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Abstract

Relational topic models (RTM) have been widely used to discover hidden

topics in a collection of networked documents. In this paper, we introduce

the class of Constrained Relational Topic Models (CRTM), a semi-supervised

extension of RTM that, apart from modeling the structure of the document

network, explicitly models some available domain knowledge. We propose two

instances of CRTM that incorporate prior knowledge in the form of document

constraints. The models smooth the probability distribution of topics such that

two constrained documents can either share the same topics or denote distinct

themes. Experimental results on benchmark relational datasets show significant

performances of CRTM on a semi-supervised document classification task.
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1. Introduction

Probabilistic topic models are a promising class of generative probabilistic

models that provide a simple way to analyze and summarize the main themes of

large volumes of texts. A topic model describes a corpus of documents through

a fixed set of topics, seen as distributions of words over a fixed vocabulary. Each5

document is represented as a “bag of words” and it is assumed as composed of
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a mixture of different topics, where a topic drawn from this mixture is assigned

to each word of the document.

Classical topic models consider texts as the unique source of information

and are generally based on the assumption that texts are independent and iden-10

tically distributed (i.i.d.), do not taking into account that documents and its

constituents (e.g. unigrams or n-grams) can actually show an underlying rela-

tional structure. In realistic cases, documents are often related to each other:

scientific papers can be related through citations, web pages can present hy-

perlinks between each other, and users in social networks can be friends. In15

these networked environments, connected documents likely discuss the same

topics. Relational information can therefore be exploited for uncovering and

understanding the underlying latent structure of a corpus of documents.

Relational Topic Model (RTM) [12] is a hierarchical model that explicitly

ties links between documents and their contents. As a topic model, it produces20

a low dimensional topical representation of a document that can be used to

address different tasks, such as information retrieval, document exploration,

and clustering. Recently, many topic models that include relational information

between documents have been proposed [50, 47, 13, 44, 45, 23], some of them

being direct extensions of RTM [13, 44, 45]. Most of them include only one type25

of relational information, i.e. the links between documents, in addition to the

text, disregarding that documents can also provide some other prior knowledge:

for example, a domain expert may know the label associated with a document

or that two documents belong either to the same or a different class. The

introduction of prior knowledge can further strengthen the probabilistic process30

of generating topics and words in order to improve the model’s performance.

The main contributions of this paper are the following:

• we propose a class of relational topic models, named Constrained Rela-

tional Topic Model (CRTM), that is a semi-supervised extension of RTM

that includes not only the information about the network of documents,35

but it jointly models the available prior knowledge about documents in
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the form of constraints;

• inspired by constraint-based semi-supervised clustering [6], we propose

two instances of CRTM that include the knowledge at the document level

in the form of must-link and cannot-link constraints between documents.40

The models can smooth the distribution of topics so that two constrained

documents can either share the same topics or denote distinct themes.

The paper is organized as follows. In section 2, a brief overview of the state of

the art about relational topic models is presented. In section 3, a brief review of

Relational Topic Model (RTM) is given. In section 4, the proposed Constrained45

Relational Topic Model is detailed. In section 5, the experimental settings are

described, while in section 6 the experimental results are discussed. Finally, in

section 7, conclusions and future work are reported.

2. Related Work

Latent Dirichlet Allocation (LDA) [10] is a generative probabilistic model50

that describes a corpus of documents through a set of topics K, seen as distribu-

tions of words over a fixed vocabulary W . Each document is assumed composed

of a mixture of different topics that follow a Dirichlet distribution, where a topic

drawn from this mixture is assigned to each word of the document. LDA and

simple topic models can be extended by considering different types of relational55

information, originating the following relational topic models.

Word-Level Relational Topic Models. This type of relational topic model

relaxes the independence assumption of words in a document or in a topic. Dif-

ferent types of underlying relationships between words can be considered, as

word-order [21, 43, 22, 31, 17, 40], syntactic dependencies [20, 11], semantic or60

domain knowledge relationships [2, 3, 13, 46]. Hidden Markov Topic Model [22]

assumes that words in each sentence are assigned to the same topic. General-

ized Pòlya Urn Model [17] is a model based on the homonymous process which

considers not only every single word of a document, but also collocations, to
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produce more understandable topics. Syntactic Topic Model [11] is a combina-65

tion of a topic model and syntax model, assuming that a topic assignment for

a word depends on both a document-level observation and parse tree-level in-

formation. In [3], the authors present a topic model which incorporates domain

knowledge by using First-Order Logic rules to represent relationships between

words. General Knowledge based LDA [14] incorporates lexical semantic rela-70

tionships of words (such as synonyms and antonyms) by adding a latent variable

which denotes the relation for each word. Constrained LDA [46] can incorpo-

rate relationships among words through the use of a potential function which

smooths the probability distribution of topics.

In the latest years, the increasing interest on word embeddings has led to75

the incorporation into topic models of the semantic relationships that these dis-

tributed representation of words are able to capture [37, 48, 16, 35, 28, 7]. For

example, in [16] the proposed model directly generates word embeddings, in-

stead of discrete word types, using a multivariate Gaussian distribution. In [35]

the word-topic multinomial distribution is replaced by a Dirichlet multinomial80

distribution and a latent word feature distribution.

Document-Level Relational Topic Models. The main paradigms of rela-

tional models that consider the underlying network structure of a collection

of documents are Relational Topic Models (RTM), Regularized Topic Models,

Dirichlet Multinomial Regression (DMR), and Bayesian Deep Learning.85

RTM [12] and its extensions are based on LDA and model each link as a

binary variable, thus considering the existence (or absence) of a link between a

couple of documents. Generalized RTM [13] can capture not only same-topic

relationships between documents but all pairwise topic relationships. Sparse

RTM [47] aims at inferring sparse topics for each document by using a non-90

probabilistic formulation of RTM. In [44] and [45] RTM is turned into a super-

vised topic model, where the link is the variable to predict.

Regularized topic models [24, 33] aim to augment the topic model objective

function with a network regularization penalty that encourages topic mixtures

4



of related documents to be similar.95

Dirichlet Multinomial Regression (DMR) [34] and its extensions [25, 39]

are topic models that incorporate arbitrary features, considering links as per-

document attributes.

In the latest years, a new paradigm has been studied, that aims to combine

deep learning and probabilistic models in a unified framework: in [42] a Bayesian100

deep learning framework jointly models high-dimensional node attributes and

link structures with layers of latent variables, and in [5] topics are inferred

using a Stacked Variational AutoEncoder and the latent representations of a

pair of documents are concatenated as the input of a multilayer perceptron that

predicts a link.105

Topic-Level Relational Topic Models. LDA assumes topics are indepen-

dent of each other, however, in a realistic application, this assumption can be too

simplistic and restrictive. Models that aim to express the interactions between

topics usually adjust Dirichlet priors α or β, which generate the document-topic

distribution and the word-topic distribution respectively.110

In particular, Correlated Topic Model [9] allows pairwise correlations be-

tween topic, Latent Dirichlet-Tree Allocation [38] replaces the Dirichlet prior α

with a Dirichlet-Tree distribution to express hierarchies of topics, and Pachinko

Allocation Model [29] represents the relationships among topics as arbitrary

directed acyclic graphs. Several models [36, 27, 1] extend the nested Chinese115

Restaurant Process (nCRP) [8] by introducing a tree structure prior constructed

with multiple CRPs.

In recent years, Poisson Factor Analysis (PFA), a nonnegative matrix factor-

ization model with Poisson link, has been extended to its deep counterpart, lead-

ing to models that infer topics through deep latent hierarchies [18, 26, 49, 15].120

The class of topic models that we propose belongs to the family of Document-

Level Relational Topic Models. Rather than focusing on the representation of
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documents, we focus our investigation on the encoding of document relationships

to incorporate domain knowledge. In particular, we propose a semi-supervised125

extension of RTM that includes not only the document words and the relational

information about the network of documents, but it jointly models the available

prior knowledge at the document level in the form of constraints.

3. Relational Topic Model

Since the class of topic models that we propose is built upon Relational130

Topic Model (RTM), in this section we briefly review the model.

Relational Topic Model extends Latent Dirichlet Allocation by modeling a

link between a pair of documents using a link probability function that depends

on the topic assignments z of the considered documents, thus assuming that

documents with similar topic assignments are likely to be linked.135

The link likelihood function can be defined in different ways; in this paper, we

consider the sigmoid function, parameterized by coefficient η and intercept ν.

The likelihood that a link y between two documents d and d′ exists is then

computed as:

ψσ(y = 1) = σ(ηT (zd ◦ zd′) + ν)

In particular, σ is the sigmoid function, the symbol ◦ denotes the Hadamard140

product (or element-wise product) and zd is a vector, such that zd = 1
Nd

∑Nd

n=1 znd,

where Nd is the length of document d and znd denotes the n-th word in docu-

ment d.

Being an extension of LDA, the joint probability distribution of RTM is

composed by the joint distribution of LDA and the term related to the links
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between documents:

p(w, z,y,θ,Φ|α, β, η, ν) (1a)

=P (θ|α)P (w|z,φ)P (z|θ)P (φ|β)ψσ(y|z,w, η, ν) (1b)

=

D∏
d

p(θd|α)

Nd∏
n=1

p(wnd|φznd
)p(znd|θd)

K∏
k=1

p(φk|β)
∏

d,d′∈D
d′ 6=d

ψσ(ydd′ |zd, zd′ , η, ν)

(1c)

where

• D denotes the set of documents145

• Nd is the number of words of document d

• K denotes the fixed number of topics

• w denotes the set of words and wnd denotes the n-th word in document d

• z represents the set of topic assignments and znd the topic assignment of

the n-th word in document d150

• y is the link variable denoting the existence or absence of a link between

two documents and ydd′ denotes the link between documents d and d′

• θ represents the document-topic distribution and θd the distribution of

topics for document d

• φ denotes the word-topic distribution and φznd
is the distribution related155

to the topic assignment of the n-th word in document d

• α and β are the Dirichlet hyper-parameters related to θ and φ respectively.

4. Constrained Relational Topic Models

Most of Document-Level Relational Topic Models consider only the docu-

ment network information, disregarding that other types of information deriving160
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from domain knowledge can be encoded as well. Building upon RTM, we intro-

duce prior knowledge at the document level in the form of constraints through

the definition of a set of potential functions, inspired by the Word-Level Rela-

tional Topic Model Constrained-LDA [46].

The prior knowledge is denoted by a set L and each knowledge l ∈ L is165

introduced into the model by a potential function fl(z, d), which represents a

real-valued score for the hidden topic assignment z in document d. The complete

prior knowledge L defines a score ξ(z, L) =
∏
z∈z exp fl(z, d) that smooths the

current topic assignment z. The joint probability distribution of this class of

topic models, to which we will refer to as Constrained Relational Topic Models170

(CRTM), is defined as follows:

p(w, z,y,θ,φ|α, β, η, ν, L) (2a)

=P (w|z,φ)P (φ|β)P (z|θ)P (θ|α)ψσ(y|z,w, η, ν)ξ(z, L) (2b)

The potential function ξ and the link probability function ψσ can be factored

out of the marginalized joint distribution, because they do not depend on the

distributions φ and θ, obtaining the following marginalized joint probability

distribution:175

p(w, z,y|α, β, η, ν, L) (3a)

=

∫ ∫
p(w|z,φ)p(φ|β)p(z|θ)p(θ|α)ψσ(y|z,w, η, ν)ξ(z, L)dθdφ (3b)

=ξ(z, L)ψσ(y|z,w, η, ν)

∫ ∫
p(w|z,φ)p(φ|β)p(z|θ)p(θ|α)dθdφ (3c)

The main goal of CRTM is to estimate the posterior distribution P (z|w,y) =

P (w, z,y)/
∑

z P (w, z,y). Since the evaluation of the denominator is intractable,

an approximate inference method is mandatory.

In our investigation, we use a collapsed Gibbs sampler that leads to the
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following estimation:180

P (znd|wnd, z¬nd,y, α, β, η, ν, L) (4a)

=
P (w, znd, z

¬nd,y|α, β, η, ν, L)

P (w, z¬nd,y|α, β, η, ν, L)
(4b)

=
P (w, znd, z

¬nd|α, β)

P (w, z¬nd|α, β)

∏
d′ 6=d
ydd′=1

ψσ(ydd′ = 1|znd, z¬ndd , zd′ , η, ν)

ψσ(ydd′ = 1|z¬ndd , zd′ , η, ν)
(4c)

·
∏
d′ 6=d
ydd′=0

ψσ(ydd′ = 0|znd, z¬ndd , zd′ , η, ν)

ψσ(ydd′ = 0|z¬ndd , zd′ , η, ν)
· ξ(z

¬nd, znd, L)

ξ(z¬nd, L)
(4d)

∝
(
N¬nddznd

+ α
) N¬ndzndw

+ β

Nznd· +Wβ
(4e)

·
∏
d′ 6=d
ydd′=1

σ

(
ηznd

Nd·
· Nd

′znd

Nd′·
+

K∑
k=1

ηk
N¬nddk

Nd·

Nd′k
Nd′·

+ ν

)
(4f)

·
∏
d′ 6=d
ydd′=0

1− σ

(
ηznd

Nd·
· Nd

′znd

Nd′·
+

K∑
k=1

ηk
N¬nddk

Nd·

Nd′k
Nd′·

+ ν

)
· exp (fl(znd, d))

(4g)

where

• the superscript ¬nd indicates leaving the nth token of the dth document

out of the calculation

• W represents the number of unique words in the vocabulary

• Ndz denotes the number of words associated with the topic z in document d185

• Nz· denotes the number of words associated with the topic z in the corpus

• Nzw denotes the number of occurrences of the word w associated with

topic z.

Equation (4e) corresponds to the Gibbs sampling of the standard LDA [19],

equation (4f) represents the sigmoid link likelihood function of RTM when a link190

exists, and equation (4g) denotes the link function of RTM when a link is absent,
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plus the incorporation of prior knowledge by means of the potential function.

Let us notice that equations (4f) and (4g) related to RTM deal with directed

graphs, however it can be easily adapted to deal with undirected networks,

similarly to all the models that extend RTM.195

4.1. Document Constraint Potential Functions

The introduction of document constraints instead of document labels can

be more realistic in some cases. For instance, as observed in [6], labels may be

unknown, but a user may know whether two documents belong or do not belong

to the same class. This formulation is also more general, as document constraints200

imply labels, but the vice versa does not hold. In this paper, we propose two

potential functions, inspired by must-link and cannot-link constraints described

in [2], that allow us incorporating document constraints in RTM.

We define two knowledge sets for each document d: a must-constraint set Lmd ,

containing documents that must share the same topics of d, and a cannot-205

constraint set Lcd, including documents that cannot share the same themes of d.

For example, a must-constraint set for the book titled Emma and written by

Jane Austen could be

LmEmma = {Sense and Sensibility,Pride and Prejudice}

which contains a set of books written by the same author. Analogously, a

cannot-constraint set could be210

LcEmma = {Moby-Dick}

which denotes a book that has not been written by Jane Austen.

In the following, we will detail two potential functions, which once instanti-

ated in CRTM will lead to Unnormalized and Normalized CRTM.

4.1.1. Unnormalized Constrained Relational Topic Model (CRTM-U)

We can encode document relationships modeling the relationship that exists215

between the words of two constrained documents. In particular, we assume
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that if two documents are must-constrained (i.e, they must share the same

set of topic assignments) then the words in the documents must have similar

topic distributions, i.e. p(zd|w, d) ≈ p(zd′ |w′, d′), where w are the words of

document d, and w′ are the words of document d′. In order words, we model220

the idea that the more the words of the documents belonging to the set Lmd are

assigned to topic t, the higher the value of the potential function fl(z = t, d) is.

Analogously, a cannot-constraint between two documents indicates that their

words should not share the same set of topics. Therefore, if many words of two

cannot-constrained documents are assigned to the same topic, then the value of225

the potential function will be low.

In order to model the previous ideas, we define the following potential func-

tion, named unnormalized potential function, as it takes into account the abso-

lute value of the document-topic counts. It is defined as follows:

fl(z, d) =
∑
d′∈D
d′∈Lm

d

log max (λ,Nd′z) +
∑
d′∈D
d′∈Lc

d

log
1

max (λ,Nd′z)
(5)

where λ is the hyper-parameter which controls the strength of each l ∈ L. Larger230

values of λ imply that the constraint is active only for those topic assignments

that have large counts. The value of λ must be set for each piece of knowledge

according to the domain expert’s confidence.

The conditional probability of topic z, including the defined document con-

straint potential function, can be estimated as:

P (znd|w, z¬nd,y,α, β, η, ν, L) ∝
(
N¬nddznd

+ α
) N¬ndzndw

+ β

Nznd· +Wβ
(6a)

·
∏
d′ 6=d
ydd′=1

σ

(
ηznd

Nd·
· Nd

′znd

Nd′·
+

K∑
k=1

ηk
N¬nddk

Nd·

Nd′k
Nd′·

+ ν

)
(6b)

·
∏
d′ 6=d
ydd′=0

1− σ

(
ηznd

Nd·
· Nd

′znd

Nd′·
+

K∑
k=1

ηk
N¬nddk

Nd·

Nd′k
Nd′·

+ ν

)
(6c)

·
∏
d′∈D
d′∈Lm

d

max (λ,Nd′znd
)
∏
d′∈D
d′∈Lc

d

1

max (λ,Nd′znd
)

(6d)
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The selection of the correct values for λ is not trivial, due to the different235

lengths of the documents that are involved in a constraint. For example, if we

choose a value for λ that is too large, a document with a number of words less

than λ will not affect the probability p(znd = t |wnd, z¬nd,y, L), even if all the

words of the documents are assigned to topic t.

In order to smooth the effect of the hyper-parameter λ, a potential function240

that takes into account the length of the document is proposed in the next

section.

4.1.2. Normalized Constrained Relational Topic Model (CRTM-N)

The following potential function considers the proportion of words in a

document assigned to the same topic, rather than the absolute values of the245

document-topics counts. We define the potential function fl(z, d) as follows:

fl(z, d) =
∑
d′∈D
d′∈Lm

d

log

(
Nd′z
Nd′·

+ 1

)
−
∑
d′∈D
d′∈Lc

d

log

(
Nd′z
Nd′·

+ 1

)
(7)

The conditional probability of topic z estimated by CRTM, including the

defined document constraint potential function, can be specified as follows:

P (znd|w, z¬nd,y,α, β, η, ν, L) ∝
(
N¬nddznd

+ α
) N¬ndzndw

+ β

Nznd· +Wβ
(8a)

·
∏
d′ 6=d
ydd′=1

σ

(
ηznd

Nd·
· Nd

′znd

Nd′·
+

K∑
k=1

ηk
N¬nddk

Nd·

Nd′k
Nd′·

+ ν

)
(8b)

·
∏
d′ 6=d
ydd′=0

1− σ

(
ηznd

Nd·
· Nd

′znd

Nd′·
+

K∑
k=1

ηk
N¬nddk

Nd·

Nd′k
Nd′·

+ ν

)
(8c)

·
∏
d′∈D
d′∈Lm

d

(
1 +

Nd′znd

Nd′·

) ∏
d′∈D
d′∈Lc

d

1

1 +
Nd′znd

Nd′·

(8d)

In the following sections, an experimental investigation is presented to eval-

uate the capabilities of CRTM to discover hidden topics in different collections

of networked documents.250
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5. Experimental Settings

In order to evaluate the performance of the proposed models, several ex-

periments have been conducted, using document labels as prior knowledge and

comparing their performance to different baseline models’ performance.

5.1. Baseline Models255

CRTM-N and CRTM-U have been validated comparing the results on bench-

mark datasets against the following models:

• LDA: Latent Dirichlet Allocation [10] using collapsed Gibbs sampling. Its

joint probability distribution is as follows:

p(w, z,θ,Φ|α, β) =

D∏
d=1

p(θd|α)

Nd∏
n=1

p(wnd|Φznd
)p(znd|θd)

K∏
k=1

p(Φk|β) (9)

• RTM: standard RTM [12] that models only the links between documents

through the binary variable y, without incorporating any other kind of do-

main knowledge. The joint probability distribution corresponds to equa-260

tion (1).

• Bi-RTM: RTM for bidimensional networks, where the first dimension is

intended to represent the links of the document network, modeled by the

binary variable y, and the second dimension is designed to represent the

must- and cannot-constraints between documents, modeled by an addi-

tional binary variable c. Its joint probability distribution is the following:

p(w, z,y,c,θ,Φ|α, β, η, ν, η′, ν′)

=

D∏
d=1

p(θd|α)

Nd∏
n=1

p(wnd|Φznd
)p(znd|θd

K∏
k=1

p(Φk|β)

·
∏

d,d′∈D
d′ 6=d

ψσ(ydd′ |zd, zd′ , η, ν) ·
∏

d,d′∈D
d′ 6=d

ψσ′(cdd′ |zd, zd′ , η′, ν′)

(10)

where η′ and ν′ are respectively the coefficient and the intercept for the

sigmoid function ψσ′ that models the likelihood that a constraint cdd′

between two documents d and d′ exists.
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For the sake of completeness, we also compared the proposed semi-supervised265

CRTM with a fully supervised model. In particular, we considered the following

model:

• LLDA: Labeled LDA associates each label with one topic in direct one-to-

one correspondence. In particular, we model this correspondence with the

function g : Γ 7→ K that maps a label to its corresponding topic, where Γ270

is the set of labels. LLDA is built upon LDA and it is modeled by using

the following potential function:

fl(z, d) =

1 if z = g(ld)

−∞ otherwise
(11)

where ld ∈ Γ specifies the document label.

Let us notice that in some realistic cases, we only know that two documents

belong or do not belong to the same class, rather than knowing that to which275

class a document belongs.

5.2. Benchmark Datasets

Since CRTM deals with networks of documents and prior knowledge, the cho-

sen datasets for the validation phase must have two main features: an underlying

document-relational structure (e.g. citation links) and some domain knowledge280

available (e.g. document labels) to derive the semi-supervised constraints. Ta-

ble 1 contains some statistics about the selected benchmarks. Cora [32] and

M10 [30] are two datasets composed of 2708 and 4427 scientific publications

respectively, whose links are represented by citations. WebKB2 is a dataset

composed of 877 universities web pages whose relationships are hyperlinks from285

a web page to another.

The three benchmarks have been preprocessed: words are stemmed, stop-

words and the least and most frequent words are removed. Only the documents

2http://www.cs.cmu.edu/~WebKB/ILP-data.html

14

http://www.cs.cmu.edu/~WebKB/ILP-data.html


Dataset #docs #links D ensity
Type of

link
#classes

#unique

words

Cora 2708 5430 2.87 · 10−4 citation 7 1752

M10 4427 5627 7.41 · 10−4 citation 9 1592

WebKB 877 1131 14.72 · 10−4 hyperlink 5 1830

Table 1: Statistics of the benchmark datasets Cora, WebKB, and M10.

that link another document or are linked by a document at least once are con-

sidered. Prior knowledge has been introduced in terms of constraints using a290

percentage of the possible constraints between documents. In particular, if two

documents d and d′ randomly chosen share the same class label, we expect that

their words are assigned to similar topics, therefore a must-constraint is intro-

duced (i.e. document d is added to the must-constraint set of d′ and document

d′ is added to the must-constraint set of d). Concerning LLDA, we first define a295

mapping between the set of topics and the set of labels. Two documents d and

d′ are randomly drawn and the labels ld and ld′ are incorporated as knowledge,

according to equation (11).

5.3. Performance Measures

Each dataset has been divided into a training set and a test set. The models300

are evaluated on the test set by measuring their performance on a document

classification task. The K-dimensional representation of each document output

by the considered topic model, i.e. the document-topic distribution θ, is used

to train a linear Support Vector Machine (SVM) classifier that predicts the

document classes. For the experimental evaluation, we considered both micro-305

F1 and macro-F1 measures.

Given a multi-class problem, F-measure, or F1 score, for a given class i is

the weighted average of the precision and recall, and it reaches its best value at

1 and its worst score at 0. F-measure of class i is then defined as:

f-measure(i) =
2 · Recall(i) · Precision(i)

Recall(i) + Precision(i)
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Macro-F1. The average of the F1 score for each class is usually referred to as310

Macro-F1 or Macro-average F1 score. It is then defined as follows:

Macro-F1 =
1

|Classes|
∑

i∈Classes

f-measure(i)

where Classes denotes the set of the classes.

Micro-F1. The weighted average of the F1 score for each class (where the weight

corresponds to the size of the classes) is called Micro-F1 or Micro-average F1

score, and it is then defined as:315

micro-average f-measure =
1

D

∑
i∈Classes

|i| · f-measure(i)

where D is the number of instances in the test set and |i| the cardinality of

class i.

5.4. Parameter settings

Each experiment, with a given set of parameters, has been repeated for

100 times and the performance measures have been averaged by the number of320

the samples, thus obtaining an average micro-F1 and macro-F1 measure. The

hyper-parameters α and β have been set equal to 50/K and 0.1 respectively

(as reported in [19]), for all the considered models. The selected value of λ for

CRTM-U is 1. Each model has been trained for 1,500 Gibbs iterations.

The models have been validated by setting the number of topics equal to the325

number of classes of the dataset and by varying the quantity of prior knowledge,

i.e. the number of possible constraints, during the training phase and, in a

second stage, during the testing phase.

The maximum quantity of prior knowledge in terms of constraints is D(D−1)
2

(where D is the number of documents), which represents the maximum num-330

ber of possible pairs among all the documents of the dataset. The quantity of

knowledge introduced into the models is expressed as a percentage, preferring

low values to maintain the typical semi-supervised scenario. Thus, given a per-

centage p, the number of constraints introduced into the model will be p·D(D−1)
2 ,
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rounded down to the nearest integer. When the percentage of knowledge is equal335

to 0%, then CRTM and LLDA correspond to RTM and LDA respectively.

We used Support Vector Machines (SVM) to predict the ground truth labels

from the document-topic distribution of the documents. In particular, we used

the LibSVM implementation3 for inducing the linear SVM classifier.

The code of the proposed models is available at https://github.com/340

MIND-Lab/Constrained-RTM.

6. Experimental Results

In the following, we consider the performance of each model with an increas-

ing percentage of prior knowledge introduced only in the training phase. In

particular, we considered an experimental setting with zero knowledge (0.0%),345

which corresponds to models that do not encode any constraint (i.e. LDA and

RTM) and represented in the plots using the lines. The other models, i.e.

BiRTM, CRTM-U, CRTM-N, and LLDA, are reported with different percent-

ages of knowledge, and they are represented by the bar plots.

Let us notice that in these experiments zero knowledge is incorporated in350

the testing phase, as it often happens in realistic cases.

Figure 1: Micro-F1 performance of the compared models on Cora.

3LibSVM library: https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Figure 1 shows the performance of the models measured using the micro-F1

on the dataset Cora, where the number of constraints that are randomly selected

ranges from 0.03% and 0.2% of the number of possible constraints. CRTM-N

outperforms the other models, increasing its performance as more quantity of355

prior knowledge is introduced, and it seems to decrease its performance for

larger quantities of constraints. We can also notice that while the performance

of Bi-RTM is invariant with respect to the quantity of domain knowledge, LLDA

gets at first an improvement with a small contribution of knowledge, then its

performance decreases for larger values. The performance of CRTM-U is worse360

than the baselines LDA and RTM. The behavior of the model can be explained

by the fact that documents in Cora are long (average length of a document

is 68.9 words), thus the value of the potential function, which depends on the

number of words associated with the current topic, will be very high allowing a

small contribution to the rest of the sampling.365

Figure 2: Micro-F1 performance of the compared models on M10.

In Figure 2, the results for dataset M10 are shown. CRTM-N has a simi-

lar behavior with respect to the previous experiments, while CRTM-U gets an

improvement with a small insertion of constraints. This is due to the lengths

of the documents of M10, which are short (the average length of documents

in M10 is 6.3 words), thus making the introduction of the constraints more370

smoothed rather than in Cora. However, for larger quantities of knowledge,

the average performance of CRTM-U gets worse. The introduction of the labels
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allows LLDA to obtain a small improvement with respect of LDA, meaning that

associating each word of a labeled document to the same topic does not improve

the generalization capabilities of the model. Bi-RTM has a higher performance375

as the quantity of knowledge increases, although it requires many constraints

and its best performance is still lower than CRTM-N.

Figure 3: Micro-F1 performance of the compared models on WebKB.

Figure 3 shows the performance of the models for the dataset WebKB.

CRTM-N still has the same behavior as the previous datasets, obtaining the

best performance. Bi-RTM has a constant trend, while the other two mod-380

els get worse performances with respect to LDA and RTM. The behavior of

CRTM-U is similar to the one obtained in Cora. In fact, also WebKB is com-

posed of long documents. On the other hand, LLDA has a lower performance

with respect to Bi-RTM, CRTM-N, and LDA.

We report in the following the results of the considered models on the differ-385

ent datasets by introducing domain knowledge both in the training and testing

set. In particular, each combination of values of percentage in training and test-

ing has been considered. To provide a concise visualization of the performance

of the models, the results have been averaged, and therefore Figure 4 reports

the best average performance for each model.390

The two CRTMs significantly outperform Bi-RTM and the baselines LDA

and RTM (with a confidence of 95%). In particular, the two proposed models

have similar performance on M10 and WebKB, while CRTM-N outperforms its
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Figure 4: Micro-F1 measure of the models across all the datasets. The plot shows the best

performance of the average behavior of the models, considering different percentages of con-

straints introduced in the training phase and in the test phase.

counterpart CRTM-U, because it can handle the documents’ length issue of

the Cora dataset. Bi-RTM outperforms standard RTM and LDA, however in395

Cora and WebKB the improvement in the performance is small, meaning that

modeling the document constraints using the link likelihood function ψσ′ may

not be a promising solution.

We do not report LLDA in this evaluation, because, in LLDA, all of the

words of a labeled document are associated with the same topic. This has the400

trivial effect of automatically label each document affected by a constraint in

the test set with the correct class. CRTMs still have very promising results, and

they can be applied in more realistic cases, i.e. when we do not know the exact

labels of documents, but we know that two documents belong to the same class.

In this scenario, LLDA cannot be used.405

A further comparison is shown in Figure 5, where the results are reported

in terms of macro-F1 measure, with knowledge introduced both in training and

testing. We can easily notice that macro-F1 values are lower than the micro-F1

ones, highlighting that all the models are negatively affected by the class/topic

size. This means that all the LDA-based models tend in general to fit better410

those classes with higher cardinality at the expenses of the minority classes. A

set of additional results in terms of macro-F1 are reported in Appendix A.
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Figure 5: Macro-F1 measure of the models across all the datasets. The plot shows the

best performance of the average behavior of the models, considering different percentages of

constraints introduced in the training phase and in the test phase.

This behavior is mainly motivated by the symmetric and positive (> 1) val-

ues of the hyper-parameter α that regulates the corresponding document-topic

distribution θ. In fact, this setting implies to have the same prior distribu-415

tion of topics (and classes) for each document, originating therefore a poste-

rior topic/classes distribution that is almost uniform and consequently balanced

among different classes.

Even if CRTM is sensitive to the hyper-parameter α, it still outperforms the

other baselines. The promising performance in terms of macro-F1 is mainly due420

to its abilities to smooth the posterior topic distributions by the introduction

of constraints.

In order to show the complexity of the network obtained by the combination

of links and must-constraints, we illustrate an example of the Cora benchmark.

Figure 6 shows an instance of a document network when 0.2% of knowledge425

is introduced during the training phase. In particular, each node denotes a

document, whose color represents the actual document class. The edges denote

either a citation link or a must-constraint. Since must-constraints are allowed

only between documents of the same class, this type of relationships form seven

connected components that are visible observing the network. On the other430

hand, citations can exist either between same-class documents or documents
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Figure 6: An example of the Cora network used during the training phase. Edges represent

either citation links or must-constraint, where 0.2% of knowledge is incorporated. Nodes are

colored with respect to their actual class.

belonging to different classes.

The density of the citation network together with the density of the con-

straints can have an impact on the classifier’s performance, that decreases when

too much knowledge is introduced. To better clarify this issue, we consider the435

ego network of the document 40886 (where 40886 is the original identifier of

the document in the Cora dataset), as illustrated in Figure 7. In particular,

the color of the node represents the actual class of a document, while color of

the outline denotes the predicted class (e.g. documents 40886 and 429805 are

classified as belonging to the class “Neural Network”, but the first is correctly440

predicted while the second is misclassified).

As expected, the proposed model CRTM-N encourages all the purple nodes

to have similar topic distributions and the classifier correctly predicts that all

the documents belong to the class “Neural Network”. Analogously, all the blue

nodes are encouraged by both the must-constraints and the citation links to445
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Figure 7: Ego network of document 40886 of the Cora dataset. The nodes are labeled by the

original identifiers of the dataset and edges are labeled by the relationship type (citation are

denoted by a straight line and must-constraint by a dashed line). The node color represents

the actual class of a document, and the color of the outline denotes the predicted class.

have similar topic distributions and are assigned to the same class, though the

predicted class is not correct. This error is likely due to the presence of ci-

tation links between documents of different classes (e.g. the citation between

documents 40886 and 429805) combined with the must-constraints. If a docu-

ment is misclassified, a must-constraint may propagate this error to all the other450

documents that are must-constrained to the misclassified one.

This error could be reduced through the use of cannot-constraints, that can

be incorporated if two documents belong to different classes. In this way, a

cannot-constraint between two documents would allow the topic distributions

to be dissimilar, originating therefore a correct classifier’s prediction.455

7. Conclusions and Future Work

In this paper, we proposed Constrained Relational Topic Model (CRTM), a

class of relational topic models that are able to incorporate some domain knowl-

edge during the inference and training phases in the form of constraints. We

also defined two document-constraint potential functions, and we investigated460

the models’ performance in a document classification task by considering dif-

ferent quantities of prior knowledge. Experimental results on several relational
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datasets have demonstrated the advantages of CRTM, using the proposed po-

tential functions. As a future development, since the model depends on a set

of parameters, grid search and Bayesian optimization techniques [4, 41] can be465

investigated to derive an optimal parameter configuration of CRTM. Finally, we

propose to investigate the issue related to links between documents that belong

to different classes by incorporating the cannot-constraints in the experimental

results.
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Appendix A.

In the following, Figures A.8, A.9, and A.10 show some additional results on

the three benchmark datasets, measured in terms of macro-F1 score. Knowledge645

is introduced only in the training phase, with different percentages.

Figure A.8: Macro-F1 performance of the compared models on Cora.

Figure A.9: Macro-F1 performance of the compared models on M10.
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Figure A.10: Macro-F1 performance of the compared models on WebKB.
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