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Abstract12

Fuzzy rule-based systems are widely applied for real-world decision support, such as policy formation, public13

health analysis, medical diagnosis, and risk assessment. However, they face significant challenges when the14

application problem at hand suffers from the “curse of dimensionality” or “sparse knowledge base”. Combination15

of hierarchical fuzzy rule models and fuzzy rule interpolation offers a potentially efficient and effective approach16

to dealing with both of these issues simultaneously. In particular, backward fuzzy rule interpolation (B-FRI)17

facilitates approximate reasoning to be performed given a sparse rule base where rules do not fully cover all18

observations or the observations are not complete, missing antecedent values in certain available rules. This paper19

presents a hierarchical bidirectional fuzzy reasoning mechanism by integrating hierarchical rule structures and20

forward/backward rule interpolation. A computational method is proposed, building on the resulting hierarchical21

bidirectional fuzzy interpolation to maintain consistency in sparse fuzzy rule bases. The proposed techniques are22

utilised to address a range of decision support problems, successfully demonstrating their efficacy.23

Index Terms24

Hierarchical systems, Fuzzy rule interpolation, Bidirectional interpolation, Rule base refinement, Decision25

support.26
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I . I N T R O D U C T I O N27

It is well known that uncertainty virtually exists in all complex situations which require intelligent28

decision-making [25]. Fuzzy logic based approximate reasoning offers a practically applicable approach29

to dealing with uncertainty and uncertainty management in decision support [7]. For instance, a fuzzy30

logic based expert system has been developed to diagnose common diseases such as pneumonia and31

jaundice, which is capable of returning an identified disease as output given observed symptoms [22].32

Also for medical decision support, there have been many hybrid systems which work by integrating33

fuzzy logic and other computational intelligence mechanisms. These include: a fuzzy neural network34

approach for treating the diabetes and heart diseases [13]; an adaptive neural fuzzy rough inference35

system for facilitating diagnosis of tuberculosis disease [24]; and an interval-valued fuzzy rule-based36

classification tool for performing diagnosis of cardiovascular diseases [23]. All such work collectively37

demonstrates the success of fuzzy rule-based decision systems.38

However, the “curse of dimensionality”, namely the number of rules required to perform approximate39

reasoning increasing exponentially along with the number of input features [21], causes a major challenge40

for many automated decision-making systems, including fuzzy logic-based ones. This is because for a41

fuzzy rule model containing K variables, with each variable partitioned into M fuzzy values, the order42

of the number of the rules required in a conventional rule base is O(MK). The effort to address this43

difficulty has led to the development of hierarchical fuzzy systems [20]. The number of rules in a typical44

hierarchical fuzzy system as shown in Fig. 1 only increases linearly with an increasing number of input45

variables, if a K-input hierarchical fuzzy system comprises K-1 low-dimensional fuzzy systems with46

each sub-system taking just two inputs. In this case, given M fuzzy sets for each variable, the total47

number of possible rules is (K − 1)M2 which is a linear function of the number of the input variables.48

Hierarchical fuzzy systems help reduce the modelling complexity, but they work by generally assuming49

that there are dense fuzzy rule bases to cover most if not all of the problem space. Unfortunately, for50

problems that typically involve decision-making in novel situations (e.g., diarrhoeal disease diagnosis51

in newly built-up regions [30], organised crime investigation [3], and counter-terrorism surveillance52

deployment [12]), there does not normally exist sufficient historical data to entail the generation of a dense53

rule base covering the complete underlying problem domain. Indeed, a method for fuzzy rule interpolation54

with self error-correction and adaptation mechanisms has been proposed to assist in decision-making55

regarding the risk of regional diarrhoea development and spread [30]. This application will also serve as a56

focus for comparison and discussion in this paper. As with this particular problem, there are many others57

where only a “sparse rule base” is available, i.e., rules given in the rule base cover only small proportions58
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Fig. 1. A typical hierarchical fuzzy system

of the problem domain. This makes conventional rule-based reasoning unworkable for the uncovered59

areas. Of course, the problem may significantly worsen when there are too many input variables or values60

to consider [14]. Worse still is the situation in which the given observations are themselves incomplete,61

that is, certain features required to support decision-making may not be directly observable. Such missing62

antecedents in the decision rules may cause the breakdown of the inference procedure using classical63

fuzzy rule interpolation (FRI) that is successful in addressing normal problem cases, where all input64

features are assumed to be observable but there are no rules to match a certain observation.65

The first attempt to address the aforementioned challenges facing the existing FRI work is the proposal66

for backward fuzzy rule interpolation (B-FRI) [12]. It is of great potential to enable rule interpolation67

to be implemented when certain rule antecedents are missing from the observation, through exploiting68

those given antecedents and any relevant consequent derivable during the approximate reasoning process.69

However, B-FRI does not explicitly tackle the problem where rules provided in the sparse rule base are70

arranged hierarchically. This remarkably restricts its effectiveness in a variety of possible applications71

where domain knowledge for decision-making is organised in a hierarchical manner. Use of hierarchical72

rule bases is of intuitive appeal, as they mimic more closely human expertise in handling inferences that73

involve many domain features. This research is therefore conducted to further develop the theoretical74

framework of B-FRI, supporting approximate interpolative reasoning through a hierarchy of intertwined75

fuzzy rules where each rule may contain multiple antecedent features that are not necessarily all observable.76

The improved method is hereafter referred to as hierarchical bidirectional fuzzy rule interpolation77
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(HB-FRI). Following its original work as per B-FRI it is implemented by the use of the popular scale78

and move transformation-based fuzzy interpolative reasoning (T-FRI) mechanism [10]. Nonetheless, the79

underlying design principle appears to be sufficiently general. As such, the same idea may be applicable80

to adapting alternative FRI techniques if preferred, though the proof of this conjuncture requires further81

research.82

Another important point is that the rule base in an intelligent decision-making system is often open.83

That is, the user can modify, add and delete the rules in the knowledge base. Inconsistent rules and84

redundant rules may be introduced in the process of such changes. This may increase the rule base85

complexity while decreasing rule-firing and interpolation efficacy. Inconsistencies may also arise from86

other aspects, such as incorrect selection of rules to fire or to interpolate with respect to inaccurate87

observations [30]. For real-world decision-making applications, where rules are not always involve the88

same antecedent features, such situations may deteriorate. To aid in handling this type of problem, a89

further contribution of this paper is to introduce a novel rule base refinement mechanism that allows for90

the removal of inconsistent rules in the rule base utilised by HB-FRI. This method works irrespective of91

whether any rule antecedent features are missing.92

The remainder of this paper is structured as follows. Section II presents the framework of HB-FRI.93

For academic completeness, Section II-A first briefly introduces a method for data-driven derivation94

of hierarchical fuzzy rule bases that is used to form the basis upon which to represent the domain95

knowledge in a given application. Section II-B gives an overview of scale and move transformation96

based FRI and B-FRI, as the foundation to implement HB-FRI. Section III describes the algorithm97

that resolves inconsistencies in a fuzzy rule base via exploiting hierarchical FRI. Section IV reports on98

a range of experimental investigations and discusses the results. In particular, Section IV-A shows an99

illustrative numerical example of the proposed approach in action. Section IV-B offers a comparative100

analysis between the proposed work and the standard approach to FRI, while dealing with a set of101

prediction problems involving inconsistent rules. Section IV-C provides a real-world decision-making102

application using the implemented HB-FRI system. Section V concludes the paper and points out open103

issues for further research.104

I I . H I E R A R C H I C A L B I D I R E C T I O N A L F U Z Z Y R U L E I N T E R P O L AT I O N105

A. Generation of Hierarchical Rule Bases106

For a typical fuzzy rule-based decision-making system, especially for systems developed on the basis107

of historical data, data-driven learning is often applied to generate the required rule base. In particular,108

supervised learning is normally used to obtain an optimal rule base via heating search through a given109
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labelled dataset. Yet, direct application of such a method to learn a hierarchical fuzzy rule base from110

data is not an easy task, especially for the problem domains where there are missing features. This111

is because in such cases, the intermediate features within the hierarchy do not normally possess any112

physical meaning or they may not be observable. In fact, the representation and retention of the physical113

meaning of intermediate output values is one of the most difficult problems to resolve in hierarchical114

fuzzy system modelling [26]. Fully addressing the learning of hierarchical fuzzy models is beyond the115

scope of this research, but gradient-descent techniques [28] are herein utilised to learn and optimise116

the parameters of the hierarchical fuzzy rules. That is, the updating of the parameters involved in the117

(hierarchically arranged) rules at a lower level can be estimated from the errors propagated back from118

the layer above it. Such a error backpropagation process is recursively performed within the hierarchy,119

ultimately through exploiting the error measured and back-propagated from the final system output.120

Alg. 1 summarises the gradient-descent-based learning process for producing a hierarchical rule base.121

The complexity of this learning process can be assessed through the following analysis. Suppose that122

a conventional flat fuzzy interpolative reasoning system employs K input features and M membership123

functions per feature to describe each feature. Then, MK rules are required in order to construct a124

rule base that will fully cover the problem domain. This means that a complexity of O(MK) is to be125

incurred in an effort to generate the flat rule base. For a K-input hierarchical fuzzy system, consider126

the worst scenario where it comprises K-1 low-dimensional sub-fuzzy systems, with each sub-system127

having two input features. Also, suppose that each input feature may take any of M values. From this,128

generating all the rules that is able to provide a full coverage of the domain involves a computational129

complexity of O((K − 1)M2). With FRI, it is not necessary to have a rule base that is so dense, but130

the present analysis is to assume the worse computation cost and hence, the full coverage. On top of131

this, additional runtime expense is needed to implement the backpropagation processes between the K-1132

layers, denoting this by O(bp(K − 1)). Together, the learning process of a hierarchical fuzzy rule base133

requires a maximum total runtime of O((K − 1)M2) +O(bp(K − 1)).134

B. Framework for Bidirectional Fuzzy Rule Interpolation135

In this work, for generality, the process of forward fuzzy rule interpolation is represented by136

B∗ = fFRI((A
∗
1, · · · , A∗l , · · · , A∗M), (Ri, · · · , Rt)) (1)

where fFRI expresses the interpolative reasoning process from M observed feature values, using N rules137

named Ri, Rt, etc. that are the closest to A∗l , l ∈ {1, · · · ,M} within a given sparse rule base, and B∗138

denotes the interpolated outcome.139
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Algorithm 1: Learning of Hierarchical Fuzzy Rule Base

1 Specify membership functions for each input feature, and normalise value domain of each intermediate feature to [0, 1];

2 Denote:

• k: Number of iterations,

• K: Maximum number of iterations,

• y(k): Actual output in iteration k,

• y
′
(k): Hierarchical system output in iteration k,

• e(k): Error between actual output and hierarchical system output in iteration k,

• Fl,p: Sub-fuzzy system p, p ≥ 1 at level l, l ≥ 1,

• ep(k): Error of sub-fuzzy system p, p ≥ 1,

• T : Number of training data,

• r: Index of training data,

• E: Accumulated error,

• η: Learning rate,

• Ql−1,p: Number of original input features to Fl,p,

• Pl−1,p: Number of outputs from (l − 1)th layer to Fl,p,

• ji,p: ith input for pth sub-fuzzy system at lth level,

• µjk
l,p,k(yl−1,p,k): Fuzzy membership function for yl−1,p,k,

• υjkl,p,k(xl,p,k): Fuzzy membership function for xl,p,k,

• yl,p: Output of pth fuzzy subsystem at lth layer,

• y
j1,pj2,p...jPl−1,p

i1i2...iQl,p

l,p : Consequent of j1,pj2,p...jPl−1,p
i1i2...iQl,p

th fuzzy rule,

3 y1,p ← f1,p(x0,p,1,..., x0,p,Q0);

4 Ul,p ←
∏Pl−1,p

k=1 µjk
l,p,k(yl−1,p,k);

5 Vl,p ←
∏Ql−1,p

k=1 υjkl,p,k(xl,p,k);

6 yl,p ←
∑

j1,pj2,p...jPl−1,p
i1i2...iQl,p

Ul,pVl,p ∗ y
j1j2...jPl−1,p

i1i2...iQl,p

l,p ;

7 ep(k)← eq(k)× ∂yl,q(k)
∂yl,p(k)

;

8 k ← k + 1;

9 If r < T , r ← r + 1;

10

y
j1,pj2,p...jPq,p i1i2...iQq,p

l,p (k + 1)

← y
j1,pj2,p...jPq,p i1i2...iQq,p

l,p (k)− η × Uq(k)Vq(k)× ep(k);
11 Update parameters y

j1,pj2,p...jPl−1,p
i1i2...iQl,p

l,p for each iteration k, for every input-output pair (xr, yr);

12 E ← 1
2 ×

∑T
r=1(ŷ

r − yr)2;

13 If E > ε and k < K, go to 3;

14 End.
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Similarly, B-FRI computes an unknown antecedent feature value using the closest rules of the following140

general form:141

A∗l = fB−FRI(B
∗, A∗1, · · · , A∗l−1, A∗l+1, · · · , A∗M), (Ri, · · · , Rt)) (2)

In the above, fB−FRI represents the process of B-FRI during which the N closest rules Ri, Rt, etc. and142

the observed or interpolated values for the (M −1) antecedent features, together with their corresponding143

consequent B∗, are used to backward interpolate A∗l that is missing from the observation.144

To be concise, the processes of transformation-based forward FRI (T-FRI) and transformation-based145

backward FRI (T-B-FRI) are outlined in Alg. 2 and Alg. 3, respectively. In implementation, as with146

the common practice in performing T-FRI, trapezoidal fuzzy sets (which include triangular sets as their147

specific cases) are adopted here for computational simplicity.148

By examining these two algorithms, their computational complexities can be established. In particular,149

the complexity of Alg. 2 is mainly caused by the number of possible parameter combinations (ω, δ, s,150

s, and m). The weight ω is computed in relation to all N closest rules, thereby having a complexity151

of O(N). The handling of the other four parameters: δ, s, s, and m each incurs the same complexity152

as handling a single ω value. Therefore, the overall complexity of Alg. 2 is still O(N). Similarly, for153

Alg. 3, the complexity can be estimated with regards to the number of all missing antecedent features,154

say L, and that of all N closest rules. Particularly, the parameter combinations (ω, δ, s, s, and m) of155

(M −L) antecedent features need to be calculated. Thus, Alg. 3 incurs a considerably higher complexity:156

O((M − L)NL) ·O(FRI), where O(FRI) represents the complexity of the underlying FRI process.157

I I I . R E F I N E M E N T O F H I E R A R C H I C A L F U Z Z Y R U L E B A S E T H R O U G H H B - F R I158

Generally speaking, a fuzzy logic-based approximate reasoning system consists of an inference engine159

and a fuzzy rule base. It performs intelligent decision-making, typically by either firing the rules in the160

rule base which match a given observation or carrying out interpolation if none of the rules match the161

observation, not even partially. Although the original rule base may be assumed to be consistent, i.e., the162

same input feature values are expected to always lead to the same inferred outcome, any modification163

or new addition to the rule base during the rule interpolation process may introduce contradictory to164

certain rules. This is of particular significance to systems that involve dynamic learning [18], whilst165

such learning is a common requirement for dealing with novel problems, where typically only a rather166

sparse rule base is available initially. It is therefore, clearly desirable to avoid such inconsistencies. In167

this section HB-FRI is employed to implement a strategy that helps refine the rule base in an effort to168

remove rule inconsistency.169
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Algorithm 2: Transformation-based Forward Interpolation (U, (A∗1, · · · , A∗l , · · · , A∗M))

1 U: given rule base;

2 R ∈ U with antecedent {Ak, k = 1, 2, · · · ,M};
3 O = {A∗1, · · · , A∗k, · · · , A∗M}, being observation;

4 Rep(A): representative value of fuzzy set A;

5 drep: distance between representative values of two fuzzy sets;

6 df : distance between two fuzzy sets;

7 d(O,R): distance between observation O and rule R;

8 Rep(A)← a0+
a1+a2

2 +a3

3 ;

9 rangek ← supk − infk;

10 df (Ak, A
∗
k)←

drep(Rep(Ak),Rep(A∗k))
rangek

;

11 d(O,R)←
√∑M

k=1 d(Ak, A∗k)
2, omitting normalising term;

12 R← {Ri|i ∈ {1, . . . , N}}, N being number of rules whose d(O,Ri) are first N smallest;

13 Ri: IF x1 is Ai
1, · · · , and xk is Ai

k, · · · , and xM is Ai
M , THEN y is Bi, Ri ∈ R;

14 ω
′

Ai
k
← 1/(df (A

i
k, A

∗
k) + 1);

15 ωAi
k
←

ω
′
Ai

k∑N
i=1 ω

′
Ai

k

, ωAi
k
, being normalised displacement factor;

16 A†k ←
∑N

i=1 ωAi
k
Ai

k, A†k, being intermediate fuzzy terms;

17 A†k ←
∑N

i=1 ωAi
k
Ai

k;

18 δAk
← df (A

∗
k, A

†
k);

19 A
′
k ← A†k + δAk

rangeAk
;

20 δB ← 1
M

∑M
k=1 δAk

;

21 ωBi ← 1
M

∑M
k=1 ωAi

k
;

22 B′ ←∑N
i=1 ωBiBi + δBrangeB ;

23 sAk
← a′′3−a′′0

a′3−a′0
;

24 sAk
← a′′2−a′′1

a′2−a′1
;

25 sB ← 1
M

∑M
k=1 sAk

;

26 1
M

∑M
k=1 sAk

;

27 S←





a′2−a′1
a′3−a′0

− a2−a1
a3−a0

1− a′2−a′1
a′3−a′0

if s ≥ s ≥ 0 ,S ∈ [0, 1]

a′2−a′1
a′3−a′0

− a2−a1
a3−a0

a′2−a′1
a′3−a′0

if s ≥ s ≥ 0 ,S ∈ [−1, 0]
;

28 sB ←





sBS
sB
− sBS+ sB if sB ≥ sB ≥ 0

sBS if sB ≥ sB ≥ 0

;

29 mAk
←





3(a0−a′′0 )
a′′1−a′′0

, a0 ≥ a′′0
3(a0−a′′0 )
a′′3−a′′2

, otherwise
;

30 mB ← 1
M

∑M
k=1mAk

;

31 B∗ ← T (B
′
, sB , sB ,mB).
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Algorithm 3: Transformation-based Backward Interpolation (U, (B∗, A∗1, · · · , A∗l−1, A∗l+1, · · · , A∗M))

1 U: given rule base;

2 R ∈ U with antecedent {Ak, k = 1, 2, · · · ,M} and consequent B;

3 O′ = (B∗, A∗1, · · · , A∗l−1, A∗l+1, · · · , A∗M ), given consequent B∗ and observation with missing

antecedent term A∗l ;

4 wB ←
∑M

k=1wAk
= 1, wAk

= 1
M
, k ∈ {1, . . . ,M};

5 d(O′, R)←
√
wBd2f (B,B

∗) +
∑M

k=1, k 6=l(wAk
d2f (Ak, A

∗)), omitting normalising term;

6 R← {Ri|i ∈ {1, . . . , N}}, N being number of rules whose d(O′, Ri) are first N smallest;

7 ω
′
Ai

k
← 1/(df (A

i
k, A

∗
k) + 1);

8 ωBi ← 1
M

∑M
k=1 ωAi

k
;

9 ωAi
l
←MωBi −∑M

k=1, k 6=l ωAi
k
;

10 δAl
←MδB −

∑M
k=1, k 6=l δAk

;

11 A†l ←
∑N

i=1 ωAi
l
Ail;

12 A
′
l ← A†l + δAl

rangeAl
;

13 sAl
←MsB −

∑M
k=1, k 6=l sAk

;

14 sAl
←MsB −

∑M
k=1, k 6=l sAk

;

15 mAl
←MmB −

∑M
k=1, k 6=lmAk

;

16 SAl
←MSB −

∑M
k=1, k 6=l SAk

;

17 sAl
←





sAl
∗SAl

sAl

− sAl
∗ SAl

+ sAl
if sAl

≥ sAl
≥ 0

sAl
∗ SAl

if sAl
≥ sAl

≥ 0
;

18 A∗l = T (A
′
l, sAl

, sAl
,mAl

).

Without losing generality, suppose that two inconsistent rules are represented in the following form:170

Ri: IF x1 is Ai1, · · · , xk is Aik, · · · , xM is AiM ,171

THEN y is Bi
172

Ri
′: IF x1 is Ai1, · · · , xk is Aik, · · · , xM is AiM ,173

THEN y is Bi′
174

where xk, k = 1, 2, · · · ,M , denote the input variables, and Bi 6= Bi′ .175

The basic idea of the proposed refinement process is to use the average bias (aka. deviation) of the176
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inconsistent rules to rectify the inferred or interpolated consequent. Alg. 4 details this process. Firstly,177

each antecedent feature value Ak or A
′
k is backward interpolated from Ri or Ri

′ respectively, using178

B-FRI. Secondly, the bias between each antecedent value Ak or A
′
k and its corresponding observed value179

A∗k is calculated. Then, the average bias over each of the two inconsistent rules in question is computed.180

Finally, from the resulting biases the consequent (of each of the two otherwise inconsistent rules) is181

corrected, resulting in the desired consequent value for the newly constructed rule that replaces the182

original two, which retains the same antecedent part as its originals.183

Algorithm 4: Refinement of Fuzzy Rule Base via HB-FRI

1 Given two inconsistent rules Ri and Ri
′;

2 Ri: IF x1 is Ai1, · · · , xk is Aik, · · · , xM is AiM , (k = 1, 2, · · · ,M), THEN y is Bi;

3 Ri
′: IF x1 is Ai1, · · · , xk is Aik, · · · , xM is AiM , (k = 1, 2, · · · ,M), THEN y is Bi′; where

Bi 6= Bi′ .

4 Ak ← (B − FRI){Ri,R← {Ri|i ∈ {1, . . . , N}} N being number of rules whose d(O,Ri) are first

N smallest;

5 A
′
k ← (B − FRI){Ri

′,R′ ← {R′i|i ∈ {1, . . . , N}} N being number of rules whose d(O,Ri’) are

first N smallest;

6 δk ← |Rep(Ak)−Rep(A∗k)|
maxAk

−minAk

, as bias between an antecedent value Ak and its corresponding observed

antecedent value A∗k;

7 δk
′ ← |Rep(Ak

′)−Rep(A∗k)|
maxAk

−minAk

, as bias between an antecedent value A
′
k and its corresponding observed

antecedent value A∗k;

8 δ ← 1
M

∑M
k=1 δk, as average bias for rule Ri;

9 δ′ ← 1
M

∑M
k=1 δk, as average bias for rule Ri

′;

10 y ← Rep(Bi)× δ′

δ+δ′
+Rep(Bi′)× δ

δ+δ′
, as refined consequence.

This algorithm presents the procedures that are required to implement both inconsistent rule removal184

and repair, without explicitly showing the running of HB-FRI. Nonetheless, HB-FRI is implicitly utilised185

within its specification and implementation since it produces the interpolated rules using the identified186

closest rules from the rule base, given an observation. As such, the computational complexity of this187

algorithm mainly depends on M , the number of antecedent features. The run-time of calculating δk and188

δk
′ is O(M) ·O(B-FRI), where O(B-FRI) denotes the complexity of the B-FRI process itself. Thus, for189

the entire inconsistency-removal process, the total run-time complexity is O(M) ·O(B-FRI)+ 2 ·O(FRI).190
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I V. E X P E R I M E N TA L R E S U LT S A N D D I S C U S S I O N S191

A. Evaluation with Numerical Function Approximation192

1) Problem case: As the first example to demonstrate the efficacy of the proposed work, a function193

approximation problem is utilised here, focussing on the problem of rule inconsistency removal. The194

problem has three input features and one decision (output) attribute:195

y = f(x1, x2, x3) = (1 + x1
0.5 + x2

−1 + x3
−1.5)2196

Each input variable can take one of six fuzzy sets defined using trapezoidal membership functions. The197

rule base required to perform the experiments is generated, assuming a uniform distribution to cover the198

problem domain U = [1, 6]3.199

Note that in real applications, the rule base may be provided by the domain experts or learned from200

historical data, or created from a mixture of both [5]. Here, the assumption for rule generation using201

prescribed fuzzy values is made purely for illustration simplicity. This does not affect the explanation202

of the underlying ideas. What is important is to show the potential of interpolative reasoning with a203

hierarchical sparse rule base. This is assured by employing only a small part of the fully constructed rule204

set as the sparse rule base in the example, deliberately leaving out many of the initially learned rules.205

Those rules which are left out are used as the ground truth to evaluate the accuracy of any interpolated206

result since they are learned using sufficient training samples read off the function (and hence, the207

associated heating search outcomes can cover the full problem space). Obviously, for any real-world208

application, had there been such a full rule base, there would not be a need to utilise rule interpolation.209

To reveal the effectiveness of the proposed technique of rule inconsistency removal, intermediate rules210

that are produced during the transformation-based FRI process are collated and subsequently promoted211

for inclusion into the original rule base, following the advanced method of [18].212

2) Rule refinement: Table I lists a sub-rule base to support the illustration of solving the present213

problem, where for simplicity, all fuzzy values have been denoted as a shorthand using their corresponding214

representative values (which approximately reflects the geometrical properties of the original fuzzy215

sets) [10]. In the following discussion, without causing confusion and unless otherwise stated, the216

representative value of a fuzzy set associated with a given feature is simply referred to as a value of that217

feature.218

As can be observed, in Table I, Rule6 and Rule11 involve identical antecedent values but different219

consequent values. As such, these two form a pair of inconsistent rules and this inconsistency needs to220

be removed to ensure subsequent inference consistency. The proposed method works well in this case,221
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TABLE I

T W O I N C O N S I S T E N T R U L E S I N A S U B - R U L E B A S E

No. of Rules x1 x2 x3 y

Rule 1 3.811486 5.183552 5.419737 10.3972497

Rule 2 5.858488 1.448528 4.154679 17.88335981

Rule 3 3.990305 2.566741 5.598877 11.9899926

Rule 4 0.369646 3.392652 5.194505 3.948987083

Rule 5 0.438950 0.396712 5.820496 18.1005066

Rule 6 5.656367 5.368069 5.674704 13.8392177

Rule 7 0.512235 3.007569 5.667789 4.50420492

Rule 8 1.991630 0.445464 4.040010 22.84119918

Rule 9 4.823559 2.682018 2.387356 14.74721597

Rule 10 3.253371 3.556458 4.797134 10.11281312

Rule 11 5.656367 5.368069 5.674704 10.565988

as described below.222

Applying B-FRI (or lines 4 and 5 in Alg. l4) leads to the determination of the antecedent values223

Rep(Ak) and Rep(A
′
k) (k = 1, 2, 3) from R6 and R11. Then, running lines 6 and 7 of the algorithm224

results in the estimated values for the biases between each corresponding pair of antecedent values in225

these two rules. Following this step, using lines 8 and 9 gives the average biases δ and δ′, as shown226

in Table II and Table III, respectively. From these results, application of line 10 of Alg. 4 returns the227

representative value (13.26370597) of the output of the refined rule. Remarkably, this outcome is very228

close to the underlying ground truth value (13.2392175). This implies that the two inconsistent rules229

Rule6 and Rule11 are now replaced by a new rule, as presented Table IV. Such an accurate result shows230

the significant potential of the proposed approach in refining the rule base that would otherwise contain231

inconsistent rules.232

TABLE II

A N T E C E D E N T D E V I AT I O N F O R Rule6

δ1 δ2 δ3 δ

0.132227319 0.061004378 0.035891982 0.07637456
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TABLE III

A N T E C E D E N T D E V I AT I O N F O R Rule11

δ′1 δ′2 δ′3 δ′

0.55324718 0.27989492 0.24087783 0.35800664

TABLE IV

R E F I N E D S U B - R U L E B A S E

No. of Rules x1 x2 x3 y

Rule 1 3.811486 5.183552 5.419737 10.3972497

Rule 2 5.858488 1.448528 4.154679 17.88335981

Rule 3 3.990305 2.566741 5.598877 11.9899926

Rule 4 0.369646 3.392652 5.194505 3.948987083

Rule 5 0.438950 0.396712 5.820496 18.1005066

Rule 6 5.656367 5.368069 5.674704 13.277335

Rule 7 0.512235 3.007569 5.667789 4.50420492

Rule 8 1.991630 0.445464 4.040010 22.84119918

Rule 9 4.823559 2.682018 2.387356 14.74721597

Rule 10 3.253371 3.556458 4.797134 10.11281312

B. Comparative Analysis against Standard T-FRI233

1) Experimental setting: The proposed HB-FRI is in this subsection applied to four benchmark problems234

of time series prediction [4], [11], in order to further evaluate its performance through comparison235

with the use of the standard T-FRI method. Table V summarises the features of these datasets. For236

simplicity, the fuzzy values of all input features addressed within this experimental study are represented237

by triangular membership functions. For consistency, the number of membership functions is set as with238

the previous practice, that is, six triangular functions are defined for each input feature across all data239

sets. As different features have their own underlying value domains in reality, they are normalised to the240

common scale of 0 to 1 to ease implementation and comparison.241

Note that there exists an underlying difference in the representation of rule base structures between the242

two methods compared, with T-FRI employing a rule base consisting of flat rules only whilst HB-FRIuses243

hierarchical rules. Reflecting such a fundamental difference, the rule bases are learned from each given244

dataset using two distinct learning mechanisms. In particular, the rules used for running T-FRI are learned245

with the popular method of [27] while those used by HB-FRI are generated using Alg. 1 in Section II-A.246

Nonetheless, both forms of rule bases are produced from the same given dataset per problem, using the247
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TABLE V

D ATA S E T S U S E D F O R P R E D I C T I O N

Dataset Number of Features Number of Instances

Chemical Process Concentration Readings Prediction [4] 3 194

Chemical Process Temperature Readings Prediction [4] 3 233

Gas Furnace Prediction [4] 6 293

Mackey-Glass Chaotic Time Series Prediction [11] 4 3000

aforementioned partitions.248

To support this investigation, ensuring that the learned rule bases are sparse and contain inconsistent249

rules, random changes to each rule base returned by the learning methods are made. Particularly, regarding250

rulebase sparsity, for T-FRI each learned rule base has 30% of the originally learned rules removed, and251

for HB-FRI each rule base is learned with 30% of the original raw data removed. Regarding rulebase252

inconsistency, each learned rule base is set to includes a fixed percentage of inconsistent rules, which are253

artificially added so that the same antecedents may have different consequences. To have a wider range254

of comparison, three sets of experiments are carried out, involving the containment of 5%, 10% and 20%255

of inconsistent rules, respectively. Any bias between the consequent of an artificially introduced rule and256

that of its original counterpart is randomly set to be within 10%. Both the removal of the originally257

learned rules or that of the original data, and the addition of inconsistent rules are randomly implemented258

also, with a uniform distribution across each problem domain.259

For fair comparison, both the standard T-FRI and the proposed HB-FRI are herein assisted by the use260

of the compositional rule of inference [31], in an effort to gain reasoning efficiency for those matched261

observations. The performance on prediction accuracy is measured by the conventional root mean square262

error (RMSE), defined by263

RMSE =

√∑N
i=1(y

∗
i − y,i)2
N

(3)

where y∗i is the predicted value of the ith testing sample and y
′
i is the ith original outcome in the dataset264

concerned. To avoid any potential influence of noise on the forecasting quality, the results of experiments265

presented below are average values verified by ten times fivefold cross validation per dataset.266

2) Experimental results: The average prediction RMSEs are shown in Table VI. It can be seen that for267

each given amount of inconstant rules involved, the accuracy of the proposed method is systematically268

greater than that of T-FRI across all datasets. Whilst the improvements gained by HB-FRI over T-FRI is269

relatively small when the rule base contains just 5% inconstant rules, the improvements are much more270
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TABLE VI

AV E R A G E R M S E I N 10× 5- F O L D C R O S S VA L I D AT I O N W I T H 5 % , 1 0 % O R 2 0 % I N C O N S I S T E N T R U L E S

T-FRI HB-FRI

Dataset 5% 10% 20% 5% 10% 20%

Chemical Process Concentr-

ation Readings Prediction 0.389 0.495 0.844 0.323 0.324 0.333

Chemical Process Tempera-

ture Readings Prediction 0.498 0.550 0.746 0.404 0.406 0.420

Gas Furnace Prediction 0.736 0.799 0.964 0.623 0.628 0.627

Mackey-Glass Chaotic Time Series Prediction 0.128 0.259 0.634 0.041 0.044 0.066

Average 0.438 0.526 0.797 0.348 0.351 0.362

Fig. 2. Standard deviation of obtained average RMSEs

remarkable as the percentage of inconstant rules increases. The overall average of the performances271

measured across all four datasets as per the bottom line of Table VI further reflects the significant272

improvement brought forward by the proposed method. This positively shows the potential of HB-FRI in273

performing interpolative reasoning with the ability of correcting inconsistent rules.274

Figure 2 shows the standard deviation (SD) of the RMSE measures, indicating how each method’s275

performance varies in response to different percentages of inconsistent rules. The smaller the standard276

deviation, the more robust the corresponding method. It can be seen from this figure that the higher the277

proportion of inconsistent rules is, the better gain is achieved using the proposed HB-FRI as compared278

to the standard T-FRI. This sufficiently shows the effectiveness of HB-FRI in dealing with prediction279

problems with sparse and yet inconsistent knowledge.280
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Fig. 3. Causal network model used for decision-making

C. Application to Diarrheal Disease Prediction281

1) Problem specification: Environmental changes and their potential impacts upon the society, especially282

upon the public health, are major concerns for both governments and the public, globally. For example,283

much effort has been made to encourage the development of cause-effect relation models concerning284

environmental change events and their influences upon various diseases and disease propagation. In285

particular, much attention has recently been drawn towards carefully addressing the issue of decision-286

making and policy formation for problems such as diarrheal disease prediction and prevention [17],287

[19]. Having taken notice of this, and by following previous studies in this area [8], [30], the present288

application-oriented experimental investigation looks into the particular problem of predicting diarrheal289

disease rate in a remote countryside village, through approximate reasoning that utilises HB-FRI.290

Taking the northern coastal region of Ecuador as an example, building a new road or railway in291

previously inaccessible areas may affect the epidemiology of diarrheal diseases [1], [9]. Close proximity292

of newly constructed roads can lead to the increase of the contact between the residents of the village293

and those outside the village. This in turn, can raise the rate of introduction of pathogens, which can294

then cause the diarrheal disease rate to increase. As a demonstration case, this study focusses on part of295

a much larger problem, where the occurrence of diarrheal disease is dependent upon village remoteness296

(which is influenced by its distance to the closest city) and the village’s connectivity level to public297

transportation systems (which is determined by the connectivity situation to the nearest railway station298

and road) [8]. The complete causal relation model considered herein is shown in Fig. 3.299

2) Application of hierarchical bidirectional fuzzy interpolation: The nature of the above causal model300

is hierarchical. Based on human interpretation of this observation and supported by Alg. 1, a hierarchical301

sparse rule base can be obtained (by supervised learning as outlined in Section II-A, whilst as indicated302

previously, the exact learning process for the derivation of this rule base is not a concern of the present303
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TABLE VII

S U B - R U L E B A S E 1

Variable x1 x2 x3

Meaning Railway station proximity Road proximity Development of transportation

rule 1 (0.02,0.04,0.06,0.08) (0.18,0.20,0.22,0.24) (0.46,0.48,0.50,0.52)

rule 2 (0.28,0.30,0.32,0.34) (0.39,0.41,0.43,0.45) (0.62,0.64,0.66,0.68)

work). The result is shown in Fig. 4, where x1, x2, x4 are observable input features and x11 is the output304

attribute of the overall system. All the other features are regarded as internal variables and are denoted305

by I∗ with ∗ ∈ {1, . . . , 7} for easy cross-referencing. From this, eight sub-rule bases are constructed as306

given in Tables VII-XIV, including those rules which flank an observation or a previously interpolated307

outcome. As with the common practice in the relevant literature, all fuzzy sets used to encode rule308

antecedent feature values are represented using trapezoidal membership functions.309

HFIU 6

HFIU 5

HFIU 7

x8

x9

x10

I2

I4

I6

I7

x4

HFIU 1

x1 x2

x3I1

HFIU 2

I2

HFIU 8

x5

y=x11

HFIU 4

x6

x7

I3

I5

HFIU 3

Fig. 4. Hierarchical fuzzy rule model

The task here is to predict the diarrheal disease rate of a certain village from several pieces of310

information obtained by different agencies. Such information is regarded as observations, respectively311

represented by x1 = (0.16, 0.18, 0.20, 0.22), x2 = (0.34, 0.36, 0.38, 0.40), x4 = (0.65, 0.67, 0.69, 0.71),312
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TABLE VIII

S U B - R U L E B A S E 2

Variable x3 x4 x5

Meaning Development of transportation Distance to next city Remoteness

rule 1 (0.52,0.54,0.56,0.58) (0.52,0.54,0.56,0.58) (0.41,0.43,0.45,0.47)

rule 2 (0.85,0.87,0.89,0.91) (0.82,0.84,0.86,0.88) (0.72,0.74,0.76,0.78)

TABLE IX

S U B - R U L E B A S E 3

Variable x5 x6

Meaning Remoteness Contact outside of village

rule 1 (0.27,0.29,0.31,0.33) (0.62,0.64,0.66,0.68)

rule 2 (0.58,0.60,0.62,0.64) (0.30,0.32,0.34,0.36)

TABLE X

S U B - R U L E B A S E 4

Variable x6 x7

Meaning Contact outside of village Transmission rate of pathogenic strains

rule 1 (0.38,0.40,0.42,0.44) (0.46,0.48,0.50,0.52)

rule 2 (0.70,0.72,0.74,0.76) (0.65,0.67,0.69,0.71)

TABLE XI

S U B - R U L E B A S E 5

Variable x5 x8

Meaning Remoteness Population change

rule 1 (0.39,0.41,0.43,0.45) (0.60,0.62,0.64,0.66)

rule 2 (0.62,0.64,0.66,0.68) (0.30,0.32,0.34,0.36)

TABLE XII

S U B - R U L E B A S E 6

Variable x8 x9

Meaning Population change Social connectedness

rule 1 (0.46,0.48,0.50,0.52) (0.52,0.54,0.56,0.58)

rule 2 (0.68,0.70,0.72,0.74) (0.20,0.22,0.24,0.26)
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TABLE XIII

S U B - R U L E B A S E 7

Variable x9 x10

Meaning Social connectedness Hygiene infrastructure

rule 1 (0.28,0.30,0.32,0.34) (0.26,0.28,0.30,0.32)

rule 2 (0.55,0.57,0.59,0.61) (0.61,0.63,0.65,0.67)

TABLE XIV

S U B - R U L E B A S E 8

Variable x7 x10 x11

Meaning Transmission rate of pathogenic strains Hygiene infrastructure Incidence of diarrheal disease

rule 1 (0.30,0.32,0.34,0.36) (0.36,0.38,0.40,0.42) (0.18,0.20,0.22,0.24)

rule 2 (0.60,0.62,0.64,0.66) (0.58,0.60,0.62,0.64) (0.68,0.70,0.72,0.74)

and x8 = I4 = (0.54, 0.56, 0.58, 0.60), as summarised in Table XV.313

For the sparse rule base available to the problem at hand, none of the rules match the above observations.314

Therefore, it is unable to resolve the problem by ordinary approximate reasoning techniques (such as315

via applying the compositional rule of inference alone). Thankfully, FRI can help: Table XVI lists the316

intermediate values and the final output running HB-FRI over the hierarchical model. Note that the317

intermediate value x8 = I4 is provided as part of the observations and is not produced by the use of318

HB-FRI. However, if the intermediate value I4 were not known, it could be approximately computed by319

HB-FRI. Using the computed intermediate value (instead of the given observation) the final output of320

the hierarchical fuzzy model is presented in Table XVII. Both of these two versions of the final result321

(which is the predicted fuzzy value for the diarrheal disease rate) are depicted in Fig. 5.322

The original value domain defining the variable x11 is [0%, 10%]. Mapping the inferred value back323

to this domain gives the predicted diarrheal disease rate being 4.1% or 5.8% for the studied village.324

TABLE XV

O B S E RVAT I O N S G I V E N

Variable Fuzzy set

x1 (0.16, 0.18, 0.20, 0.22)

x2 (0.34, 0.36, 0.38, 0.40)

x4 (0.65, 0.67, 0.69, 0.71)

x8 = I4 (0.54, 0.56, 0.58, 0.60)
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TABLE XVI

I N T E R M E D I AT E VA L U E S A N D F I N A L O U T P U T W I T H x8 ( I N T E R M E D I AT E VA R I A B L E I4 ) I M P O R T E D E X T E R N A L LY

Intermediate variables Fuzzy set Representative value

I1 (0.46,0.58,0.62,0.64) 0.57

I2 (0.49,0.51,0.55,0.57) 0.53

I3 (0.38,0.40,0.44,0.46) 0.42

I4 (as observed) (0.54,0.56,0.58,0.60) 0.57

I5 (0.46,0.48,0.52,0.54) 0.50

I6 (0.40,0.42,0.46,0.48) 0.44

I7 (0.41,0.43,0.47,0.49) 0.45

Final output x11 (0.37,0.39,0.43,0.45) 0.41

TABLE XVII

I N T E R M E D I AT E VA L U E S A N D F I N A L O U T P U T W I T H x8 ( I N T E R M E D I AT E VA R I A B L E I4 ) I N F E R R E D W I T H I N HB-FRI

S Y S T E M

Intermediate variables Fuzzy set Representative value

I1 (0.46,0.58,0.62,0.64) 0.57

I2 (0.49,0.51,0.55,0.57) 0.53

I3 (0.38,0.40,0.44,0.46) 0.42

I4 (0.45,0.47,0.51,0.53) 0.49

I5 (0.46,0.48,0.52,0.54) 0.50

I6 (0.51,0.53,0.57,0.59) 0.55

I7 (0.56,0.58,0.62,0.64) 0.60

Final output x11 (0.54,0.56,0.60,0.62) 0.58

Which of these two outcomes holds depends on whether the observed x8 is directly used during the325

prediction process or the inferred intermediate variable I4 is used (without disrupting the internal326

inference mechanism). This result compares well with that which is achievable by the most advanced327

(and complicated) adaptive fuzzy rule interpolation mechanism in the literature [29], [30], where a result328

of approximately 5.5% is returned for the same problem. Yet, the existing work requires substantially329

more computational effort to reach this comparable outcome as it relies on the employment of an330

expensive model-based diagnostic engine [6] to correct the prediction errors.331

3) Significance of HB-FRI for decision-making: The above practical application demonstrates that HB-332

FRI can be of great potential to provide valuable suggestions in decision support, for both governments333

and the general public. In general, it is difficult to track the transmission rate of pathogenic strains (x7)334

in real time, and it is also difficult to accurately estimate the population change (x8). Since the area335
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Fig. 5. Results by hierarchical bidirectional fuzzy interpolative reasoning

concerned is geographically remote and economically backward the employment of any sophisticated336

technologies (e.g., big data analysis) that would require the acquisition of a substantial amount of data337

to estimate such key values is not easy. With the use of a hierarchical model that is supported by338

bidirectional fuzzy rule interpolation, through examining the incidence of diarrheal disease (x11, which339

can be measured timely in a given location), the transmission rate of pathogenic strains and population340

change can now be assessed. The resulting estimated changes can be utilised to alert the local government341

in a timely manner, thereby significantly increasing the effectiveness of any subsequent decision making342

process. In particular, transmission rate of pathogenic strains and population change are both controllable343

parameters which may be adjusted in order to model and deploy practical mechanisms that help minimise344

the occurrence of diarrheal diseases.345

More concretely speaking, aided by the proposed bidirectional fuzzy rule interpolation, useful informa-346

tion can indeed be provided to the relevant government in support of its decision-making. For example, in347

order to reduce the incidence of diarrheal disease (x11) from say, Middle High (0.72, 0.74, 0.76, 0.78) to348

Middle Low (0.38, 0.40, 0.50, 0.52), according to the proposed HB-FRI approach, the value of transmission349

rate of pathogenic strains (x7) needs to be changed from the current Middle High (0.62, 0.64, 0.66, 0.68)350

to Middle Low (0.33, 0.35, 0.37, 0.39). This means that the local government needs to take medical or351

administrative measures to control the spread of pathogenic strains. At the same time, the population352

change rate (x8) needs to be regulated to go from the current Middle High (0.69, 0.71, 0.73, 0.75) down to353

Middle (0.53, 0.55, 0.57, 0.59), which in turn, implies that population changes due to immigration need to354
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be stopped. This shows that the proposed HB-FRI approach is very helpful to interpolate the knowledge355

that is useful to estimate unobservable domain features that are crucial for decision-making (say, at the356

time of planning). Such variables can then be subsequently controlled and adjusted through government357

administration. As such, the risk of diarrheal disease in the area concerned may be significantly reduced,358

benefitting the general public.359

V. C O N C L U S I O N360

This paper has presented a theoretical framework for hierarchical bidirectional fuzzy rule interpolation361

(HB-FRI), including computational complexity analyses for the algorithms introduced. The work enables362

unknown antecedent feature values to be inferred in a manner involving both forward and backward rule363

interpolation. It facilitates an effective way of coping with insufficient information or sparse knowledge364

that may appear in automated decision-making. More importantly, this paper has proposed an automated365

method for restoring consistency in a sparse rule base through the use of HB-FRI. The work has been366

verified with a range of problems, including: numerical function approximation, time series prediction,367

and real-world decision-making application. The particular application investigation has presented a368

clear case for the potential benefits of utilising HB-FRI to aid in decision-making when only limited369

knowledge is available.370

Whilst very promising, the proposed approach does not give due attention to problems that require371

consideration of automated dynamic update of the rule base. Also, the issue of its general scalability372

remains open, requiring further assessment, both theoretically and empirically. There indeed exist373

significant opportunities for further development. For instance, whether this approach could benefit from374

a full integration with the most recent advance in dynamic fuzzy rule interpolation [18], in order to375

cope with dynamic rule changes, appears to be a natural next step to conducting further research. In376

addition, how flexibly a hierarchical fuzzy model may run in response to the use of different intermediate377

features requires experimental investigation. Another important piece of work is to introduce weights378

onto antecedent features as per the most recent work of [15], thereby allowing for the selection of least379

number of the nearest neighbouring rules for interpolation [16], increasing the overall reasoning efficacy.380

Last but not least, instead of encoding all fuzzy sets with pre-specified trapezoidal form it is interesting to381

examine whether the employment of fuzzy values learned by data clustering tools (e.g., those introduced382

in [2]) would entail more accurate interpolation.383
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