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Abstract

Over the past few decades, automatic segmentation of brain magnetic resonance (MR) images into different tissue classes has remained an

important research area, particularly due to the presence of bias field artifact in MR images. In this regard, the stomped normal (StN) distribution

is proved to generate an optimal representation of the intensity distribution in brain MR images, by incorporating the properties of rough sets in

the probabilistic framework. The StN distribution is capable of successfully modelling the central tendency, dispersion, and width of the intensity

distribution. However, it does not take into consideration the kurtosis of the distribution, which controls the concentration of values around the

mean and shape of the tail of intensity distribution. In this regard, the paper presents a novel method for simultaneous segmentation and bias

field correction in brain MR images. It integrates the concept of rough sets and the merit of a recently introduced probability distribution, called

stomped-t (St-t) distribution. The St-t distribution incorporates the property of kurtosis in rough-probabilistic framework, where each tissue class

is modelled using a crisp lower approximation and a probabilistic boundary region. The brain MR image is modelled using a mixture of finite

number of St-t distributions and one uniform distribution. The uniform distribution takes into account cerebro-spinal fluid, pathologies, and other

non-brain tissues. The proposed method employs both expectation-maximization algorithm and hidden Markov random field model for accurate

and robust image segmentation. The performance of the proposed approach, along with a comparison with related methods, is illustrated on a set

of synthetic and real brain MR images for different bias fields and noise levels.
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1. Introduction

Segmentation is often required at a preliminary stage of

medical image analysis for computer-aided diagnosis and ther-

apy. It is an indispensable process in the visualization of hu-

man tissues, particularly during clinical analysis of brain im-

ages. But, the intrinsic nature of the brain makes this procedure

much difficult and challenging. Hence, in medical imaging, ac-

curate segmentation of the brain structure into its three main

tissue types, namely, white matter (WM), gray matter (GM),

and cerebro-spinal fluid (CSF), has gained significant amount

of research attention in past few decades [10, 15, 19]. Brain

image segmentation is essential for many diagnostic studies.

For example, in multiple sclerosis diseases, accurate quantifi-

cation of WM lesions is necessary for drug treatment assess-
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ment; while in schizophrenia and epilepsy, volumetric analysis

of WM, GM, and CSF is required to distinguish the morpholog-

ical differences between subjects. In cancer treatment, precise

delineation of tumor, edema, and necrotic tissues from brain

MR images plays a crucial part in prescribing the appropriate

therapy. Also, accurate quantification of the tumor facilitates

the radiation therapist to optimize the maximal dose to the tu-

mor with minimal radiation to the surrounding normal tissues.

MR imaging (MRI) is an important diagnostic medical im-

age acquisition technique that has the ability to detect, in ad-

vance, abnormal growths or alterations in tissues and organs.

Hence, significant amount of research in medical imaging in-

volves MR images, specifically due to its precise measurement

of soft tissues in a non-invasive and non-radioactive way. One

of the important characteristics of brain MR images is that they

are mostly piecewise constant with few tissue classes. This

unique advantage of brain MR images transforms the process of

automated segmentation much simpler and reliable compared

to other medical imaging modalities. However, this property

does not hold in real life due to the existence of a degrading
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artifact, commonly known as intensity inhomogeneity or bias

field. This specific artifact generates a spatially varying shading

effect in MR images and hence, reduces the mean intensity and

increases the overall intensity variation in each tissue class; nul-

lifying the property of piecewise homogeneous. This shading

artifact generally occurs due to some inherent properties of the

MRI device such as static field inhomogeneity, bandwidth fil-

tering of the data, eddy current driven by field gradients, and ra-

dio frequency transmission and reception inhomogeneity [30].

However, the shape, position and orientation of imaged object

inside the magnet, and some magnetic permeability and dielec-

tric properties of the object can also produce this artifact. Al-

though the artifact is hardly noticeable in human eyes, it can

deteriorate the performance of any automated image segmenta-

tion technique.

Bias field correction is generally regarded as a necessary

preprocessing step that results in better MR image segmenta-

tion; whereas accurate segmentation information allows to es-

timate bias field accurately from the image. Hence, segmenta-

tion and bias field correction can be considered as two interde-

pendent techniques. Using these characteristics, simultaneous

segmentation and bias field correction methods are developed,

where these two procedures are combined to outperform their

individual performance and achieve simultaneously better seg-

mentation and inhomogeneity correction. Another important

problem in brain MR image segmentation is the uncertainty that

occurs due to imprecision in computations and vagueness in

class definitions. To address this problem, the concept of gran-

ular computing, based on the theory of fuzzy sets [48, 14] and

rough sets [40], can be used, as they offer mathematical frame-

works to model and propagate uncertainties associated with hu-

man cognition process [35].

Rough set theory is an important paradigm to deal with un-

certainty, vagueness, and incompleteness. It is proposed for in-

discernibility in classification or clustering according to some

similarity [40]. It is based on the theory of three-way deci-

sions, which is an extension of the binary-decision model. A

tri-partition of a universe consists of three pairwise disjoint sub-

sets whose union is the universe. As a novel and important the-

ory in knowledge discovery, management and utilization, the

concept of three-way decisions was first introduced in rough

set theory for interpreting the positive, negative, and boundary

regions. The use of a tri-partition for knowledge representa-

tion, information processing, reasoning, and problem solving

has appeared in many disciplines. Recently, the approaches

based on a tri-partition of the universe are gaining interest to

clustering and image analysis [35]. Lingras and West [29] pro-

posed rough c-means (RCM), where each cluster is represented

by a pair of crisp lower and upper approximations. Combin-

ing both rough sets and fuzzy sets, Maji and Pal [32] intro-

duced rough-fuzzy c-means (RFCM) and its several variants

[33], where each cluster is represented by a crisp lower approx-

imation and a probabilistic and/or possibilistic fuzzy boundary.

In order to identify clusters having arbitrary shapes, Maji and

Paul [37, 36] proposed robust rough-fuzzy c-means (rRFCM),

where the lower approximation of a cluster is possibilistic in

nature. Recently, rough set theory has been applied success-

fully in bias field estimation [4] and segmentation of brain MR

images [47, 32, 33, 34, 18, 23, 31]. The theory of fuzzy sets

has also been extensively used in brain MR image segmenta-

tion tasks. Pham and Prince [41] used first and second order

regularization terms to model smooth and slowly varying bias

field in a fuzzy c-means (FCM) framework. Ahmed et al. [1] in-

troduced a regularization term in the standard FCM framework

to compensate for the latent bias field and to tend the solution

towards piecewise constant labeling. Several other spatial con-

straints were subsequently introduced into the FCM framework

for robust and improved brain MR image segmentation [22, 16].

The most popular framework to model brain tissue classes

for segmentation is the probabilistic model. Ashburner and

Friston [2] developed a unified probabilistic framework that

combined image registration, tissue classification, and bias field

correction within the same generative model. The expectation-

maximization (EM) algorithm is used for estimating the maxi-

mum likelihood estimate (MLE) of the tissue class parameters

in finite Gaussian mixture (FGM) model based brain MR image

segmentation [46, 17, 26]. Some spatial constraints are further

incorporated into the FGM model for robust image segmenta-

tion in noisy environment [38, 13]. The Markov random field

(MRF) based techniques have been introduced to incorporate

spatial information of the neighboring pixels into the simultane-

ous segmentation and bias field correction framework [50, 43].

Ji et al. [21] proposed adaptive scale fuzzy local FGM model

for robust brain MR image segmentation. Ribbens et al. [42]

introduced a data-driven probabilistic framework, which com-

bines segmentation, registration, atlas construction, and clus-

tering of brain MR images in homogeneous subgroups, in a

unified framework. Li et al. [28] introduced multiplicative in-

trinsic component optimization (MICO) technique for simulta-

neous bias field correction and brain MR image segmentation.

Recently, in [8], the intensity distribution of the image classes is

modelled using Student’s-t distribution for simultaneous brain

MR image segmentation and inhomogeneity correction.

The probabilistic frameworks, reported in [46, 17, 26, 38,

13, 50, 43, 21, 42], are based on the normality assumption of tis-

sue classes around mean. The normal or Gaussian distribution,

being a unimodal distribution, represents a tissue class using a

single intensity value of mean, which, in turn, ensures the defi-

nite belongingness of a pixel to the tissue class. In spite of the

piecewise constant property of brain MR images, a single in-

tensity value can never represent a tissue class properly. To ad-

dress the above problem, a new probability distribution, termed

as stomped normal (StN) distribution, has been introduced in

[5, 6] that is capable of using multiple intensity values to rep-

resent a tissue class. The StN distribution models the intensity

distribution of each class with the help of its three parameters,

namely, mean, variance, and width. But, StN distribution fails

to model another important property in the intensity distribution

of a class. This property is the degree of peakedness or kurtosis

of the intensity distribution, which controls the concentration

of values around mean without affecting the standard deviation.

To incorporate this very important property of data distribution,

recently another new distribution, termed as stomped-t (St-t)

distribution [7], has been proposed for modelling data clusters
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in rough-probabilistic framework. Its performance has been

demonstrated for data clustering, cell delineation, and image

segmentation [7]. As the impact of intensity inhomogeneity ar-

tifacts on MR images has not been considered, the probabilistic

framework of [7] fails to produce the optimal segmented and

bias field corrected brain MR images. The probabilistic model

of [8] also fails to capture both width and kurtosis parameters

of the intensity distribution.

In this regard, the objective of the proposed research work

is to introduce the properly of kurtosis in rough-probabilistic

modelling of tissue classes for brain MR image segmentation.

A novel algorithm for simultaneous segmentation and bias field

correction of brain MR images, termed as t-StoRM, is devel-

oped by representing the brain MR image as a finite mixture

of St-t distributions and one uniform distribution. The uniform

distribution models the CSF, pathologies, and other non-brain

tissues. Integration of the concept of rough sets into the St-t

distribution enables the algorithm to utilize the advantages of

rough clustering with respect to brain MR image segmentation

tasks. Each tissue class in brain MR image is modelled using

two regions: a crisp lower approximation and a probabilistic

boundary. The lower approximation controls the overlapping

characteristics of the final tissue class. The proposed algo-

rithm incorporates the advantages of St-t distribution into the

joint EM-hidden MRF (HMRF) framework [50] for simultane-

ous segmentation and bias field correction. The algorithm is

generalized in the sense that some of the existing simultaneous

segmentation and bias field correction algorithms can be de-

rived from the proposed algorithm as a special case. Moreover,

the proposed method introduces a new latent variable to mea-

sure the inlierness of each pixel with respect to tissue classes

for robust parameter estimation, instead of a pre-specified fixed

weight for lower approximation region, as done in [5]. Finally,

the efficacy of the proposed algorithm, along with a comparison

with related methods, is illustrated on a set of real and simulated

brain MR images, both qualitatively and quantitatively for dif-

ferent bias fields and noise levels.

The structure of the rest of this paper is as follows: Sec-

tion 2 discusses the basic concepts of rough sets. The concepts

of StN and St-t distributions are also included in this section.

The proposed simultaneous segmentation and bias field correc-

tion algorithm is introduced in Section 3. Section 4 demon-

strates the performance of the proposed algorithm, along with

a comparison with related state-of-the-art methods, for simul-

taneous segmentation and bias field correction of brain MR im-

ages. Concluding remarks are given in Section 5.

2. Basics of Rough Sets, StN and St-t Distributions

This section presents the basic concepts of rough sets, along

with two new distributions, namely, StN and St-t. The proposed

algorithm for simultaneous bias field correction and brain MR

image segmentation is developed based on these concepts.

2.1. Basics of Rough Sets

The theory of rough sets begins with the notion of an ap-

proximation space, which is represented as a pair < U, A >,
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Figure 1. StN distribution incorporates the concepts of lower approximation

and boundary region of rough sets.

where U = {o1, · · · , o j, · · · , on} be a non-empty set, the uni-

verse of discourse, and A is an equivalence relation on U. The

relation A partitions the set U into disjoint classes, so that two

elements o j and ok belong to the same class iff (o j, ok) ∈ A. Let

denote by U/A the quotient set of U by relation A, and

U/A = {X1, · · · , Xi, · · · , Xm} (1)

where Xi represents an equivalence class of A. If two elements

o j and ok in U belong to the same equivalence class Xi ∈ U/A,

the elements o j and ok are termed as indistinguishable. The

equivalence classes of A, along with the empty set ∅, are defined

as the elementary sets in the approximation space < U, A >.

Given an arbitrary set X ∈ 2U, generally, it may not be possible

to describe X precisely in < U, A >. One may characterize X by

a pair of lower and upper approximations defined as [40]

A(X) =
⋃

Xi⊆X

Xi; and A(X) =
⋃

Xi∩X,∅
Xi. (2)

The lower approximation A(X) denotes the union of all the

elementary sets which are subsets of X, and the upper approx-

imation A(X) denotes the union of all the elementary sets which

have a non-empty intersection with X. The tuple< A(X), A(X) >

is the representation of an ordinary set X in the approximation

space < U, A > or simply called the rough set of X. The lower

(respectively, upper) approximation A(X) (respectively, A(X))

is defined as the collection of those elements of U that defi-

nitely (respectively, possibly) belong to X. B(X) = A(X) \ A(X)

is called the boundary region of X. Further, a set X ∈ 2U is said

to be definable or exact in < U, A > iff A(X) = A(X).

2.2. StN Distribution

Gaussian or normal distribution is a unimodal distribution,

which possesses highest probability density value at its mean;

and the density decreases symmetrically towards its both ends.

If a class follows normal distribution, it implies any pixel, be-

longing to the class, has highest probability of belongingness at

the mean value of the distribution and the probability decreases

with its deviation from mean. Hence, in case of normal distri-

bution, only the mean intensity value ensures the belongingness

of a pixel to the class. However, in reality, there exist multiple

intensity values in an image that ensure belongingness of a pixel

to a specific class. But, this property is ignored when normal

distribution is fitted to model an image class, which, in turn,

leads to inaccurate segmentation.

The StN distribution [5] attains highest probability density

in a region (lower approximation) around its mean and the prob-

ability density decreases (boundary region) while traversing away

3
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Figure 2. Probability density curves for normal, StN, non-standardized t, and

St-t distributions with µ = 0, σ2 = 5, k = 0.5, and ν = 2.

from the uniform region (Fig. 1). The probability density func-

tion (pdf) of StN distribution is given by:

f (y; µ, σ2, k) =
1

Dσ
φ(z), (3)

where z =

{
k, if | y−µ

σ
| < k

y−µ
σ
, otherwise

, D = 2(1 − Φ(k) + kφ(k)),

and φ() and Φ() are, respectively, the pdf and cumulative dis-

tribution function (cdf) of standard normal distribution. In case

k = 0, Eq. (3) reduces to the pdf of a normal distribution with

mean µ and variance σ2. Hence, it is clear that the StN dis-

tribution is a more generalized probability distribution, whose

special case is the Gaussian distribution.

2.3. St-t Distribution

The StN distribution models three important characteristics

of data distribution: central tendency, dispersion, and width of

the lower approximation region. Apart from these three, there

also exists another important characteristics in data that StN dis-

tribution fails to model. This property is commonly known as

the degree of peakedness or kurtosis of the data distribution,

which controls the concentration of values around the mean

without affecting the dispersion of data distribution. A high

value of kurtosis suggests high concentration of values near

mean with smaller tails, which is suitable for modelling piece-

wise homogeneous brain tissue classes in noise-free environ-

ment. Similarly, a lower value of kurtosis suggests low concen-

tration of values near mean with longer tails, which can model

even outlier observations in a noisy environment. To incorpo-

rate this important characteristic into the StN distribution, the

St-t distribution [7] is developed that has the ability to control

the kurtosis of the distribution.

In case Y | U = u ∼ S tN(µ, σ
2

u
, k) and U ∼ Gamma

(
ν
2
, ν

2

)
,

the pdf of Y is called the pdf of non-standardized St-t distribu-

tion with degrees of freedom ν, location parameter µ, and scale

parameter σ. For standardized Y with respect to location µ and

scale σ, that is, for X =
Y−µ
σ

, the pdf is written as

fX(x) =
1

D
√
πν Γ( ν

2
)

[
e−

k2

2 γ

(
ν + 1

2
,

u0ν

2

)
+

1

(1 + x2

ν
)
ν+1

2

Γ

(
ν + 1

2
,

u0

2
(ν + x2)

) ]
,

(4)

where u0 =
k2

x2 , γ(s, x) =
∫ x

0
e−uus−1du is the lower incomplete

gamma function, and Γ(s, x) =
∫ ∞

x
e−uus−1du is the upper in-

complete gamma function. The above function is defined as the

pdf of standardized St-t distribution with ν degrees of freedom.

In case k = 0, Y follows non-standardized t-distribution

with parameters µ, σ, and ν. As ν→ ∞, Y becomes marginally

StN with parameters µ, σ2, and k. Also, in case ν → ∞ and

k = 0, Y follows normal with parameters µ and σ2. Fig. 2

compares the probability density curves of normal, StN, non-

standardized t, and St-t distributions with parameters µ = 0,

σ2 = 5, k = 0.5, and ν = 2.

3. t-StoRM: Proposed Segmentation Algorithm

This section introduces the t-StoRM algorithm for simulta-

neous segmentation and bias field correction in brain MR im-

ages, integrating the merits of St-t distribution into the joint

EM-HMRF framework. A flow-chart of the proposed t-StoRM

algorithm is provided in Figure 3.

3.1. Proposed Framework

The bias field is generally modelled as a multiplicative com-

ponent. If the intensity of the ith pixel of the inhomogeneity-

free image is ṽi, and corresponding intensity inhomogeneity

component and noise are bi and ǫi, respectively, the intensity

vi of the ith pixel of acquired image is obtained as

vi = ṽibi + ǫi, i ∈ S = {1, · · · ,N}; (5)

N being the number of pixels in the image. In general, the

bias field is first estimated from the noisy image and then post-

filtering is applied to remove noise from the bias corrected im-

age [17]. As the model is multiplicative, a logarithmic trans-

formation is applied on (5) to make the model additive, that is,

yi = ỹi + βi, where yi = log vi, ỹi = log ṽi, and βi = log bi.

Let xi be the label of ith pixel and xi ∈ L = {1, · · · , l, · · · , L}.
Yi and Xi denote, respectively, the random variables of the log-

transformed intensity value and class label of the ith pixel of the

image. We define a set of latent variables as follows:

δil =

{
1, if Xi = l;

0, otherwise.
(6)

We also assume that the observed data yi, i ∈ S augmented by

the δil, i ∈ S, l ∈ L is still incomplete. So, we introduce a set

of additional missing data ui, i ∈ S, which are defined so that

Yi|(Ui = ui, δil = 1, βi) ∼ S tN(µl,
σ2

l

ui
, kl) independently for i ∈ S

and Ui|(δil = 1) ∼ Gamma(
νl

2
,
νl

2
) independently for i ∈ S. Now,

p(yi|ui, δil, βi) =

√
ui

Dlσl

φ(zil), (7)

where zil =


kl, if

∣∣∣∣
√

ui(yi−βi−µl)

σl

∣∣∣∣ < kl
√

ui(yi−βi−µl)

σl
, otherwise

,

Dl = 2(1 − Φ(kl) + klφ(kl)).

Also, p(ui|δil) =

(
νl

2

) νl
2 1

Γ(
νl

2
)
e−

uiνl
2 u

νl
2
−1

i
I(0,∞)(ui). (8)
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Figure 3. Flow-chart of the proposed t-StoRM algorithm.

Following the concepts of rough sets, let A(Ωl) and B(Ωl) be the

lower approximation and boundary region of the lth tissue class

Ωl. Let, A(Ωl) = {A(Ωl) ∪ B(Ωl)} denote the upper approxima-

tion of Ωl. So, each tissue class Ωl is represented by the tuple

< A(Ωl), A(Ωl) >. According to the definitions of lower ap-

proximation and boundary region of rough sets [40], if a pixel

i ∈ A(Ωl), then i < B(Ωl),∀l ∈ L, which signifies the pixel i

is contained in Ωl definitely. Integrating the concept of rough

sets into the St-t distribution, the crisp lower approximation and

probabilistic boundary region of Ωl are defined as follows:

A(Ωl) =

{
i ∈ S :

∣∣∣∣∣∣

√
ui(yi − βi − µl)

σl

∣∣∣∣∣∣ < kl

}
; (9)

B(Ωl) =
{
i ∈ S : i < A(Ωp),∀p ∈ L

}
. (10)

The proposed simultaneous segmentation and bias field cor-

rection algorithm models the intensity distribution of the brain

MR image as a mixture of finite number of St-t distributions

and one uniform distribution. The uniform distribution is used

to model the class Ωother, which consists of CSF, pathologies,

and other non-brain tissues and hence, has relatively large vari-

ance [17]. Accordingly, the brain MR image is represented as:

p(yi|βi) =
∑

l:Ωl∼St-t

p(yi|δil, βi)p(δil|xNi
) + λp(Ωother); (11)

where p(yi|δil, βi) =

∫ ∞

−∞
p(yi|ui, δil, βi)p(ui|δil)dui; Ωl ∼ St-t;

λ is the density of the uniform distribution, and p(δil|xNi
) de-

notes the probability that the ith pixel belongs to Ωl, given the

class labels of neighboring pixels Ni. In this regard, the joint

EM-HMRF framework [50] is employed to incorporate spatial

dependency into the proposed model. The neighborhood infor-

mation of each pixel is incorporated into the proposed frame-

work via the prior probability function p(δil|xNi
). The bias field

artifact β
˜
= (β1, β2, · · · , βN)T is modelled by an N-dimensional

zero mean Gaussian prior probability density [46, 17, 50, 5]:

p(β
˜

) = G′ψβ (β˜
); where G′ψβ (x

˜
) =

1√
(2π)N |ψβ|

exp(−1

2
x
˜

Tψ−1
β x
˜

).

3.2. The EM Algorithm

The objective of the EM algorithm is to find the MLE of pa-

rameters of the underlying distributions based on the observed

incomplete data. To achieve this goal, a new set of latent vari-

ables is introduced in the problem that constitute the complete

data together with the observed data. In proposed framework,

the observed values of yi, i ∈ S is the incomplete data, and the

class labels xi and latent variables ui and δil, i ∈ S, l ∈ L, to-

gether with yi, i ∈ S, constitute the complete data. To estimate

the parameters, the Q-function, that is, the expected complete-

data log-likelihood is constructed as:

Q(θ|θ(t)) = E[log p(y
˜
, β
˜
, x
˜
, u
˜
|xN
˜
, θ)|y

˜
, θ(t)]

=
∑

i∈S

∑

l∈L
τ

(t)

il
Q

(t)

il
+ log p(β

˜
), (12)

where Q
(t)

il
= E[log p(yi, xi = l, ui|βi, xNi

, θl)|yi, θ
(t)

l
] and τ

(t)

il
=

E[δil|yi, βi, xNi
, θ

(t)

l
]. Now,

Q
(t)

il
= log p(l|xNi

) + Q2,il(θ|θ(t)) + Q3,il(θ|θ(t)), (13)

where Q2,il(θ|θ(t)) = E[log p(ui|xi = l, θl)|yi, βi, θ
(t)

l
]

=

[
νl

2
log

(
νl

2

)
− logΓ

(
νl

2

)
− νl

2
u

(t)

il
+

(
νl

2
− 1

)
(lu)

(t)

il

]
,

5
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where u
(t)

il
= E[ui|yi, βi, θ

(t)

l
] and (lu)

(t)

il
= E[log ui|yi, βi, θ

(t)

l
];

Q3,il(θ|θ(t)) = E[log p(yi|ui, βi, xi = l, θl)|yi, θ
(t)

l
]

=
1

2
(lu)

(t)

il
− log Dl − logσl −

1

2
log(2π) − 1

2
E(z2

il|yi, βi, θ
(t)

l
).

Here, E(z2
il|yi, βi, θ

(t)

l
) =


k2

l
, if i ∈ A(Ωl)

u
(t)

il

(yi−βi−µl)
2

σ2
l

, if i ∈ B(Ωl).
(14)

3.2.1. The Expectation (E)-Step

The posterior probability that the pixel i belongs to the tis-

sue class Ωl is given by

τil = E[δil|yi, βi, xNi
, θl] = p(δil = 1|yi, βi, xNi

, θl)

=
p(xi = l|xNi

)p(yi|xi = l, βi, θl)∑

m∈L
p(xi = m|xNi

)p(yi|xi = m, βi, θm)
. (15)

So, the expression τil in (15) evidently computes the belonging-

ness of pixel i to Ωl, which can be considered as the member-

ship value of pixel i toΩl. According to the definitions of lower

approximation and boundary region of a tissue class, based on

the St-t distribution and rough sets, if a pixel belongs to the

lower approximation region of a specific tissue class, it should

definitely belong to that tissue class. Hence, the membership

of the pixel to that tissue class should be 1 and to other classes

should be 0. On the other hand, the pixels in boundary regions

should have different memberships to different classes as there

exists ambiguity in its belongingness to a particular tissue class.

So, the membership function is modified as

τil =



1, if i ∈ A(Ωl)
p(l|xNi

)p(yi|l, βi, θl)∑

m∈L
p(m|xNi

)p(yi|m, βi, θm)
, else if i ∈ B(Ωl)

0, otherwise.

(16)

Since x
˜

is considered as a realization of an MRF, its prior prob-

ability is derived from

p(x
˜

) =
1

Z
exp{−E(x

˜
)}, (17)

Z being the normalizing constant, called the partition function,

and E(x
˜

) is an energy function of the form E(x
˜

) =
∑

c∈C
Ec(x

˜
),

which is a sum of clique potentials Ec(x
˜

) over all possible cliques

C. In this problem, we define the clique potential as Ec(x
˜

) =

−aδ(xi − x j), where a is the scale parameter. So,

p(xi|xNi
) =

exp


∑

j∈Ni

aδ(xi − x j)



∑

m∈L
exp


∑

j∈Ni

sδ(m − x j)



=
exp

(
ani(xi)

)
∑

m∈L
exp

(
ani(m)

) ,

(18)

where ni(xi) is the number of neighbors of pixel i having class

label xi. Now, before estimating uil and (lu)il, the distribution

of Ui|(Yi = yi, δil = 1, βi) is obtained as follows:

p(ui|yi, δil, βi) =
p(yi|ui, δil, βi)p(ui|δil)

p(yi|δil, βi)

=
1

Υil

(
νl

2

) νl+1

2

e−
1
2

(uiνl+z2
il
)u

νl+1

2
−1

i
I(0,∞)(ui), (19)

whereΥil =

[
e−

k2
l
2 γ

( νl+1

2
,

u0,ilνl

2

)
+
Γ
(
νl+1

2
,

u0,ilνlζil
2

)

ζ

νl+1

2
il

]
, u0,il =

k2
l

d(yi,βi,µl,σl)
,

and ζil = (1 +
k2

l

u0,ilνl
).

uil = E[ui|yi, βi, θl] =

∫ ∞

−∞
ui p(ui|yi, δil, βi)dui

=
1

Υil

1

( νl

2
)

e
−

k2
l
2 γ

(νl + 3

2
,

u0,ilνl

2

)
+
Γ
( νl+3

2
,

u0,ilνlζil

2

)

ζ
νl+3

2

il

 . (20)

(lu)il = E[log ui|yi, βi, θl] =

∫ ∞

−∞
log ui p(ui|yi, δil, βi)dui

= − log
(νl

2

)
+

1

Υil

[
e−

k2
l
2

∫ u0,ilνl
2

0

e−tt
νl−1

2 log tdt

+

∫ ∞
u0,ilνlζil

2

e−tt
νl−1

2 log tdt

ζ
νl+1

2

il

− log(ζil)
Γ
( νl+1

2
,

u0,ilνlζil

2

)

ζ
νl+1

2

il

]
. (21)

Further algebraic calculations lead to:

∫ u0,ilνl
2

0

e−tt
νl−1

2 log tdt = γ′
(νl + 1

2
,

u0,ilνl

2

) − e−
u0,ilνl

2 u
νl+1

2

0,il
(
νl

2
)

νl−1

2

∫ ∞

u0,ilνlζil
2

e−tt
νl−1

2 log tdt = Γ′
(νl + 1

2
,

u0,ilνlζil

2

)
+ e−

u0,ilνlζil
2 u

νl+1

2

0,il

(νlζil

2

)
νl−1

2

where γ′(p, x) = ∂
∂p
γ(p, x) and Γ′(p, x) = ∂

∂p
Γ(p, x).

The optimal labeling can be estimated according to the max-

imum a posteriori criterion

x̂
˜
= arg max

x

˜
[p(y

˜
|x
˜
, β
˜

)p(x
˜

)]

= arg min
x

˜

[
−

∑

i∈S

(
logΥi,xi

− log Dxi
− logσxi

− 1

2
log(πνxi

) − logΓ

(
νxi

2

) )
+ E(x

˜
)

]
. (22)

Using iterated conditional modes algorithm [9], this optimiza-

tion problem is reduced to

x̂i = arg min
xi

[
log Dxi

+ logσxi
+

1

2
log(πνxi

)

+ logΓ

(
νxi

2

)
− logΥi,xi

− ani(xi)

]
. (23)

3.2.2. The Maximization (M)-Step

Optimizing Q-function with respect to bias field βi, we get:

Ri

(t) − ψ−1
(t)

ii βi +

∂
∂βi

p(β
˜

)

p(β
˜

)
= 0, (24)

6
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where Ri

(t)
=

∑
l∈L τ

(t)

il
u

(t)

il

(yi−µl)

σ2
l

is the mean residual and the

mean inverse covariance is

ψ−1
(t)

ip =



∑

l∈L
τ

(t)

il
u

(t)

il

1

σ2
l

, if i = p

0, otherwise.

(25)

Further operations on (24) lead to

β̂
˜

(t+1)
= HR

˜
(t)
, (26)

where H = [ψ−1
(t)
+ ψ−1

β ]−1. Since, estimating ψβ, and hence

ψ−1
β , is computationally infeasible, H is estimated using a linear

low-pass filter [46]. So, the bias field at ith pixel is estimated as

β̂
(t+1)

i
=

[FR
˜

(t)
]i

[Fψ−1
(t)

1
˜

]i

, (27)

where F is a low-pass filter. Optimizing Q with respect to pa-

rameters µl and σl, we get:

µ̂
(t+1)

l
=

∑
i∈B(Ωl) τ

(t)

il
u

(t)

il
(yi − βi)

∑
i∈B(Ωl) τ

(t)

il
u

(t)

il

, (28)

and (σ̂2
l )(t+1) =

∑
i∈B(Ωl)

τ
(t)

il
u

(t)

il
(yi − βi − µ̂(t+1)

l
)2

∑
i∈S τ

(t)

il

.(29)

Following [24], the denominator
∑

i∈S
τ

(t)

il
in (29) is replaced by

∑

i∈S
τ

(t)

il
u

(t)

il
for faster convergence of the EM algorithm. Hence,

the estimate of (σ̂2
l
)(t+1) is modified to:

(σ̂2
l )(t+1) =

∑
i∈B(Ωl) τ

(t)

il
u

(t)

il
(yi − βi − µ̂(t+1)

l
)2

∑
i∈S τ

(t)

il
u

(t)

il

. (30)

However, the removal of lower approximation region from

parameter estimation in (28) and (30) creates estimation bias,

since it assigns higher weightage in the boundary region, which

in presence of noise and outliers degrades the parameter esti-

mation. The derived estimate of µl in (28) considers only bias

corrected intensity in the boundary region, not lower approxi-

mation region. Hence, µ̂l is modified to incorporate the effects

of both lower approximation and boundary region, as follows:

µ̂
(t+1)

l
=

∑

i∈A(Ωl)

u
(t)

il
(yi − βi) +

∑

i∈B(Ωl)

τ
(t)

il
u

(t)

il
(yi − βi)

∑

i∈A(Ωl)

u
(t)

il
+

∑

i∈B(Ωl)

τ
(t)

il
u

(t)

il

. (31)

Similarly, in the estimate ofσ2
l
, the weighted squared devia-

tion of intensity values from their mean in lower approximation

region is included in the numerator, as follows:

(σ̂2
l
)(t+1) =

∑

i∈A(Ωl)

u
(t)

il
(yi − βi − µ̂(t+1)

l
)2 +

∑

i∈B(Ωl)

τ
(t)

il
u

(t)

il
(yi − βi − µ̂(t+1)

l
)2

∑

i∈A(Ωl)

u
(t)

il
+

∑

i∈B(Ωl)

τ
(t)

il
u

(t)

il

.

(32)

The variable uil estimates the inlierness of the ith pixel to

Ωl. If the pixel lies very near to the cluster centroid (class

mean), the corresponding value of u will be very high, while

an outlier pixel will produce negligible (near to zero) value

of u. Thus, introducing the novel variable u, the proposed t-

StoRM algorithm filters out the effects of outlier pixels from

the estimate of the parameters, which pose a serious threat dur-

ing any moment-based parameter estimation. Additionally, the

variable u assigns higher weightage to the pixels belonging in

lower approximation region, which enables the t-StoRM to pro-

vide robust parameter estimation even in heavy noisy environ-

ment. The StoRM algorithm [5] also performs similar kind of

operation during parameter estimation; but instead of estimat-

ing the weight adaptively, it assigns constant (higher) weight to

the pixels in lower approximation region and constant (lower)

weight to the pixels in boundary region (containing noise and

outliers). The introduction of u in t-StoRM nullifies the need of

this pre-specified fixed weight and provides efficient computa-

tion of the individual contributions of inlier and outlier pixels,

thus producing robust estimates of parameters.

The estimates of the parameters kl and νl are obtained using

the approach mentioned in [7]. Optimizing Q with respect to kl

and applying the numerical Newton-Raphson method, the esti-

mate of kl is obtained as follows: start with an initial estimate

of kl, that is, (kl)0. The process is repeated as

(kl)n+1 = (kl)n −
f ((kl)n)

f ′((kl)n)
, (33)

until it converges to an optimum solution, where

f (k) = (1 −Φ(k))
∑

i∈A(Ωl)

τ
(t)

il
− kφ(k)

∑

i∈B(Ωl)

τ
(t)

il
(34)

and f ′(k) = φ(k)

k
2

∑

i∈B(Ωl)

τ
(t)

il
−

∑

i∈S
τ

(t)

il

 . (35)

In the similar way, the estimate of νl is obtained as: start with

an initial estimate of νl, that is, (νl)0. The process is repeated as

(νl)n+1 = (νl)n −
g((νl)n)

g′((νl)n)
, (36)

until it converges to an optimum solution, where

g(k) = 1 + log

(
k

2

)
− ψ

(
k

2

)
+

1

τ
(t)

l

∑

i∈S
τ

(t)

il
((lu)

(t)

il
− u

(t)

il
),

g′(k) = 1
k
− 1

2
ψ′

(
k
2

)
, τ

(t)

l
=

∑

i∈S
τ

(t)

il
, ψ(p) = 1

Γ(p)
∂
∂p
Γ(p) is the

digamma function, and ψ′(p) = ∂
∂p
ψ(p) is the trigamma func-

tion. The algorithm of the proposed t-StoRM method is pre-

sented in Algorithm 1.

Complexity Analysis. For each iteration of the t-StoRM algo-

rithm, the estimation of memberships takesO(RCL) time, where

the image is of size R × C and the number of tissue classes is

L. Estimation of u, lu, and class labels are all performed in

O(RCL) time; while the estimation of bias field components

7
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Figure 4. Variation of scaling parameter a in t-StoRM with respect to different segmentation evaluation indices.

Algorithm 1: t-StoRM for Simultaneous Segmenta-

tion and Bias Field Correction

Input : Input image, number of tissue classes.

Output: Segmented and bias field corrected images.

1 Initial segmentation and parameter estimation;

2 do

3 Estimate the membership values using (16);

4 Estimate u and lu using (20) and (21), respectively;

5 Estimate the class labels using (23);

6 Estimate the logarithm of bias field using (27);

7 Update parameters µl and σ2
l

using (31) and (32),

respectively;

8 Update the width parameter kl using (33);

9 Update νl using (36);

10 t← t + 1;

11 while the algorithm does not converge and the

maximum number of iterations has not reached;

12 Construct the segmented and bias field corrected

images.

takes O(RCL∆2) time, where ∆ is the maximum window size

of the low-pass filter. Updation of parameters µl and σ2
l

are

also performed in O(RCL) time. Updating parameters kl and

νl takes, respectively, O(RCLT ′
1
) and O(RCLT ′

2
) time, where

T ′
1

and T ′
2

are the number of iterations to converge the nu-

merical methods. In practice, T ′
1
, T ′

2
≤ 10. So, for T itera-

tions, the time complexity of the proposed t-StoRM algorithm

is O(RCLT (∆2 + T ′
1
+ T ′

2
)) =O(RCLT∆2), as ∆2 > T ′

1
+ T ′

2
.

Generalization of Existing Algorithms. The proposed t-StoRM

algorithm is the generalization of some of the existing simul-

taneous segmentation and bias field correction algorithms. In

case νl → ∞, ∀l ∈ L, the St-t distribution reduces to StN dis-

tribution. In turn, the proposed algorithm reduces to the StoRM

algorithm [5]. If νl → ∞ and kl = 0, ∀l ∈ L, the St-t dis-

tribution reduces to normal distribution. In this case, the im-

age is represented by a finite mixture of normal distributions.

Hence, the proposed algorithm reduces to the HMRF-EM algo-

rithm [50]. On the other hand, if the parameters of St-t distri-

butions are neither estimated through the HMRF nor updated

in each iteration, but estimated previously before applying the

algorithm, the proposed algorithm reduces to the modified EM

(mEM) algorithm [17] for kl = 0 and νl → ∞. Moreover, if the

class Ωother is modelled using St-t distribution with kl = 0 and

νl → ∞, instead of uniform distribution, t-StoRM reduces to

the adaptive segmentation (ASeg) algorithm [46].

4. Experimental Results and Discussion

The performance of the proposed t-StoRM algorithm, based

on St-t distribution, rough sets, and HMRF model, is studied

and compared with that of several existing simultaneous seg-

mentation and bias field correction algorithms, namely, ASeg

[46], mEM [17], HMRF-EM [50], MICO [28], StN distribution,

rough sets, and HMRF model based simultaneous segmenta-

tion and bias field correction algorithm (StoRM) [5], Student’s-

t distribution and EM algorithm based simultaneous segmen-

tation and bias field correction algorithm (tEM) [8], and bias-

corrected FCM algorithm (BCFCM); existing bias field correc-

tion algorithms, namely, rough sets and contraharmonic mean

filter based bias field correction method (RC2) [4] and non-

parametric nonuniform intensity normalization bias correction

method (N3) [44]; several brain MR image segmentation algo-

rithms: kernel metric and trade-off weighted fuzzy factor based

fuzzy local information c-means (KWFLICM) [16], RFCM [32,

33, 34], rRFCM [37, 36], deviation-sparse FCM with neighbor

information constraint (DSFCM N) [49], intuitionistic center-

8
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Figure 5. Box plot depicting the importance of proposed t-StoRM framework with respect to segmentation and bias field correction evaluation indices.

free FCM (ICFFCM) [3], and improved FCM based on mor-

phological reconstruction and membership filtering (FRFCM)

[27]; and several analysis tools for MRI, namely, statistical pa-

rameter mapping software (SPM) version 8 [2] and FMRIB

Software Library (FSL) version 5.0 [20]. Before applying the

algorithms on brain MR images, the brain extraction tool [45] is

applied to remove non-brain tissues like skull, scalp, dura, etc.,

from the images; while the thresholding method due to Otsu

[39] is applied for initial segmentation of the brain MR images

and to estimate the initial set of parameters of different brain

tissue classes. The proposed t-StoRM algorithm, ASeg, mEM,

HMRF-EM, StoRM, and RC2 algorithms are implemented in

C language. All the algorithms and measures are executed in

Ubuntu 16.04 LTS 64-bit OS having machine configuration In-

tel(R) Core(TM) i7-2600 CPU @3.40GHz×8 and 16 GB RAM.

The source code of the proposed t-StoRM algorithm is available

at: www.isical.ac.in/~bibl/results/t-storm.html.

To analyze the performance of different algorithms, the ex-

perimentation is done on some benchmark simulated MR im-

ages of “BrainWeb: Simulated Brain Database”2 [11, 25, 12]

and real MR images of “IBSR: Internet Brain Segmentation

Repository”3. The brain MR images of BrainWeb database are

generated using an MRI simulator by varying different noise

levels (0%, 1%, 3%, 5%, 7%, and 9%) and intensity inhomo-

geneity artifacts (0%, 20%, and 40%) present in the image. The

anatomical model serves as the ground truth segmentation of

the generated volumes. The “percent noise” number represents

the percent ratio of the standard deviation of the additive white

Gaussian noise versus the signal for the brightest tissue. From

IBSR database, all eighteen volumes (volumes 1 to 18) are

used in the current study. For each volume of IBSR database,

the manual segmentation by an expert supervisor is provided,

which serves as the gold standard for segmentation. All the im-

age volumes of BrainWeb and IBSR are of size 181×217×181

2http://www.bic.mni.mcgill.ca/brainweb/
3http://www.cma.mgh.harvard.edu/ibsr/

Table 1. Average p-Values of Proposed t-StoRM Algorithm for Different Values

of Scaling Parameter

Scale (a) Dice Sensitivity Specificity

0.10 0.918164 0.814450 0.959242

0.20 0.891274 0.725203 0.870370

0.30 0.767295 0.797424 0.762463

0.40 0.555834 0.544265 0.608914

0.50 0.029867 0.019692 0.023249

0.60 0.160750 0.140769 0.111611

0.70 0.194282 0.272680 0.241223

0.80 0.368789 0.450396 0.359192

0.90 0.482030 0.523890 0.467599

1.00 0.631713 0.711231 0.596136

and 256×128×256, respectively. The middle slice of each vol-

ume is considered for both qualitative and quantitative analysis.

The performance of different bias field correction algorithms

is evaluated using four quantitative indices, namely, index of

class separability (IoCS) [4], index of joint variation (IoJV) [4],

root mean square error (RMSE), and index of variation (IoV)

[4]. A good bias correction method should make the values of

IoCS and IoV as high as possible and that of IoJV and RMSE as

low as possible. Since the ground truth or bias-free images are

not available for the volumes of IBSR database, the restored

images of IBSR database are compared with respect to only

IoCS and IoJV. The performance of different segmentation al-

gorithms is evaluated using three quantitative indices, namely,

Dice coefficient, sensitivity, and specificity. The metrics are

calculated for individual tissues (CSF, GM, and WM) and then

averaged over all classes, indicating that the identification of

all classes is given equal importance towards the calculation of

segmentation accuracy. A good segmentation algorithm should

make the values of these three indices as high as possible, and

ideally, the values should be equal to 1. The bias field cor-

rection and segmentation evaluation indices computed over all

brain MR images of BrainWeb and IBSR databases are graph-

9
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Table 2. Estimated Parameters of St-t Distribution for Brain MR Images of

BrainWeb and IBSR Databases

Vol. GM WM

No. µl σl kl νl µl σl kl νl

0-0 4.700 0.107 0.130 2.109 4.999 0.029 0.028 5.504

0-20 4.647 0.110 0.108 3.002 4.951 0.041 0.070 5.368

0-40 4.595 0.115 0.132 3.026 4.903 0.053 0.091 5.663

1-0 4.683 0.103 0.143 3.022 4.982 0.035 0.064 5.248

1-20 4.644 0.110 0.104 3.005 4.947 0.041 0.063 5.460

1-40 4.588 0.116 0.088 3.004 4.897 0.054 0.091 5.695

3-0 4.620 0.107 0.108 3.041 4.917 0.043 0.079 5.467

3-20 4.591 0.113 0.102 3.006 4.894 0.048 0.068 5.574

3-40 4.560 0.122 0.082 3.025 4.872 0.058 0.108 6.696

5-0 4.572 0.120 0.087 3.027 4.874 0.057 0.123 5.598

5-20 4.546 0.126 0.089 3.009 4.854 0.059 0.060 5.458

5-40 4.515 0.130 0.081 3.091 4.828 0.067 0.099 5.694

7-0 4.542 0.139 0.104 3.033 4.851 0.070 0.099 5.215

7-20 4.551 0.135 0.076 2.984 4.863 0.072 0.047 5.571

7-40 4.492 0.144 0.067 3.320 4.809 0.074 0.100 5.573

9-0 4.496 0.154 0.097 2.988 4.815 0.081 0.090 5.222

9-20 4.506 0.152 0.067 2.988 4.826 0.082 0.081 5.433

9-40 4.465 0.154 0.097 3.065 4.786 0.083 0.090 5.457

V1 4.299 0.118 0.042 3.130 4.570 0.054 0.064 5.664

V2 4.252 0.112 0.093 3.630 4.513 0.047 0.074 5.912

V3 3.723 0.123 0.112 3.873 4.052 0.073 0.138 5.769

V4 3.849 0.125 0.157 3.803 4.197 0.075 0.066 5.719

V5 4.290 0.112 0.051 3.382 4.581 0.044 0.102 5.730

V6 4.054 0.121 0.051 2.902 4.306 0.034 0.000 4.875

V7 3.540 0.206 0.060 3.301 4.049 0.061 0.146 5.498

V8 3.582 0.274 0.023 5.173 4.135 0.065 0.000 6.014

V9 3.785 0.209 0.091 3.742 4.278 0.064 0.092 5.522

V10 3.493 0.240 0.106 3.629 4.057 0.065 0.125 5.335

V11 4.217 0.185 0.050 3.391 4.666 0.058 0.081 5.477

V12 3.585 0.203 0.052 3.204 4.054 0.076 0.096 5.664

V13 3.863 0.111 0.123 3.736 4.177 0.074 0.000 5.633

V14 3.707 0.125 0.056 3.765 4.079 0.058 0.000 5.552

V15 3.699 0.117 0.094 4.164 4.046 0.054 0.000 5.532

V16 3.802 0.120 0.096 4.016 4.183 0.081 0.072 5.814

V17 3.825 0.114 0.049 3.686 4.125 0.068 0.099 5.721

V18 3.928 0.161 0.060 3.229 4.355 0.077 0.026 5.800

ically presented using box-and-whisker plot. The significance

analysis of the bias field correction and segmentation results

is performed with the help of Wilcoxon signed-rank test and

paired t-test (both one-tailed), with 0.05 as the level of signifi-

cance. The bias field corrected and segmented images are also

compared using intensity histograms.

4.1. Estimation of Scaling Parameter

The scaling parameter a in (23) is an important parameter,

as it controls the overall segmentation performance of the t-

StoRM algorithm. The parameter assigns weights to the clique

potentials of the class label distribution, which, in turn, regu-

lates the balance between the intensity and spatial connected-

ness of each pixel and provides optimal segmentation.

To obtain the optimal value of the scaling parameter, the

parameter a is varied from 0.10 to 1.0 with common difference

0.10, and the performance of t-StoRM is studied with respect to

Dice coefficient, sensitivity, and specificity. The value of 0.10

of the scaling parameter a indicates higher weightage on the in-

tensity information and lower weightage on the connectedness

property; while the value of 1.0 indicates higher weightage on

the connectedness property. The value 0.0 of a actually nullifies

Table 3. Statistical Significance Analysis of Proposed t-StoRM Framework

with respect to Segmentation and Bias Field Correction Evaluation Indices

Algorithm Mean Std. Dev.
p-value

Wilcoxon Paired t

Dice Coefficient

t-StoRM 0.865869 0.077326 - -

StoRM 0.863866 0.073919 0.0808 0.0810

tEM 0.850978 0.080874 8.0E-10 1.4E-08

HMRF-EM 0.846023 0.079459 2.0E-09 2.6E-08

t-StNU 0.847821 0.080372 2.5E-08 1.0E-07

t-StNRS 0.853573 0.068812 6.5E-07 8.6E-05

Sensitivity

t-StoRM 0.898918 0.056861 - -

StoRM 0.898724 0.055875 0.3290 0.4227

tEM 0.893436 0.059085 5.5E-03 2.1E-03

HMRF-EM 0.889393 0.058645 1.4E-03 3.6E-04

t-StNU 0.888063 0.059069 2.8E-05 2.4E-05

t-StNRS 0.883008 0.048152 5.8E-07 1.0E-05

Specificity

t-StoRM 0.981619 0.006873 - -

StoRM 0.981145 0.006402 0.0496 0.0370

tEM 0.979605 0.007296 2.4E-07 8.2E-08

HMRF-EM 0.978343 0.007022 1.3E-07 1.1E-06

t-StNU 0.978221 0.007402 1.8E-08 9.7E-08

t-StNRS 0.979236 0.005556 1.2E-03 8.8E-04

IoCS

t-StoRM 2.459574 0.472441 - -

StoRM 2.454317 0.469986 4.9E-03 0.0243

tEM 2.318241 0.622233 2.3E-06 5.8E-03

HMRF-EM 2.274353 0.581766 1.5E-10 9.9E-05

t-StNU 2.450659 0.469502 1.1E-03 9.4E-04

t-StNRS 2.452097 0.469140 0.0173 7.9E-03

IoJV

t-StoRM 0.654734 0.233891 - -

StoRM 0.653173 0.233154 0.8888 0.9520

tEM 0.693854 0.298418 0.6248 0.0751

HMRF-EM 0.684957 0.296624 0.1812 0.1366

t-StNU 0.656612 0.234347 0.0125 0.0129

t-StNRS 0.656680 0.234529 0.0100 0.0108

RMSE

t-StoRM 6.421026 5.037745 - -

StoRM 6.722482 4.826283 0.1964 0.0910

tEM 8.225153 7.314029 0.3047 0.1313

HMRF-EM 12.357423 19.785690 0.1733 0.1170

t-StNU 7.085362 5.117368 5.3E-05 6.6E-04

t-StNRS 7.172256 4.866223 7.2E-05 5.1E-05

IoV

t-StoRM 0.969831 0.023606 - -

StoRM 0.970510 0.023960 0.7101 0.8083

tEM 0.965740 0.024741 0.5000 0.1352

HMRF-EM 0.966463 0.026426 0.8267 0.2683

t-StNU 0.968229 0.025020 0.0171 9.1E-03

t-StNRS 0.969005 0.023967 0.0269 0.0499

the connectedness property (HMRF model) and assumes that

the pixels are spatially independent. The effect of the scaling

parameter a in the t-StoRM algorithm is presented in Figure 4

with respect to Dice coefficient, sensitivity, and specificity for

all brain MR images of BrainWeb and IBSR databases.
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Figure 6. Input image of BrainWeb with 1% noise and 20% bias field and images restored by different algorithms, along with the intensity histograms.

To find the optimal scaling parameter a⋆, a novel technique

is incorporated that applies the method of statistical hypothesis

testing. For each scaling parameter a and b, a, b = 0.10, 0.20,

· · · , 1.0, a , b, the null hypothesis is defined as H0,ab : µa = µb,

implying the average performance of t-StoRM using scaling pa-

rameters a and b is same. The alternative hypothesis is defined

as H1,ab : µa > µb, implying the average performance of t-

StoRM using scaling parameter a is better than that of using

parameter b. The significance analysis of the paired t-test is

evaluated using p-value, denoted by pab, with level of signifi-

cance 0.05.

For each scaling parameter a, the p-values pab with respect

to other scaling parameters b = 0.10, 0.20, · · · , 1.0, b , a, are

calculated. The average p-value pa. =
1
9

∑
b,a pab indicates the

average performance improvement using the scaling parame-

ter a over other scaling parameters. The scaling parameter,

which attains the minimum average p-value, should provide

optimal segmentation performance, as it consistently provides

better segmentation than using other scaling parameters. From

the results presented in Table 1, it can be easily observed that

the average performance of the proposed t-StoRM algorithm at

a = 0.50 is not only better than that of other scaling parame-

ters, but also significantly better, considering 0.05 as the level

of significance, with respect to all segmentation evaluation in-

dices. So, for further experimentation, the value of the scaling

parameter a is fixed to 0.50, as that specific value of the param-

eter provides the optimal segmentation performance.

4.2. Parameter Estimation of Stomped-t Distribution

Table 2 reports the estimated parameters µl, σl, kl, and νl for

tissue classes GM and WM. The CSF, pathologies, and other

non-brain tissues are unified together into Ωother with uniform

distribution, as the variance of these classes is very large [17].

The zero value of kl implies that the algorithm applies Stu-

dent’s t-distribution, instead of St-t distribution, to represent

the intensity distribution of the tissue class. From the results

reported in Table 2, it can be easily observed that, for five im-

ages of IBSR database, the GM region is represented by St-t

distribution, while the corresponding WM region is modelled

using Student’s t-distribution. In all other cases of BrainWeb

and IBSR databases, both GM and WM regions are modelled

using St-t distribution.

4.3. Importance of St-t Distribution

To establish the importance of St-t distribution over other

distributions such as StN, Student’s t, and Gaussian distribu-

tions for simultaneous segmentation and bias field correction

in brain MR images, experimentation is carried out on several

images. The StoRM algorithm [5] applies the finite mixture of

StN distributions to model a brain MR image. So, by compar-

ing the proposed t-StoRM algorithm with the StoRM algorithm,

the comparison of the St-t distribution with StN distribution for

brain MR image segmentation has been performed. Similarly,

the HMRF-EM algorithm [50] models a brain tissue class us-

ing the unimodal Gaussian distribution in the joint EM-HMRF

11
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Figure 7. Input image of BrainWeb with 7% noise and 40% bias field and images restored by different algorithms, along with the intensity histograms.

framework. Hence, the importance of St-t distribution over

Gaussian distribution is demonstrated by comparing the perfor-

mance of t-StoRM and HMRF-EM algorithms. Moreover, the

importance of St-t distribution over Student’s t-distribution is

demonstrated by comparing the performance of proposed algo-

rithm with that of the tEM algorithm [8], which models each

brain tissue class using Student’s t-distribution for simultane-

ous segmentation and bias field correction. The comparative

bias field correction and segmentation performance analysis is

depicted in Figure 5 using box-and-whisker plot. The signifi-

cance analysis is presented in Table 3 for the proposed t-StoRM,

StoRM, tEM, and HMRF-EM algorithms with respect to differ-

ent segmentation and bias field correction evaluation indices.

From the results reported in the top row of Figure 5 and

top three blocks of Table 3 for segmentation evaluation, it is

clear that the proposed t-StoRM achieves significantly better

segmentation results compared to the tEM and HMRF-EM, ir-

respective of the quantitative indices and statistical tests used.

The proposed algorithm also attains significantly better seg-

mentation performance than the StoRM with respect to speci-

ficity, while better but not significant performance (marked in

italics) with respect to both Dice coefficient and sensitivity.

From the results reported in the bottom row of Figure 5

and bottom four blocks of Table 3, it can be easily observed

that the proposed t-StoRM algorithm provides significantly bet-

ter restoration performance than StoRM, tEM, and HMRF-EM

with respect to IoCS index, irrespective of the statistical tests

used. With respect to IoJV index, the performance of the pro-

posed t-StoRM algorithm is better but not significant (marked

in italics) than HMRF-EM algorithm; whereas the StoRM algo-

rithm provides better restoration performance (marked in bold)

than the t-StoRM. The proposed algorithm also attains better

but not significant restoration performance than tEM with re-

spect to IoJV, when compared in terms of p-values computed

through paired t-test; while the performance of tEM is bet-

ter, when compared using Wilcoxon signed-rank test. With re-

spect to RMSE, the t-StoRM algorithm provides better but not

significant restoration performance than the StoRM, tEM, and

HMRF-EM, irrespective of the statistical tests used. With re-

spect to IoV, the proposed t-StoRM achieves better but not sig-

nificant restoration performance compared to tEM, while the

StoRM achieves better but not significant restoration perfor-

mance compared to t-StoRM. The t-StoRM algorithm also pro-

vides better but not significant restoration performance than

HMRF-EM with respect to IoV, when compared using paired

t-test; while the performance of HMRF-EM is better but not

significant, when compared using Wilcoxon signed-rank test.

The qualitative analysis of the bias field correction perfor-

mance of t-StoRM algorithm over StoRM, tEM, and HMRF-

EM algorithms is presented in Figures 6, 7, 8, and 9. Similarly,

the segmented images by t-StoRM, StoRM, tEM, and HMRF-

EM algorithms are presented in Figures 11, 13, 15, and 16. The

corresponding intensity histogram for each bias corrected and

segmented image is also provided. All the results reported in

12



Banerjee and Maji / Information Sciences XX (2019) 1–21 13

 0

 100

 200

 300

 400

 500

 600

 0  50  100  150  200

Histogram
CSF
GM
WM

(a) Input

 0

 100

 200

 300

 400

 500

 0  50  100  150  200

Histogram
CSF
GM
WM

(b) t-StoRM

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 0  50  100  150  200

Histogram
CSF
GM
WM

(c) StoRM

 0

 100

 200

 300

 400

 500

 600

 0  50  100  150  200

Histogram
CSF
GM
WM

(d) tEM

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  50  100  150  200

Histogram
CSF
GM
WM

(e) HMRF-EM

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  50  100  150  200

Histogram
CSF
GM
WM

(f) N3

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0  50  100  150  200

Histogram
CSF
GM
WM

(g) SPM8

 0

 50

 100

 150

 200

 250

 300

 350

 0  50  100  150  200

Histogram
CSF
GM
WM

(h) FSL

 0

 100

 200

 300

 400

 500

 600

 0  50  100  150  200

Histogram
CSF
GM
WM

(i) ASeg

 0

 100

 200

 300

 400

 500

 600

 0  50  100  150  200

Histogram
CSF
GM
WM

(j) mEM

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  50  100  150  200

Histogram
CSF
GM
WM

(k) MICO

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  50  100  150  200

Histogram
CSF
GM
WM

(l) BCFCM

Figure 8. Input image of IBSR volume no. 1 and images restored by different algorithms, along with the intensity histograms.

these figures establish the importance of using St-t distribution

in terms of both bias field correction and segmentation.

4.4. Importance of Uniform Distribution for “Other” Class

To establish the importance of using uniform distribution

to model the “other” class (consisting of CSF, pathologies, and

other non-brain tissues), experimentation is carried out on sev-

eral brain MR images of BrainWeb and IBSR databases. The

comparative performance analysis is depicted in Figure 5 us-

ing box-and-whisker plot. The significance analysis is also pre-

sented in Table 3 using uniform distribution (t-StoRM) and with-

out using uniform distribution (t-StNU) to model the “other”

class, with respect to different quantitative indices. In this re-

gard, it should be mentioned that the class “other” in t-StNU

is modelled using St-t distribution, instead of uniform distribu-

tion and hence, the brain MR image is modelled using a finite

mixture of St-t distributions.

From all the results reported in Table 3, it can be seen that

the proposed method, using uniform distribution for the class

“other”, attains lower p-values for all quantitative indices with

respect to t-StNU, which are also statistically significant. Also,

the qualitative results reported in Figure 5 establish the impor-

tance of using uniform distribution to model the “other” class,

in terms of optimal segmentation as well as intensity inhomo-

geneity correction.

4.5. Importance of Rough Sets

To establish the importance of rough set based modifica-

tions in the proposed t-StoRM algorithm, experimentation is

carried out on several brain MR images of BrainWeb and IBSR

databases. The comparative performance analysis is depicted in

Figure 5 using box-and-whisker plot. The significance analysis

is presented in Table 3 both using (t-StoRM) and without using

rough sets (t-StNRS) in the proposed algorithm, with respect to

different quantitative indices. In this regard, it should be noted

that the membership values of each pixel into different tissue

classes, in the t-StNRS algorithm, are estimated using (15) and

the parameters of the stomped-t distributions are updated using

(28) and (30), instead of using (16), (31), and (32), respectively.

From the results reported in Table 3, it is observed that

the proposed method with rough sets attains significantly lower

p-values when compared with t-StNRS using both Wilcoxon

signed-rank test and paired t-test, for all evaluation indices.

Also, the qualitative results reported in Figure 5 establish the

importance of using rough set based modifications in terms of

optimal segmentation and bias field correction.

4.6. Performance of Different Bias Field Correction Algorithms

To find out the effectiveness of the proposed t-StoRM algo-

rithm for bias field correction over state-of-the-art algorithms

such as RC2 [4], N3 [44], SPM8 [2], FSL [20], ASeg [46],

mEM [17], MICO [28], and BCFCM [1], experimentation is

carried out on 18 images of BrainWeb and 18 images of IBSR
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Figure 9. Input image of IBSR volume no. 8 and images restored by different algorithms, along with the intensity histograms.
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Figure 10. Box plot depicting the performance of proposed t-StoRM algorithm over state-of-the-art bias field correction algorithms on BrainWeb and IBSR

databases. a) t-StoRM, b) RC2, c) N3, d) SPM8, e) FSL, f) ASeg, g) mEM, h) MICO, and i) BCFCM.

databases. The significance analysis with respect to Wilcoxon

signed-rank test and paired t-test is presented in Table 4 for four

quantitative indices, while the corresponding box plots are pre-

sented in Figure 10.

From the results reported in Figure 10 and Table 4, it can

be seen that the proposed t-StoRM algorithm provides signif-

icantly better restoration than all existing algorithms with re-

spect to IoCS index, considering 0.05 as the level of signifi-

cance, irrespective of the statistical tests used. The proposed al-

gorithm also attains significantly better restoration performance

than RC2, FSL, MICO, and BCFCM for IoJV index. With re-

spect to IoJV index, the proposed t-StoRM attains significantly

better bias field correction results than mEM, when compared

using paired t-test; while better but not significant (marked in

italics) results, when compared using Wilcoxon signed-rank test.

However, N3, SPM8, and ASeg provide better (marked in bold)

restoration performance than the t-StoRM for IoJV index.

The proposed t-StoRM algorithm attains significantly bet-

ter restoration performance than N3, FSL, MICO, and BCFCM

for RMSE, irrespective of the statistical tests used. On the other

hand, it achieves better results, but not significantly (marked in

italics), compared to the SPM8, ASeg, and mEM with respect

to RMSE, for both statistical tests. The proposed t-StoRM at-

tains significantly better bias field correction results compared

to RC2 algorithm for both RMSE and IoV values, when com-

pared using paired t-test; while better but not significant results,

when compared using Wilcoxon signed-rank test. With respect

to IoV index, the performance of the proposed t-StoRM is sig-

nificantly better than FSL, MICO, and BCFCM, while better

but not significant compared to mEM. However, N3, SPM8,

and ASeg provide better (marked in bold) restoration than the

t-StoRM for IoV index.

The restored images produced by the t-StoRM, N3, SPM8,

FSL, ASeg, mEM, MICO, and BCFCM are presented in Fig-
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Table 4. Statistical Significance Analysis of the t-StoRM over Different Bias

Field Correction Algorithms on BrainWeb and IBSR Databases

Algorithm Mean Std. Dev.
p-value

Wilcoxon Paired t

IoCS

t-StoRM 2.459574 0.472441 - -

RC2 2.327793 0.528691 2.2E-03 0.0114

N3 2.339543 0.458204 1.4E-06 1.5E-05

SPM8 2.319970 0.550142 3.7E-09 6.6E-07

FSL 1.705142 0.333216 1.5E-11 4.9E-14

ASeg 2.422572 0.476535 3.1E-07 1.8E-06

mEM 2.302948 0.531196 4.8E-10 3.3E-06

MICO 1.673069 0.309817 1.5E-11 1.2E-15

BCFCM 1.315785 0.361947 1.5E-11 7.8E-16

IoJV

t-StoRM 0.654734 0.233891 - -

RC2 0.686928 0.233706 3.3E-03 0.0135

N3 0.654089 0.229192 0.6710 0.5344

SPM8 0.603430 0.175044 0.6710 0.8473

FSL 0.727979 0.233788 1.1E-08 8.0E-09

ASeg 0.652563 0.243083 0.8676 0.7676

mEM 0.676211 0.280335 0.0576 0.0270

MICO 0.738995 0.240806 7.3E-11 6.6E-11

BCFCM 0.818016 0.254304 2.0E-10 1.5E-09

RMSE

t-StoRM 6.421026 5.037745 - -

RC2 8.056794 5.285586 0.0770 0.0390

N3 8.974932 3.832738 7.9E-04 3.3E-04

SPM8 7.552986 3.794599 0.1419 0.0692

FSL 19.350462 3.755166 7.6E-06 1.2E-07

ASeg 6.624105 4.701238 0.3047 0.1755

mEM 6.509682 4.665884 0.3994 0.2961

MICO 8.253165 3.257652 0.0134 7.8E-03

BCFCM 10.802890 2.817903 2.7E-05 1.2E-06

IoV

t-StoRM 0.969831 0.023606 - -

RC2 0.925672 0.105151 0.1846 0.0449

N3 0.987196 0.008543 0.9976 0.9979

SPM8 0.981572 0.009669 0.9230 0.9662

FSL 0.863551 0.026627 3.8E-06 5.7E-10

ASeg 0.971130 0.012497 0.5000 0.6689

mEM 0.969379 0.012319 0.3509 0.4399

MICO 0.956159 0.035121 0.0333 0.0121

BCFCM 0.911376 0.034154 3.8E-06 2.5E-07

ures 6, 7, 8, and 9 for different bias fields, noise levels, and

volumes. The restored images and corresponding intensity his-

tograms reported in these figures confirm the fact that the pro-

posed t-StoRM algorithm estimates bias field more accurately

and restores images better than the state-of-the-art methods.

4.7. Performance of Different Segmentation Algorithms

This section compares the segmentation performance of the

proposed t-StoRM algorithm with that of several state-of-the-

art algorithms, namely, SPM8 [2], FSL [20], ASeg [46], mEM

[17], MICO [28], KWFLICM [16], RFCM [33], rRFCM [37],

BCFCM [1], DSFCM N [49], ICFFCM [3], and FRFCM [27].

Table 5. Statistical Significance Analysis of the t-StoRM over Different Seg-

mentation Algorithms on BrainWeb and IBSR Databases

Algorithm Mean Std. Dev.
p-value

Wilcoxon Paired t

Dice Coefficient

t-StoRM 0.865869 0.077326 - -

SPM8 0.852910 0.083017 8.6E-04 1.0E-03

FSL 0.830975 0.072109 1.5E-11 1.4E-12

ASeg 0.663345 0.190230 1.5E-11 6.0E-09

mEM 0.604897 0.121859 1.5E-11 2.8E-14

MICO 0.853559 0.090479 0.0442 0.0300

KWFLICM 0.816302 0.114600 1.9E-06 1.3E-04

RFCM 0.858737 0.072801 3.9E-03 0.0171

rRFCM 0.838089 0.092067 7.3E-11 5.1E-06

BCFCM 0.850898 0.053002 7.3E-03 0.0122

DSFCM N 0.802091 0.118710 1.5E-11 2.0E-06

ICFFCM 0.839345 0.099948 0.0346 4.9E-03

FRFCM 0.821467 0.108783 8.0E-10 1.1E-04

Sensitivity

t-StoRM 0.898918 0.056861 - -

SPM8 0.913043 0.038366 0.9256 0.8543

FSL 0.884582 0.054352 3.0E-06 4.5E-06

ASeg 0.769097 0.199141 1.6E-09 7.1E-05

mEM 0.664417 0.128373 1.5E-11 9.9E-14

MICO 0.885788 0.075168 0.0960 0.0384

KWFLICM 0.836768 0.103975 1.5E-11 2.8E-05

RFCM 0.888701 0.054362 1.3E-05 4.2E-05

rRFCM 0.880523 0.063241 2.0E-09 5.9E-06

BCFCM 0.850749 0.047603 7.3E-11 9.9E-14

DSFCM N 0.831242 0.110633 1.5E-11 1.4E-05

ICFFCM 0.866048 0.099258 5.2E-03 4.5E-03

FRFCM 0.843112 0.104947 2.0E-10 7.3E-05

Specificity

t-StoRM 0.981619 0.006873 - -

SPM8 0.980365 0.006876 0.0228 0.0105

FSL 0.976818 0.006379 2.8E-10 5.9E-09

ASeg 0.934725 0.029774 1.5E-11 2.6E-12

mEM 0.931670 0.025061 1.5E-11 8.4E-15

MICO 0.979337 0.009837 0.0130 8.2E-03

KWFLICM 0.973961 0.014014 2.2E-08 8.2E-05

RFCM 0.979618 0.006808 1.9E-04 9.8E-04

rRFCM 0.976741 0.009781 1.5E-10 6.5E-06

BCFCM 0.978647 0.006816 7.7E-04 5.0E-04

DSFCM N 0.972611 0.013798 1.5E-11 1.7E-06

ICFFCM 0.977687 0.011973 0.0148 1.7E-03

FRFCM 0.975682 0.012833 6.3E-10 8.4E-05

The significance analysis is presented in Table 5 with respect

to Dice coefficient, sensitivity, and specificity values, while the

box plots are presented in Figure 12.

From the results reported in Table 5 and Figure 12, it is

observed that the t-StoRM provides significantly better seg-

mentation results compared to FSL, ASeg, mEM, KWFLICM,

RFCM, rRFCM, BCFCM, DSFCM N, ICFFCM, and FRFCM,

irrespective of the quantitative indices used. The performance

of t-StoRM over SPM8 and MICO is also significantly better

with respect to both Dice coefficient and specificity. With re-

spect to sensitivity, the performance of t-StoRM over MICO is
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Figure 11. Segmented images by different segmentation algorithms on BrainWeb with 1% noise and 20% bias field, along with the intensity histograms.
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Figure 12. Box plot depicting the performance of t-StoRM over state-of-the-art brain MR image segmentation algorithms on BrainWeb and IBSR databases. a)

t-StoRM, b) SPM8, c) FSL, d) ASeg, e) mEM, f) MICO, g) KWFLICM, h) RFCM, i) rRFCM, j) BCFCM, k) DSFCM N, l) ICFFCM, and m) FRFCM.

significantly better when compared in terms of p-values com-

puted through paired-t test, while better but not statistically

significant (marked in italics) when compared using Wilcoxon

signed-rank test. However, the performance of the SPM8 is

better, but not significant (marked in bold), than the proposed

t-StoRM algorithm with respect to sensitivity.

The segmented images generated by the proposed t-StoRM

algorithm, SPM8, FSL, ASeg, MICO, BCFCM, KWFLICM,

RFCM, rRFCM, DSFCM N, ICFFCM, and FRFCM are re-

ported in Figures 11, 13, 15, and 16 for different bias fields,

noise levels, and volumes. The segmented images and corre-

sponding intensity histograms reported in these figures infer
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Figure 13. Segmented images by different segmentation algorithms on BrainWeb with 7% noise and 40% bias field, along with the intensity histograms.
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Figure 14. Run-time analysis of the proposed t-StoRM algorithm.

that the proposed t-StoRM algorithm generates more promising

segmentation results than the state-of-the-art methods. The bet-

ter performance of t-StoRM is obtained because of the fact that

the St-t distribution provides better intensity representation for

tissue classes in brain MR images, which makes the t-StoRM

perform well in brain MR image segmentation. Also, the in-

tegration of rough sets and St-t distribution deals with uncer-

tainty, vagueness, and incompleteness in tissue class definition

and enables efficient handling of overlapping tissue classes.

The average run-time of the t-StoRM algorithm is com-

pared in Figure 14 with existing simultaneous segmentation and

bias field correction algorithms for both BrainWeb and IBSR

databases. From the figure, it is visible that the average run-time

of the proposed t-StoRM is significantly lower compared to the

StoRM, as the iterative t-StoRM converges faster to its optimum

solution, compared to the StoRM. The average run-time of the

t-StoRM is also significantly lower compared to the tEM, ASeg,

mEM, and MICO algorithms. However, both HMRF-EM and

BCFCM perform faster compared to the t-StoRM.

5. Conclusion

The problem of simultaneous segmentation and bias field

correction in brain MR images requires special attention, as the

bias field artifact deteriorates the performance of the segmenta-

tion algorithm. In this regard, the main contribution of this pa-

per is the development of a new simultaneous segmentation and

bias field correction algorithm, termed as t-StoRM. The mer-

its of St-t distribution is incorporated into the joint EM-HMRF
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Figure 15. Segmented images by different segmentation algorithms on IBSR volume no. 1, along with the intensity histograms.

framework. Finally, the efficacy of the proposed algorithm is il-

lustrated, along with a quantitative and qualitative comparison

with related state-of-the-art algorithms, on a set of synthetic and

real brain MR images.

The proposed framework has been able to achieve better

image segmentation, as it utilizes the advantages of rough clus-

tering with respect to brain MR image segmentation tasks. The

representation of an image as a mixture of finite number of St-t

distributions and one uniform distribution has been able to pro-

vide a better modelling of the tissue intensity distributions in

brain MR images, in presence of bias field artifact and noise.

Moreover, the incorporation of a latent variable to measure the

inlierness of each pixel with respect to tissue classes nullifies

the need of a fixed parameter to measure the relative impor-

tance of lower approximation region, as done in StoRM [5]. In

near future, the performance of this new probability distribu-

tion will be studied for other image processing tasks, such as

image classification and registration. The multivariate exten-

sion of this probability distribution will be developed in order

to model high-dimensional data sets. The statistical properties

of the probability distribution will also be explored in detail.
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Symbols

A equivalence relation on universe U

A(X) lower approximation region of set X

18



Banerjee and Maji / Information Sciences XX (2019) 1–21 19

 0

 100

 200

 300

 400

 500

 0  50  100  150  200

Segment: CSF
GM
WM

Ground truth: CSF
GM
WM

(a) t-StoRM

 0

 100

 200

 300

 400

 500

 0  50  100  150  200

Segment: CSF
GM
WM

Ground truth: CSF
GM
WM

(b) StoRM

 0

 100

 200

 300

 400

 500

 0  50  100  150  200

Segment: CSF
GM
WM

Ground truth: CSF
GM
WM

(c) tEM

 0

 100

 200

 300

 400

 500

 0  50  100  150  200

Segment: CSF
GM
WM

Ground truth: CSF
GM
WM

(d) HMRF-EM

 0

 100

 200

 300

 400

 500

 0  50  100  150  200

Segment: CSF
GM
WM

Ground truth: CSF
GM
WM

(e) SPM8

 0

 100

 200

 300

 400

 500

 0  50  100  150  200

Segment: CSF
GM
WM

Ground truth: CSF
GM
WM

(f) FSL

 0

 100

 200

 300

 400

 500

 600

 0  50  100  150  200

Segment: CSF
GM
WM

Ground truth: CSF
GM
WM

(g) ASeg

 0

 100

 200

 300

 400

 500

 0  50  100  150  200

Segment: CSF
GM
WM

Ground truth: CSF
GM
WM

(h) MICO

 0

 100

 200

 300

 400

 500

 0  50  100  150  200

Segment: CSF
GM
WM

Ground truth: CSF
GM
WM

(i) BCFCM

 0

 100

 200

 300

 400

 500

 0  50  100  150  200

Segment: CSF
GM
WM

Ground truth: CSF
GM
WM

(j) KWFLICM

 0

 100

 200

 300

 400

 500

 0  50  100  150  200

Segment: CSF
GM
WM

Ground truth: CSF
GM
WM

(k) RFCM

 0

 100

 200

 300

 400

 500

 0  50  100  150  200

Segment: CSF
GM
WM

Ground truth: CSF
GM
WM

(l) rRFCM

 0

 100

 200

 300

 400

 500

 600

 0  50  100  150  200

Segment: CSF
GM
WM

Ground truth: CSF
GM
WM

(m) DSFCM N

 0

 100

 200

 300

 400

 500

 600

 0  50  100  150  200

Segment: CSF
GM
WM

Ground truth: CSF
GM
WM

(n) ICFFCM

 0

 100

 200

 300

 400

 500

 600

 0  50  100  150  200

Segment: CSF
GM
WM

Ground truth: CSF
GM
WM

(o) FRFCM

Figure 16. Segmented images by different segmentation algorithms on IBSR volume no. 8, along with the intensity histograms.

A(X) upper approximation region of set X

< A(X), A(X) > rough set representation of set X

a scale parameter

B(X) boundary region of set X

bi intensity inhomogeneity component in ith pixel

C set of all possible cliques

D(.) normalizing function in pdf of StN distribution

E(·) energy function

Ec(·) clique potential

F low-pass filter

Gamma(·, ·) gamma distribution

G′
Σ
(·) Gaussian pdf with covariance matrix Σ

kl width parameter of Ωl

L number of class labels in an image

L set of class labels in an image

(lu)il expectation of log ui given yi and Ωl

N number of pixels in an image

Ni set of pixels neighboring pixel i

ni(l) number of neighbors of pixel i having label l

O(·) order of a function

oi ith element of universe U

Q(·) expected complete data log-likelihood function

Qil(·) expected complete log-likelihood of pixel i to Ωl

Q2,il(·) expected log-likelihood of ui given yi and Ωl
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Q3,il(·) expected log-likelihood of yi given ui and Ωl

Ri mean residual of ith pixel

S set of indices in an image

StN(·) stomped normal distribution

St-t(·) stomped-t distribution

U the universe of discourse

U/A quotient set of U by relation A

< U, A > approximation space consisting U and A

Ui random variable of the inlierness of ith pixel

ui latent variable of the inlierness of ith pixel

uil expectation of ui given yi and Ωl

vi intensity value of the ith pixel

ṽi intensity of ith pixel of inhomogeneity-free image

Xi random vector of class label of ith pixel

xi class label of the ith pixel of the image

xNi
set of class labels of pixels neighboring pixel i

Yi random vector of log-transformed intensity

of ith pixel

yi log-transformed intensity value of the ith pixel

ỹi log-transformed inhomogeneity-free intensity

of ith pixel

zil normalized variable of the StN distribution

corresponding to ith pixel and class Ωl

α̂ estimate of the parameter α

βi log-transformed bias field component of ith pixel

Γ(·) gamma function

Γ(·, ·) upper incomplete gamma function

Γ′(·, ·) derivative of upper incomplete gamma function

γ(·, ·) lower incomplete gamma function

γ′(·, ·) derivative of lower incomplete gamma function

δ(·) Kronecker’s delta function

δil indicator variable of belongingness of pixel i to Ωl

ǫi noise component in ith pixel

θ(t) estimate of the parameter θ at tth iteration

λ density of the uniform distribution

µl location parameter of class Ωl

νl degrees of freedom of class Ωl

σl scale parameter of class Ωl

τil posterior probability that ith pixel belongs to Ωl

Φ(·) cdf of standard normal distribution

φ(·) pdf of standard normal distribution

ψ−1 mean inverse covariance

ψ(·) digamma function

ψ′(·) trigamma function

Ωl class having label l

Ωother tissue class consisting of CSF, pathologies, and

other non-brain tissues

∅ empty set
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