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1. Introduction 

There are many reports of failure of cloud adoption. Unexpected challenges have been faced 

by both service consumers and providers (Chow, Golle et al. 2009, Pepitone 2011, Linthicum 

2012, Tsidulko 2016). Expecting service providers to guarantee SLA is not always realistic  

(Qiu, Zhou et al. 2013, Gill, Smith et al. 2014). Hidden risks in cloud services operations may 

impact quality of system goals. These include issues such as vendor lock-in, data security, or 

interoperability and they are costly to resolve after moving systems to the cloud. A notable 

example is Infoplus’s report that a new high-frequency cloud-based trading system started 

making unprofitable trades up to 40 times per second. This forced New York Stock Exchange 

to halt all trading and caused a loss of over $440 million (Musiienko December 2017). Infoplus’ 

survey conducted by iLand, found that almost 57% and 44% of Amazon Web Service (AWS) 

and Microsoft Azure users have reported stalled or failed cloud adoption. Another survey 

conducted by NTT Communication concludes that 41% of the decision makers believed that 

migrating complex systems to the cloud is more trouble than its worth (Communications 2015).  

Complete knowledge about those hidden risks is typically not available. A system architect 

would be tasked with re-architecting existing legacy systems to the cloud to reduce 

infrastructure cost and achieve higher throughput. However, they would be unsettled with 

many questions such as (i) Will higher system throughput be achievable in all situations? (ii) 

What risks are likely to obstruct reducing infrastructure cost and high throughput? or (iii) how 

can such risks be negated or reduced? A deeper analysis is required to identify risks and  

obstacles for quality goals. Indeed, a rigorous study of their severity of consequences is a must 

to ensure appropriate mitigation tactics are in place. Architects require more flexibility to 

explore hidden threats and avoid premature decisions (Tran, Keung et al. 2011, C.Tang 2013, 

Pahl, Xiong et al. 2013). Assisting them in this is the focus of this paper.  
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The paper continues our research efforts in facilitating cloud migration. It focuses on 

anticipating exceptional situations that can disrupt migration goals. In earlier work, we 

identified key challenges in overall re-architecting legacy system architectures to the cloud 

(Fahmideh, Daneshgar et al. 2017). That work provided guidelines to identify both high-level 

technical and non-technical architectural requirements. In a more recent effort (Fahmideh and 

Beydoun 2018), we provided an approach to store this architectural knowledge for the purpose 

of its reuse. A knowledge repository was developed. The current paper operationalises the 

deployment of such a repository by providing a decision making layer based on a probabilistic 

assessment of disruptive obstacles. This decision layer supports a system architect to 

appropriately respond and manage risks in adoption of cloud services. The reasoning approach 

is iterative and facilitates a top down refinement of obstacles. The refinement and the 

probabilistic assessment are interleaved and run iteratively. The probability of an obstacle is 

estimated at each level of refinement. In the final decision support phase, all probabilities are 

collectively used to assess the impact of an obstacle on the system quality goals. A precise 

semantic is used to represent the goal satisfaction and obstacle estimation. This underpins the 

support and propagation rules to enable formal goal reasoning. This is a novel probabilistic 

foundation for assessing obstacle severity and the concomitant degree of goal satisfaction.  

The rest of the paper is organised as follows. Section 2 provides a background on legacy 

systems migration to the cloud following and an overview of related work. Section 3 details 

the framework’s components using an example of Amazon service adoption for a legacy 

system. Section 4 shows the applicability of the framework in a scenario of goal-obstacle 

analysis for moving a digital document processing systems to Microsoft Azure cloud platform. 

Section 5 summarises the paper and discusses limitations and future directions of the research.  

2. Probabilistic goal-obstacle analysis  

Goal-oriented modelling frameworks such as KAOS and i* provide means for the elicitation, 

elaboration, and analysis of goals, from high-level strategic goals to concrete and technical 

details (Yu and Mylopoulos 1994). KAOS (Keep All Objects Satisfied) supports different 

levels of formalism for expressing goals and reasoning about them. The levels can vary from 

semi-formal analysis goal models to formal when a precise reasoning is required (Dardenne, 

Van Lamsweerde et al. 1993, Van Lamsweerde and Letier 2004). The goals are iteratively 

refined through top-down approach (by asking how questions to refine goals into sub-goals) as 

well as bottom-up approach (by asking why questions to identify parent goals). KAOS’s 

concepts used in this research are detailed in what follows.  

Goal. A goal is a desired property or statement to be satisfied by a system through the 

collaboration of agents or actors. Goals may vary in abstraction from business level to fine-

grained technical (Letier 2001). Linear temporal logic (LTL) may be used for formally 

representation of a goal. It is in a general form like 𝐶 → 𝛩𝑇 where 𝛩 represents a LTL operator 

such as: o (next state), e (sometimes in the future), ◊ (sometimes in the future before deadline 

d), □ (always in the future), ◊ ≤𝑑 (always in the future up to deadline d), W (always in the 

future unless), U (always in the future until), and where P → Q means □ (P→Q).  

Obstacle. An obstacle to a goal is an exceptional situation/condition that prevents the goal 

from being satisfied (Potts 1995, van Lamsweerde and Letier 2000, van Lamsweerde 2004). 

Obstacles can be technical or non-technical nature. Obstacles and goals are dual notions. They 

capture desirable and undesirable conditions, respectively (Letier 2001).  

AND/OR refinement. In a goal model, goals are structured through AND/OR refinement 

mechanisms. They identify how goals contribute to each other. An AND-refinement link 

decomposes a parent goal into a set of fine-grain child goals where satisfying all child goals 

yield satisfaction of the parent goal. An AND-refinement should be complete and consistent 
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(Darimont and Van Lamsweerde 1996). A refinement is said to be complete if all child goals 

suffice the satisfaction of the parent goal. This is represented by 

{𝑆𝐺1, 𝑆𝐺2, 𝑆𝐺3, … 𝑆𝐺𝑛, 𝐷𝑜𝑚𝑎𝑖𝑛} = 𝐺 (complete refinement). If there are no contradictions 

between all goals, then the refinement is said to be consistent in the domain, i.e. 

{𝑆𝐺1, 𝑆𝐺2, 𝑆𝐺3, … 𝑆𝐺𝑛, 𝐷𝑜𝑚𝑎𝑖𝑛} ≠ 𝑓𝑙𝑎𝑠𝑒 (consistent refinement). On the other hand, OR-

refinement link decomposes a goal into a set of alternative ways to satisfy a top goal and it is 

represented as for all i: {O𝑂𝑖, Domain} = O. Goals may be in contradiction. Conflict link is 

can be used for this purpose but such links are out of the scope our work at this stage.  

AND/OR refinements can also be defined for obstacles. An AND-refinement means that the 

occurrence of the parent obstacle depends on all its child obstacles. An OR-refinement means 

the occurrence of a root obstacle depends on the occurrence of at least one its child sub obstacle. 

The completeness and consistency conditions are also the same for the obstacles. Figure 1 

shows the graphical notation of this notion using during analysis.  

 
Figure 1 goal obstacle analysis diagram notation 

The proposed approach uses the probabilistic view for goal and obstacle analysis grounded on 

a system-specific situation as suggested in (Cailliau and van Lamsweerde 2013). A goal defines 

a possible set of behaviour. The probability of a goal satisfaction is defined in view of 

probability of observing such behaviours (Cailliau and van Lamsweerde 2013). For a goal 𝐶 →
𝛩𝑇, the probability of satisfaction of the goal is the ratio between (i) number of possible 

behaviour satisfying the goal’s antecedent C and consequent ΘT and (ii) number of possible 

behaviour satisfying condition C. If the probability of the goal satisfaction is 1, then the goal 

is fully satisfied. A goal might be partially satisfied due to occurrence of some obstacles. The 

probability of an obstacle occurrence depends on the satisfaction of its conditions. These are 

defined in what follows.  

Definition 1. The probability of satisfaction of a goal in view of its possible obstructions is 

called estimated probability of satisfaction (EPS) (Cailliau and van Lamsweerde 2013) and is 

computed from the goal model. The EPS of a goal G is shown by P(G).  

Definition 2. The minimal probability of satisfaction of a goal is called required degree of 

satisfaction (RDS) and is specified by existing standards and regulations in a domain of interest 

(Cailliau and van Lamsweerde 2013). A goal G is probabilistic if 0 < RDS (G) <1. Note that 

RDS value is not unique and can vary from one scenario to another. This value may be obtained 

from domain experts, user experience, or existing knowledge about the system. 

Definition 3. Based on the EPS and RDS, the gap between estimated and expected probabilities 

can be measured. If EPS ≥ RDS, then the required goal satisfaction is reached. If EPS < RDS, 

then the goal is not satisfied and the gap should be investigated and reduced to the extent 

possible. The severity of violation (SV) from a goal G is defined as:  

SV(G) = RDS (G) – P(G)      (I) 
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The above equations are used to measure the probability of goal satisfaction by propagating 

probabilities from leaf obstacles towards top goals in a goal model. Hence, the estimated 

probability of leaf obstacles should be first provided. These estimates are then propagated up 

towards the root obstacles, leaf goals, and finally parent goals to compute the probabilities of 

goal satisfaction in view of obstacle occurrence. Cailliau et. al. define the following 

propagation process (Cailliau and van Lamsweerde 2013): 

(i) From leaf obstacles towards root obstacles. The system architect should rely on domain 

information to estimate the probability occurrence of leaf obstacles in the refinement goal 

model. The information sources include the specification of cloud services, system developers 

or end-users’ experience, consultation with domain experts, and statistical data about legacy 

systems which can be obtained through techniques like interview or Delphi method. 

In an AND-refinement, a parent obstacle occurs if all its sub-obstacles (SO) also occur. Thus, 

the probability of the parent obstacle equals the probability of all sub-obstacles and their 

combined occurrence towards the satisfaction of the parent obstacle. This is computed as 

follows:  P(O) = P(SO1) ∗ P(SO2) ∗ P(SO3) ∗ … ∗  P(O|SO1, SO2, SO3, … . )                   (II) 

In equation (I), the architect also needs to know from the domain information how often the 

occurrence of leaf obstacles O1, O2, O3, and … causes the parent obstacle O happens. For an 

OR-refinement, the probability of the parent obstacle not occurring which equals the 

probability that none of the children obstacles yield a satisfaction of the parent obstacle. This 

is computed as follows:  

P(O) = 1 − (1 − P(SO1) ∗ P(O|SO1)) ∗ (1 − P(SO2) ∗ P(O|SO2)) ∗ … . )    (III) 

(ii) From root obstacles towards leaf goals. The probability of not satisfying of a leaf goal  

(LG) is given by the probability that the root obstacle occurs (RO) and such occurrence results 

in not satisfying of the leaf goal. This is presented using the following equation:  

1 −  P(LG)  =  P (RO) ∗  P(¬LG|RO)    (IV) 

If a leaf goal is obstructed by multiple obstacles, then the goals is satisfied when any obstacles 

occurs. This is computed as follows: 

P(LG) = (1 −  P (O1) ∗  P(¬LG|O1)) ∗ (1 − P(O2) ∗ P(¬LG|O2))*…    (V) 

(iii) From leaf goals towards root goals. The satisfaction probability of a parent goal depends 

on probabilities of satisfaction of its leaf goals. Thus, the reduced degree of satisfaction of an 

obstructed leaf goal should be propagated upwards in the goal model in order to specify 

consequences of all obstacles. For example, a parent goal with two leaf goals is satisfied if all 

the leaf goals are satisfied, or satisfaction of the first goal is sufficient to satisfy the parent goal, 

or the satisfaction of the second one is sufficient to satisfy the first one (Cailliau and van 

Lamsweerde 2013). To specify the consequence of the obstacles to the quality goals, the 

computed probabilities for all leaf obstacles are propagated upwards towards goals. This 

enables computing EPS of higher-level goals in view of its possible obstacles deviating from 

RDS. A parent goal is satisfied if its sub goals are satisfied. Hence, we have: 

 P(G) = P (𝑆G1, 𝑆G2) ∗  P(G|𝑆G1, 𝑆G2) + P (𝑆G1, ¬𝑆G2) ∗  P(G|𝑆G1, ¬𝑆G2) + 

 P (𝑆G2, ¬𝑆G1)* P(G|𝑆G2, ¬𝑆G1) + P(¬G|𝑆G1, ¬𝑆G2) ∗ P(G|¬𝑆G1, ¬𝑆G2)     (VI) 

3. Proposed approach  

The approach is a four-step process. It starts with elicitation of high-level goals for the cloud 

adoption to empower legacy systems. It ends with a set of critical obstacles obstructing goal 

satisfactions. The output is a list of critical obstacles that need to be dealt with. To illustrate, 

we use an example scenario of moving the data storage of a legacy system to Amazon Simple 
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Storage Service (S3) so that end users can get the content directly from Amazon S3. S3 

provides a secure, durable, highly-scalable cloud storage to store and retrieve any amount of 

data from anywhere on the web (AmazonS3). As earlier mentioned, the knowledge repository 

has collections of goals, obstacles, and resolution tactics which will be used to illustrate the 

goal analysis. The repository itself was developed in (Fahmideh and Beydoun 2018). The steps 

required are detailed in what follows. 

Step 1. Specifying goals 

The system architect first identifies goals that are expected to be satisfied by integrating the 

system with cloud services. In the running scenario, deploying the legacy system database on 

Amazon S3 are expected to positively contributes towards the following five goals: Achieve 

[Reduced IT cost], Achieve [Improved response time], Achieve [Improved availability], and 

Achieve [Improved consistency]. For example, the goal Achieve [Improved response time] has 

the following specification.  

Goal Achieve [Improved response time] 

Category Performance Goal 

Definition [Using Amazon S3, transferring 100 terabyte live data stream with internet 

connection 1000 Mbps at 80% network utilization from local network should not take no more 

than one week].  

Formal spec ∀ 𝑑: 𝑑𝑎𝑡𝑎, (𝑑. 𝑠𝑢𝑏𝑚𝑖𝑡𝑡𝑒𝑑 → ◊ ≤7 𝑑𝑎𝑦𝑠 𝑑. 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ) 

RDS 95%. 

This goal is satisfied if its two child goals are satisfied. In other words, AND-refinement for 

the parent goal Achieve [Improved response time] captures a combination of two leaf goals 

Achieve [Reduced data uploading time] and Achieve [Reduced query processing time] 

entailing the parent goal should be completely satisfied (Figure 2). The specification of the 

goal Achieve [Reduced data uploading time] is: 

Goal Achieve [Reduced data uploading time] 

Category Performance Goal 

Definition [Using Amazon S3, transferring 1 terabyte live data with internet connection 1000 

Mbps at 80% network utilization from local network should not take no more than 24 hours].  

Formal spec ∀ 𝑑: 𝑑𝑎𝑡𝑎, (𝑑. 𝑠𝑢𝑏𝑚𝑖𝑡𝑡𝑒𝑑 → ◊ ≤24 ℎ𝑜𝑢𝑟𝑠 𝑑. 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 ) 

RDS 90%. 

 
Figure 2 Refining the parent goal Achieve [Improved response time] to child goals 

Step 2. Identifying obstacles  

For each quality goal, the system architect explores potential obstacles. For each quality goal, 

they shortlist those probable ones (Figure 3). This identification of obstacles is based on 

information sources such as developers, user experience, statistical data, and available 

technical accounts about Amazon S3. In this scenario, former developers’ experience concedes 

that the leaf goal Achieve [Reduced data uploading time] is likely hampered by two obstacles 

Performance variability of Amazon S3 and Geographical distance. In addition, for the purpose 
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of message processing, the current legacy system uses Kafka technology, i.e. a common open 

source technology for massive scale publishing and subscribing message queues. Integrating 

this technology with Amazon S3 storage may cause latency in maintaining data consistency. 

From past experience in using Amazon S3, there is no guarantee of the exact time to upload 

the system data to the S3 servers due to their workload unpredictability. The uploaded data by 

a user may be stored in S3 data storage for an extended period of time which may cause a data 

inconsistency issue. This obstacle, named here as Latency for moving data from Kafka to S3, 

is against the goal Achieve [Improved consistency]. As shown in Figure 3, other leaf obstacles 

that are modelled by the system architect are Service transient fault, S3 outage, Department 

downsizing, and Extra management effort per annum. The obstacles Extra cost of training new 

data integrator and Extra cost for monitoring tools are refinements of obstacle Extra 

management effort per annum. The obstacles High uploading time for blob and Low throughput 

to write bucket are refinements of Performance variability of Amazon S3. Local electrical 

storm, S3 power outage, S3 data centre outage, I/O issues of servers, and Local network 

disruption are refinements of the obstacle Service outage. No obstacle is identified for the goal 

Achieve [Reduced query processing time]. Figure 4 shows all refinements to root obstacles. 

AND/OR refinements are used to show sub obstacles of a root obstacle. AND-refinements 

include a combination of sub obstacles that aggregately cause the occurrence of a parent 

obstacle. OR-refinements represent a set of alternative sub obstacles where the occurrence of 

each will cause the parent obstacle.  

 
Figure 3. Identified obstacles against achieving quality goals Achieve [Reduced IT cost], Achieve 

[Reduced response time], Achieve [Improved consistency], and Achieve [Improved availability]   
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Figure 4. Refining the root obstacles to leaf obstacles 

Step 3. Assessing probability of obstacles 

Table 1 shows a sample of 12 leaf obstacle estimations based on the developers’ opinions, and 

existing statistics about Amazon S3 server, memory and I/O usage, and legacy system 

performance. These estimates can be refined as the goal analysis proceeds.  

Table 1 Estimated probabilities for the leaf obstacles based on domain information 

Obstacle Definition Probability 

Department 

downsizing  

Moving a legacy system database to S3 definitely causes change in 

roles and responsibilities defined in the maintenance team of IT 

department. 

1 

Extra cost of training 

new data integrator  

Although developers have expertise in using legacy-based tools for 

data integration, they require training in using new data integration 

tools specific for combining and import/export legacy data and S3.  

0.6 

Extra cost for 

monitoring tools  

New tools should be installed and a new role should be appointed for 

monitoring the database performance in S3.  
0.5 

Geographical distance  

It is likely that buckets stored in S3 servers are located in distance far 

from the local network of the company which may cause high 

uploading time.  

0.04 

High uploading time 

for blobs (100k 

entries)  

Measurements of storing ten set of 100k buckets in S3, over one week 

period, showed that transferring one of the buckets took more than 24 

hours.     

0.2 

Low throughput to 

write buckets  

In high workload, storing one set of 100k buckets in the database 

caused excessive delay.   
0.1 

Latency for moving 

data from Kafka to S3  

In 60% of cases, there is high latency for off-line moving data from 

Kafka to S3 storage. Due to server workload, it is highly probable that 

end users may observe stale and out of date data. 

0.6 

Local electrical storm  

The company is located in a rainy geographical area and has recently 

experienced electrical storm damaged power equipment at one of the 

data centres. 

0.01 

S3 data centre power 

outage 

Drop time of Amazon S3 servers is unlikely to occur.  
0.001 

Local network 

disruption  

Network misconfigurations or the level of workload may cause a local 

network disruption. 
0.02 

I/O issues of servers  I/O issues may occur but with very low probability. 0.001 

Transient fault of 

service 

Developers’ experience shows the probability of transient faults when 

legacy system tries to connect cloud services.  
0.01 
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The probabilities of the occurrence of the obstacles in the goal model are now computed 

starting from lead obstacles. Depending on the structure of the goal model, this has tree possible 

steps (Cailliau and van Lamsweerde 2013):  

(i) From leaf obstacles towards root obstacles. As noted in Section 2, in an AND-refinement, 

a parent obstacle occurs if all its leaf obstacles occur. Similarly, in OR-refinement, a parent 

obstacle occurs in the case of occurrence of any leaf obstacles. Given the probabilities of leaf 

obstacles in Table 2, the propagation rules for AND/OR-refinements in equations (II) and (III) 

are applied bottom-up to compute probabilities for the parent obstacles Extra management 

effort per annum, performance variability of Amazon S3, and S3 data centre outage.  

With respect to the obstacle performance variability of Amazon S3, the estimations for the leaf 

obstacles are namely 20% of data transfer from local network to Amazon S3 experiences a high 

uploading time, 4% uploading data are performed on servers which are too far from the local 

network. From the domain information, it is known that 95% of delays in data uploading 

causing  low throughput in writing buckets is due to the performance variability of Amazon 

S3. Given that, the propagation rule for the AND-refinement results in the probability of the 

root obstacle Performance variability of Amazon S3:  

P (performance variability of Amazon S3) = P (High uploading time for blogs) * P (Low 

throughput to write buckets) * (performance variability of Amazon S3 | High uploading time 

for blogs, Low throughput to write buckets) = 0.2 * 0.1 *0.95 = 0.019   

This means that the performance variability of S3 for the data processing occurs in almost 2 % 

of cases. The propagation rule for OR-refinement is used for the root obstacle Extra 

management effort per annum: 

P (Extra management effort per annum) = 1 – P (Extra cost of training new data integrator) * P 

(Extra cost for monitoring tools) = 1– (1–0.5*0.99) * (1–0.6*0.99) = 0.205                                                       

In above the proportion of both obstacles is considered 99%. Similarly, the probability of S3 

data centre power outage is computed using equation III as follows:                                           

P (S3 data centre outage) = 1– (1–P (Local electrical storm) * (P (S3 data centre power outage | 

Local electrical storm) * (1-P (S3 power outage) * P (S3 data centre power outage | S3 power 

outage)) = 1 – (1–0.01*0.99) * (1–0.001*0.98) = 0.010 

According to the statistical data, there is a 2% probability of local network disruption, 0.01% 

of I/O issues of servers, 0.1% S3 data centre power outage, 1% Local electrical storm, and 1% 

S3 power outage. The proportion of local network disruption, I/O issues of servers, and S3 data 

centre power outage is respectively 99%, 98%, and 100%. The propagation rule for OR-

refinement in equation (III) yields the following probability for the parent obstacle S3 outage: 

P (S3 outage) = 1 – (1–0.02*0.99) * (1-0.001*0.98) * (1-0.01*1) = 0.03  

The above value means the S3 outage occurs in %3 of cases.   

(ii) From root obstacles towards leaf goals. Back to Figure 4, the goal Achieve [Reduced IT 

cost] is satisfied when none of the leaf obstacle occurs. The probability of satisfaction for this 

goal is computed using equation V which is: 

P (Achieve [Reduced IT cost]) = (1 – P (Extra management effort per annum) * P (¬Reduced 

IT cost | Extra management effort per annum) * (1–P (Department downsizing) * P (¬Reduced 

IT cost | Department downsizing) = (1 – 0.6*0.6)*(1–1*1) = 0  

This means that using Amazon S3 will not certainly reduce the IT cost unlike the initial 

expectation. In addition, the probability of satisfaction for the leaf goal Achieve [Reduced data 

uploading time] is computed using equation IV which is: 
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P (Achieve [Reduced data uploading time]) = (1 – P (Performance variability of Amazon S3) 

* P (¬Reduced data uploading time | Performance variability of Amazon S3) * (1 – P 

(Geographical distance) * P (¬Reduced data uploading time | Geographical distance) = 0.9 

The above value means in 90% of cases, 1 terabyte live data with internet connection 1000 

Mbps at 80% network utilization, will be transferred from the local network to S3 within the 

prescribed 24 hours. Furthermore, using the same equation, the probability of the goal Achieve 

[Availability] is:  

 P (Achieve [Availability]) = (1 – P (S3 outage) * P (¬Availability | S3 outage) * (1 – P 

(Service transient fault) * P (¬Availability | Service transient fault) = 0.9 

(iii) From leaf goals towards root goals. In the exemplar model (Figure 4), the system architect 

checks if the model satisfies the expected threshold which is the response time for processing 

of requests, i.e. goal Achieve [Improved runtime response], and this should be satisfied in 90% 

of cases (RDS=0.9). For the leaf goal Achieve [Reduced data uploading time] the computed 

satisfaction probability is 0.9. Based on the developers’ experience, there is no obstacle against 

the goal Achieve [Reduced query processing time]. Thus, the probability of satisfaction of the 

goal Achieve [Improved response time], which is an AND-refinement link, is 1*0.9 = 0.9. The 

resulting EPS for this goal is 90% which means the adopting Amazon S3, as modelled, is not 

able to satisfy the expected standard 95%.  

Step 4. Identifying critical obstacles 

The system architect is particularly interested in identifying obstacles that cause a sever 

violation. Hence, only one single leaf obstacle is considered and the probabilities for the rest 

are set to 0. Propagation values towards the root goal is performed, and a violation severity for 

the root goal is computed.  

Whilst some leaf obstacles may have small probabilities, they may still be more important than 

others (Cailliau and van Lamsweerde 2013). It is also important to realise that in the case of 

generating many leaf obstacles, the computation of obstacle consequences on leaf goals and 

root goals may be difficult. The identification of critical obstacles is a multi-criteria 

optimisation problem where the aim is to find the minimal set of leaf obstacles that maximise 

the violation severity of high-priority goals. It has three steps: (i) generating all leaf obstacle 

combinations, (ii) computing SV(G) for each obstructed goal (if required, goals are weighted), 

and (iii) sorting leaf obstacles combination based on their severity. Identification and 

prioritisation of critical obstacles, not our focus, can be performed using common techniques 

covered elsewhere such as AHP and brute-force technique. The critical obstacles should be 

tackled prior to the enactment of cloud services. The obstacle representation from (Fahmideh 

& Beydoun, 2018) is used. A catalogue of resolution tactics is stored in the repository. These 

are used by the system architect to deal with any critical obstacles. An excerpt of resolution 

tactics which can be used during obstacle handling is shown in Table 2. For example, the 

system architect can adopt resolution tactics Encrypt data to handle obstacles Data disclosure, 

Session hijacking, and Insecure data location. 

Table 2. An excerpt of resolution tactics for tacking obstacles  

Obstacle(s) Resolution 

tactic 

Definition 

Incompatible pluggable cloud 

services, Incomplete APIs, 

Incompatible data types, 

Operating system incompatibility, 

Machine-image incompatibility, 

Develop 

adaptor/wrapper 

Add adaptors for resolving mismatches, occurring 

at runtime system execution, between legacy 

system components and cloud services.  
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Virtual machine contextualization 

incompatibility, API incompatibility 

across multiple cloud, 

Proprietary APIs 

Tight dependencies 

Decouple 

system 

components 

Decouple the legacy system components from 

each other. Use mediator and synchronisation 

mechanisms to manage interaction between the 

loosely coupled components in the cloud 

environment. 

Message passing, Data disclosure 
Encrypt/decrypt 

message passing 

Add support for the runtime 

encryption/decryption of message transition 

between components in the on premise network 

and cloud environment. 

Code disruption, System source 

codes propriety, Data disclosure 
Obfuscate code 

Protect unauthorised access to code blocks of 

components by other tenants that are running on 

the same cloud provider. Use encryption 

mechanisms in the sense that no other tenants will 

be able to access, read, or alter the code blocks 

with the components when running in the cloud. 

Tenant interfere, Data disclosure 

Isolate tenant  

Enable multi-tenancy in the system. Based on 

multi-tenancy requirement (i) define tenant-based 

identification and hierarchical access control for 

tenants and (ii) separate tenant data using 

authorization and authentication mechanisms.  

Message passing 
Tune message 

granularity 

Define suitable granularity for messages, which 

are passing between components hosted on local 

network and the cloud, based on the degree of 

functionality that is offered to the service 

consumer and consumer's infrastructure capability 

to process the messages. A proper message 

granularity can be identified or predicted based on 

pieces of data actually used by system or using 

heuristic functions to understand the number of 

interaction between system components over the 

cloud network. 

Incompatible data types, 

Incompatible data operations 

Adapt data 

Convert legacy data types to the data type of target 

cloud database solution. Also, add an extension 

component to the legacy which includes a set of 

commands to be performed by the legacy or cloud. 

The emulator supports missed database 

functionalities of cloud database solution 

provider. 

Department downsizing, Resistance 

to change 

Involve staff 

with cloud 

adoption 

process 

Involve staff and stakeholders actively in the 

cloud adoption process and give them insight of 

benefits of the cloud and organisational change.  

Tenant interfere 
Define an 

authorization 

Add a component determining if a tenant has 

privilege to perform a given action over the 

database.  

Data remanence, Data interruption, 

Data disclosure, Session hijacking, 

Insecure data location 

Encrypt data 

Use data encryption mechanisms prior 

outsourcing or hosting system data to the cloud.  

Tenant interfere, Data interruption 
Filter 

unauthorised 

requests 

Add support to filter unauthorized data access 

received from users at the edge of premise or cloud 

network as early as possible to avoid unauthorized 

network traffic. 

Performance variability of cloud 

service 

Use multiple 

cloud servers 

Deploy and replicate system components in 

several clouds.  

Scaling latency, Low middleware 

performance, Service latency 

Add 

intermediation 

Implement an intermediate layer (mediator 

components) between legacy system and cloud 



11 
 

services that decouple legacy systems from cloud 

specific APIs. This helps to create intermediate 

APIs and get indirect service from the cloud. 

State-based dependency 
Make system 

stateless 

Provide support in the system to the handle safety 

and traceability of tenant’s session when various 

system instances are hosted in the cloud. 

Extra testing effort 
Prioritize tests 

Perform test cases on the basis of their importance 

and criticality.  

Licensing issue 

Resolve 

licensing issue 

There alternative sub-tactics: (i) negotiate with 

system owner to make a suitable licensing model 

which satisfies all parties, (ii) extend legacy 

system with a new component (e.g. VPN tunnel) 

in a way that cloud services can be indirectly 

offered to them, and (iii) enable a license tracking 

mechanism through monitoring connections 

between the software system and cloud resources. 

Session hijacking Update patches 
Perform regular patch update across system 

components in the cloud. 

4. Validation 
The case study used for the validation is based on a scenario of moving a Web-based Digital 

Document Processing (DDP) legacy system to the cloud (Rabetski 2012, Rabetski and 

Schneider 2013). InformIT is a small independent software vendor in Sweden. It has developed 

the DDP to offer services to medium and large organisations with adequate infrastructure and 

technicians. InformIT planned to further expand the system’s services to also support small 

companies that could not afford the current required financial commitment to use the system. 

Deploying the DDP in the cloud would enable small companies to utilise its services without 

purchasing the infrastructure. The system architect was interested in analysing obstacles that 

such a transition would experience and accordingly handle them beforehand. The goal 

modelling steps were performed as described in the following. 

Step 1.Specifying goals. The system architect identified four goals Achieve [Performance], 

Achieve [Integrity], Achieve [Portability], and Achieve [Accountability] to be satisfied by the 

moving DDP to Microsoft Azure cloud platform. These goals are defined as follows: 

Goal Achieve [Security] 

Category Security goal 

Definition [DDP’s documents should not be accessible/readable by other tenants that are 

running on same Azure servers].  

Formal spec (∀ 𝑑𝑜𝑐: 𝐷𝐷𝑃′𝑠 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 ⟶ □𝑑𝑜𝑐. 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑏𝑦 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑 𝑡𝑒𝑛𝑎𝑛𝑡 ) 

RDS: 100% 

Goal Achieve [Performance] 

Category Performance goal 

Definition [acceptable system throughput for rendering a digital document should be no more 

than 4.9 seconds].  

Formal spec (∀ 𝑑𝑜𝑐: 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡, 𝑑𝑜𝑐. 𝑠𝑢𝑏𝑚𝑖𝑡𝑡𝑒𝑑 ⟶◊ ≤4.9 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 𝑑𝑜𝑐. 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑) 

RDS: 95% 

Goal Achieve [Testability] 

Category Testing goal 

Definition [the whole process of performing various tests scripts of system components should 

be doable within a specific time limit].  

Formal spec (∀ 𝑐𝑜𝑚: 𝐷𝐷𝑃′𝑠 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ⟶◊ ≤1 𝑤𝑜𝑟𝑘𝑖𝑛𝑔 𝑑𝑎𝑦  𝑐𝑜𝑚. 𝑡𝑒𝑠𝑡𝑒𝑑) 

RDS: 95% 

Goal Achieve [Integrity] 
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Category Integrity goal 

Definition [system components should be able to invoke cloud services].  

Formal spec (∀ 𝑐𝑜𝑚: 𝐷𝐷𝑃′𝑠 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 ⟶◊  𝑐𝑜𝑚. 𝑖𝑛𝑣𝑜𝑘𝑒𝑑. 𝑐𝑙𝑜𝑢𝑑 𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 ) 

RDS: 95% 

Goal Achieve [Portability] 

Category Portability goal 

Definition [DDP’s documents should be readable and processable in both platforms].  

Formal spec (∀ 𝑑𝑜𝑐: 𝐷𝐷𝑃′𝑠 𝑑𝑜𝑐𝑢𝑚𝑒𝑛𝑡 ⟶◊  𝑑𝑜𝑐. 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑  ) 

RDS: 95% 

Step 2. Identifying obstacles. For each goal, the system architect first refined the top goals 

towards root obstacles, and subsequently the leaf ones that may obstruct quality goals. 

Information provided by developers and end users of DDP were the main source used to check 

if an obstacle was likely to occur or not. For example, consider the goal Achieve [Integrity]: 

The current DDP’s APIs were not be compatible with their counterparts in the Microsoft Azure 

cloud platform. Thus, the leaf goal is obstructed by the root obstacles Incompatible APIs (i.e. 

Legacy’s APIs and Microsoft Azure) and Incompatibility of legacy data storage and cloud. 

Furthermore, the parent obstacle Incompatibility of legacy data storage and cloud was also 

refined into two leaf obstacles. Both of these two were domain specific instantiations of the 

obstacle Incompatibility of legacy data storage and cloud. The definition of the leaf obstacles 

against the goal Achieve [Integrity] are depicted in Figure 5 and defined as follows: 

Obstacle Incompatible APIs  

Definition [DDP uses API’s offered by .NET 2.0 and Visual Studio 2005 which may not be 

compatible with Microsoft Azure platforms].  

Formal spec ◊ (¬𝐷𝐷𝑃𝐴𝑃𝐼𝑠𝐼𝑛𝑐𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ) 

Obstacle Incompatible datatypes  

Definition [DDP datatypes are based on SQL Server Database .NET 2.0 platform which might 

not be compatible with Microsoft Azure database solution].  

Formal spec ◊ (¬𝐿𝐷𝐷𝑃𝐷𝑎𝑡𝑎𝑠𝑡𝑜𝑟𝑎𝑔𝑒𝐶𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ) 

Obstacle Incompatible data operations 

Definition [The data operations supported by SQL Server Database .NET 2.0 platform might 

not be compatible with Microsoft Azure database solution].  

Formal spec ◊ (¬𝐷𝐷𝑃𝐷𝑎𝑡𝑎𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑚𝑝𝑎𝑡𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ) 
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Figure 5 leaf obstacles against goal Achieve [Integrity] 

Confirmed by the developers past experience, the goal Achieve [Performance] could be 

obstructed by the performance variability of Microsoft Azure servers. This would be out of the 

control of developers. This was specified by the obstacle Microsoft Azure Middleware latency 

in the goal model. This parent obstacle was also refined into three leaf obstacles Microsoft 

Azure database middleware latency, Microsoft Azure message middleware latency, and 

Microsoft Azure transaction middleware latency. Other relevant and potential obstacles against 

the goal Achieve [Performance] were Distance from Microsoft Azure servers, Microsoft Azure 

transaction middleware latency, and On-premise hardware latency (Figure 6). The  

refinements are shown in Figure 7.  

 
Figure 6 leaf obstacles against goal Achieve [Performance] 
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In total eighteen leaf obstacles that were identified in this step (Figure 5, 6, and 7) that were 

annotated with the estimation of their probabilities. Table 2 shows the leaf obstacle estimates. 

The estimates were based on the architect’s judgement and consultation with the developers, 

and observations from the DDP past performance. All estimates can still be later refined once 

real statistical data become available. 

 
Figure 7 leaf obstacles against goals Achieve [Security], Achieve [Testability], Achieve [Portability] 

Table 2 estimated probabilities for the leaf obstacles 

Leaf obstacle Probability (%) 
Switch between DDP and Azure Storage API file systems 1 

Incompatible APIs 0.72 

Incompatible datatypes 0.5 

Incompatible data operations 0.3 

Performance variability of Microsoft Azure servers 0.07 

High-time for session  handling 0.01 

Microsoft Azure message  middleware latency 0.09 

Microsoft Azure database middleware latency 0.09 

Microsoft Azure  transaction middleware latency 0.08 

Distance from Microsoft Azure servers 0.05 

Browser latency 0.05 

On-premise DDP hardware latency 0.09 

Session hijacking 0.03 

Code alteration 0.01 

Code control 0.02 

Insecure data location 0.001 

Step 3. Assessing Obstacles. The various probabilities were used to compute the impact of leaf 

obstacles on top goals via the propagation equations as described in the following.  

To compute the probability of obstacle Incompatibility of DDP data storage and cloud, the 

probability of its two child obstacles should be calculated first. Given the probability estimation 

for the leaf obstacles Incompatible datatypes and Incompatible data operations from Table 2 

and considering the proportion for having incompatible datatypes or data operations causing 

incompatibilities between DDP and S3 is, respectively, 0.99% and 98%, the probability of the 

parent obstacle Incompatibility of DDP data storage and cloud is obtained using equation III, 

producing a value of 0.65.   
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The probability of the obstacle Incompatible APIs is 0.72.  The proportion Incompatible APIs 

and Incompatibility of DDP data storage and cloud are 0.99% and 98%. Thus, the probability 

of occurrence for the parent obstacle Incompatibility of DDP and cloud service can be again 

computed using equation III producing a value of 0.89. This is propagated upwards. Thus, the 

resulting EPS for the top goal Achieve [Integrity] is:  EPS (Achieve [Integrity]) = 1 – 0.89 = 0.11 

RDS for the goal Achieve [Integrity] is 1 meaning that DDP’s components should be fully 

(100%) integratable with cloud services without occurring incompatibilities. Using equation I, 

SV for the goal Achieve [Integrity] is 0.95 – 0.11 = 0.84. This means the leaf obstacles are 

critical and should be resolved.  

Similar computations are performed for the goal Achieve [Performance]. Firstly, through the 

OR-refinement, the root obstacle Microsoft Azure Middleware latency is refined into three 

domain-specific sub-obstacles namely Microsoft Azure database middleware latency, 

Microsoft Azure message middleware latency, and Microsoft Azure transaction middleware 

latency. Using equation III, the probability of the root obstacle Microsoft Azure Middleware 

latency is 0.17. The obstacle Service latency is refined into Distance from Microsoft Azure 

servers, On-premise hardware latency, and Browser latency. Again, using III, the computed 

root obstacle Network latency is 0.17. Using equation V, the probability of goal satisfaction for 

Achieve [Performance] is 0.36.  

RDS for the goal Achieve [Performance] is 0.95. But SV for the goal Achieve [Performance] 

= 0.95 – 0.36 = is 0.6 meaning that moving the DDP to Microsoft Azure cloud platform does 

not render digital documents within time limit 4.9 seconds provide in 60% of cases. 

Countermeasure should be taken into account to satisfy the goal Achieve [Performance].  

Furthermore, the satisfaction of the goals Achieve [Testability] and Achieve [Portability] 

depend on both the obstacles Microsoft Azure Middleware latency and Switch between regular 

file system API to Microsoft Azure Storage API respectively. Thus:  

EPS (Achieve [Testability]) = 1- 0.17 = 0.83 

EPS (Achieve [Portability]) = 1- 1 = 0 

These values are far from RDS 1 prescribed  for these goals. The system architect thus should 

carefully investigate these critical obstacles. The probability of satisfaction of the goal Achieve 

[Security] depends on the impact of the probability of leaf obstacles on the leaf goals. Given 

the probability estimates for the leaf obstacles in Table 2 (shown in Figure 5), the probability 

of the parent obstacle Code disruption is computed using the rules described in Section.  

P (Code disruption) = 1 – (1-0.01*0.99)*(1-0.02*0.99) = 0.02 

The above is then used to compute the probabilities for the root obstacle Data disclosure: 

P (Data disclosure) = 1 – (1-0.02*0.99)*(1-0.03*0.99) = 0.04 

The above is then used to compute the probability of the corresponding obstructed leaf goal 

Achieve [Data confidentiality]:  P (Achieve [Data confidentiality]) = 1- 0.04 = 0.96 

On the other hand, the probability of the goal Achieve [Data location security] is:  

EPS (Data location security) = 1- P (Insecure data location) = 1 – 0.001 = 0.99 

To fully determine consequences of all obstacles, all results are propagated from leaf goals 

Achieve [Data confidentiality] and Achieve [Data location security] towards the root goal 

Achieve [Security]. Thus for the goal Achieve [Security], the following goal satisfaction 

probability using equation VI is computed: 

EPS (Achieve [Security]) = 0.96*0.98 = 0.94 



16 
 

The above means that the probability of satisfying DDP security when running on Microsoft 

Azure cloud platform is about 0.94. This is less than the expected RDS prescribed in the 

definition of the goal Achieve [Security]. The partial model in Figure 8 shows the overall 

satisfaction of the goals.  

 
Figure 8 leaf obstacles against the root goals 

Step 4. Identifying critical obstacles. Eleven leaf obstacles are deemed severe (as shown in 

Table 3). For example, Switch between DDP and Azure Storage API file systems with estimated 

probability 1, causes a violation severity of 0.95 for the goal Achieve [Portability]. This 

indicates that incompatibility between DDP and cloud platforms is inevitable. The leaf obstacle 

Microsoft Azure database middleware latency with the estimated probability of 0.09 causes a 

violation severity 0.04 for the root goal Achieve [Performance]. Therefore, in the next step of 

risk management the architect should define mechanisms in the new cloud-based architecture 

to reduce the gaps between RDS and EPS as much as possible. 

As mentioned earlier, few leaf obstacles may have small probabilities but are actually more 

critical than others. For instance, the leaf obstacle Code alteration with a probability of 0.01 

may obstruct the leaf goal Achieve [Data confidentiality] and subsequently the parent goal 

Achieve [Security]. Although its estimated probability is low, the obstacle might still be critical 

and might produce an overall negative impact on the security of DDP. 

 

 Table 3. Critical obstacles against goals 

Leaf obstacle SV for root goal, i.e. (RDS – EPS) 
Incompatible APIs 0.02 

Performance variability of Microsoft Azure servers 0.02 

Microsoft Azure message  middleware latency 0.04 

Microsoft Azure database middleware latency 0.04 

Microsoft Azure  transaction middleware latency 0.03 

On-premise DDP hardware latency 0.04 

Session hijacking 0.03 

Code alteration 0.01 

Code control 0.02 

Insecure data location 0.02 

Switch between DDP and Azure Storage API file systems 0.95 

5. Related work 
This research bridges requirements and risk analysis of cloud services. Numerous works have 

looked at this. In what follows, we review some of them, in order of least to most relevance.   

Less relevant works deal with risk analysis at a very high abstract level. They provide insights 

to system architects on system integration issues with cloud services. However, they do not 

provide an operational solution to examine the risk likelihood and severity during the  design 
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phase. For example, Heiser et. al. report an analysis of unique attributes of obstacles related 

to security goals such as data integrity and segregation. The authors found that factors such as 

the location independence of service provider subcontracting may endanger system security 

(Heiser and Nicolett 2008).  

More relevant works to ours offer solutions for dealing with migration risks. These include 

studies that focus on risk analysis of security. e.g. Chen et. al. developed a framework for the 

automatic detection of conflicts and inconsistencies in user requirements and organisational 

policies (Chen, Yan et al. 2012). This framework suggests how cloud services may satisfy 

these requirements and policies. The concomitant prototype further shows how managing 

heterogeneous cloud infrastructure services can be undertaken for large organisations. 

Martens et. al., developed a quantitative model to balance costs and risk factors for 

outsourcing decisions regarding cloud service adoption (Martens and Teuteberg 2012). 

Mouratidis et. al. incorporated a modelling language along with a structured process to 

identify security and privacy requirements to select suitable cloud providers based on the 

satisfiability of the service provider (Mouratidis, Islam et al. 2013). Shirvani et. al., present a 

framework to support adding a module to log security information and then quantify the cloud 

security risks (Hosseini Shirvani, Rahmani et al. 2018).  

Our formalism to represent goals complements the above efforts. The use of AND/OR 

refinement mechanisms enables more in-depth analysis of security risk. A clear advantage of 

our approach is its wide applicability to assess other risk management goals. Perhaps still 

closer work to our research is Saripalli et. al. (Saripalli and Walters 2010). That work presents 

a probabilistic approach, QUIRC (Quantitative Impact and Risk Assessment), for analysing 

and assessing typical security attacks to cloud based systems. To assess the impact of risks on 

system security, a combination of the probability of security threats and their severity is also 

computed. Data available from SANS (System Administration, Networking, and Security 

Institute) is used to facilitate the computation. One key advantage of our approach over 

QUIRC is our in-depth refinements of obstacles. The collective impact of lower level risks is 

used to assess overall risk. This enables architects to better understand the ensuing risk in the 

context of a multitude of obstacles. In addition, our approach is interactive and participatory. 

It relies on domain information to estimate risk probabilities rather than merely using public 

data as the main source for estimations.   

Goal-oriented approach has also been used elsewhere e.g. in (Islam, Mouratidis et al. 2013). 

The authors use it to analyse security and privacy risks of cloud services relying on sources 

such as data, service/application, technical, and organisational measures. But they treat the 

overall risk as a single security goal, without detailed refinement and elaboration. Zardari et. 

al. also use a goal-oriented approach and employ Analytical Hierarchy Process (AHP) to 

prioritise obstacles (Zardari, Bahsoon et al. 2014). In their context, our Step 4 can be viewed 

as complementary to perform obstacle prioritization. Our approach here is unique. Our own 

earlier work presented in (Fahmideh and Beydoun 2018) highlights the need for an obstacle 

analysis and reusing empirical knowledge of architecture design. But the proposed approach in 

this research actually provides a systematic operationalisation. The work provides a 

probabilistic foundation for measuring the satisfaction of arbitrary goals. It takes into account 

a model refinement through a finer granularity. The refined goals and obstacles are easy to 

measure and provide an operational assessment of high-level goals. 

6. Summary, limitation, and future work 
In this paper, we presented an approach for analysing risks in integrating legacy systems with 

cloud services. The approach is based on goal reasoning. It defines an identify-assess-resolve 

cycle. The approach uses a probabilistic foundation to formalise goals for adopting cloud 
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services. The probabilities of both, satisfaction and obstacles of goals, are computed in the 

approach. System architects are able to explore obstacles at the early stage of cloud migration, 

when there is still flexibility and an affordable resolution still exists. The approach has been 

applied in scenarios of deploying legacy systems to both Amazon S3 and Microsoft Azure 

cloud platform.  

One limitation of the approach is its reliance on domain information and personal judgment for 

estimating the probability of occurrence of obstacles for computing goal satisfaction and 

violation. Accuracy of estimates for leaf obstacles is crucial towards reliability of outcome. In 

the case of a model with a large number of obstacles, identifying estimates may impose 

excessive overhead to the decision making process. Continuous feedback from both system 

developers and end users for the iterative model refinement are an important mitigating factor 

to alleviate the impact of any subjective judgment. 

While we believe that our approach is generic in nature and provides system architects basic 

modelling techniques and goal/obstacle estimation, we certainly do not claim that the approach 

validation is conclusive. It is yet to be used in a complete migration project. There are still a 

few validation steps required to confirm the risk estimates. This will produce more accurate 

assessment of the produced results. Further comparisons between estimated risks at the early 

stage of the migration project and subsequent events post migration stage are needed. This will 

enable us to fully appraise the reliability of the approach. Towards this, we just developed a 

prototype system, CCER (Cloud Computing Experience Repository) to model goals and 

obstacles (CCER 2018). CCER is an online repository that provides a single access point of 

commonly occurring obstacles in adopting cloud services and a concomitant refined set of 

generic resolution tactics. CCER’s user interface consists of interactive forms. It enables a 

system architect to browse and update obstacles and resolution tactics. In its current version, 

CCER allows an architect to select cloud adoption goals to identify the list of possible obstacles 

against those goals. The architect can also hone on obstacles of interest. CCER then proposes 

tactics required to tackle them. 

Due to the interactive nature of the framework, automating reasoning and maintenance of goal 

models are necessary. This is particularly true in large scale goal modelling. We are extending 

our prototype with a tool that supports this. The tool will support the computations of 

probabilities in a consistent manner taking into account the interdependencies among goal and 

obstacles in model elements. 
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