19/25 6/18 20/25 0/1 20/25 3/8 0/25 6/12 20/25 0/3
Coffee 5/13 1/5 6/13 1/1 2/13 4/8 6/13 0/12 6/13 0/3
Cricket X 30/50 11/17 34/50 0/1 34/50 1/8 34/50 0/12 34/50 0/3
Cricket Y 35/50 8/16 37/50 0/1 37/50 0/8 37/50 0/12 37/50 0/3
Cricket Z 36/52 9/18 40/52 0/1 40/52 2/8 40/52 0/12 40/52 0/3
DiatomSizeReduction 5/12 1/1 5/12 1/1 5/12 2/8 5/12 2/12 5/12 1/3
ECG200 6/13 3/8 7/13 0/1 7/13 0/8 7/13 0/12 7/13 0/3
ECGFiveDays 9/14 2/11 9/14 0/1 9/14 2/8 9/14 3/12 9/14 2/3
FaceAll 37/48 12/18 39/48 0/1 39/48 0/8 39/48 0/12 39/48 0/3
FaceFour 7/12 3/9 7/12 0/1 7/12 0/8 7/12 0/12 7/12 0/3
FacesUCR 34/50 11/17 37/50 0/1 37/50 0/8 37/50 0/12 37/50 0/3
fish 24/42 8/15 25/42 0/1 25/42 0/8 25/42 0/12 25/42 0/3
Gun Point 11/29 2/12 11/29 0/1 11/29 0/8 11/29 0/12 11/29 2/3
Haptics 11/32 4/15 14/32 0/1 14/32 2/8 14/32 0/12 14/32 0/3
InlineSkate 5/24 4/16 5/24 0/1 5/24 0/8 5/24 4/12 5/24 0/3
ItalyPowerDemand 12/26 8/18 15/26 1/1 15/26 3/8 15/26 3/12 15/26 0/3
Lighting2 2/6 2/7 3/6 0/1 3/6 0/8 3/6 0/12 3/6 1/3
Lighting7 7/16 3/10 7/16 0/1 7/16 3/8 7/16 2/12 7/16 1/3
MALLAT 34/40 11/18 35/40 0/1 35/40 1/8 35/40 1/12 35/40 0/3
MedicalImages 17/37 4/16 19/37 0/1 19/37 0/8 19/37 0/12 19/37 0/3
MoteStrain 19/32 6/16 19/32 0/1 19/32 2/8 19/32 2/12 19/32 0/3
OliveOil 3/10 1/7 3/10 0/1 1/10 4/8 3/10 1/12 3/10 1/3
OSULeaf 11/35 3/14 12/35 0/1 12/35 0/8 12/35 0/12 12/35 2/3
SonyAIBORobotSurface 1/3 1/7 1/3 1/1 1/3 1/8 1/3 0/12 1/3 0/3
SonyAIBORobotSurfaceII 6/13 6/17 7/13 0/1 7/13 2/8 7/13 3/12 7/13 1/3
StarLightCurves 36/51 6/17 39/51 0/1 39/51 0/8 39/51 0/12 39/51 0/3
SwedishLeaf 28/48 7/15 30/48 1/1 30/48 0/8 30/48 0/12 30/48 0/3
Symbols 4/13 3/17 5/13 1/1 5/13 2/8 5/13 3/12 5/13 0/3
synthetic control 27/45 8/16 25/45 1/1 25/45 3/8 27/45 0/12 27/45 0/3
Trace 3/14 5/9 4/14 0/1 3/14 4/8 4/14 0/12 3/14 3/3
TwoLeadECG 6/17 8/18 8/17 1/1 8/17 4/8 8/17 0/12 8/17 2/3
Two Patterns 45/52 16/18 47/52 1/1 41/52 4/8 44/52 3/12 40/52 2/3
uWaveGestureLibrary X 49/56 12/18 51/56 1/1 51/56 0/8 51/56 0/12 51/56 0/3
uWaveGestureLibrary Y 47/55 15/18 49/55 1/1 49/55 0/8 49/55 0/12 49/55 0/3
uWaveGestureLibrary Z 47/53 17/17 48/53 0/1 48/53 0/8 48/53 0/12 48/53 0/3
wafer 13/23 8/17 15/23 0/1 15/23 2/8 15/23 4/12 15/23 0/3
WordsSynonyms 30/42 8/18 32/42 0/1 29/42 2/8 30/42 7/12 32/42 0/3
yoga 22/37 13/17 27/37 1/1 27/37 0/8 27/37 0/12 27/37 0/3
NIFECG Thorax1 32/46 12/17 34/46 0/1 34/46 0/8 34/46 0/12 34/46 0/3
NIFECG Thorax2 21/47 8/18 28/47 0/1 28/47 0/8 28/47 0/12 28/47 0/3
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method is larger than that obtained by each competitor, and we have obtained a p-
value of 6.170133 · 10−4 for the baseline method, and p-values of 1.117522 · 10−3,
2.275016 · 10−6, 5.577202 · 10−8 and 1.271760 · 10−6 for the rest of the meth-
ods respectively, all in favour of our method. In fact, we must emphasize, that
these p-values are very low, and that the proportion of non-dominated solutions of
the competitors, except maybe the baseline method, are very frequently 0, which
proves that our methodology dominates all the solutions proposed by these meth-
ods, even if these are designed to obtain very high accuracy values. We have also
performed plots, similar to Figure 7 for all the 45 datasets and all the consid-
ered competitors, where the exact non-dominated solutions can be seen. Due to
the lack of space we do not include these figures in the paper, but they are made
available in our website 6.

In addition to the domination counts, we provide a more detailed comparison
with the baseline method to further validate the goodness of our approach. Recall
that we are interested in obtaining uniform spread and diverse solutions. To ana-
lyze this aspect, in Figure 9 we represent the differences obtained in ∆, M3 and
hypervolume when comparing the baseline method and our proposed method in
the 45 datasets (the subtraction is done in this order). As can be seen, for the first
evaluation measure, ∆, the box lays just over the 0 value, so most differences are
positive. Recall that this value measures the uniformity of the spread of the solu-
tions over the solution space, and smaller values, represent better spread solutions.
As such, we can say, that in most cases our method obtains more suitable solution
sets in this sense. The second evaluation measure, M3, measures the distance be-
tween the two more distant solutions, and so, higher values would indicate better
solution sets. In this case, the box lays just below the 0 value, and so, in most
cases, our proposal obtains higher M3 values than the baseline method. Finally,
in the case of the hypervolume, the entire box lays below the 0 value. This in-
dicates that in most cases, our method obtains a higher hypervolume, and thus a
better solution set. The actual values obtained for these measures by the baseline
method and our proposal are available as supplemental material in our website.
Additionally, we have also performed a Wilcoxon test on these differences, to test
whether their mean is greater than 0 (H1 : µ > 0) in the case of the ∆ param-
eter or lower than 0 (H1 : µ < 0) for the M3 and hypervolume parameters, and
we have obtained p-values of 0.001679, 0.002093 and 3.827 · 10−7, respectively,
in favor of our proposal. As such, the multi-objective approach outperforms the

6http://www.sc.ehu.es/ccwbayes/members/umori/ECMulti/ECMulti.html
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single-objective approach also in diversity and spread.
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Figure 9: Boxplots of differences between evalution measures values obtained by the baseline
method minus the evaluation measures values obtained by our proposed method.

6. Case study: Ibex 35

In order to show the usefulness of the proposed multi-objective approach in a
real context, we have carried out a case-study in the field of economics.

In spite of the predominance of the theory of Efficient Markets [11], which
states that the prices of the stocks have a random behaviour and that the precision
of its prediction can not exceed 50% [3], there are various theoretical and practical
indications that state that this leads to an inefficient financial market [24]. Indeed,
the stock market has a long memory, even long term (Hu et al, 2015), which
implies that the prices of financial assets have a predictable component that repeats
certain patterns over time. Detecting them in advance would lead to a superior
performance and subsequently to beat the stock market.

Specially in the past decades there have been abundant attempts to try to model
the behavior of financial assets using not only convencional statistical method-
ologies but also machine learning [20, 34]. However, despite all the hard work,
prediction of the stock index remains a defiant matter due to the amount of factors
that interact in the market [35] and the complex, highly noisy, dynamic, nonlinear,
nonparametric, high dimensional and chaotic nature of this type of data [8].

The goal of these experiments is to apply the early classification framework
explained above to predict, as soon as possible, whereas a specific financial index
will increase or decrease during a given trading session. Based on the obtained
results and since stock prices direction prediction is a key reference for designing
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better trading strategies [18, 22], it would be possible to generate advanced indi-
cators that could be used in the trading systems to give advice of when to buy and
sell during a session and to create a system to alert investor of the markets sudden
movements.

The data used in the experimentation is obtained from the Spanish Market, and
the measurements correspond to the intra day trading prices of the index traded
Ibex 35 obtained from BME Market Data, which belongs to the “Grupo de Bolsas
y Mercados Españoles” (The Spanish Stock Exchange), specialized in the pro-
cessing, generating and commercializing the information that originates for the
different Regulated Markets and Multilateral Negotiation Systems of the BME
Group. We have selected the Ibex 35 because it is an indicator that shows the
markets evolution as a whole, since it represents approximately 90% of the effec-
tive trade in the Spanish Stock exchange. The sample period spans from 2nd of
January 2015 to the 27th of October 2017. The raw data that has been used to
execute the experiments are price ticks from Ibex 35 for each of the trading ses-
sions sampled every 3 seconds starting from 9.00 a.m to the closure of the session
at 17:30 p.m. After some pre-processing to remove missing data, the resulting
database consists of 724 time series, one per trading session, of length 961 which
consist of measurements aggregated to every 30 seconds. The first 506 sessions
(70%) are used for training the early classification framework, whereas the rest
are used for testing (30%). Then, the class variable is defined in two different
ways:

• Binary class: -1 if the price has decreased and 1 if it has increased over a
trading session.

• Three-category class: -1 if the price has decreased more than a 0.5% of the
initial daily price, 1 if it has increased more than a 0.5% and, 0 in the rest
of the cases.

As in the previous sections, the (h1, h2, ..., hL) classifiers and built only every
5% of the length of the series, in order to reduce computational burden, and the
rest of the parameters of the multi-objective early classification framework are
also left unchanged. We train the probabilistic classifiers using the training set
and run the NSGA II optimization algorithm to obtain the set of non-dominated
trigger functions for this specific problem. Then, these solutions are applied to the
testing set and the early class-predictions are obtained and evaluated. In Figure 10
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we represent the obtained results 7:
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Figure 10: Solutions obtained by our proposal for the Ibex35 database.

To begin with the interpretation of the results, we must say that in both the
2-class and the 3-class problems, the class-frequencies of the training and testing
datasets are balanced, and also the class-accuracies obtained by the method. As
can be seen in the figure, in the binary-class case, the accuracy results vary be-
tween 54% and a bit over 60%, whereas the earliness goes from around 5% to
a bit over 50%. Note that all the accuracies obtained are higher than those that
would be obtained by a random classifier, and they are all reached at the latest at
midday, when only half of the series has been seen on average. In the case of the
three-class problem, the accuracy results vary from around 45% to almost 50%,
and the earliness results are even better that in the previous case, with a maximum
of around 26%. As in the previous case, the accuracy results are better than those
that would be obtained by the random classifier, and these are obtained very early
in the day.

The economic implications of the obtained results are also significant. Firstly,
they confirm the predictability of the movement of the index Ibex 35 and its re-
turn on intraday momentum. In general terms we can point out that prediction
accuracy increases when the available information is more abundant, as expected.
This is because the longer we wait, the more information we have and the higher
resistance of our prediction to noise [23, 31]. Secondly, the return predictabil-

7Recall, that the plotted points are non necessarily non-dominated because the solutions have
been obtained by using the training set but applied and evaluated using the independent testing set
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ity is particularly important in the shorter forecast horizon. The shorter the time
interval, the more times a trading strategy can be applied to take advantage and
so the greater the potential for high annualized returns [33]. Thirdly, and most
significantly, an optimal combination of the three key aspects to implement cost-
effective trading strategies is achieved with our early classification framework:
speed, accuracy and simplicity in terms of the number of inputs required. Despite
using only univariate time series (only the actual stock prices) and a simple linear
stopping rule combined with a set of classifiers, results are always higher than
those that would be obtained by random classifiers and, depending on the time of
day, we can obtain up to 60% of accuracy in the two-class problem.

We also generate early signals for each trading session so that you can have an
informative advantage. Traders continuously pursue these advantages even if it is
of short duration, as it can generate higher returns [17].

Finally, the early classification framework allows designing different strategies
according to investors’ risk aversion. Thus, a very risk-averse investor will choose
a high hit probability and can expect to wait for more time, while a less risk-averse
investor will choose a lower probability of success but take advantage of taking
positions faster.

7. Conclusions and Future Work

Early classification is a supervised learning task which can be very naturally
interpreted and formulated as a multi-objective optimization problem. In this pa-
per, we have formally defined this problem as such for the first time, and we have
proposed a novel framework, which deals with the problem using multi-objective
optimization methods.

The advantages of this method are quite evident. In only one execution of the
algorithm, we obtain a complete set of solutions which balances the two objec-
tives, earliness and accuracy, in different possible ways. The user can then select
the solution most suited to its needs without having to tune or select any specific
parameters in advance, as in other previous early classification methods.

We have evaluated our method using 45 benchmark datasets, obtaining supe-
rior results in terms of dominance and other multi-objective evaluation measures,
when comparing to other state-of-the-art solutions. Additionally, we have pre-
sented a real case study from the financial domain, which shows the applicability
of the proposed solution.

As an interesting future research line, we propose automatically learning the
shape of the stopping rule using genetic programming algorithms. Additionally,
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we would also like to work further on the case-study in the financial area, adapting
the methodology to this specific problem, for example, considering other common
prediction horizons, or designing cost functions more adapted to the problem at
hand.

Acknowledgements

We would like to thank the UCR archive for providing access to the data used
in this study. This work has been partially supported by the Research Groups
2013-2018 (IT-609-13) programs (Basque Government), TIN2016-78365-R (Span-
ish Ministry of Economy, Industry and Competitiveness) and Severo Ochoa Pro-
gram SEV-2013-0323 (Spanish Ministry of Economy, Industry and Competitive-
ness).

References

[1] A. Abanda, U. Mori, J.A. Lozano, A review on distance based time series
classification, https://arxiv.org/abs/1806.04509.

[2] A. Bagnall, J. Lines, A. Bostrom, J. Large, E. Keogh, The great time se-
ries classification bake off: A review and experimental evaluation of recent
algorithmic advances, Data Min. Knowl. Discov. 31 (3) (2017) 606–660.

[3] J. Bollen, H. Mao, X. Zeng, Twitter mood predicts the stock market, Journal
of Computational Science 2 (1) (2011) 1 – 8.

[4] A. Bregón, M. A. Simón, J. J. Rodrı́guez, C. Alonso, B. Pulido, I. Moro,
Early Fault Classification in Dynamic Systems Using Case-Based Reason-
ing, in: Proceeding CAEPIA’05 Proceedings of the 11th Spanish association
conference on Current Topics in Artificial Intelligence, 2006, pp. 211–220.

[5] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, G. Batista,
The ucr time series classification archive, www.cs.ucr.edu/˜eamonn/
time_series_data/ (July 2015).

[6] A. Dachraoui, A. Bondu, Early Classification of Time Series as a Non My-
opic Sequential Decision Making Problem, in: ECML PKDD 2015, Vol.
Part I, 2015, pp. 433–447. doi:10.1007/978-3-319-23528-8.

27



[7] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective
genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computa-
tion 6 (2) (2002) 182–197. doi:10.1109/4235.996017.

[8] G. J. Deboeck, Training on the Edges: Neural, Genetic and Fuzzy Systems
for Chaotic Financial Marketing, wiley Edition, New York, 1994.

[9] P. Esling, C. Agon, Time-series data mining, ACM Computing Surveys
(CSUR) 45 (1) (2012) 1–34.

[10] R. S. Evans, K. G. Kuttler, K. J. Simpson, S. Howe, P. F. Crossno, K. V.
Johnson, M. N. Schreiner, J. F. Lloyd, W. H. Tettelbach, R. K. Keddington,
A. Tanner, C. Wilde, T. P. Clemmer, Automated detection of physiologic
deterioration in hospitalized patients., Journal of the American Medical In-
formatics Association : JAMIA 22 (2) (2015) 350–60. doi:10.1136/amiajnl-
2014-002816.

[11] E. F. Fama, Efficient capital markets: A review of theory and empirical work,
The Journal of Finance 25 (1970) 383417.

[12] T.-C. Fu, A Review on Time Series Data Mining, Engineering Applications
of Artificial Intelligence 24 (1) (2011) 164–181.

[13] M. F. Ghalwash, D. Ramljak, Z. Obradovic, Early classification of multi-
variate time series using a hybrid HMM/SVM model, in: IEEE International
Conference on Bioinformatics and Biomedicine, 2012, pp. 1–6.

[14] M. F. Ghalwash, V. Radosavljevic, Z. Obradovic, Utilizing temporal pat-
terns for estimating uncertainty in interpretable early decision making, in:
Proceedings of the 20th ACM SIGKDD international conference on Knowl-
edge discovery and data mining - KDD ’14, ACM Press, New York, New
York, USA, 2014, pp. 402–411. doi:10.1145/2623330.2623694.

[15] N. Hatami, C. Chira, Classifiers With a Reject Option for Early Time-Series
Classification, in: IEEE Symposium on Computational Intelligence and En-
semble Learning (CIEL), 2013, pp. 9–16.

[16] G. He, Y. Duan, R. Peng, X. Jing, T. Qian, L. Wang, Early classifica-
tion on multivariate time series, Neurocomputing 149 (2015) 777–787.
doi:10.1016/j.neucom.2014.07.056.

28



[17] O. Kadan, Trading in the Presence of Short-Lived Private Information : Ev-
idence from Analyst Recommendation Changes Trading in the Presence of
Short-Lived Private Information, Journal of Financial and Quantitative Anal-
ysis (JFQA), Forthcoming.

[18] L.-J. Kao, C.-C. Chiu, C.-J. Lu, C.-H. Chang, A hybrid approach by inte-
grating wavelet-based feature extraction with mars and svr for stock index
forecasting, Decision Support Systems 54 (3) (2013) 1228 – 1244.

[19] R. J. Kate, Using dynamic time warping distances as features for
improved time series classification, Data Mining and Knowledge
Discoverydoi:10.1007/s10618-015-0418-x.

[20] Y. Kara, M. A. Boyacioglu, mer Kaan Baykan, Predicting direction of stock
price index movement using artificial neural networks and support vector
machines: The sample of the istanbul stock exchange, Expert Systems with
Applications 38 (5) (2011) 5311 – 5319.

[21] N. Lama, M. Girolami, vbmp: Variational Bayesian Multinomial Probit Re-
gression, R package version 1.46.0 (2017).

[22] M. T. Leung, H. Daouk, A.-S. Chen, Forecasting stock indices: a compar-
ison of classification and level estimation models, International Journal of
Forecasting 16 (2) (2000) 173 – 190.

[23] C.-C. Lin, C.-S. Chen, A.-P. Chen, Using intelligent computing and data
stream mining for behavioral finance associated with market profile and fi-
nancial physics, Applied Soft Computing.

[24] B. G. Malkiel, The efficient market hypothesis and its critics, Journal of
Economic Perspectives 17 (2003) 59–82.

[25] O. Mersmann, mco: Multiple Criteria Optimization Algorithms and Related
Functions, r package version 1.0-15.1 (2014).

[26] U. Mori, A. Mendiburu, E. Keogh, J. A. Lozano, Reliable early classification
of time series based on discriminating the classes over time, Data Mining and
Knowledge Discovery (2016) 1–31doi:10.1007/s10618-016-0462-1.

[27] U. Mori, A. Mendiburu, S. Dasgupta, J. A. Lozano, Early Classification
of Time Series by Simultaneously Optimizing the Accuracy and Earliness,

29



IEEE Transactions on Neural Networks and Learning Systems In press
(2017) 1–10. doi:10.1109/TNNLS.2017.2764939.

[28] N. Parrish, H. S. Anderson, D. Y. Hsiao, Classifying With Confidence From
Incomplete Information, Journal of Machine Learning Research 14 (2013)
3561–3589.

[29] H. Sakoe, S. Chiba, DynaMic Programming Algorithm Optimization for
Spoken WordRecognition, IEEE Transactions on Acoustics, Speech, and
Signal Processing 26 (1) (1978) 43–49.

[30] L. Scrucca, GA: A package for genetic algorithms in R, Journal of Statistical
Software 53 (4) (2013) 1–37.

[31] S. Shen, H. Jiang, T. Zhang, Stock market forecasting using machine learn-
ing algorithms, Tech. rep., Department of Electrical Engineering, Stanford
University (2012).

[32] R. Tavenard, S. Malinowski, Cost-aware early classification of time series,
in: P. Frasconi, N. Landwehr, G. Manco, J. Vreeken (Eds.), Machine Learn-
ing and Knowledge Discovery in Databases, Springer International Publish-
ing, Cham, 2016, pp. 632–647.

[33] A. Timmermann, Elusive return predictability, International Journal of Fore-
casting 24 (1) (2008) 1 – 18.

[34] J.-Z. Wang, J.-J. Wang, Z.-G. Zhang, S.-P. Guo, Forecasting stock indices
with back propagation neural network, Expert Systems with Applications
38 (11) (2011) 14346 – 14355.

[35] B. Weng, Application of machine learning techniques for stock market pre-
diction. short-term stock movement and price., Ph.D. thesis, Auburn Univer-
sity (2017).

[36] Z. Xing, J. Pei, P. S. Yu, Early classification on time series, Knowledge and
Information Systems 31 (1) (2011) 105–127.

[37] Z. Xing, P. S. Yu, K. Wang, Extracting Interpretable Features for Early Clas-
sification on Time Series, in: Proceedings of the Eleventh {SIAM} Interna-
tional Conference on Data Mining, 2011, pp. 247–258.

30



[38] L. Ye, E. Keogh, Time Series Shapelets : A New Primitive for Data Min-
ing, in: Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, 2009, pp. 947–956.

31


