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ABSTRACT

The concept of SCN offers a fast framework with universal approximation guarantee for lifelong learn-
ing of non-stationary data streams. Its adaptive scope selection property enables for proper random
generation of hidden unit parameters advancing conventional randomized approaches constrained
with a fixed scope of random parameters. This paper proposes deep stacked stochastic configuration
network (DSSCN) for continual learning of non-stationary data streams which contributes two major
aspects: 1) DSSCN features a self-constructing methodology of deep stacked network structure where
hidden unit and hidden layer are extracted automatically from continuously generated data streams;
2) the concept of SCN is developed to randomly assign inverse covariance matrix of multivariate
Gaussian function in the hidden node addition step bypassing its computationally prohibitive tuning
phase. Numerical evaluation and comparison with prominent data stream algorithms under two
procedures: periodic hold-out and prequential test-then-train processes demonstrate the advantage of
proposed methodology.

Keywords stochastic configuration networks · deep learning · non-stationary data streams

1 Introduction

Although issue of randomized approaches in neural networks have received attention in the late 80’s and early 90’s, the
benefit of such approaches becomes more evident in recent days with the emergence of deep neural networks (DNNs)
involving a large number of network parameters where training all of those parameters incurs considerable computational
cost and prohibitive memory demand. The randomized approach relieves design steps of DNNs because it allows
most DNN parameters except the output weights to be randomly generated from certain scopes and distributions. This
mechanism speeds up algorithm’s runtime which happens to be a key factor in the resource-constrained environments
such as data streams because the training process rely on no tuning of hidden nodes and is free from iterative training
process. Random vector functional link network (RVFLNs) exemplifies a successful integration of the randomized
approaches in neural network [1, 2]. Specifically, RVFLN incorporates the randomized idea for construction of
functional link neural network [1] and shares the universal approximation capability [3]. It is, however, reported that
the universal approximation capability of RVFLN highly depends on the setting of the scope of random parameters and
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is hardly implemented in practise [3]. It is shown in [4] that the scope of random parameters plays vital role to retain
the universal approximation property of RVFLN. The scope of random parameters should not be fixed and should be
adaptively adjusted to adapt to different problem complexities [5].

Stochastic configuration networks (SCN) were recently proposed in [5] as an innovative and revolutionary solution of
randomized learning with guaranteed universal approximation capability. It combats the bottleneck of conventional
randomized learning where random parameters are generated from blindly selected and static scopes. SCN applies a
supervisory mechanism to assign the random parameters rendering the scope of random parameters data-dependent
and flexible. In [5], three algorithms to implement SCNs are proposed by tuning the output weights redin three
configurations: direct, local least square and global least square. The SCN framework has been extended in [6] where
the SCN theory is implemented in the context of deep neural networks (DNNs). Ensemble version of SCN was proposed
in [7] which can be regarded as an advancement of Decorrelated Neural Network Ensemble (DNNE) [8]. It resolves the
problem of large-scale pseudo-inverse computation using the block Jacobi and Gauss-Seidel approximation. A robust
SCN was designed in [9] for resolving robust data modeling problems using the kernel density estimation. While SCN
has potency for solving data stream problems since it is capable of significantly relieving parameter tuning efforts,
data stream remains an open issue for these existing SCNs because they work on non-continual setting and learning
environment is supposed to be unchanged during the course of training process.

In this paper, we propose a novel version of deepSCNs termed deep stacked stochastic configuration networks (DSSCNs)
which aims to solve two key issues: 1) Simplification of Data Stream Algorithm. DSSCN embraces the concept of
SCN to set the hidden node parameters during addition of new hidden node procedure without further tuning process.
The SCN concept enables random generation of hidden node parameters with analytically determined scopes while
retaining universal approximation property. Note that existing evolving intelligent systems (EISs) [10] normally utilize
computationally expensive hidden node tuning process: extended kalman filter (EKF), stochastic gradient descent
(SGD) [11], or clustering approach [12, 13], etc. This approach generalizes evolving random vector functional link
network (eRVFLN) [14] still operating under the scope of randome parameters [−1, 1]; 2) Automatic Construction
of Deep Stacked Network Structure from Data Streams. DSSCN demonstrates an open structure principle where
not only hidden nodes are automatically evolved and pruned from data streams but also hidden layers of DSSCN are
self-organized. In other words, the selection of DSSCN’s depth is fully data-driven in which its hidden layer is capable
of growing and shrinking [15]. Our algorithm is capable of initiating its learning process from scratch with no initial
structure. That is, hidden node and hidden layer can be incrementally added from data streams subject to the rule
growing scenario and the drift detection method.

DSSCN is built upon the stacked generalization principle [16]. That is, the output of one learner is fed as an input to the
next learner while each layer is given with the same input representation plus a random projection of the predictive
output of the preceding layer as developed in [17]. A drift detection scenario controls the depth of the DSSCN with
addition of a new layer if a drift is identified. DSSCN implements complexity reduction mechanisms in terms of online
feature weighting mechanism and hidden layer pruning procedure. Salient characteristic of DSSCN is outlined as
follows:

1. Drift Detection Scenario: the evolving structure of DSSCN is governed by a drift detection scenario in which
a new layer is incorporated by constructing a new hidden layer if a drift is signalled. Drift detection scenario
has been widely implemented in realm of ensemble learning where it controls when a new ensemble member
is added [15]. Nevertheless, recent investigation in [18] has concluded that the increase of network depth
make significant difference in generalization power. It is theoretically shown that a two layer neural network
cannot solve a task that can be addressed by a three layer neural network unless it has an infinite number of
hidden nodes. Our work aims to investigate the use of the drift detection scenario to signal the increase of
network depth. The drift detection scenario is devised from the Hoeffding’s bound theory which categorizes
data streams into three conditions: drift, warning and normal [19]. The idea of Hoeffding’s bound allows the
choice of conflict threshold to be determined automatically with sufficient statistical guarantee. The underlying
rationale behind the deep approach for processing data streams is outlined in Section 7 and numerically
benchmarked against a fixed-structured DNN.

2. Evolving Stochastic Configuration Networks: evolving stochastic configuration networks (eSCNs) is crafted in
this paper where it is derived from evolving random vector functional link networks (eRVFLNs)[14]. Unlike
its predecessor, eSCNs adopt the SCNs theory where inequality constraint is deployed when initializing
parameters of a new rule [5]. The concept of SCNs allows adaptive scope allocation where the scope of
random parameters are not fixed to a specific range rather are dynamically selected. As with eT2RVFLN, the
network output is inferred using the interval type-2 fuzzy system concept where interval type-2 multivariate
Gaussian function with uncertain centroids is integrated. The use of multivariate Gaussian rule reduces fuzzy
rule demand due to its non-axis-parallel property but it incurs high computational and storage complexity
due to the presence of non-diagonal covariance matrix. The SCN concept addresses this problem because
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it is capable of skipping the hidden unit tuning step while still guaranteeing the universal approximation
property [5]. Moreover, the concept of eSCN is applicable to the type-1 fuzzy system as well with some minor
modifications.

3. Deep Stacked Neural Networks Architecture: DSSCN is actualized under a deep stacked neural networks
structure where every layer is formed by a base-learner, eSCNs. The stacked neural network architecture
is built upon the stacked generalization principle where the training samples of every layer are drawn from
original training samples mixed with random shifts [17]. Random shift is induced by random projection of
predictive outcomes of preceding layer/learner. This idea is inspired by the deep TSK fuzzy learners in [17].
Here, we go one step further by introducing the self-organizing concept of DNN’s structure encompassing
hidden nodes, input features and depth of the networks.

4. Online Layer Pruning Scenario: DSSCN is equipped with a complexity reduction method using the learner
pruning strategy. The learner pruning strategy analyzes the output of base learners and two base learners
sharing high similarity are coalesced to alleviate complexity and risk of overfitting. The learner pruning
scenario is enabled in the DSSCN without the risk of catastrophic forgetting because it features a stacked
architecture where the output of base learner is utilized as a shifting factor to the next base learner. In other
words, each layer is supposed to output the same predicted variables.

5. Online Feature Weighting Scenario: DSSCN features the online feature weighting mechanism based on the
notion of feature redundancy [20]. This mechanism deploys feature weights where features exhibiting high
mutual information is assigned with low weights. Moreover, feature weights are not fixed and dynamically
tuned as the redundancy level of input attributes.

Learning performance of DSSCN has been evaluated by exploiting five popular streaming problems and one real-
world application from our own project, RFID based Indoor localization. It is also compared with six data stream
algorithms, pClass [21], eT2Class [22], pEnsemble [15], Learn++CDS [23], Learn++NSE [24] and its shallow version,
eSCN. DSSCN demonstrates improvement of classification rates over its counterparts while imposing comparable
computational power and network parameters. Compared to the shallow version, 2% to 5% improvement of predictive
accuracy can be achieved with extra computational and storage complexity. Moreover, DSSCN has been numerically
validated under the prequential test-then-train protocol and compared with a static DNN where it demonstrates more
encouraging performance in terms of predictive accuracy than standard DNN.

The remainder of this paper is organized as follows: Section 2 reviews related works of deep neural networks; Section 3
elaborates the problem formulation of data stream mining under two protocols, prequential test-then-train and periodic
hold-out processes; Section 4 discusses the network architecture of DSSCN; Section 5 describes the learning scheme of
DSSCN: online feature weighting mechanism, hidden layer pruning mechanism, hidden layer growing mechanism
and evolving stochastic configuration networks; Performance evaluation is discussed in Section 6; Section 7 outlines
technical reasons behind the use of deep structure in handling data streams; Some concluding remarks are drawn in
Section 8.

2 Related Works in Deep Neural Networks

Deep neural network (DNN) has gained popularity in the recent days since it delivers state-of-the art performance
compared to conventional machine learning variants. It is proven theoretically in [18] that the depth of neural network
structure highly influences its generalization power and major performance improvement can be attained by adding the
depth of DNN over the width of DNN i.e., inserting hidden nodes. Notwithstanding that it outperforms other machine
learning methods, DNN’s training process draws significantly higher cost than its shallow counterpart. Since DNNs
still rely on blind model selection where the network architecture is determined purely from expert domain knowledge
or trial-error mechanism, one often arrives at much higher network complexity than what necessary. This situation
ensues because a very deep network architecture is well-known to mostly produce decent approximation power. Such
DNN is evident to be at a higher risk of complicated training process due to exploding or vanishing gradients and to
incur expensive memory requirement and slow computational speed. Because of a high number of network parameters,
DNNs necessitate abundant training samples to ensure parameter and error convergence.

Model selection has been a major research issue in DNNs and various contributions have been devoted to propose
effective model selection scenarios encompassing pruning method [25], regularization [26], parameter prediction [27],
etc. In [28], a group sparsity regularization technique has been proposed to relieve the network complexity of DNN
where each group is treated as a single neuron. It starts from an over-complete network and complexity reduction is
carried out by forcing network parameters to zero. This concept is substantiated by the finding of [27] where there
exists significant redundancy in the parameterizations of DNNs. It is demonstrated that similar performance of DNN
can be generated using only fewer network parameters. DNN with a stochastic depth was proposed in [29] where the
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Figure 1: Problem Formulation: Periodic Hold Out Process

salient contribution is the introduction of random subset selection. That is, the subset of hidden layers are randomly
dropped and bypassed with an identity function. The parameter redundancy of DNN is overcome using the concept of
circular projection [26]. The circular projection method makes use of circulant matrix which reduces the number of
network parameters. The concept of deep structure has been adopted in the context of fuzzy neural networks (FNNs).
In [17], a slightly different approach was proposed where the random projection concept is utilized to realize a deep
network structure. Our algorithm is inspired by these works but we go one step ahead by proposing an automated
and online approach in the construction of network structure - hidden layer, hidden unit, input feature are evolved.
Online learning of DNN was also proposed in [30]. It is as with conventional model selection approaches where
an over-complete DNN is built initially and complexity reduction scenario through the hedging concept is applied
afterward to drop unimportant components of DNN’s structure in the classification process. It is noted that the use of
DNNs for mining data streams remains an open issue notably due to their offline learning process and lack of adaptation
to rapidly changing environments.

3 Problem Formulation

Data stream is a special problem of machine learning field where data points are continuously generated in the lifelong
fashion Ck = [C1, C2, ..., CK ] where Ck can be in the form of data batch Ck ∈ <N×n or a single data point. K denotes
the number of time stamp unknown before process runs. In practise, data stream arrives with the absence of true class
label where Ck = Xk ∈ <N×n and operator labelling effort is solicited to assign the true class labels Yk ∈ <N . The
0− 1 encoding scheme can be applied to construct the class matrix Yk ∈ <N×m. There exist two commonly adopted
simulation procedures of data streams, namely Periodic Hold Out and Prequential. The key difference lies in the
order of training and testing processes, train-then-test (periodic hold-out) and test-then-train (prequential). The typical
characteristic of data stream is perceived in the presence of concept drift defined as the change of posterior probability
P (Y |X)K 6= P (Y |K)K−1. Overview of DSSCN’s learning procedures are visualized in Figure 3 and 3 under the
periodic hold-out and prequential test-then-train simulation procedures.

DSSCN is proposed here to address the data stream problem where it realizes a deep elastic structure built upon the
stacked generalization principle [16]. This structure adopts the concept of random shift [17] where every hidden layer
or classifier is connected in series and accepts the original input pattern influenced by random shift. DSSCN realizes the
concept of dynamic depth where the hidden layer can be dynamically generated in the presence of drift. This strategy is
motivated by the fact that addition of hidden layer is more meaningful than addition of hidden units or classifiers [18]
simply because it enhances the network capacity more significantly than addition of hidden units or classifiers [25]. The
concept of dynamic depth is further actualized using the hidden layer pruning procedure which discards layers sharing
high mutual information. To improve its flexibility further, the hidden layer of DSSCN characterizes an open structure
principle which is capable of growing and pruning hidden nodes on demand and is combined by the SCN theory to
produce dynamic scopes of random parameters [5].
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Figure 2: Problem Formulation: Prequential Test Then Train Process

Table 1: List of Symbols

Symbols Dimension Definition
Ck N × n unlabelled data batch
K the number of data batches N/A
N the batch size N/A
n input dimension N/A
Xk input data batch N × n
Yk target data batch N ×m
m output dimension N/A

P (Y |X) output posterior probability N/A
λ input weight 1× n
α random projection constant N/A

PD−1 random projection matrix of D − 1 layer m× n
D the number of hidden layers N/A
CD the lower center of interval-valued activation function of D − th hidden layer R× n
CD the upper center of interval-valued activation function of D − th hidden layer R× n∑−1 the inverse covariance matrix of interval-valued activation function of D − th hidden layer R(n× n)
R the number of hidden nodes N/A
WD the output weight matrix of D − th layer R(2n+ 1)×m
Ωi the output covariance matrix of i− th layer (2n+ 1)× (2n+ 1)×m

γ(x1, x2) mutual compression index of two variables x1, x2 N/A
εα Hoeffding bound with the significant level α N/A
αD significance level of drift level N/A
αW significance level of warning level N/A
cut cutting point of drift detection phase N/A
Gi upper firing strength of i− th node N/A
Gi lower firing strength of i− th node N/A
q design coefficient N/A

[−ξ, ξ] dynamic scope of random parameters N/A

4 Architecture of Deep Stacked Stochastic Configuration Networks

Deep stacked architecture of DSSCNs is inspired by the work of [17] featuring a series of base building units working in
tandem. That is, each base building unit is structured by eSCNs which receives the original input attributes added by the
random shift. The novelty of DSSCNs lies in its autonomous working principle where the deep stacked architecture can
be automatically deepened and shallowed. The random shift is induced by the random projection of the predictive output
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Figure 3: Network Architecture of DSSCN

of the preceding layer which aims to follow the stacked generalization principle [16]. The deep stacked architecture
allows continuous refinement of predictive output through multiple nonlinear mapping of base building units. The
architecture of deep stacked structure is depicted in Figure 3. DSSCN works in chunk by chunk basis where each
chunk containing N pairs of tupples (Xt, Yt)t=1,..,N streams overtime and the total number of chunks is unknown. It is
worth mentioning that DSSCN adopts a strictly single-pass learning process where each data chunk is discarded once
learned. In realm of deep stacked network architecture, it is challenging to adopt the sample by sample update since the
hierarchical structure of deep stacked network relies on the output of the preceding layer. That is, the output of the
preceding layer must feed meaningful information for the next layer to lessen the predictive error toward zero.

The first building block or layer is injected with the original data chunk X1 = (Xt)t=1,...,N weighted by the input
weight vector λ ∈ <n and in turn generates the predictive outputs Y1 = (Yt)t=1,...,N .The stacked generalization
principle is implemented in the next layer where the output of the first building unit is connected to the second layer and
mixed with the random projection matrix P . The input of the second building block is formulated as follows:

X2 = λX + αY1P1, (1)

where α is a random projection constant and P1 ∈ Rm×n is the random projection matrix randomly generated in
the range of [0,1] while λ is the input weight vector crafted as Section 6.1 It is observed in (1) that the right term
αY1Z1is treated as the random shift of the original input attributes which aims to capture a high level abstraction of
the original input features. The stacking strategy continues up to the last building block whose input is determined as
XD = λX + αYD−1PD−1 where D stands for the depth of DSSCN. It is worth noting that DSSCN demonstrates the
fully elastic deep network structure where a new building unit can be inserted on top of the current hidden layer when
the existing structure does not suffice to a given problem. All layers or building blocks are stacked and work in tandem
where each layer except the bottom layer produces random shifts of original input pattern to be passed to the next layer.

It is evident that the notion of random shifts in each layer of DSSCN improves linear separability of given classification
problem because it paves a way to move apart the manifolds of original problem in a stacked manner [17]. This
structure is also perceived as a sort of hierarchical structure but it differs from the conventional hierarchical deep
neural network which generally loses transparency of intermediate features because it can no longer be associated with
physical semantics of original input features [31]. It is also worth mentioning that DSSCN is equipped by the online
feature selection mechanism coupled in every building unit. This mechanism selects relevant input attributes for every
layer which enhances generalization power.
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Algorithm 1 Architecture of DSSCN

1: Input: Data Chunk(X,Y ) ∈ RN×(n+m), the layer pruning thresholdδ,
the time-constants of the Hoeffding’s based drift detection methodTD, TW , the random projection constant α

2: Output: Predicted Class labels Ŷ ∈ RN×(n+m),DSSCN structure with D depth or layers
f(layer1(C̃ = [C,C] ∈ R(R×n),

∑−1 ∈ RR×(n×n),W ∈ RR∗(2n+1)×1,Z1 ∈ m× n), ..., layerD(C̃ =

[C,C] ∈ RR×n,
∑−1 ∈ RR×(n×n),W ∈ RR∗(2n+1)×1))

3: for t = 1 to N do
4: for j = 1 to n do
5: for q = 1 to n do
6: Calculate: the similarity of two input features γ(xj , xq), j 6= q from the input weight vector λ ∈ R1×n

7: end for
8: end for
9: Weigh: the input vector

10: if depth = 0 then
11: Create: the first layer or base building unit D = 1
12: else
13: for d = 1 to D do
14: if d = 1 then
15: Calculate: X1 = X
16: Elicit: the output of each layer
17: else if Xd = λX + αYd−1Zd−1 then
18: Elicit: the output of each layer
19: end if
20: end for
21: for i = 1 to D do
22: for k = 1 to D,i 6= k do
23: Calculate: similarity of two layers γ(yi, yk), i 6= k
24: if γ(yi, yk) ≤ δ then
25: Merge: the layer i and k
26: end if
27: end for
28: end for
29: Undertake: the drift detection method
30: if Drift then
31: Introduce: a new base building unit/layer
32: else if Warning then
33: Store: the data batch into a data buffer to be used for future drift
34: else if Stable then
35: Update: the deepest hidden layer
36: end if
37: end if
38: end for
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5 Learning Scheme of DSSCN

This section elaborates the learning policy of DSSCN including the fundamental working principle of eSCN as the
base building block of DSSCN. Algorithm 1 displays an overview of DSSCN learning algorithm. DSSCN working
procedure starts from the online feature weighting principle adopting the concept of mutual information. An input
feature showing significant redundancy is ruled out from the training process by reducing its corresponding input
weight. This mechanism does not compress input dimension but actively selects the best input subset for every training
observation by means of dynamic weighting strategy of input features minimizing the influence of poor features.
Henceforth, the training procedure of each layer is triggered and the first layer of DSSCN receives the original input
features. The output of the first base building unit is combined with random projection matrix to induce the so-called
random shift. The shifting factor is applied to the original input attributes feeding the next base building unit. This
process proceeds up to the deepest layer.

DSSCN is fitted with the layer pruning mechanism benefiting from the notion of mutual information. This concept
unveils two base building units possessing strong mutual information. Such base building blocks do not offer diverse
information to rectify learning performance and is fused into one to relieve the computational complexity. The last step
concerns with the drift detection scenario which evolves the structure of DSSCNs. This mechanism controls the depth
of DSSCNs where an extra building unit is added and the structure of DSSCNs is deepened provided that a concept
change is observed. This scenario is built upon the concept of Hoeffding’s bound where the drift detection mechanism is
fully automated and free of user-defined parameters. The conflict level is determined from a statistically sound method
of the Hoeffding’s bound.

5.1 Online Feature Weighting Mechanism

DSSCN is equipped by the online feature weighting mechanism which allocates input weights as the importance
of input attributes. This mechanism is meant to minimize the influence of poor features which often undermines
generalization power without retraining from scratch due to discontinuity issue. Note that the use of online feature
weighting mechanism underpins a compact and parsimonious structure because it rules out inconsequential features
from the distance calculation [20]. In realm of evolving data streams, the feature weighting mechanism has been studied
as an alternative of the input pruning method and is claimed to induce the soft-dimensionality reduction. It offers more
stable feature selection mechanism than its counterpart, the hard-dimensionality reduction approach, because it adapts
to dynamic of given problems - some features play vital role in different time periods, thus pruning such features causes
information loss.

The online feature weighting mechanism of DSSCN is inspired by the work in [20] where the maximal information
compression index (MICI) method [32] is made use to calculate the feature similarity. The underlying idea is to assign
low weight to a feature with strong mutual information. The MICI method presents an extension of Pearson correlation
index where it is robust against translation and rotation of data streams. This method can be directly used for the feature
weighting mechanism without transformation because an input feature attains maximum correlation if the MICI method
returns 0 values. Suppose that the linear dependency of two input variables, x1, x2 are to be measured, the MICI is
formulated as follows:

γ(x1, x2) =
1

2
(var(x1) + var(x2)−√

(var(x1) + var(x2)2 − 4var(x1)var(x2)(1− ρ(x1, x2)2)), (2)

whereρ(x1, x2) = cov(x1,x2)√
var(x1,x2)

is the Pearson correlation index. var(x1), var(x2) denote the variance of two features

which can be enumerated on the fly. The MICI method works by estimating maximum information loss when the
input dimension is compressed by ignoring one of input features. After the MICI is obtained, the similarity score
of input attributes is inspected because correlation of input features has to be analyzed for the rest n − 1 features
(γ(x1, x2), ..., γ(x1, xn−1)). The similarity score is defined as the average of mutual information for all input attributes
as follows:

Scorej = mean(γ(xj , xl))
j=l=1,...,n

, l 6= j. (3)

A normalization is required because it is expected that feature contribution drops in the high-dimensional input attributes
- a feature weight becomes too small. Input weights, λj , are normalized in respect to the maximum similarity score as
follows:

λj =
Scorej

max(Scorej)
j=1,...,n

. (4)

8
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It is worth noting that the input weights function as the connective weights of the first layer to the hidden layer of
eSCN. Since each building unit receives the same input information added with different random shifts, the input
weighting mechanism is committed in the centralized manner. In other words, the input weights are spread across each
building unit. This is made possible because every layer is injected with the same input representation and the only
difference merely lies in the random shift factors which vary across different layers. This approach follows a similar
input weighting strategy in [20] but here it is implemented under a deep network structure rather than a shallow one.

5.2 Hidden Layer Pruning Mechanism

The notion of network layer pruning mechanism is motivated by the fact that each base building unit should navigate to
an improvement of learning performance. Two strongly correlated base building blocks can be merged into one thereby
alleviating computational and memory burdens. In realm of deep learning literature, there exist several attempts for
complexity reduction of DNN but most of which are built upon the concept of regularization where inconsequential
layer is weighted by small regularization factors [30, 29, 26].

The network layer pruning mechanism examines the mutual information among base building units discovering two
base building units with strong mutual information. This strategy is carried out using the MICI method as with the
online feature weighting mechanism and the only difference from the online feature weighting mechanism exists in the
variables of interest where the output of two base building units are evaluated as follows:

γ(yi,yk), i 6= k, (5)

where yi, yk respectively denote the predictive output of i, k building units. Although the MICI method forms a linear
correlation measure, it can be executed more speedily than the non-linear correlation measure such as the symmetrical
uncertainty method by means of the entropy measure. The entropy measure often necessitates discretization of input
samples or the Parzen density estimation method. Simplification is commonly applied in the entropy measure where
the training data is assumed to follow normal distribution as shown in the differential entropy method. Because the
maximum linear correlation is attained provided that γ(yi, yk) = 0, the layer pruning condition is formulated as follows:

γ(yi, yk) ≤ δ, (6)
where δ stands for a user-defined threshold. The layer pruning process is undertaken by getting rid of one of the
two layers or in other words, the layer pruning process shrinks the network structure. The layer pruning mechanism
enables hard complexity reduction where the base building unit is permanently forgotten since redundant layer won’t be
recalled again in the future. Unlike soft-complexity reduction [30, 26] where base building units are still retained in the
memory, the hard complexity reduction attains great memory simplification by reducing the depth of network structure.
This mechanism does not result in the catastrophic forgetting problem or instability issue because of the deep stacked
network structure of DSSCN.

5.3 Hidden Layer Growing Mechanism

The selection of DSSCN network depth is fully automated from data streams. The network layer growing mechanism is
governed by a drift detection mechanism which inserts a new base building unit if a concept change is identified in
the data streams. This strategy is inspired by the fact that a new concept should be embraced by a new layer without
forgetting of previously learned concept. It retains old knowledge in order for catastrophic forgetting of past knowledge
which might be relevant again under the recurring drift situation to be avoided. Although the notion of drift detection
mechanism is often integrated in the context of ensemble learning in which the size of ensemble expands if the drift is
detected, this feature can be also implemented in realm of the deep stacked network since it is formed by a collection of
local learners injected with different level of abstractions of the original data points. Note that although each layer of
DSSCN is connected in series, each layer locally learns data streams with minor interaction with other layers.

DSSCN makes use of the Hoeffding’s bound drift detection mechanism classifying data stream into three categories:
normal, warning and drift [19]. That is, the normal condition indicates stable concept which can be handled by simply
updating the current network structure. The update strategy applies only to the last base building unit because of the
inter-related nature of deep stacked architecture where one base building unit is influenced by the output of preceding
layer or base building unit. This strategy aims to induce different representations of the original training pattern
where each hidden layer portrays different perspective of the overall data distribution. It differs from the ensemble
configuration where one base building unit is decoupled from the rest of ensemble members and under this configuration
the winning learner should be selected for the fine-tuning phase. The drift phase pinpoints an uncovered concept which
calls for enrichment of existing structure by integrating a new layer. The warning phase is designed to cope with the
gradual drift since it signals immature drifts requiring several training observations to be borne out as a concrete drift.
No action is carried out in the warning phase except to prepare existing structure for a drift case in the future. It implies
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only accumulation of data points during the transition period, warning-to-drift, to be used in the drift case where a new
layer is added. It is worth noting that the gradual drift is more difficult to be tackled than the sudden drift because the
drift can be confirmed at very late stage after the learning performance has been compromised. The non-weighted
moving average version of the Hoeffding’s bound drift detection mechanism [19] is implemented in DSSCN because it
is more sensitive to the sudden drift than the weighted moving average version. The statistics of data streams can be
enumerated without any weights as X̂t =

∑N
t=1

xt
N .

The three conditions of data streams, namely normal, warning and drift are determined from the Hoeffding test applying
two conflict levels: αW (warning), αD(drift) which correspond to the confidence level of the Hoeffding’s statistics as
follows:

εα = (b− a)

√
(N − cut)

2cut(N − cut)
ln(

1

α
), (7)

where [a, b] denotes the minimum and maximum of data streams and α is the significance level where αW > αD. cut
denotes the cutting point which indicates the inflection point from one concept to another. Note that the significance
level has a clear statistical interpretation because it also functions as the confidence level of Hoeffding’s bound
1 − α. The drift detection mechanism partitions a data chunk into three groups Z1 = [x1, x2, ..., xcut], Z2 =
[xcut+1, xcut+2, ..., xN ], Z3 = [x1, x2, ..., xN ] where the cutting point corresponds to a switching point signifying a
case of Ẑ1 +εẐ1

> Ẑ3 +εẐ3
. Ẑ1, Ẑ3 are statistics respectively calculated from two data groups Z1,Z3. In other words,

the cutting point refers to a case when a population mean increases. The drift detection procedure continues by forming
the Hoeffding’s test which decides the status of data streams. The drift status is returned if the null hyphotesis is rejected
with the size of αD, while the warning status makes use of αW to reject the null hyphotesis. The null hyphotesis is
defined as H0 : E(Ẑ1) ≤ E(Ẑ2) while its alternative is formulated just as the opposite. The null hyphotesis is rejected
if
∣∣∣Ẑ1 − Ẑ2

∣∣∣ ≥ ε where ε is found from (7) by applying the specific significance level αW , αD. The hypothesis test is
meant to investigate the increase of population mean which hints the presence of concept drift. If the null condition is
maintained, existing concept remains valid. Suppose that dist = |Ẑ1 − Ẑ2|, the three levels, namely drift, warning and
drift, are signalled in respect to the following conditions.

dist ≥ εdrift → DRIFT (8)

εwarning ≤ dist ≤ εdrift →WARNING (9)

ELSE → STABLE (10)
where εdrift, εwarning are obtained by substituting the confidence levels αD, αW into (11).

From Algorithm 1, it is seen that an extra layer is inserted if the drift status is substantiated by the drift detection
mechanism. This mechanism aims to incorporate a new concept using a new layer while retaining previous knowledge
in preceding layers. The warning phase does not perform any adaptation mechanism since it presents a waiting period
whether the stable concept turns into the concept drift. Since the stable status confirms relevance of existing learners for
current data streams, only an update is committed to the last building unit. This approach reflects the nature of deep
network structure where each layer is interconnected in terms of random shift. We select to only adjust the last layer
because it has the most adjacent relationship to the current training concept. Other layers are left untrained with the
current data stream to generate different levels of feature representation and to avoid the catastrophic forgetting problem
- the key success of DNNs in the continual environment. This strategy is also designated to overcome the catastrophic
forgetting problem

It is evident that the DNN concept is not feasible for small datasets. A shallow neural network is preferred for small
dataset since it achieves a faster convergence due to less free parameters to learn than the DNNs. As next examples are
observed, the performance of shallow neural networks is stuck at a particular level due to lack of network capacity and
is able to be rectified by introducing extra layers in the neural network structure. In other words, the success of DNNs’s
deployment is subject to sample’s availability. The significance level α plays vital role to arrive at the appropriate
network architecture of DNNs since it controls the depth of neural network. It is not assigned a fixed value here rather
constantly adjusted to adapt to current learning conditions where it grows proportionally as a factor of the number of
data streams. That is, the confidence level is lowered to allow additional layers or building units to be integrated. The
following setting is formulated to assign the confidence level:

αD = min(1− e
−t
τ , αDmin), αW = min(1− e

−t
τ , αWmin), (11)

where t denotes the number of data streams seen thus far. τ is a time-constant which can be set as that of the number of
time-stamp N . If the number of time-stamp is unknown as practical scenarios, τ can be assigned a particular value
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Figure 4: Learning Architecture of eSCNs

to produce moderate rise of exponential function. αDmin, α
W
min stand for the minimum significance level of drift and

warning phases respectively fixed at 0.09 and 0.1. This setting is meant to set the confidence level to be above 90%
which avoids loss of control for the increase of network depth. This considers the fact that the hidden layer growing
strategy is built upon the drift detection scheme which risks on the loss of detection aptitude provided that the minimum
confidence level is set too low. Referring to (11), it is assumed that the significance degree mimics the first-order system
dynamic where it exponentially increases as the factor of time stamp. It is, however, limited to a certain point to avoid
too small confidence level leading to be too greedy in generating new layers. The rationale of drift detection method for
layer growing mechanism is elaborated in Section 7 of this paper.

5.4 Evolving Stochastic Configuration Networks

This sub-section reviews the working principle of eSCN playing a role as a hidden layer of eSCN. eSCN features a
fully open structure in which its hidden node can be automatically generated and pruned on the fly while following
the randomized learning principle of stochastic configuration network (SCNs). eSCN is a derivation of eRVFLN [14]
where the randomized learning foundation is constructed from the recent development of SCNs. Unlike its predecessor,
two learning modules, online active learning and online feature selection, are switched off because the online feature
selection is carried out in the centralized mode based on the online feature weighting strategy putting forward the feature
redundancy principle (Section 5.1). It is found that the use of online active learning scenario in each base building
unit is not effective in reducing training samples and labelling cost since this approach is model-dependent and leads
each base building unit to extract different data subsets - impossible to be carried out under the deep stacked network
configuration. It is supposed to work more efficiently in the centralized configuration which sends same data samples
for each building unit. eSCN learning scenario starts from scratch and the network structure is self-constructed from
data streams. The contribution of data streams are estimated by a generalized recursive density estimation principle
[33]. The validity of fuzzy rules are monitored using the type-2 relative mutual information method and scans for
inconsequential rules to be obviated for the sake of network simplicity. Figure 5.3 pictorially exhibits the working
principle of eSCN. The learning algorithms of eSCN are detailed as follows:

• Network Structure: eSCNs utilize a combination of the multivariate Gaussian basis function and the second
order Chebyshev functional expansion block which transforms the original input pattern into a set of linearly
independent functions of the entire input attributes [34]. The output of Chebyshev functional expansion block
is weighted by the activation degree of each hidden node generated by the multivariate Gaussian basis function
and the output weights. In other words, the output layer consists of linear combinations of input features and
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output weights resulting in the second order polynomial series. This notion is inspired by the functional-link
neural network structure (FLNN) where it features the so-called enhancement node combining two components:
a direct connection of the input layer to the output layer and a functional expansion block performing a non-
linear transformation of original input space to a higher dimensional space [1]. The multivariate Gaussian
basis function is developed by a non-diagonal covariance matrix featuring inter-correlation between two input
variables. Suppose that a tupple (Xt, Yt) streams at time-instant t − th where Xt ∈ <n denotes an input
feature of interest and Yt ∈ <mstands for the target variable, the end output of DSSCN can be expressed as
follows:

yo =

R∑
i=1

G̃i(λt ·Xt +Bt)βi, (12)

where λt ∈ <nis the input weight vector at time-instant t − th obtained from the online feature weighting
mechanism in Section 5.1 and G̃ is the activation function of eSCN defined as the interval-valued multivariate
Gaussian function. Bt is the network bias set as zero for simplicity, whileR is the number of hidden nodes, n is
the number of input dimension andm is the number of output dimension. βi = xeWi where xe ∈ <1×(2n+1)is
the extended input vector produced by the functional expansion block of second order Chebyshev function
while Wi ∈ <(2n+1)×1is the output connective weight vector. The network bias is simply set to zero due to
the nature of interval type-2 fuzzy system as realized by eSCN and eT2RVFLN [14]. Note that the interval
type-2 fuzzy system is a universal approximator [35]. The functional-link strategy in the output layer expands
the degree of freedom (DOF) supposed to improve approximation power of the output node. Note that the
original SCN is developed using the zero-order output node where each hidden unit is connected with a single
connective weight thus leading to W ∈ <R. The extended input vector, xe, is crafted from reda nonlinear
mapping of the second order Chebyshev polynomial expansion written [36] as follows:

Tn+1(xj) = 2xjTn(xj)− Tn−1(xj), (13)

where T0(xj) = 1, T1(xj) = xj , T2(xj) = 2x2j − 1. Suppose that the number of input dimension is two, the
extended input vector, xe, is set as:

xe = [1, T1(x1), T2(x1), T1(x2), T2(x2)] = [1, x1, 2x
2
1 − 1, x2, 2x

2
2 − 1]. (14)

The intercept, 1, is inserted in the extended input vector and is meant to prevent the untypical gradient problem.
In addition, it increases flexibility allowing the extended input vector to go beyond the origin if all input
attributes are zero. The functional expansion block is performed by the Chebyshev polynomial here rather
than other functional-link types such as trigonometric or polynomical functions since it scatters less number of
parameters than trigonometric function and offers better mapping capability than other polynomial functions
of the same order [36].
A crisp activation degree is produced by performing the type reduction mechanism using the q type-reduction
mechanism of the interval-valued activation degree G̃i [22, 35] as follows:

G̃i = (1− q)Gi + qGi, (15)

where q ∈ <1×m is a design coefficient which adjusts the influence of upper and lower activation degrees.
Gi, Gi denote the lower and upper activation functions satisfying the condition of Gi > Gi. The upper and
lower activation functions Gi, Gi are resulted from the multivariate Gaussian basis function with uncertain
means characterized by the non-diagonal covariance matrix [22]. This strategy adopts the notion of interval
type-2 fuzzy system presenting the footprint of uncertainty [22] which aims to capture possible inaccuracy,
imprecision and uncertainty of data streams due to noisy measurement, noisy data, operator’s error, etc. The
q type reduction method [22] is applied here because it characterizes a faster operation to transform the
inter-valued activation degrees to its crisp form than the prominent Karnik-Mendel (KM) method [35] usually
involving the iterative process to obtain the right-most and left-most points. The interval-valued multivariate
Gaussian basis function, G̃i, is expressed as follows:

G̃i = exp(−(X − C̃i)Σ−1
i (X − C̃i)T ), G̃i = [Gi, Gi], (16)

where C̃i = [Ci, Ci] denotes the interval-valued centroid and Ci < Ci. Σ
−1
i labels the inverse non-diagonal

covariance matrix whose elements describe inter-relation between two input features. The interval-valued
multivariate Gaussian basis function generates the non-axis-parallel ellipsoidal cluster in the product space
which has an aptitude to rotate in any direction. Such ellipsoidal cluster offers flexibility in capturing irregular
data distribution which does not span in the main axes. This property possesses low fuzzy rule demand which
compensates possible increase of network parameters as a result of the non-diagonal covariance matrix [13].
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The interval-valued activation degree (12) can be derived further using the principle of interval type-2 fuzzy
system where the expression of upper and lower activation functions Gi, Gi can be obtained. This step,
however, calls for a transformation mechanism to adapt to the working formula of interval type-2 Gaussian
function with uncertain means. The transformation strategy finds a one-dimensional representation of high-
dimensional Gaussian function where the center-to-cutting point distance of the non-axis-parallel ellipsoidal
cluster is analyzed. This transformation strategy offers a fast transformation mechanism because no eigenvalues
and eigenvectors have to be calculated in every observation but it is rather inaccurate to represent an ellipsoidal
cluster with around 45 degrees rotation. Since the centroid of the ellipsoidal cluster Ci remains the same when
projected to one dimensional space, the focus of transformation strategy is to elicit the radii of high-dimensional
multivariate Gaussian activation σi in the low dimension as follows:

σi =
r̃i√
Σi,i

= r̃i

√
Σ−1

i,i , (17)

where r̃i =
ri+ri

2 is the Mahalanobis distance of the ith rule to an incoming samples and Σ−1
i,i is the diagonal

elements of inverse covariance matrix. The same centroid can be applied in the one-dimensional space without
any amendment. Once the low dimensional representation of multivariate Gaussian function is extracted, the
same concept of interval type-2 fuzzy system can be adopted to quantify the interval-valued activation degrees
as follows:

µi,j =


N(ci,j , σi,j ;xj), xj < ci,j
1 ci,j ≤ xj ≤ ci,j
N(ci,j , σi,j ;xj) xj > ci,j ,

(18)

µ
i,j

=

{
N(ci,j .σi,j ;xj) xj ≤

ci,j+ci,j
2

N(ci,j , σi,j ;xj) xj >
ci,j+ci,j

2 ,
(19)

Once the activation degree per input attribute is elicited using (18), (19), it is combined using the product
t-norm operator to induce the upper and lower activation degrees Gi,Gi as follows

Gi =

n∏
j=1

µ
i,j
, Gi =

n∏
j=1

µi,j . (20)

The use of the product t-norm operator in (20) opens possibility to apply the gradient-based learning approach
compared to the min t-norm operator. Nevertheless, the flaw of this t-norm operator is apparent when dealing
with a high input dimension because activation degree decreases as the input variables increase due to the
nature of membership function spanning from 0 to 1. For simplicity, the final output expression of DSSCN
(12) can be also expressed in one compact form as follows:

yo =
(1− q0)

∑R
i=1Giβi + q0

∑R
i=1Giβi∑R

i=1(Gi +Gi)
, (21)

where qo is the design coefficient of the o− th target class performing the type reduction mechanism. The
MIMO architecture is implemented here to infer the final predicted class label of eSCN where each rule
comprises multiple output weights per each class attribute. That is, the MIMO architecture is supposed to
resolve the class overlapping issue because it takes into account each class specifically by deploying different
sets of output weights per class [21]. This approach is more robust in handling the class overlapping problem
than the popular one versus rest method because it retains the original class structure. The final predicted class
of eSCN is written as follows:

y = max(yo)
1≤o≤m

. (22)

The MIMO structure starts from encoding of true class label to the vector form where a component is assigned
to “1”. Suppose that if the true class label is 2 and the output dimension is 3, the true class label vector is
expressed as T = [0, 1, 0]. This scenario differs from the direct regression of class label which does not
cope with steep class changes. This drawback is caused by the nature of regression-based classification
scheme inducing a smooth transition when regressing to the true class label. Figure 5.4 exhibits the network
architecture of eSCN.

• Hidden Unit Growing Strategy: The hidden node growing procedure of eSCN is akin to that of eRVFLN
exploiting the concept of recursive density estimation [33]. It distinguishes itself from the original recursive
density estimation method in the use of weighting factor which aims to address the large pair-wise distance
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problem after observing outliers or remote samples [37]. The underlying working principle of this approach
is to calculate an accumulated distance of a sample with all other samples seen thus far without keeping all
samples in the memory. Moreover, our approach is designed for a non-axis-parallel ellipsoidal cluster whereas
the original version only covers the hyper-spherical cluster case. The advantage of this approach is relatively
robust against outliers because it takes into account overall spatial proximity information of all samples. The
hidden node growing criteria are formulated under two conditions. The first condition is set from the fact
where a sample having high summarization power improves generalization potential of hidden nodes. A data
sample with the highest density is added to be a new hidden node. The second condition is defined to expand
the coverage of existing structure which captures non-stationary environments. This setting is realized by
incorporating samples with the lowest density which indicates possible concept change. This condition leads
to the necessity of a hidden node pruning scenario because such rule may not be supported by the next training
samples. Nevertheless, this condition is prone to outlier, thus calling for the hidden node pruning scenario to
obviate superfluous hidden nodes which do not play significant role during their lifespan. In addition, the rule
replacement condition as known as the Condition B in [33] is integrated to set a condition for an incoming
sample to replace the closest hidden node. This condition addresses the overlap among hidden nodes and is
undertaken by checking the firing strength of the new hidden node candidate (9). The similarity threshold is
determined from the chi-square distribution with 5% to 30% critical level.

• Hidden Node Pruning Strategy: The hidden node pruning role is warranted to attain a compact and parsimo-
nious network structure where it is capable of detecting and pruning inactive hidden nodes. This learning
module prevents overfitting situation which exists due to many clusters sitting adjacent to each other. eSCN
benefits from the type-2 relative mutual information method (T2RMI) which presents an extension of RMI
method for the type-2 fuzzy system. This method analyzes relevance of hidden node in respect to the current
data trend by quantifying correlation of hidden nodes and target classes. That is, superfluous hidden nodes are
specified as those having little correlation with up-to-date target concept induced by changing data distributions
or outliers mistakenly inserted as hidden nodes. In the original eT2RVFLN, the symmetrical uncertainty
method is used to measure the correlation of input features and the correlation of hidden units to the target
classes. The MICI method can be also exploited as an alternative. The symmetrical uncertainty method forms
a nonlinear correlation measure where it is based on the information gain and entropy analysis. This method
utilizes the differential entropy concept using the normal distribution assumption.

• Parameter Learning Strategy: all network parameters except the output weights are randomly initialized using
the SCN concept while the output weights are updated on the fly using the fuzzily weighted generalized
recursive least square (FWGRLS) method [21]. The FWGRLS method can be seen as a generalization of
FWRLS method [33] where it distinguishes itself from its predecessor in the use of weight decay term in
the cost function of RLS method [38]. This leads to completely different tuning formulas but under some
simplifications the final update formulas differs only in the presence of additional weight decay term. The
weight decay term limits the outputs weights in small values which improves model’s generalization. This
trait also underpins a compact and parsimonious network structure since an inactive hidden node can be
deactivated by forcing its output weights to small values. The use of weight decay term adopts similar idea of
generalized recursive least square (GRLS) method [39] but the GRLS method is designed under the global
optimization framework where a global covariance matrix encompassing all hidden nodes is constructed. The
global learning scenario is considered less feasible in the structural learning situation than the local approach
since changing system structure calls for a resetting of output covariance matrix. Furthermore, the local
learning scenario has been proven to be more robust against noise [10].

• Stochastic Configuration Principle: the theory of SCN has come into picture to resolve the underlying
bottleneck in building randomized learners. The readers must be aware that the universal approximation
property of randomized approaches do not always hold for the random parameters taken from the uniform
distribution over the range of [-1,1]. It is worth mentioning that SCN starts its training process from scratch
with no initial structure. The hidden node is incrementally constructed by virtue of the hidden node growing
procedure. Details of the learning algorithms for building SCN can be read in [5] and it is omitted here for
simplicity.
Since DSSCN works in the one-pass learning mode which prohibits to revisit preceding samples, the SC-II
algorithm is implemented. That is, the sliding window has to take at most as the size of data chunk and has to
be completely discarded after being used. For simplicity, the size of sliding window is fixed as the size of data
chunk. Table 2 outlines the pseudocode of SCN-based randomization strategy. The concept of SCN is applied
when adding a new hidden node or when satisfying the hidden node growing condition determined using an
extension of the recursive density estimation method [33]. It randomly select the inverse covariance matrix of
the multivariate Gaussian function from a dynamic scope while the center of the multivariate Gaussian hidden
node is set as an incoming data sample passing the hidden node growing condition. The output weight vector
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Figure 5: Evolving Stochastic Configuration Networks

Table 2: Network Parameters of DSSCN

Parameters Dimension Initialization Tuning Strategy

C̃i ∈ [Ci, Ci] 1× n Ci = Xn − δ, Ci = Ci = Xn + δ N/A∑−1
i n× n SCN-based initialization strategy N/A
q 1×m user-defined N/A
α 1× n initialized at 1 the online input weighting scenario - Section 6.1
W i (2n+ 1)×m Wwin the FWGRLS method
Ωi (2n+ 1)× (2n+ 1) ωI the FWGRLS method

of a new hidden node is set as that of the winning node. The underlying reason is its closest proximity to
the new hidden node, thus it is expected to characterize similar approximation curve. The output covariance
matrix of the new hidden node in the FWGRLS method is assigned as ΩR+1 = ωI where ω is a positive
large constant. It is well-known that the convergence of FWGRLS method is assured when the new output
covariance matrix is crafted as a large positive definite matrix. This setting addresses the fact that a newly
initialized rule still has poor approximation power, thereby calling for a large correction factor using a large
positive definite matrix ΩR+1 [40]. It is worth noting that the sliding window is applied to calculate the
constraint parameter and the pseudo-inversion method is excluded from the learning procedure of eSCN. The
parameter adjustment scenario is done using the FWGRLS method to expedite the training process. Moreover,
the convergence of SCN has been theoretically proven [5] and the solution of SCN cannot be seen as an ad-hoc
solution. SCN produces random parameters that maximizes the robustness variable ζ from a dynamically
generated scope [−ξ, ξ]. Note that the predefined constants, Tmax, ξmin, ξmax, only determines the population
of search space or resolution of SCN. The higher the value of Tmax the higher the number of candidates of
random variables is while the increase of ξmin, ξmax also increases the possible range of random variables.
Table 1 displays the network parameters of DSSCN including the number of dimension, the initialization
strategy and the learning strategy.

6 Performance Evaluation

This section aims to numerically validate the efficacy of DSSCN by means of thorough simulations utilizing six
synthetic and real-world data streams and comparisons with prominent data stream analytics methods in the literature.
Simulations are undertaken under MATLAB environment of an Intel (R) Core i5-6600 CPU @ 3.3 GHZ with 8 GB
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Algorithm 2 Pseudocode of SCN-based Initialization Strategy

1: Input: Data Chunk (X,T ) ∈ RN×(n+m),
the number of hidden nodes at the current time step R, the residual error eR(X) ∈ RN×m,
the interval-valued activation degrees G̃1:R(X) ∈ RN×Rthe user defined parameters:
the maximum stochastic configuration Mmax, a set of positive scalars T = {ξmin,∆ξ, ξmax}and0 < r < 1.

2: Output: Parameters of New Hidden Node C̃R+1 = [CR+1, CR+1] ∈ RR×n
∑

R+1
−1 ∈ Rn×n,W ∈

RR∗(2n+1)×1,Ω ∈ R(2n+1)×(2n+1).
3: if A New Hidden Node is Added then
4: Step 1: Allocate The Center of Activation Function CR+1 = Xn − δ, CR+1 = Xn + δ While Using The SCN

Concept for Inverse Covariance Matrix
∑−1
R+1:

5: Create: two empty sets Φ,Ψ
6: for ξ ∈ T do
7: for k = 1 to Tmax do
8: Assign: the inverse covariance matrix in the range of [−ξ, ξ] randomly
9: Calculate: the robustness variable ζR+1,o and µR+1 = (1−r)

(R+1)

10: if min(ζR+1,1, ..., ζR+1,m) ≥ 0 then
11: Save: random parameters

∑−1
R+1 in the temporary matrix Ψ an ζR+1 =

∑m
o=1 ζR+1,o in Φ, respectively

12: end if
13: end for
14: if Ψ is not empty then
15: Choose: random parameters

∑−1
R+1maximizing ζR+1 in Φ as parameters of new hidden node

16: Break
17: else
18: Choose: τ ∈ (0, 1− r) randomly
19: Update: r = r + 1
20: end if
21: end for
22: Step 2: Allocate The Output Weight Parameters:
23: Allocate: the output weight vector and output covariance matrix of the new hidden node respectively as

WR+1 = Wwin,ΩR+1 = ωI
24: end if

of RAM and the MATLAB code of DSSCN is made publicly available in 2. Three popular artificial data streams,
namely SEA [41], SUSY [42] and Hyperplane [43], are used to test the performance of DSSCN, while DSSCN learning
performance is also examined with two real-world data streams: electricity pricing valuation and weather prediction
[23]. Another data stream problem is picked up from our indoor RFID localization problem in the manufacturing
shopfloor where the underlying goal is to locate the position of raw materials in the production line. DSSCN is also
compared with data stream algorithms: pENsemble [15], Learn++.NSE [24], Learn++.CDS [23], pClass [21], eT2Class
[22]. Moreover, the advantage of DSSCN is indicated by comparison with eSCN with the absence of deep stacked
network architecture. The periodic hold-out process is followed as our simulation protocol [10]. That is, each data
stream is divided into two parts where the first part is set for model updates, while the second part is exploited to
assess the model’s generalization. In addition, Section 6.7 reports our simulation under the prequential test-then-train
procedure to show that DSSCN works equally well in two popular evaluation procedure of data stream algorithms.

6.1 SEA Dataset

The SEA problem is a popular problem containing 100 K artificially generated data samples [41]. This problem is well-
known for its abrupt drift component induced by three dramatic changes of the class boundary θ = 4→ 7→ 4→ 7.
That is, this problem characterizes a binary classification problem where data samples are classified as the class 1 if it
falls below the threshold f1 + f2 < θ while class 2 is returned if a sample is higher than the threshold f1 + f2 > θ.
Moreover, the modified version of Ditzler and Polikar [23] is used in our numerical study where it differs itself from the
original version in the class imbalanced and recurring drift properties with 5 to 25% minority class proportion. Data are
drawn from the uniform distribution in the range of [0,10] and the prediction is underpinned by three input attributes
but the third input attribute is just a noise. Data stream environment is generated by batches of 1000 data samples with

2https://www.researchgate.net/profile/Mahardhika_Pratama
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Table 3: SEA Dataset

Model Classification Rate Node Layer/Local Model Runtime Input Architecture
DSSCN 0.96±0.02 7.64±4.5 2.23±1.18 0.82±0.14 3 Deep
eSCN 0.95±0.02 1 1 0.46±0.27 3 Shallow
Learn++NSE 0.93±0.02 N/A 200 1804.2 3 Ensemble
Learn++CDS 0.93±0.02 N/A 200 2261.1 3 Ensemble
pENsemble 0.97±0.02 4.06±1.8 2.03±0.3 0.89±0.12 3 Ensemble
pClass 0.89±0.1 6.6±4.2 1 0.42±0.3 3 Shallow
eT2Class 0.88±0.23 1.5±0.5 1 0.34±0.11 3 Shallow

Table 4: Weather Dataset

Model Classification Rate Node Layer/Local Model Runtime Input Architecture
DSSCN 0.81±0.02 1.7±0.7 1.7±0.7 1.23±0.29 8 Deep
eSCN 0.69±0.03 15.5±3.4 1 6.51±2.29 8 Shallow
Learn++NSE 0.75±0.03 N/A 10 184.4 8 Ensemble
Learn++CDS 0.73±0.02 N/A 10 9.98 8 Ensemble
pENsemble 0.78±0.02 3±1.05 1.5±0.5 1.4±0.06 8 Ensemble
pClass 0.8±0.04 2.3±0.5 1 1.8±0.22 8 Shallow
eT2Class 0.8±0.03 2.3±0.3 1 1.8±0.1 8 Shallow

200 time stamps and the concept drift takes place at every 50 time stamp. Figure 6.1(a)-(d) pictorially exhibits the trace
of classification rate, hidden node, hidden layer and input weights. Table 3 tabulates consolidated numerical results of
benchmarked algorithms.

The efficacy of DSSCN is evident in Table 3 where DSSCN delivers accurate prediction beating other algorithms except
pENsemble. This result, however, should be carefully understood because of different base learners between DSSCN
and pENsemble. pENsemble utilizes pClass as the base learner which fully learns all network parameters whereas eSCN
is deployed in the DSSCN. That is, eSCN is designed following a randomized approach presenting rough estimation of
the true solution. Figure 6.1(a) exhibits that DSSCN responds timely to concept drift where a new layer is introduced
provided that a drift is identified. Furthermore, this fact also confirms that addition of new layer can be applied to
cope with concept drift. A new layer characterizes recent observations and is placed at the top layer of deep stacked
structure controlling the final output of the DSSCN. In addition, the layer pruning mechanism functions to coalesce
redundant layers, thereby relieving the model’s complexity. Adaptive feature weighting mechanism is exemplified in
Figure 6.1(d) where an input feature showing high mutual information is assigned with a low weight to minimize its
influence to the training process. Another interesting observation is found in the scope of random parameters. Hidden
node parameters are randomly sampled from the range [-0.5,0.5], [-1,1], [-2,2] and [-3,3] automatically found in the
training process. These ranges are fully data-driven where the SCN-based initialization strategy is executed whenever a
new rule is created.

6.2 Weather Dataset

The weather dataset is exploited to examine the efficacy of DSSCN because it features recurring drift which uniquely
refers to reappearance of previously seen data distribution due to weather seasonal changes. This dataset is a subset of
NOAA database comprising daily weather data from different stations around the world. Among hundreds of weather
stations, daily records of weather conditions from Offutt Air Force Base in Bellevue, Nebraska is chosen because it
possesses the most complete recording for over 50 years which allows to portray not only ordinary seasonal change
but also long-term climate change [23]. The underlying goal of this problem is to perform a binary classification of
one-step-ahead weather prediction whether rain would occur on the next day with the use of eight input attributes. A
total of 60000 data points are involved in our simulation where the average numerical results over ten time stamps are
reported in Table 4. Figure 6.2(a) exhibits the evolution of DSSCN classification rates and Figure 6.2(b) depicts the
evolution of hidden nodes, while the evolution of hidden layer is shown in Figure 6.2(c) and the trace of input weights
is visualized in Figure 6.2(d).

Referring to Table 4, DSSCN outperforms other benchmarked algorithms in terms of predictive accuracy and hidden
layers/local experts. It is observed that DSSCN indicates significant performance improvement over eSCN using a
shallow network structure. Compared to pENsemble - an evolving ensemble learner, DSSCN produces slightly more
inferior predictive accuracy than pENsemble but involves lower number of local experts. DSSCN also undergoes the
fastest training speed than other algorithms. This fact can be explained from the update strategy of DSSCN where
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Figure 6: SEA data

Figure 7: weather data

only the last hidden layer experiences the tuning phase. In addition, eSCN encompasses all data samples of the data
chunk during construction of new base building unit to discover the best scope of hidden node parameters. Figure 6.2(b)
and 6.2(c) confirms the growing and pruning property of DSSCN in which it is not only capable of self-organizing its
hidden nodes but also its hidden layers with addition and removal of base building units. As portrayed in Figure 6.2(d),
the online feature weighting mechanism controls the influence of input features where it allows an input feature to
pick up again in the future. The SCN-based intialization strategy produces the scope of [-100,100] applied to generate
new hidden node parameters. It is worth mentioning that the SCN-based initialization strategy is executed in the main
training process of eSCN.
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Table 5: Electricity Pricing Dataset

Model Classification Rate Node Layer/Local Model Runtime Input Architecture
DSSCN 0.734±0.16 3.83±1.82 1.4±0.49 0.2±0.07 8 Deep
eSCN 0.73±0.17 1 1 0.04±0.006 8 Shallow
Learn++NSE 0.69±0.08 N/A 119 211.2 4 Ensemble
Learn++CDS 0.69±0.08 N/A 119 211.2 4 Ensemble
pENsemble 0.75±0.16 1.01±0.07 1.01±0.07 1.4±0.06 8 Ensemble
pClass 0.68±0.1 3.5±2.4 1 7.1±4.4 8 Shallow
eT2Class 0.72±0.17 4.6±1.3 1 0.3±0.08 8 Shallow

Table 6: Susy Dataset

Model Classification Rate Node Layer/Local Model Runtime Input Architecture
DSSCN 0.78±0.03 10.73±3.4 10.73±3.4 0.34±0.03 18 Deep
eSCN 0.76±0.04 18.9±11.92 1 18.3±20.08 18 Shallow
pENsemble 0.76±0.04 1.6±0.7 2.84±1.4 0.6±0.28 18 Ensemble
pClass 0.73±0.06 1.96±0.26 1 0.79±0.3 18 Shallow
eT2Class 0.74±0.06 5.2±1.5 1 2.42±0.6 18 Shallow

6.3 Electricity Pricing Dataset

The electricity pricing dataset describes prediction of electricity demand fluctuation in the state of New South Wales
(NSW), Australia where the main objective is to forecast whether the electricity price of NSW in the next 24 hours
will be higher than that of Victoria. Eight input attributes are put forward to guide the electricity demand prediction.
Furthermore, the modified electricity pricing dataset in [23] is used to simulate the class imbalance problem with the
imbalance ratio of 1:18 by performing undersampling to the minority class. It is worth mentioning that this problem
features the non-stationary characteristic as a result of dynamic market condition and economic activities. Numerical
results of all consolidated algorithms are reported in Table 5.

DSSCN clearly delivers promising performance where it is only inferior to pENsemble in terms of accuracy by
about 1 %. Compared to its shallow counterpart, eSCN, the use of a deep network structure is capable of delivering
improvement of model’s generalization. The unique trait of DSSCN is viewed in the incremental construction of deep
network structure where not only hidden nodes can be automatically grown and pruned but also hidden layer is fully
self-organized. This elastic structure adapts to concept drifts because concept drift can be identified and reacted in
accordance with its severity and rate. The adaptive scope selection property of DSSCN is substantiated by the fact that
[-3,3] is selected during the training process.

6.4 Susy Dataset

Susy problem actualizes a big streaming data problem consisting of five millions records allowing algorithmic validation
in the lifelong learning fashion. This problem is a binary classification problem produced by Monte Carlo simulations
and describes classification of signal process that generates supersymmetric particles [42]. The classification problem is
guided with the use of 18 input attributes where the first eight input attributes present the kinematic properties while the
remainders are simply the function of the first eight input features. All benchmarked algorithms are run through 10000
data batches where each batch carries 500 data samples. 400 data points are reserved for model updates while the rest of
100 samples are exploited for validation. The training samples are collected from the first 4.5 millions of data samples
while the testing data are sampled from the next 500 K data points. Numerical results of consolidated algorithms are
summarized in Table 6. Figure 6.4(a) visualizes the trace of classification rates and Figure 6.4(b) exhibits the trace
of hidden nodes, while the trace of hidden layers and feature weights are displayed in Figure 6.4(c) and Figure 6.4(d)
respectively.

From Table 6, DSSCN delivers the highest classification rate. It is shown that DSSCN’s deep hierarchical network and
learning modules has led to 2% improvement of predictive accuracy of eSCN relying on a shallow network architecture.
DSSCN also outperforms other benchmarked algorithms in term of execution time. This fact differs from the ensemble
learner where one can simply adjust the most relevant ensemble member because each of them is loosely coupled.
Figure 6.4(b) also depicts the incremental constructurion of deep neural network where new layer can be incorporated
on demand while redundant layers can be merged. It is observed that DSSCN actualizes dynamic confidence levels
of drift detector where initially the confidence level is set high but gradually reduces by means of the exponentially
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Figure 8: SUSY data

decaying function (11). This setting makes possible to increase the depth of neural network more intensively as more
training samples become available. It is well-known that the success of deep neural network is subject to sample’s
availability. Because the drift detection method is applied to grow the network structure, the decrease of confidence level
is capped at 90% to prevent introduction of hidden layers during the drift-free state. Learn++NSE and Learn++CDS are
excluded from this problem because they were terminated before obtaining numerical results although they have been
executed for three days. the scope of [-100,100] is automatically picked up by the SCN-based intialization strategy in
this numerical example.

6.5 Hyperplane Dataset

The hyperplane problem presents a binary classification problem clasifying a d-dimensional data point into two classes
with respect to the position of a random hyperplane. This problem is taken from the Massive Online Analysis (MOA)
[43] - an open source software for data stream analytics. The prominent characteristic of this problem is found in the
gradual drift where initially data samples are drawn from a single data distribution with probability one. The transition
period takes place by the introduction of the second distribution which slowly interferes data generarion process before
completely replaces the first data distribution. A data sample is assigned as class 1 if

∑d
i=1 xiwi > w0 is satisfied

whereas class 2 is returned if the condition is violated. This dataset carries 120 K samples equally partitioned into 100
data batches without changing data order to simulate data stream environments. Each data stream comprises 1200
samples where the first 1000 samples are injected for the training process while the rest is reserved for testing samples.
The concept drift comes into picture after the 40th time stamp. Table 7 sums up numerical results of all consolidated
algorithms.

DSSCN delivers the most encouraging performance in terms of accuracy and network complexity. Compared to Learn++
family, DSSCN offers more parsimonious network structure because a new data stream does not necessarily cause
addition of a new local expert due to the use of drift detection mechanism. It is also observed that DSSCN’s runtime is
comparable to that shallow neural network variants because only the last layer is fine-tuned. It is also reported that the
scope of random parameters are obtained from the ranges of [-1,1],[-1.5,1.5],[-2,2],[-3,3] confirming the adaptive scope
selection of DSSCN.
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Table 7: Hyperplane Dataset

Model Classification Rate Node Layer/Local Model Runtime Input Architecture
DSSCN 0.92±0.02 9.3±1.98 1.89±0.37 0.54±0.13 2 Deep
eSCN 0.92±0.02 4.21±0.54 1 0.82±0.15 2 Shallow
Learn++NSE 0.91±0.02 N/A 100 926.04 2 Ensemble
Learn++CDS 0.9±0.0 N/A 100 2125.5 2 Ensemble
pENsemble 0.92±0.02 2.7±0.7 1.87±0.34 0.7±0.23 2 Ensemble
pClass 0.91±0.02 3.8±1.7 1 2.7±1.4 2 Shallow
eT2Class 0.89±0.1 2.04±0.2 1 2.5±1.5 2 Shallow

Figure 9: RFID localization testbed

6.6 RFID Dataset

RFID-based localization has gained increasing popularity and is capable of achieving milimetre accuracy. Furthermore,
the use of COTS readers feeding the phase information of the RF backscatter signal from the RFID signal enhances
object tracking accuracy. This approach offers a cheaper solution than traditional approach in the object localization
involving deployment of antennas for every single object on a rack.This problem presents the RFID-based localization
in the manufacturing shopfloor where the main goal is to track objects placed on the rack or shells based on the phase
information of the RFID tags (Courtesy of Dr. Huang Sheng, Singapore). The application of machine learning for the
RFID based localization allows improvement of RFID-based localization because the phase signal is heavily affected by
the positional changes of the objects. In addition, multiple items on the rack influences the signal phase and amplitude
distribution of a target tag. Online learning is highly demanded in this application to solve the so-called multipath effect
due to reflections and scatterring distorting the RSSI and phase of the signal. This problem is frequently encountered
positional configurations of the rack or shells or the sudden presence of unknown objects. Figure 6.5 illustrates our test
bed.

The test bed consists of a steel storage rack with five compartments where each compartment is occupied by 5-6 objects
with different dimensions attached with COTS RFID tags. Two UHF antennas are mounted on the rack and connected
to COTS RFID receiver. The RSSI and phase signals reading of the COTS RFID receiver will be transmitted to the
host computer by means of Ethernet connections. The rack is divided into four zones by the installment of four RFID
reference tags in different sections of the rack. The RFID dataset contains 281.3 K records of RSSI and phase signals
with four target classes corresponding to the four zones of the rack. Our experiment is carried out using the periodic
hold out protocol with 100 time stamps. In each time stamp, 2 K data samples are exploited for model updates, while
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Table 8: RFID Dataset

Model Classification Rate Node Layer/Local Model Runtime Input Architecture
DSSCN 0.99±0.02 5.2±0.56 1.04±0.2 1.97±0.46 1 Deep
eSCN 0.92±0.08 18.69±11.92 1 18.3±20.08 1 Shallow
Learn++NSE 0.99±0.01 N/A 100 5.69±56.88 1 Ensemble
Learn++CDS 0.99±0.01 N/A 100 7.99±9.92 1 Ensemble
pENsemble 0.67±0.02 2.02±0.2 1.01±0.07 0.89±0.12 1 Ensemble
pClass 0.95±0.08 2 1 1.13±0.25 1 Shallow
eT2Class 0.94±0.04 2 1 1.13±0.24 1 Shallow

Table 9: Scopes of Random Parameters

Problems Ranges
SEA [−0.5, 0.5], [−1, 1], [−2, 2], [−3, 3]
Weather [−100, 100]
Electricity [−3, 3]
SUSY [−100, 100]
Hyperplane [−1, 1], [−1.5, 1.5], [−2.2], [−3, 3]
RFID [−0.1, 0.1], [−1, 1], [−2, 2], [−3, 3]

the rest 813 data points are fed to examine model’s generalization potential. Consolidated numerical results are summed
up in Table 8.

DSSCN produces promising generalization power attaining 99% classification rate. It is comparable to Learn++NSE
and Learn++CDS but incurs less complexity in terms of training speed and network complexities because DSSCN
realizes controlled growth of network structure where a new data stream does not necessarily trigger addition of new
building units. The importance of the network depth is borne out in Table 8 where it delivers 7% improvement on
accuracies compared to its shallow counterpart, eSCN. It is also shown that eSCN runtime is more sluggish than those
eT2Class and pClass because it has to fully utilize all samples in the data chunk to execute the scope selection procedure.
It is worth noting that the sliding window size in our numerical study is fixed as the data chunk size. [-0.1,0.1], [-1,1],
[-2,2], [-3,3] are selected by the SCN-based initialization strategy. Note that SCN-based initialization strategy is
triggered on the fly whenever a new hidden node is appended. In other words, every hidden node are randomly crafted
from dynamic random sampling scopes. Table 9 displays the ranges of random parameter produced by the SCN-based
initialization strategy for all presented use cases.

6.7 Prequential Test-then-Train Protocol

This section discusses numerical validation of DSSCN in the prequential test-then-train scenario - another prominent
evaluation procedure for data stream algorithms. Unlike the hold-out approach, the prequential test-then-train procedure
first tests generalization performance of a model before being used for model updates. This scenario considers the fact
that data stream often arrives without label and calls for operator effort to annotate the true class labels. There exists a
delay factor which should be taken into account in getting access to the true class label because ground truth cannot be
immediately obtained. The simulation protocol is exhibited in Fig. 2. As with earlier simulations, DSSCN is evaluated
in five facets: classification rate, hidden nodes, hidden layer, runtime and input features and is simulated under this
procedure for all the six problems. The number of time stamps are set as 240,91,200,566,36, respectively for hyperplane,
electricity pricing, SEA, RFID, weather and SUSY problems. This setting leads each data batch to comprise 500 data
points. This setting is meant to arrive at moderate-size data batch which properly examines algorithm’s aptitude for
concept drift. DSSCN is compared to a fixed deep neural network (DNN) to illustrate the benefit of stochastic depth to
the learning performance. The number of hidden layer and node in the DNN are set such that it carries comparable
complexity as that of DSSCN. In addition, DNN is run in a single-epoch thus being equivalent to an online learner with
fixed capacity. Numerical results are reported in Table 10.

It is clear from Table 10 that learning performance of DSSCN is not compromised under the prequential test-then-train
scenario. Moreover, the evolving nature of DSSCN is demonstrated where hidden layer and hidden nodes can be
flexibly added and discarded. It is also noted that only the last layer is subject to model update during the stable phase.
This setting is meant to expedite model updates without loss of generalization power since the last layer is supposed to
craft the final predictive output. It is worth noting that DSSCN is structured under a deep stacked network architecture
in which every layer takes the original input attributes mixed with a random shift.

DSSCN also outperforms predictive accuracy of DNN in four of six problems featuring real-world dataset with
substantial gap - almost 10% for weather problem and 20% for SUSY problem. This facet is possibly attributed by the
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Table 10: Prequential Test-Then-Train Procedure

Model Classification Rate Node Layer/Local Model Runtime Input
SEA-DSSCN 0.91±0.02 10.29±4.09 2.15±0.82 0.54±0.11 3
SEA-DNN 0.92±0.62 10 2 0.12±0.02 3
Hyperplane-DSSCN 0.91±0.02 12.96±5.18 4.9±1.86 0.52±0.17 4
Hyperplane-DNN 0.92±0.26 19 4 0.18±0.02 4
Weather-DSSCN 0.8±0.02 5.08±2.9 2.4±1.27 0.46±0.21 8
Weather-DNN 0.72±0.08 5 2 0.11±0.02 8
Electricity Pricing-DSSCN 0.68±0.13 3.58±1.45 3.58±1.45 0.32±0.13 8
Electricity Pricing-DNN 0.57±0.11 4 2 0.16±0.16 8
RFID-DSSCN 0.99±0.03 7.87±3.93 3.08±1.29 0.33±0.11 1
RFID-DNN 0.99±0.27 9 2 0.11±0.01 1
SUSY-DSSCN 0.77±0.02 28.72±11.22 10.62±3.88 0.43±0.08 18
SUSY-DNN 0.54±0.87 29 11 0.26±0.02 18

Table 11: Ablation Study

Model Classification Rate Node Layer/Local Model Runtime Input
SEA-w/o FW 0.88±0.11 10.29±4.09 11.16±4.61 2.34±0.88 3
SEA-w/o LP 0.91±0.05 14.38±6.03 3.19±1.3 0.45±0.1 3
Hyperplane-w/o FW 0.88±0.1 10.74±4.23 2.34±0.91 0.54±0.12 4
Hyperplane-w/o LP 0.91±0.02 12.96±5.18 4.92±1.86 0.5±0.16 4
Weather-w/o FW 0.69±0.2 5.47±3.23 2.42±1.32 0.65±0.4 8
Weather-w/o LP 0.8±0.02 5.17±3.06 2.41±1.31 0.52±0.17 8
Electricity Pricing-w/o FW 0.59±0.1 45.4±23.09 3.58±1.45 1.89±2.48 8
Electricity Pricing-w/o LP 0.68±0.13 3.58±1.45 3.58±1.45 0.39±0.13 8
RFID-w/o FW 0.91±0.15 10.18±5.2 3.08±1.27 0.55±0.22 1
RFID-w/o LP 0.99±0.02 7.87±3.93 3.08±1.27 0.6±0.25 1
SUSY-w/o FW 0.57±0.08 37.25±12.78 20.2±11.12 0.25±0.13 18
SUSY-w/o LP 0.75±0.08 47.97±26.03 20.2±11.12 0.37±0.11 18

interval type-2 fuzzy set of eSCN which handles noisy data better than the crisp activation function of neural network.
Although DSSCN is inferior to DNN in other two problems, DSSCN still performs equally well where the difference of
predictive accuracy between the two algorithms does not exceed 1%. Conclusive finding cannot be drawn in the context
of hidden layer and hidden node because these two hyperparametets of DNN are selected such that they are on par to
DSSCN. It is observed that DSSCN is slower than DNN in the execution time. DSSCN is built upon the stacked concept
which operates in the classifier’s level rather than in the layer’s level, thereby calling for more expensive computational
cost than that of DNN created under the multi-layer principle with a single optimization objective.

6.8 Ablation Study

This section outlines our numerical study which analyzes contribution of DSSCN’s learning modules: hidden layer
pruning, input weighting mechanism. It is done by activating and deactivating these learning modules which illustrates
to certain extent both learning modules affect the learning performance. This numerical study makes use of SEA
and hyperplane problems simulated under the prequential test-then-train procedure. The prequential test-then-train
procedure is followed here because it offers more realistic data stream scenario than the periodic test-then-train
mechanism because of the fact that data stream arrives with the absence of class labels. A classifier is supposed to
generalize them first before receiving any updates. Numerical results are reported in Table 11.

From Table 11, the effect of online feature weighting and hidden layer pruning mechanims are clearly demonstrated.
The absence of online feature weighting results in substantial drop in predictive accuracy in all six cases. Although the
evolution of feature weights reveals that feature weights revolve around 1, they remain important to DSSCN to produce
decent numerical results. Note that the feature weights functions not only to exclude unimportant input features but
also to improve feature representation via the weighting mechanism. The network compression via the layer pruning
component is proven to be effective for complexity reduction mechanism while still retaining high predictive accuracy.
It is seen that the network complexity increases when deactivating this learning component.
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7 Reason Behind Deep Structure for Data Streams

This section elaborates the rationale behind the requirement of deep approach in data stream context and why addition
of hidden layer is more effective than addition of hidden nodes in the presence of concept drift to resolve the underfitting
situation due to drift. The rationales are outlined in the sequel.

• Power of Depth: the advantage of depth in the feed-forward network has been proven not only numerically
but also theoretically in the literature. [18], It points out that addition of even only one hidden layer can be
exponentially more valuable than width (neuron, rule, etc) for standard feed-forward neural networks.
An in-depth analysis of the contribution of depth to learning performance is also studied in [25] in terms of
the number of linear regions generated by deep neural network (DNN). In p.2 of [25], it is mentioned that
the capacity to replicate computations over the input space grows exponentially with the number of network
layers. In Theorem 5 of [25], it is seen that the number of linear regions computed by a neural network is a
factor of the number of hidden layers. This finding reports the capacity of neural networks.
This result is further confirmed in [44]. It is said in the abstract that deep neural network has considerably
much more linear regions than that of a shallow network. This implies the higher the number of hidden layers
the better the capability in producing more complex functions because it can use information of previous
layers. Nevertheless, this is subject to the number of available samples (p. 2 of [44]) because it increases the
risk of overfitting. As known from the popular bias-variance dilemma, overfitting can be reduced by feeding
additional samples to the network.

• Bias-and-Variance Dilemma: in the presence of drift, it can be simply said that a model suffers from an
underfitting issue because it deals with unexplored regions. This issue incurs high predictive error due to the
high bias problem. The appropriate step in handling the high bias problem (underfitting) is by increasing
network complexity. It can be done by adding rules, neurons, classifiers as well as hidden layers. This is
the main reason why addition of neurons, rules or classifiers works well in handling concept drifts. In our
recent work [45], we address non-stationary environments by devising the bias-variance formulas as hidden
unit growing and pruning criteria. As the finding of [18], addition of new layer is more effective not only in
resolving the high bias problem as a result of concept drift but also in improving the generalization power in
the long term. This fact is recently confirmed in [46] where increasing the network depth has shown significant
performance improvement although a small filter size is used in the CNN context.

• Stochastic Depth: it is well-known that the main bottleneck of deep neural network (DNN) is found in its
static structure and in the difficulty in estimating the proper network complexity without performing some
offline mechanism. This forces one to simply go to a very deep network structure which usually gives decent
approximation power [46]. However, a very deep network architecture also faces its own set of challenges:
exploding and vanishing gradient, diminishing feature reuse in addition to expensive computational and
memory complexities. The concept of stochastic depth itself as adopted in our work is not new. In [29],
the dynamic depth network is proposed where the key idea is to start with a very deep network architecture
and drops a subset of hidden layers and bypass them with the identity function. The key difference with our
approach lies in the construction of network structure where we starts from a shallow network with only a
single generalizer (classifier) while gradually deepening the network structure if concept drift is detected.
The key is only to assure that addition of network complexity does not induce the catastrophic forgetting
problem where previously valid knowledge is erased by a new one. In realm of multi-layer network (not
stacked), addition of hidden layer when a drift occurs causes the catastrophic forgetting problem because
the final prediction heavily relies on the mechanics of last layer. This problem does not apply in the context
of stacked network structure, because each layer is formed by a local learner (classifier) and has its own
generalization power. Every layer minimizes its own cost function.

• Concept Drift Detection: the data stream problem has started to attract research attention in the deep learning
area, usually framed under the roof of continual learning (https://www.continualai.org/). Most approaches deal
with data streams in the context of multi-task learning where incoming data batch is of different tasks. In [47],
the idea of elastic weight consolidation is introduced. This approach adds new neurons for each incoming
task and EWC method is designed to assure that weigh of new tasks should not be deviated too far of the
old ones to address the issue of catastrophic forgetting. In [48], addition of some nodes for every layer is
carried out for each task and the catastrophic forgetting is handled by freezing the old parameters. These two
approaches impose prohibitive space complexity because the network capacity grows uncontrollably. [49]
offers advancement of the two approaches via the selective retraining and growing approach. These approaches
select relevant parts of old neural networks to be applied in the new tasks. Moreover, k hidden nodes are
added based on the loss function criteria. The drift detection method enables us to estimate the novelty of data
stream in respect to the old ones. Significant difference of new data stream triggers insertion of new hidden
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layer which increases capacity of network structure to accommodate new concepts. Note that concept drift is
evaluated for each data batch rather than data points. This strategy aims to have sufficient evaluation window
to declare the concept drift situation thereby preventing the false alarm. Moreover, DSSCN is equipped by
the rule growing scenario to overcome local change (per data point). On the other hand, the catastrophic
forgetting problem is dealt with the freezing mechanism, only the last layer is tuned. In addition, DSSCN
is built upon a stacked network structure which consists of a collection of classifiers connected in tandem
minimizing their own cost functions. To sum up, the use of drift detection mechanism as a way of hidden layer
growing mechanism is to set every hidden layer as representation of different concepts in the data streams.

• Numerical Results: additional numerical results of static DNNs have been added in section as a benchmark to
show performance improvement of our approach. Simulation is carried out under the prequential test-then-train
procedure. It is reported that DSSCN outperforms static DNN in terms of predictive accuracy.

8 Conclusions

The advantages of DSSCN has been validated using six real-world and synthetic datasets featuring non-stationary
characteristic. Furthermore, DSSCN has been numerically validated under two standard evaluation protocols of data
stream learner, periodic hold-out and prequential test-then-train where it performs equally well under the two scenarios
and demonstrates state-of-the art performance compared to five data stream algorithms and fixed-size DNN. The
contribution of learning components has been numerically analyzed in which each of them supports the learning
performance of DSSCN. It is worth noting that eSCN has no tuning mechanism of hidden nodes rather random
parameters are sampled from adaptively selected scope. The random parameter constraint imposes the use of all data
points in the data chunk during the creation of new hidden unit which slightly slows down model updates but remains
competitive to existing data stream methods. This result is mainly caused by the update strategy of DSSCN where
only the last layer is fine-tuned during the stable condition to generate different input representations and to overcome
the catastrophic forgetting problem. In addition, this update strategy is confirmed by the relevance of the last layer
because it is supposed to represent the closest concept to the original data distribution. That is, it is added when the
latest concept change is signalled.

Although the drift detection mechanism has been demonstrated to be very effective in growing the depth of deep neural
networks, it does not evaluate model’s generalization. It is well-known that the depth of deep neural networks has
direct connection to the generalization power. Our future work will be focused on the algorithmic development of
generalization-based criteria to evolve the structure of deep neural networks. Also, we will investigate the application
of proposed methodologies to other deep learning variants including CNN and LSTM in our future studies.
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