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a b s t r a c t 

Due to the ubiquitous use of spatial data applications and the large amounts of such data 

these applications use, the processing of large-scale distance joins in distributed systems 

is becoming increasingly popular. Distance Join Queries (DJQs) are important and frequently 

used operations in numerous applications, including data mining, multimedia and spa- 

tial databases. DJQs (e.g., k Nearest Neighbor Join Query, k Closest Pair Query, ε Distance 

Join Query, etc.) are costly operations, since they involve both the join and distance-based 

search, and performing DJQs efficiently is a challenging task. Recent Big Data develop- 

ments have motivated the emergence of novel technologies for distributed processing of 

large-scale spatial data in clusters of computers, leading to Distributed Spatial Data Man- 

agement Systems (DSDMSs). Distributed cluster-based computing systems can be classified 

as Hadoop-based or Spark-based systems. Based on this classification, in this paper, we 

compare two of the most recent and leading DSDMSs, SpatialHadoop and LocationSpark, 

by evaluating the performance of several existing and newly proposed parallel and dis- 

tributed DJQ algorithms under various settings with large spatial real-world datasets. A 

general conclusion arising from the execution of the distributed DJQ algorithms studied 

is that, while SpatialHadoop is a robust and efficient system when large spatial datasets 

are joined (since it is built on top of the mature Hadoop platform), LocationSpark is the 

clear winner in total execution time efficiency when medium spatial datasets are com- 

bined (due to in-memory processing provided by Spark). However, LocationSpark requires 

higher memory allocation when large spatial datasets are involved in DJQs (even more so 

when k and ε are large). Finally, this detailed performance study has demonstrated that 

the new distributed DJQ algorithms we have proposed are efficient, robust and scalable 

with respect to different parameters, such as dataset sizes, k , ε and number of computing 

nodes. 
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1. Introduction 

Nowadays, the volume of available spatial data, generated by different sources, like smart phones, satellites, etc., is rapidly

increasing all over the world. Recent research on Big Data has motivated the emergence of novel technologies for distributed

processing of large-scale spatial data on clusters of computers [7] . These Distributed Spatial Data Management Systems (DS-

DMSs) can be classified as disk-based [26] or in-memory [49] . The disk-based DSDMSs are characterized as Hadoop-based

systems, and the most representative are Hadoop-GIS [2] and SpatialHadoop [15] . The Hadoop-based systems enable the

execution of spatial queries using predefined high-level spatial operators, without having to worry about fault tolerance

and computation distribution. The in-memory DSDMSs are characterized as Spark-based systems, and the most represen-

tative are SpatialSpark [43] , GeoSpark [45] , Simba [39] , STARK [21] and LocationSpark [36,37] . Spark-based systems allow

users to work on distributed in-memory data, without (as in Hadoop-based systems) worrying about the data distribution

mechanism and fault-tolerance. 

Distance join queries (DJQs) have received considerable attention from the database community, due to their importance

in numerous applications, such as spatial databases and GIS, data mining, multimedia databases, etc. DJQs are costly queries

because they combine two datasets, taking into account a distance metric. The most representative are the k Nearest Neigh-

bor Join Query ( k NNJQ), k Closest Pair Query ( k CPQ), ε Distance Range Join Query ( εDRJQ) and ε Distance Join Query ( εDJQ).

Given two points datasets P and Q , the k NNJQ finds the k nearest neighbors in Q for each point in P . The k CPQ finds the

k closest pairs of points from P × Q for a given distance function (e.g., Manhattan, Euclidean, Chebyshev, etc.). The εDRJQ

finds for each point in P , all points in Q that fall within the circular shape with radius equal to ε centered at that point in

P . The εDJQ finds all the possible pairs of points from P × Q within a distance threshold ε of each other. These DJQs have

received much attention in the literature, because they have important roles in many real-life applications. Three represen-

tative application cases are given here: Application case 1 (Resource Management in Agriculture), authorities planning the

sustainable exploitation of water resources are considering two spatial datasets, locations of water wells and areas of cul-

tivable lands. εDRJQ could “find all the land areas within 3 km from every water well”, (the borders, or the centroid of each

land area could be used for processing this query). Application case 2 (Mobile Location Services), with two spatial datasets,

locations of shopping centers and positions of possible customers using a smart phone with mobile data and GPS enabled.

k NNJQ could “find the 100 nearest possible customers to each shopping center” for sending an advertising SMS about a

fashion brand available there. Application case 3 (Transportation Monitoring and Moving Objects), considering two spatial

datasets, locations of users of a taxi app and positions of free taxis. k CPQ could “find the 10 pairs of app users and taxis

with the shortest distances between them”, to be able to offer these users fast service at a reduced price (as a promotion

strategy), or for analysis by the taxi service. Several studies have attempted to improve the performance of these DJQs by

proposing efficient algorithms in centralized environments [6,9,10,33] . However, with the rapid increase in the scale of large

input datasets, parallel and distrituted processing of large-scale data is becoming a popular practice. Therefore, a number

of parallel algorithms for DJQs have been designed and implemented [16,18,27,31,35,36,42,48] in MapReduce [13] and Spark

[47] . 

Apache Hadoop 

1 is a reliable, scalable, and efficient cloud computing framework enabling distributed processing of large

datasets using the MapReduce programming model [5] . However, it is a type of disk-based computing framework, which

writes all intermediate data between map and reduce tasks to the disk. MapReduce [13] is a framework for processing

and managing large-scale datasets in a distributed cluster. It was introduced to provide a simple yet powerful parallel and

distributed computing paradigm, providing good scalability and fault tolerance mechanisms. Apache Spark 2 is a fast, reli-

able and distributed in-memory large-scale data processing framework. It takes advantage of Resilient Distributed Datasets

(RDDs), that allow data to be stored transparently in memory and persisted to disk only if necessary [47] . Hence, it can

avoid a huge number of disk writes and reads, and outperform the Hadoop platform. Since Spark maintains the status of

assigned resources until a job is completed, it reduces time consumed in resource preparation and collection [23] . 

Both Hadoop and Spark are less efficient when applied to spatial data [43,45] . One main shortcoming is that there is

no indexing mechanism for selective access to specific regions of spatial data, which would make query processing algo-

rithms more efficient. This problem could be solved by a Hadoop extension called SpatialHadoop [15] , which is a framework

supporting spatial indexing on top of Hadoop, i.e., spatial data is organized on a two-level index (global and local). An-

other possible solution is LocationSpark [36,37] , which is a spatial data processing system built on top of Spark that employs

various spatial indexes for in-memory data. 

Thus, there are several distributed systems based on Hadoop or Spark for managing spatial data, but there are not many

studies comparing their use for spatial query processing of large real-world datasets. The only publications in this regard

are [20,25,44,45] . In [44,45] , SpatialHadoop was compared to SpatialSpark and GeoSpark, but only for spatial join query

processing. SpatialHadoop and GeoSpark architectures were compared in [25] . In [20] , the existing solutions for spatial data

processing on Hadoop-based (Hadoop-GIS and SpatialHadoop) and Spark-based (GeoSpark, SpatialSpark and STARK) systems 

were analyzed and compared. Their features and performance in a micro-benchmark for spatial filters and join queries were

also studied. k CPQ and εDJQ have been implemented in SpatialHadoop [18,19] and LocationSpark [16] . However, k NNJQ has
1 Available at https://hadoop.apache.org/ . 
2 Available at https://spark.apache.org/ . 
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Table 1 

DJQs in SpatialHadoop and LocationSpark. 

DSDMS k NNJQ εDRJQ k CPQ εDJQ 

SpatialHadoop New New [18,19] [17,19] 

LocationSpark [36] New [16] [16] 
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not been implemented in SpatialHadoop, and εDRJQ has not been included in either of the two DSDMSs, so far. Motivated by

these observations, we designed and implemented New distributed DJQ algorithms in DSDMSs, as shown in Table 1 . We also

compared the performance of SpatialHadoop and LocationSpark for all the DJQs in the table, using big real-world datasets.

SpatialHadoop was chosen for this comparative study from among other Hadoop-based DSDMSs because it is a very efficient

MapReduce framework for spatial data processing, and already includes several spatial operations. Other disk-based DSDMSs,

like Hadoop-GIS, are not directly implemented on top of Hadoop, but on other components and layers in its ecosystem like

Hive, making it more difficult to implement efficient new spatial queries using the MapReduce methodology. Moreover,

these DSDMSs lack the richness of functionalities and spatial operations, provided by SpatialHadoop. LocationSpark [36] was

selected from among other Spark-based DSDMSs for this comparative study, since several spatial queries have already been

implemented (e.g., k NNJQ) in this framework, and creating new ones is very easy, because it is directly implemented over

the RDD API, and it provides promising features for efficient query processing (e.g., new components like sFilter and Query

Scheduler for managing skewed data and reducing network communication cost) [32] . Other Spark-based DSDSMs, such as

Simba [39] , are implemented on other layers or APIs such as the Dataframe or SQL APIs, making the implementation of new

spatial queries, as well as the translation of MapReduce algorithms to Spark, more complicated. 

The present research work is based on a completely new setting with respect to [16,18,19] , as we have enhanced Spatial-

Hadoop with the implementation of k NNJQ and εDRJQ and LocationSpark with εDRJQ. In [18,19] , k CPQ and εDJQ were im-

plemented in SpatialHadoop with enhancements based on sampling and approximation techniques. In this paper, these two

DJQs were implemented in LocationSpark and compared to the respective distributed algorithms in SpatialHadoop. More-

over, in this paper, new methodologies and improvements are proposed to speed up the response time of the DJQs studied

in cloud computing environments. Finally, new experiments with new and larger real-world datasets were performed to

deduce new conclusions from the new distributed algorithms and improvements. 

This paper substantially extends our previous works [18] and [16] with the following novel contributions: 

1. Novel MapReduce algorithms for k NNJQ and εDRJQ in SpatialHadoop and εDRJQ in LocationSpark. 

2. Improved MapReduce algorithms proposed for k NNJQ and εDRJQ in SpatialHadoop using repartitioning techniques in

dense spatial areas. 

3. Extended distributed algorithms for managing spatial objects more complex than points, like polygons or line-segments.

4. Results of an extensive experimental study comparing the performance, using execution time and shuffled data, of

the proposed MapReduce algorithms and their improvements of efficiency and scalability, using big real-world spatial

datasets on both DSDMSs (SpatialHadoop and LocationSpark). 

This paper is organized as follows. In Section 2 , we review related work on Hadoop-based and Spark-based systems

that support spatial operations and provide the motivation for this paper. In Section 3 , we present preliminary concepts

related to DJQs, SpatialHadoop and LocationSpark. The distributed algorithms for processing DJQs in SpatialHadoop and

LocationSpark are discussed in Section 4 . Section 5 presents several potential improvements in the proposed distributed

algorithms. Section 6 presents representative results of the extensive experimental study performed for comparing these

two cloud computing frameworks, using real-world datasets. We also discuss the most important conclusions drawn from

these experiments. Finally, Section 7 presents the conclusions arising from our work and discuss related future directions of

study. 

2. Related work 

Researchers, developers and practitioners worldwide are now benefiting from cluster-based systems supporting large-

scale data processing. There are several cluster-based systems supporting spatial queries in distributed spatial datasets

(briefly reviewed in the following subsections) which can be classified as Hadoop-based or Spark-based DSDMSs. We also

give an overview of current research on distributed algorithms for computing DJQs. 

2.1. Distributed spatial data management systems 

The most important contributions in the context of Hadoop-based DSDMSs are the following research prototypes:

Hadoop-GIS [2] extends Hive, adopts the Hadoop Streaming framework and integrates several open source software pack-

ages for spatial indexing and geometry computation. Hadoop-GIS only supports data up to two dimensions and two query

types, rectangle range query and spatial joins. SpatialHadoop [15] is an extension of the MapReduce framework [13] , based

on Hadoop, with native support for spatial 2d data. It is an efficient disk-based distributed spatial query processing system.

SpatialHadoop can support spatial index structures including R-tree and Grid file, which is a built-in Hadoop Distributed
https://doi.org/10.1016/j.ins.2019.10.030
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Table 2 

The most representative existing DSDMSs based on Hadoop or Spark. 

DSDMS Architecture Spatial index Spatial query 

Hadoop-GIS [2] Hadoop Grid range query, spatial join 

ST-Hadoop [4] Hadoop ST-index ST-range query, ST-join, ST-aggregates, k NNQ 

SpatialHadoop [15] Hadoop R-tree, Grid range query, k NNQ, spatial join 

SpatialSpark [43] Spark Grid, k d-tree range query, spatial join 

GeoSpark [46] Spark R-tree, Quadtree range query, k NNQ, spatial join, distance join 

Simba [39] Spark R-tree range query, k NNQ, distance join, k NNJQ 

STARK [21] Spark R-tree, Grid range query, k NNQ, spatial join 

LocationSpark [37] Spark R-tree, Grid, Quadtree, IR-tree range query, k NNQ, spatial join, distance join, k NNJQ 
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File System (HDFS). SpatialHadoop is equipped with several spatial operations, including range query, k NN and spatial join

[15] , and other fundamental computational geometry algorithms, such as polygon unions, skylines, convex hulls, farthest

pairs, and closest pairs. Other spatial queries implemented on SpatialHadoop are skyline and k CP [18,19] queries. Finally,

ST-Hadoop [4] is a full-fledged open-source MapReduce framework with native support for spatio-temporal data. ST-Hadoop

is a comprehensive Hadoop and SpatialHadoop extension that injects spatio-temporal data awareness inside each layer. 

The most outstanding Spark-based DSDMS research prototypes are: SpatialSpark [43] , a lightweight implementation of

several spatial operations on top of Spark in-memory big data system. It has in-memory processing for higher performance.

SpatialSpark includes data partitioning strategies, like fixed grid or k d-tree on data files in HDFS and builds an index to

accelerate spatial operations. It supports range queries and spatial joins over geometric objects using spatial conditions, like

intersect and within. GeoSpark [45,46] extends Spark for processing spatial data. It provides a new abstraction, called Spatial

Resilient Distributed Datasets (SRDDs), and a few spatial operations. An index (e.g., Quadtree and R-tree) can be the object

in each local RDD partition. From the viewpoint of query processing, GeoSpark supports range query, k NNQ and spatial

joins over SRDDs. Simba (Spatial In-Memory Big data Analytics) [39] offers scalable and efficient in-memory spatial query

processing and analytics for big spatial data. Simba is based on Spark and runs over a cluster of commodity machines.

In particular, Simba extends the Spark SQL engine to support rich spatial queries and analytics through both SQL and the

DataFrame API. It introduces partitioning techniques (e.g., STR), indexes (global and local) based on R-trees over RDDs to

work with big spatial data and complex spatial operations (e.g., range query, k NNQ, distance join and k NNJQ). The STARK

[21] framework adds spatio-temporal support to Spark, includes spatial partitioners, several modes for indexing, as well

as filter, join, and clustering operators. LocationSpark [36,37] is an efficient in-memory distributed spatial query processing 

system characterized as a Spark-based system. It provides promising features for the query processing efficiency, like data

and query skew components to improve load balancing while executing spatial operators (e.g., spatial range, k NN search,

spatial range join and k NN join), by generating cost-optimized query execution plans over in-memory distributed spatial

data. In addition, each data partition has a local spatial index (e.g., a Grid local index, an R-tree, a variant of the Quadtree,

or an IR-tree). Finally, according to [40] , Table 2 lists the most representative DSDMSs based on Hadoop or Spark, which are

compared for architecture, spatial index, and spatial query. 

[32] explored the availability of spatial analytics systems (based on Spark), comparing their features and queries by run-

ning experiments that evaluated their performance and other metrics using real-world datasets. Only LocationSpark and

Simba support k NNJQ, and LocationSpark also had the best performance, scalability and shuffle cost results. As a conclusion,

the authors emphasized that LocationSpark is a very interesting option, since it has a very good query scheduler and opti-

mizer. It also has a spatial bloom filter (sFilter) which lowers query costs. Moreover, they also suggested that these features

could be incorporated in the other Spark-based systems studied. 

2.2. Distance join queries in distributed environments 

The k NNJQ MapReduce algorithm has been extensively studied in the literature. Yokoyama et al. [42] presented a k NNJQ

MapReduce algorithm for 2D spatial data. It decomposes the data space into small equal cells (Grid) and afterwards merges

some neighboring cells, always in 2 × 2 sets, if they do not contain a total k points or more. The algorithm thus creates larger

cells so that the k NN list of a query point is always complete. In [31] , the algorithm in [42] was improved by replacing the

merging step with a circle of increasing radius around the query point, so that it checks for candidate neighbors in nearby

cells, making the merging step unnecessary, and the number of distance calculations may be significantly reduced. 

The Voronoi-Diagram based partitioning technique is used in k NNJQ MapReduce algorithms [3,24,27] for exploiting prun-

ing rules for distance filtering, and hence reduces both shuffling and computational costs. In [3] , the Voronoi-Diagram based

partitioning approach using MapReduce is used to answer range search and k NN search queries in 2d spaces. In this al-

gorithm, each object in the dataset is taken as a pivot for partitioning the space. Lu et al. [27] used MapReduce to solve

the problem of answering the k NNJ by exploiting the Voronoi-Diagram based partitioning method, which divides the input

datasets into groups, and can answer k NNJ by checking object pairs within each group. Moreover, several pruning rules

developed reduce the shuffling and computation costs in the PGBJ (Partitioning and Grouping Block Join) algorithm, which

works with two MapReduce phases. Kim et al. [24] proposed the vector projection pruning technique to process k NNJ ef-
https://doi.org/10.1016/j.ins.2019.10.030
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ficiently by enabling non- k NN points to be pruned and reduce the cost of distance computations. They presented a new

algorithm, k NN-MR, using this new pruning technique that performs better than PGBJ. 

Zhang et al. [48] proposed novel (exact and approximate) MapReduce algorithms to perform efficient parallel k NNJQ on

large datasets, and used the R-tree and Z-value-based partition joins to implement them. Current solutions performing the

k NNJ operation in the MapReduce context were reviewed and studied from the theoretical and experimental point of view

in [35] . 

Finally, the k CPQ and εDJQ MapReduce algorithms [18,19] are included in SpatialHadoop. These algorithms consist of

MapReduce jobs, using the plane-sweep technique and improving computation of an upper bound of the distance value

of the k -th closest pair from data sampled as a local and global preprocessing phase. Mavrommatis et al. [29] proposed

a new distributed algorithm (SliceNBound) for solving closest pairs and distance join queries in Apache Spark based on a

simple, and not very computationally demanding, partitioning scheme (slicing the plane into strips and sampling to bound

the solution space) that enables the two datasets to share the same partitioning. 

3. Preliminaries and background 

Semantic details of the respective DJQs and the corresponding notation and processing paradigms are presented below.

The most important characteristics of both DSDMSs (SpatialHadoop and LocationSpark) for DJQ processing are also reviewed.

3.1. Distance-based join queries 

To introduce the details of the DJQ semantics studied here, we define the k CP, k NNJ, ε DJ and ε DRJ queries, assuming

that the Euclidean distance, dist , is the distance used throughout the article. Moreover, we also define two distance-based

queries which form their basis, the k Nearest Neighbor ( k NN) and ε Distance Range ( εDR) queries, where only one dataset

is processed. 

Given a point dataset, the k NNQ discovers the k closest points to a given query point (i.e., it reports only the top k points).

It involves one spatial dataset and a distance function, and is one of the most important and studied spatial operations. The

formal definition of the k NNQ for points is: 

Definition 1. k Nearest Neighbor query, kNN query 

Let P = { p 0 , p 1 , · · · , p n −1 } a set of points in E d ( d -dimensional Euclidean space), a query point q in E d , and a num-

ber k ∈ N 

+ . Then, the result of the k Nearest Neighbor Query with respect to the query point q is an ordered collection,

kN N (P , q, k ) ⊆ P , which contains the k ( 1 ≤ k ≤ | P | ) different points of P , with the k smallest distances from q : 

kN N (P , q, k ) = (p 1 , p 2 , · · · , p k ) ∈ P , such that for any p i ∈ P \ kN N (P , q, k ) we have dist ( p 1 , q ) ≤ dist ( p 2 , q ) ≤ ��� ≤ dist ( p k ,

q ) ≤ dist ( p i , q ). 

The εDRQ query, given a point dataset, finds all the points of the dataset that fall within the circular shape, centered on

a query point ( q ) with distance threshold radius ε. This query is also called a circle range query or circular query . Its formal

definition is: 

Definition 2. εDistance Range query , εDR query 

Let P = { p 0 , p 1 , · · · , p n −1 } a set of points in E d , a query point q in E d , and a distance threshold ε ∈ R 

+ . Then, the result

of the εDistance Range query with respect to the query point q is a set, εDR (P , q, ε) ⊆ P , which contains all points p i ∈ P

that fall on the circular shape, centered in q with radius ε: 

εDR (P , q, ε) = { p i ∈ P : dist(p i , q ) ≤ ε} 
When two datasets ( P and Q ) are combined, four of the most studied DJQs are the k Nearest Neighbor Join ( k NNJ) query,

the εDistance Range Join ( εDRJ) query, the k Closest Pairs ( k CP) query and the εDistance Join ( εDJ) query. 

The k NNJQ, given two point datasets ( P and Q ) and a positive number k , finds for each point in P , its k nearest neighbors

in Q . The formal definition of this kind of DJQ is given below: 

Definition 3. k Nearest Neighbor Join query, kNNJ query 

Let P = { p 0 , p 1 , · · · , p n −1 } and Q = { q 0 , q 1 , · · · , q m −1 } be two set of points in E d , and a natural number k ∈ N 

+ . Then, the

result of the k Nearest Neighbor Join query is a set kN N J (P , Q , k ) ⊆ P × Q , which contains for each point of P ( p i ∈ P ) its k

nearest neighbors in Q : 

kN N J (P , Q , k ) = { (p i , q j ) : ∀ p i ∈ P , q j ∈ kN N (Q , p i , k ) } 
Since, kN N J (P , Q , k ) returns for each point in P , its k NNs in Q , it is equivalent to the query called All-k-Nearest Neighbor

(A k NN) query [8,50] in the literature. Moreover, a variant of the A k NN query for εDR query is the All- ε-Distance Range

( A εDR ) or εDistance Range Join ( εDRJ) query. 

The εDRJ query, given two point datasets ( P and Q ) and a distance threshold ε, finds, for each point p i ∈ P , all the points

in Q that fall within the circular shape, centered on p i with radius ε. This query is also called spatial range join query . The

formal definition is: 
https://doi.org/10.1016/j.ins.2019.10.030
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Definition 4. εDistance Range Join query , εDRJ query 

Let P = { p 0 , p 1 , · · · , p n −1 } and Q = { q 0 , q 1 , · · · , q m −1 } be two set of points in E d , and a distance threshold ε ∈ R 

+ . Then,

the result of the εDistance Range Join query is a set, εDRJ(P , Q , ε) ⊆ P × Q , which contains for each point of P ( p i ∈ P ) all

points from Q ( q j ∈ Q ) that fall on the circular shape, centered in p i with radius ε: 

εDRJ(P , Q , ε) = { (p i , q j ) : ∀ p i ∈ P , ∀ q j ∈ εDR (Q , p i , ε) } 
The k CPQ discovers the k pairs of points formed from two datasets ( P and Q ) having the k smallest distances between

them (i.e., it reports only the top k pairs). The formal definition of this DJQ is: 

Definition 5. k Closest Pairs query , k CP query 

Let P = { p 0 , p 1 , · · · , p n −1 } and Q = { q 0 , q 1 , · · · , q m −1 } be two set of points in E d , and a natural number k ∈ N 

+ . Then, the

result of the k Closest Pairs query is an ordered collection, kCP (P , Q , k ) , containing k different pairs of points from P × Q ,

ordered by distance, with the k smallest distances between all possible pairs: 

kCP (P , Q , k ) = ((p 1 , q 1 ) , (p 2 , q 2 ) , · · · , (p k , q k )) , (p i , q i ) ∈ P × Q , 1 ≤ i ≤ k, such that for any (p, q ) ∈ P × Q \ kCP (P , Q , k )

we have dist ( p 1 , q 1 ) ≤ dist ( p 2 , q 2 ) ≤ ��� ≤ dist ( p k , q k ) ≤ dist ( p, q ). 

The εDJQ finds all the possible pairs of points from two datasets, that are within a threshold distance ε of each other.

The formal definition of this query is given bellow: 

Definition 6. ε Distance Join query , εDJ query 

Let P = { p 0 , p 1 , · · · , p n −1 } and Q = { q 0 , q 1 , · · · , q m −1 } be two set of points in E d , and a distance threshold ε ∈ R 

+ . Then,

the result of the εDistance Join query is the set, εDJ(P , Q , ε) ⊆ P × Q , containing all the possible different pairs of points

from P × Q that have a distance of each other smaller than, or equal to ε: 

εDJ(P , Q , ε) = { (p i , q j ) ∈ P × Q : dist(p i , q j ) ≤ ε} 
Note that εDJQ may be considered an extension of the k CPQ, where the threshold distance of the pairs is known before-

hand. This query is also related to the similarity join in multidimensional databases, where the problem of deciding if two

objects are similar is reduced to the problem of determining if two multidimensional points are within a certain distance of

each other. 

After studying the results of ε DRJQ and ε DJQ, they are found be equivalent, i.e., both DJQs report the same result set.

The main difference resides in the order of the pairs returned in the final result. While εDRJ(P , Q , ε) reports pairs clustered

around every point in P (i.e., for each point p i ∈ P , it returns all points in Q overlapping with a circular shape, centered on

p i with radius ε), while εDJ(P , Q , ε) reports unrelated pairs of points (i.e., it returns a sequence of pairs within a distance

threshold ( ε) from each other). Another difference between the two DJQs is the algorithmic technique used to solve them.

While εDRJQ is processed based on multiple executions of εDRQ on Q for every point in P , the algorithm for solving εDJQ

is based on a sort-merge join approach (i.e., it is a plane-sweep algorithm between P and Q ). 

Finally, other related DJQs can be deduced and formulated from the above. For example, εDistance Range k query, which

returns the k points in Q with the smallest distances within the specified distance threshold ε around each query point

p i ∈ P . Or the εDistance Join k query, which returns only the k pairs with the smallest distances from all possible different

pairs of points, having a distance less than or equal to ε of each other. Or the Iceberg Distance Join query [34] , which returns

object pairs ( p i , q j ) such that p i ∈ P and q j ∈ Q , within distance ε from each other, provided that p i appears at least k times

in the join result. These are straightforward extensions of those above and may be considered a target for further research

in the context of DSDMSs. 

3.2. SpatialHadoop and LocationSpark for DJQ processing 

SpatialHadoop [15] is an efficient disk-based distributed spatial query processing system. SpatialHadoop enables the effi-

cient implementation of spatial operations by considering the combination of spatial indexing with new spatial functionality

in MapReduce . In general, spatial query processing in SpatialHadoop [15] (in particular, for DJQ processing [18,19] ) consists

of four steps : (1) Preprocessing , where the data is partitioned according to a specific spatial index, generating a set of par-

titions or cells. (2) Pruning , where the master node examines all partitions and by means of a filter function, prunes those

it is sure will not include any possible result of the spatial query. (3) Local Spatial Query Processing , where local spatial

query processing is performed on each unpruned partition in parallel on different machines ( map tasks). Finally, (4) Global

Processing , where the results are collected from all machines in the previous step and the final result of the spatial query

concerned is computed. A combine function can be applied to decrease the volume of data that is sent from the map task.

The reduce function can be omitted when the results from the map phase are final. 

LocationSpark [36,37] is a library in Spark that provides an API for spatial query processing and optimization based on

Spark’s standard dataflow operators. It is an efficient in-memory distributed spatial query processing system. LocationSpark

is optimized to enhance Spark for managing spatial data, and is organized in layers: Memory Management, Spatial Index,

Query Executor, Query Scheduler, Spatial Operators and Spatial Analytical. LocationSpark builds two levels of spatial indexes

(global and local). For the global index, it samples the underlying data to find out the data distribution in a space and pro-

vides a grid and a region Quadtree. Each data partition has a local index (e.g., a grid local index, an R-tree, a variant of the
https://doi.org/10.1016/j.ins.2019.10.030



Fig. 1. Overview of several MapReduce distance-based query algorithms in SpatialHadoop. 
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Quadtree, or an IR-tree). For DJQs, given two datasets P and Q , P is partitioned into N partitions based on spatial index crite-

ria (e.g., N leaves of an R-tree) by the Partitioner [37] leading to the PRDD (global index). The sFilter [37] determines whether

a point is contained inside a spatial range or not. Next, each worker has a local data partition P i (1 ≤ i ≤ N ) and builds up a

local index [37] . QRDD is generated from Q by a member function of RDD natively supported by Spark, partitionBy [37] , that

forwards such point to the partitions that spatially overlap it. Now, each point of Q is replicated to the partitions that are

identified using the PRDD (global index), leading to the Q’RDD . Then a post-processing step (using the Skew Analyzer and

the Plan Optimizer ) is performed to combine the local results to generate the final output [37] . 

4. DJQ Algorithms in SpatialHadoop and LocationSpark 

In this section, we first review the most representative DJQ MapReduce algorithms already implemented in Spatial-

Hadoop, and then we present new MapReduce algorithms for k NNJQ and εDRJQ in SpatialHadoop. In the second subsec-

tion, we describe the distributed DJQ algorithms implemented in LocationSpark and the new algorithms for k CPQ, εDJQ and

εDRJQ. 

4.1. DJQ MapReduce algorithms in SpatialHadoop 

From the definitions of k NNJQ and εDRJQ, it may be observed that they can be formulated on the basis of k NNQ and

εDRQ, respectively. Eldawy and Mokbel [15] proposed a generic range query operation in SpatialHadoop. But, a εDRQ

MapReduce algorithm on top of SpatialHadoop was efficiently implemented in [17] . In general, the solution for εDRQ is

similar to how the range query algorithm [15] is performed in SpatialHadoop, except instead of having a generic query area,

there is a circular region defined by the query point q and a distance threshold ε. Fig. 1 shows operation of the εDRQ al-

gorithm in SpatialHadoop, which consists of two MapReduce jobs: initial response and refinement. The initial response is

obtained by a filtering function in which the partitions from P that intersect with the circular region centered at the query

point q with a radius equal to the distance threshold ε are selected. Next, a map -type task is performed in which, for each

selected cell, a plane-sweep algorithm is used to select only those points within a distance smaller than ε. Finally, these

points are written in files as the final result. 

[15] presented a k NNQ operation in SpatialHadoop. The proposed k NNQ MapReduce algorithm has three steps: the initial

answer , the correctness check and answer refinement . In Fig. 1 , the previous steps are shown as a pair of MapReduce jobs that

calculate the initial result and are run again iteratively if they do not pass the correctness check until the final answer is

obtained. Similar to the εDRQ algorithm, a filtering function selects the cell in which the query point q is found. Then, the

map task is responsible for obtaining the initial answer and in the reduce task, the k nearest neighbors from q in that cell are

returned. The correction phase checks whether the result obtained is less than k , whether cells are within the circular range

query, and centered on q with a radius equal to the k greatest distance obtained so far. If yes, the answer refinement starts

by rerunning the previous MapReduce job from the first step, but this time, the cells within the range query are selected by

the filtering function. Otherwise, the final result has already been found. 

In general, the k CPQ MapReduce algorithm in SpatialHadoop [18,19] consists of a MapReduce job, as shown in Fig. 1 . The

aim of the map function is to find the k CP between each local pair of partitions from P and Q with a particular plane-sweep

k CPQ algorithm [33] and the result is stored in a binary max heap (called LocalKMaxHeap ). The reduce function examines

the candidate pairs of points from each LocalKMaxHeap and returns the final set of the k closest pairs in another binary max

heap (called GlobalKMaxHeap ). This approach can be improved by finding in advance, an upper bound of the distance of the
https://doi.org/10.1016/j.ins.2019.10.030



Fig. 2. Uniform-based partitioning (Grid) vs. Non-uniform-based partitioning (Quadtree) in SpatialHadoop. 
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k -th closest pair of the joined datasets, called β , and thus reduce the number of possible combinations of pairs of partitions.

This β can be computed by global sampling both datasets or by local sampling for an appropriate pair of partitions, and

then executing a plane-sweep k CPQ algorithm over both samples. The filter function input is each combination of pairs of

cells in which the input set of points are partitioned and distance β , and it prunes pairs of cells which have minimum

distances larger than β . 

The εDJQ method in MapReduce, adapted from k CPQ in SpatialHadoop [18,19] , adopts the map phase of the join MapRe-

duce methodology (i.e., it is a Map-based Join algorithm), as shown in Fig. 1 . The idea is to partition P and Q by any method

(e.g., Grid) into two sets of cells, with n and m point cells, respectively. Then, every possible pair of cells is sent as input

to the filter function. This function’s input is combinations of cell pairs with partitioned point sets and a distance thresh-

old ε, and it prunes pairs of cells which have minimum distances larger than ε. By using SpatialHadoop’s built-in function

MinDistance , the minimum distance between two cells can be calculated (i.e., this function computes the minimum distance

between the two MBRs, Minimum Bounding Rectangles, of the two cells). In the map phase, each mapper reads the points of

a pair of filtered cells and performs a plane-sweep εDJQ algorithm [33] (variation of the plane-sweep-based k CPQ algorithm)

between the points inside that pair of cells. The results of all mappers are simply combined in the reduce phase and written

into HDFS files, storing only the pairs of points with distances up to ε. In this case, the filter function input, as for k CPQ, is

combinations of cell pairs with partitioned points sets and a distance threshold ε, and it prunes pairs of cells which have

minimum distances larger than ε. 

With respect to k NNJQ MapReduce algorithms, a method for classifying multidimensional data using a k NNJ algorithm

in the MapReduce framework is presented in [31] , using space decomposition techniques for processing the classification

procedure in a parallel and distributed manner. The proposed k NNJ algorithm for two datasets P and Q consists of a series

of phases of MapReduce jobs: information distribution phase, primitive computation phase, update lists phase and unify lists

phase. One last phase consists of classification of the multidimensional data, which is outside the scope of the kNNJ algo-

rithm definition. In the information distribution phase, the Q dataset is uniformly partitioned and the number of elements

from P that are within the partitions of Q are counted. Then, in the primitive computation phase, an initial response is pro-

vided by calculating the k NNQ for each point p i in P with the points of Q in the partition where p i is located. Once this

phase is completed, these initial k NN lists must be refined for each point in P if fewer than k neighbors have been found or

if there are nearby cells overlapping the distance to each k -th nearest neighbor. This refinement is done in the update lists

phase where new non-final k NN lists are obtained. Finally, in the unify lists phase, all k NN lists from the previous phases

are merged to provide the final answer. 

Moutafis et al. [30] extended the work presented in [31] . The information distribution phase was implemented by

Quadtrees with dataset sampling to capture the data distribution skewness, balance the load and free the end user from

having to refine data partitioning parameters. The primitive computation phase employes plane-sweep to reduce distance

calculations, and the update lists and unify lists phases are restructured to reduce network traffic. The modified algorithms

are extended to also handle 3d data, implemented in Hadoop and compared to the performance of the algorithm in [31] for

real datasets. Note that the aim of [30] was to efficiently compute k NNJQ on 2d and 3d data in plain Hadoop, without the

2d spatial data capabilities provided by systems like SpatialHadoop and LocationSpark (as in our study). 

To adapt and implement the previous k NNJQ MapReduce algorithms in SpatialHadoop, we have made several extensions

and improvements as described below: 

1. The information distribution phase is implemented with the indexing methods provided by SpatialHadoop, non-uniform

partitions such as STR, Quadtree, Hilbert, etc. can be used, with the improvements and particularities they offer. Fig. 2

illustrates how the same dataset is partitioned using a uniform-based partitioning technique like Grid (on the left) and

a non-uniform-based partitioning technique like Quadtree (on the right), where the selected partitions are highlighted. 

2. The information distribution phase is performed only once for each dataset and reused for further k NNJ queries. 

3. SpatialHadoop indices are used in each of these phases to accelerate the partition processing. 
https://doi.org/10.1016/j.ins.2019.10.030



Fig. 3. Overview of the k NNJQ and εDRJQ MapReduce algorithms in SpatialHadoop. 
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4. Finally, a k NNQ based on a plane-sweep algorithm is implemented, which reduces the number of operations and calcu-

lations, resulting in a join operation with higher performance. 

Fig. 3 shows the phases in the k NNJQ MapReduce algorithm proposed: Bin kNNJ, kNNJ on Overlapping Cells and Merge

Results . The first phase, called Bin kNNJ , consists of a Bin-Spatial Join of the input datasets in which the join operand is k NNQ.

As described in Algorithm 1 for the map function in the Bin kNNJ phase, each point in P is combined with the partition in

Algorithm 1 Bin k NNJ algorithm. 

1: function MAP ( p: point from P or Q , Cel l s : set of partitions of Q ) 

2: part it ionId ← FindPartition (Cel l s, p) 

3: output (part it ionId, p) 

4: function REDUCE ( part it ionId: current partition, P Q: set of points in partition, k : number of neighbors) 

5: P ← GetPointsFromP (P Q ) 

6: Q ← GetPointsFromQ (P Q ) 

7: for all p ∈ P do 

8: Initialize ( kN N List , k ) 

9: kN N List ← PS_KNN (p, Q, k ) 

10: output ( p, kN N List) 

dataset Q it is located in, so that, the plane-sweep k NNQ of that point with the points in Q in the same partition is executed

in the reduce function. The result of this phase is a k NN list for each point in P . 

After that, completeness is checked to find previous k NN lists that are not final, and which therefore, must continue to be

processed. As shown in Algorithm 2 , in the kNNJ on Overlapping Cells phase, the map function checks whether the previous

k NN lists contain less than k results for each point in P and also whether there are neighboring cells overlapping with the

circular range centered on p and with radius the distance to the current k -th nearest neighbor. These points are then sent

together with the neighboring cells calculated to the reduce phase where another plane-sweep k NNQ is performed on each

cell. 

Finally, the Merge Results phase consists of collecting the non-final k NN lists from the two previous phases, for the final

k NNQ results for each point. 

Note that just as the εDJQ can be formulated and implemented as a derivative of k CPQ, in which the pruning distance

ε is known, we can also define the εDRJQ based on the k NNJQ algorithm by means of a Reduce-based Join algorithm, as

shown in Fig. 3 . Of the three phases discussed above, as the ε distance is known, the Bin kNNJ and kNNJ on Overlapping Cells

phases are combined into just one, and since k NN lists do not have to be unified, the last phase need not be performed. 

4.2. DJQ algorithms in LocationSpark 

LocationSpark supports four types of spatial query predicates [36,37] : Spatial range search, k NN search, spatial range

join and k NN join. The spatial range search is a generic spatial query involving one dataset and a spatial range area (e.g.,

rectangle or circle). The k NN search consists of three steps similar to the approach implemented in SpatialHadoop. First,

the partition to which the query point belongs is located, and k NN in that partition are calculated. Next, a range search is

carried out on the overlapping partitions by the circle region centered at the query point with radius the distance to the

k -th nearest neighbor. Finally, the points in the query range are combined with the initial k NN result for the final result. 

There are two algorithms in LocationSpark [36] for the spatial range join. The first is an indexed nested-loop join, where

the spatial index from the largest dataset (points) is repeatedly traversed by a range query for each item from the smallest

dataset (query points). Note that it is the naive version of εDRJQ algorithm in LocationSpark. The second is a block-based
https://doi.org/10.1016/j.ins.2019.10.030



Algorithm 2 k NNJ on overlapping cells algorithm. 

1: function MAP ( p: point from P or Q , Cel l s : set of partitions of Q , k : number of neighbors) 

2: origin ← IsFromPorQ (p) 

3: if origin is from Q then 

4: part it ionId ← FindPartition (Cel l s, p) 

5: output (part it ionId, p) 

6: else 

7: kN N List ← GetKnnList (p) 

8: nnNumber ← kN N List.size 

9: radius ← GetKthDistance (kN N List) 

10: while nnNumber < k do 

11: radius ← Increase (radius ) 

12: nnNumber ← GetNumberOfNeighbors (Cel l s, p, radius ) 

13: ov erlappedCells ← RangeQuery (Cells, p, radius ) 

14: for all cel l ∈ ov erl appedCel l s do 

15: output ( cel l .id, p) 

16: function REDUCE ( part it ionId: current partition, P Q: set of points in partition, k : number of neighbors) 

17: P ← GetPointsFromP (P Q ) 

18: Q ← GetPointsFromQ (P Q ) 

19: for all p ∈ P do 

20: Initialize ( kN N List , k ) 

21: kN N List ← PS_KNN (p, Q, k ) 

22: output ( p, kN N List) 

Fig. 4. Execution Plan for k NNJQ in LocationSpark. 
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algorithm using a parallel tree traversal, i.e., it builds two spatial indexes over both the input datasets and performs a depth-

first search over both trees simultaneously. This algorithm is the first approach of εDRJQ algorithm in LocationSpark. The

query execution plan for the spatial range join is shown in [36] . It should be noted that the execution plan of the spatial

range join treats the partitions that can cause skew separately by repartitioning the latter to obtain better performance and

because of that, a merge step is necessary to unify the results. 

Like the spatial range join, indexed nested-loops and block-based algorithms can be applied to k NNJQ. For the second

case, the algorithm partitions both datasets (query points and points) in two different set of blocks and finds the k NN

candidates for query points in the same block. Then a post-processing refine step computes k NN points for each query point

in the same block. As shown in Fig. 4 , the Execution Plan of k NNJQ follows a scheme in LocationSpark similar to the one

presented in [31] and the spatial range join algorithm discussed above. In Stage 1, the two datasets P and Q are partitioned

according to a given spatial index method. In Stage 2, the initial k NN lists ( FirstkNNRDD ) are calculated, using a nested

loop-based algorithm on Quadtrees, for each point in the partitions where it is located. Stage 3 collects those points where

a final answer has not been obtained ( NextRndRDD ) and then a spatial range join is performed in Stages 4 and 5 using

the distance to the k -th nearest neighbor. The above last two stages are necessary because the spatial range join treats the

skewed partitions in parallel, and are therefore repartitioned from those that are not. Finally, in Stage 7, the results of the

correct initial k NNs lists ( CorrectRDD ) are merged with the distances to the points from the range join obtained in Stage 6. 

Assuming that P is the largest dataset to be combined and Q is the smallest, and according to [36] , the Execution Plan for

k CPQ in LocationSpark, (see Fig. 5 ) can be described as follows: In Stage 1, the two datasets are partitioned according to a

given spatial index schema. In Stage 2, statistical data are added to each partition, S P and S Q , which are combined by pairs,

S PQ . In Stage 3, the partitions from P and Q with the largest point density, P β and Q β , are selected for combination by a

plane-sweep k CPQ algorithm [33] to compute an upper bound of the distance from the k -th closest pair ( β). In Stage 4, the
https://doi.org/10.1016/j.ins.2019.10.030



Fig. 5. Execution Plan for k CPQ in LocationSpark. 
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combination of all possible pairs of partitions from P and Q , S PQ , is filtered by its β value (i.e., only the pairs of partitions

with minimum distance between the MBRs of the partitions is smaller than or equal to β are selected), producing F S PQ ,

and all pairs of filtered partitions are processed by using a plane-sweep k CPQ algorithm. Finally, the results are merged

for the final output. With the above Execution Plan and by increasing the size of the datasets, the execution time increases

considerably due to skew and shuffle problems. We have therefore modified Stage 4 with the query plan that is used for

the algorithms shown in [36] , which leaves the plan shown in Fig. 5 . 

Stages 1, 2 and 3 are still used to calculate the β value which will accelerate local pruning of each partition. In Stage

4, using the Query Plan Scheduler , P is partitioned into P S and P NS which are the partitions that are or are not skewed,

respectively. The same partitioning is used for Q . In Stage 5, a k CPQ algorithm [33] is applied between points of P S and Q S

within the same partition and also P NS and Q NS in Stage 6. These two stages are executed independently, and the results

are combined in Stage 7. However, any candidate for each partition present on the boundaries of that same partition in the

other dataset must still be calculate. To do this, β ′ , which is the maximum distance from the current set of candidates as a

radius of a range filter with center in each partition is used to find any possible new candidates on those boundaries. The

calculation of k CPQ in each partition with its candidates is executed in Stages 8 and 9 and these results are combined in

Stage 10 for the final answer. With these changes, the execution plan of k CPQ is very similar to the one in k NNJQ, where the

only difference is that instead of maintaining different k NN lists for each point, only a single global k NN list is maintained. 

The Execution Plan for εDJQ in LocationSpark is a variation of the one for k CPQ, where the filtering stages (Stages 1, 2,

3 and 7) are removed, since S PQ is filtered by ε (i.e., β = β ′ = ε), which is the threshold distance known beforehand. The

εDRJQ execution plan is a simplification of the one for k NNJQ, in which again a previously known limit ε is used. However,

as mentioned above, the k CPQ and k NNJQ algorithms follow a similar scheme, so it can be assumed that the execution plans

of εDJQ and εDRJQ will not be any different in LocationSpark, since they are simplified versions of the previous algorithms.

5. Extensions and improvements in the DJQ MapReduce algorithms 

When extending and improving the DJQ MapReduce algorithms, several factors taking into account the different charac-

teristics of real-world spatial objects and the DSDMSs execution environment must be considered. Therefore, the following

factors [41] must be analyzed for better algorithms with optimal performance: 

F.1 Spatial Objects . They are the smallest unit of non-divisible / non-splittable information (e.g., points, line-segments,

polygons, regions, etc.). 

F.2 Spatial Location . Normally, instead of using a complex geometry, exactly describing the spatial object, an approxima-

tion is used (e.g., center, centroid, MBR, etc.). 

F.3 Spatial Distribution . By the nature of spatial objects, they usually show localization patterns that tend to show skew.

In addition, adjacent objects must be partitioned in the same blocks as much as possible, while seeking a balance

that reduces skew problems. 

F.4 Object Volume . Size of the object in the physical storage layer (bytes). 

F.5 Block Size . It determines when a block of data in HDFS is subdivided or merged (e.g., the default value for Hadoop 2

is 128 MB). 

In this section, first we explain the extensions of DJQ MapReduce algorithms for managing other geometric objects dif-

ferent from points, and then, we present improvements to the distributed algorithms to deal with the problems that arise

when there are too many objects inside a particular partition, i.e., the treatment of skewed data. 

5.1. Extensions of the DJQ MapReduce algorithms for processing complex spatial objects 

Real-world datasets are usually not limited only to points, but include other geometric objects, such as line-segments,

polygons, regions, etc. For instance, a dataset containing the buildings in a city may use polygons, while line-segments may

be used to represent roads. Because of this, the distributed algorithms presented above must be extended to be able to

process datasets consisting of more complex spatial objects ( F.1 ). 
https://doi.org/10.1016/j.ins.2019.10.030



Fig. 6. Repartitioning phase in the k NNJQ MapReduce algorithm in SpatialHadoop. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

F. Garcia-Garcia, A. Corral, L. Iribarne, M. Vassilakopoulos, Y. Manolopoulos.(2020): Efficient Distance Join Query Processing in Distributed Spatial Data Management Systems. 
Information Sciences (Elsevier), Volume 512, February 2020, Pages 985-1008. ISSN: 0020-0255
When extending the algorithms, each of the steps that comprise them must be modified. First, recall that the replication

method (Grid and STR+) in SpatialHadoop avoids expanding partitions by replicating each record to all overlapping parti-

tions. Therefore, the query processor has to employ a duplicate avoidance technique to account for replicated records. In

our approach, we used the reference-point duplicate avoidance technique [15] , which consists of selecting a single point in

the geometry and discarding the partitions in which the point is not found to avoid duplicates. Furthermore, to simplify al-

goirthm distance operations and calculations, the MBR (Minimum Bounding Rectangle) covering the different spatial objects

is used. Using the MBR instead of the exact geometrical representation of the spatial object, its representational complexity

is reduced to two points (i.e., min and max ), where the most important object features (position and extension) are main-

tained ( F.2 ). The MBR is therefore a widely employed approximation. This way, the plane-sweep algorithms only have to

calculate the minimum distance between MBRs without computing complex calculations based on their shapes (e.g., cal-

culate the distance between a convex polygon and a line-segment). This is commonly known as the filtering step , since it

finds all MBRs of spatial objects that verify the query condition. The processing of the exact geometry of the spatial objects

is only required in the final phase for obtaining the exact distance values. This is commonly known as the refinement step ,

and an efficient computational geometry algorithm [12] is needed to produce the final result (e.g., algorithm to compute the

distance between two convex polygons). 

5.2. Improvements for processing skewed data 

A problem that usually appears in MapReduce tasks is so-called skewed data . In general, the problem is that some parti-

tions have more elements than the rest, and therefore, some tasks take a long time to be executed and the final result may

be delayed ( F.3 ). Furthermore, the partitioning techniques in SpatialHadoop and other systems are usually based on making

partitions close to the underlying file-system block size ( F.5 ) established in the corresponding big data cluster. However, DJQ

MapReduce algorithms, like k NNJ, may produce combinations of partitions with a very large number of elements that would

delay results and increase main memory used ( F.4 ). 

The purpose of the proposed improvements is to repartition each local partition from a set of data already partitioned by

SpatialHadoop (e.g., Grid, Quadtree) as necessary to solve the abovementioned problem. A kind of double index is created

for this from the original global index plus a subindex for each of the partitions when a certain number of elements is

exceeded, and they need to be repartitioned. For instance, a dataset may be partitioned by Quadtree in 12 partitions and

then each partition is split into a Grid of 4 × 4 partitions. To create this index, only Factors F.1, F.2, F.3 and F.4 must be taken

into account, since SpatialHadoop also considers Factor F.5 for the initial partitions, and because the resulting partitions are

not saved as new HDFS files. This repartitioning technique is used mainly for k NNJQ and εDRJQ in SpatialHadoop, although it

can be applied to other distributed DJQ algorithms and DSDMSs. Fig. 6 shows the new phase ( Repartitioning ) of the proposed

k NNJQ MapReduce algorithm in SpatialHadoop. The Repartitioning phase uses an existing partitioning technique to subdivide

the largest partitions from dataset Q and saves the information for further use in subsequent phases. Note that there is no

repartitioning in [30] , since the Quadtree-based partitioning in Hadoop is completely under the control of the [30] k NNJQ

algorithm and is not limited by the file-system block size (unlike the partitioning techniques provided by SpatialHadoop). 

In our proposal, we implemented two types of repartitioning techniques. One is a Grid repartitioning method based on a

maximum number of elements L , which divides the original partition into as many rows and columns as necessary so that

each cell has at most L elements. Our experiments used num _ rows = num _ columns = 

√ 

( num _ elements 
L ) , where num _ elements is

the number of elements in the original partition and L = 50 0 0 0 . For k NNJQ, this repartitioning is done in the Bin Join phase

described in Algorithm 2 and illustrated in Fig. 3 , where, during the map phase, the elements of both sets are distributed

based on a formula that determines the new partition they belong to. This is the great advantage of Grid partitioning since

no previous preprocessing is necessary to divide a partition into a certain number of rows and columns (i.e., sub-partitions).

Then, in the reduce phase, the elements in the largest set in each sub-partition created are counted. This way, the next

phase can use the index recently created to obtain the partitions that overlap with the partial results. These sub-partitions

are smaller than the original partition and therefore candidates from calculations of k NNJQ will be pruned. However, even

if a limit has been set on elements, it is impossible to know if any of the sub-partitions will exceed it, since it is unknown

a priori how the elements are distributed. 

The second type designed and implemented is a Quadtree-based repartitioning technique. As this repartitioning method

is based on how the data is distributed, the simple formula that splits the partition into rows × columns used for Grid

repartitioning is unnecessary. However, a new task must be performed. As shown in Algorithm 3 , this is a MapReduce job,
https://doi.org/10.1016/j.ins.2019.10.030



Algorithm 3 Quadtree based repartitioning algorithm. 

1: function MAP ( p: point from Q , Cel l s : set of partitions of Q , r: sample ratio) 

2: part it ionId ← FindPartition (Cel l s, p) 

3: if Random ≤ r then 

4: output (part it ionId, p) 

5: function REDUCE ( part it ionId: current partition, Q: set of points in partition, L : max number of elements, r: sample ratio) 

6: Initialize ( Quadtree , L × r) 

7: for all q ∈ Q do 

8: InsertInto ( Quadtree , q ) 

9: output ( part it ionId , Quad tree ) 
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which repartitions each of the partitions in the initial index. It uses a maximum number of elements L and a data sampling

process in the map phase to find a representative element distribution set ( r is a sample ratio), which reduces the creation

time of the following Quadtree. As mentioned below in the experimental section, L = 10 0 0 0 0 and r = 2% in our experiments.

Finally, in the reduce phase, it inserts the sampled elements in a Quadtree per partition that will form part of the new sub-

index. Once the repartitioning is done, the algorithm behaves in the same way as for the repartitioning based on Grid. In

Algorithm 4 , the new range query method RangeQueryWithRePartitioning for selecting cells/partitions overlapping with the

Algorithm 4 RangeQuery with repartitioning algorithm. 

1: function RangeQueryWithRePartitioning ( circle : circular region, Cells : set of partitions of Q , Quadtrees : set of quadtrees

for each Cel l s ) 

2: Initialize ( Select edC ells ) 

3: for all c ∈ Cel l s do 

4: if Intersects (circle, c) then 

5: InsertInto ( Select edC ells , c) 

6: Initialize ( SelectedSubCel l s ) 

7: for all c ∈ Select edC ells do 

8: Q uadtree ← FindQuadtree (Q uadtrees, c) 

9: SubCel l s ← Intersects (Quadtree, circle ) 

10: InsertInto ( SelectedSubCel l s , SubCel l s ) 

11: return SelectedSubCells 

circular region centered on query point q and with a radius equal to the distance threshold δ is shown. At first, the global

index is used to select those cells that overlap with the region, and then the corresponding Quadtree is used to obtain the

sub-cells/sub-partitions that really overlap with it. Note that in this way, more candidates are pruned and therefore the

search spatial dataset is also reduced. 

6. Experimental results 

This section presents the results of an extensive experimental study measuring and evaluating the efficiency of the algo-

rithms and improvements proposed in Sections 4 and 5 . Section 6.1 describes the experimental settings, Section 6.2 reports

on all the experiments related to k CPQ and εDJQ, taking into account parameters, such as the spatial partitioning tech-

niques included in SpatialHadoop. Section 6.3 shows all experiments for k NNJQ, with special attention to the results in

SpatialHadoop, where several phases are necessary to perform this DJQ, and repartitioning techniques are used to reduce

the execution time. Section 6.4 compares εDRJQ in both DSDMSs, regarding scalability of the datasets to be combined and

ε. Section 6.5 shows the speedup of the proposed DJQ MapReduce algorithms, varying the number of computing nodes in

the cluster. Finally, in Section 6.6 , the experimental results are summarized. 

6.1. Experimental setup 

For the experimental evaluation, we used the SpatialHadoop 

3 and LocationSpark 4 implementations with the addition of

our open-source DJQ MapReduce algorithms, which can be downloaded from https://github.com/acgtic211/spatialhadoop2/

tree/DJQ and https://github.com/acgtic211/SpatialSpark/tree/DJQ . We used real-world 2d points and geometric datasets to

test our DJQ MapReduce algorithms in SpatialHadoop and LocationSpark. We did not use synthetic data, because the most
3 Available at https://github.com/aseldawy/spatialhadoop2 . 
4 Available at https://github.com/merlintang/SpatialSpark . 

https://doi.org/10.1016/j.ins.2019.10.030
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Table 3 

Configuration parameters used in our experiments. 

Parameter Values (default) 

k for k CPQ 1, 10, (10 2 ), 10 3 , 10 4 , 10 5 

k for k NNJQ 1, (10), 25, 50, 75, 100 

ε ( ×10 −5 ) 7.5, 10, 25, 50, 75, (100) 

Number of nodes 1, 2, 4, 6, 8, 10, (12) 

Partitioning tech. Grid, Str, (Quadtree), Hilbert 

Repartitioning tech. None, Grid, (Quadtree) 

DSDMS SpatialHadoop, LocationSpark 
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representative results and conclusions for this kind of experiment have been found from real data, as seen in [19] . The

real-world datasets we used were five medium/large/big spatial datasets from OpenStreetMap 

5 : 

– LAKES ( L ) which contains 8.4M records (8.6GB) of boundaries of water areas (represented as polygons), 

– PARKS ( P ) which contains 10M records (9.3GB) of boundaries of parks or green areas (represented as polygons), 

– ROADS ( R ) which contains 72M records (24GB) of roads and streets around the world (represented as line-strings), 

– BUILDINGS ( B ) which contains 115M records (26GB) of boundaries of all buildings (represented as polygons), and 

– ROAD_NETWORKS ( RN ) which contains 717M records (137GB) of road network represented as individual road segments

(represented as line-strings) [15] . 

To create sets of points from these five spatial datasets, we transformed the MBRs of line-strings into points by taking

the center of each MBR. In particular, we considered the centroid of each polygon to generate individual points for each

kind of spatial object. 

To study the performance of the DJQ MapReduce algorithms with two datasets, we experimented using the spatial

datasets above and the most representative spatial partitioning techniques ( Grid, STR, Quadtree and Hilbert ) provided by

SpatialHadoop, according to [14,19] . Note that STR is equivalent to STR+ for points. To test the improvements related to the

use of repartitioning techniques ( Grid and Quadtree ), the experiments used datasets previously partitioned by Quadtree and

where these techniques were applied later. 

All experiments were conducted on our in-house cluster of 12 nodes on an OpenStack environment. Each node has 4

vCPU with 8GB of main memory running Linux operating systems and Hadoop 2.7.1.2.3. Each node has a capacity of 3

vCores for MapReduce2 / YARN use. 

The main measure of performance in our experiments was the total execution time (i.e., running time or response time)

in seconds (s), and represents the time spent for the execution of each distributed DJQ algorithm in both DSDMSs (Spatial-

Hadoop and LocationSpark). Shuffled data , the amount of information produced in the mapper tasks and moved to the nodes

where the reducer tasks will run, shown in Gigabytes (GB), was also used as a performance metric in our experiments to

acquire more information on the behavior of the different phases of k NNJQ in SpatialHadoop. 

Table 3 summarizes the configuration parameters used in our experiments. Default parameters (in parentheses) are used

unless otherwise mentioned. SpatialHadoop requires the datasets to be partitioned and indexed before invoking any spatial

operations. For instance, the times needed for the Preprocessing phase using a Quadtree partitioning technique are 94 s for

LAKES , 103 s for PARKS , 150 s for ROADS , 175 s for BUILDINGS and 1053 s for ROAD_NETWORKS . Data are indexed and stored

on HDFS and for the subsequent execution of spatial queries, data and index are already available (this can be considered

an advantage of SpatialHadoop). On the other hand, LocationSpark (in-memory-based DSDMS) partitions and indexes the

data using a Quadtree partitioning technique for every spatial query and only caches the result in memory for that current

operation. Therefore, the partitions/indexes are not stored in any persistent file system and cannot be reused in subsequent

spatial operations. 

6.2. k CPQ and εDJQ experiments 

Our first set of experiments measured the behavior of the k CPQ and εDJQ algorithms in both DSDMSs, varying different

parameters, such as dataset size, type of spatial object, partitioning technique in SpatialHadoop and the k and ε values. In

Fig. 7 , the chart on the left shows the kCP (P , Q , k ) for point datasets (where P × Q ≡ LAKES × PARKS ( L × P ), PARKS × ROADS

( P × R ), ROADS × BUILDINGS ( R × B ) and BUI LDI NGS × ROAD _ NET W ORKS ( B × RN )) respect to the execution time for a fixed

k = 100 . The first conclusion is that the execution times in both DSDMSs (SpatialHadoop and LocationSpark) grow as dataset

size increases. For SpatialHadoop, the best partitioning technique was Quadtree , which was approximately 15% faster than

STR . Moreover, for the combinations of LxP and PxR , LocationSpark was faster than SpatialHadoop (e.g., for P × R Loca-

tionSpark was 48% (74 s) faster than SpatialHadoop-Quadtree), but for the combinations of the biggest datasets ( R × B and

B × RN ) SpatialHadoop-Quadtree was the fastest, e.g., for B × RN SpatialHadoop-Quadtree was 38% (740 s) faster than Loca-

tionSpark and 12% (174 s) faster than SpatialHadoop-STR. That is, LocationSpark runtime values were smaller for medium-
5 Available at http://spatialhadoop.cs.umn.edu/datasets.html . 

https://doi.org/10.1016/j.ins.2019.10.030
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Fig. 7. k CPQ cost considering different partitioning techniques. 
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to-large dataset sizes, despite the fact that they were neither pre-partitioned nor pre-indexed. But for big dataset sizes,

SpatialHadoop-Quadtree was the fastest, even though it required a pre-indexing time for each dataset, and that difference

may have been because of memory constraints in the cluster. By increasing the size of the joined datasets, there is more

data in each partition, and the memory pressure of the tasks increases. It may therefore be concluded that LocationSpark is

more affected by memory constraints than SpatialHadoop for the same cluster. 

In Fig. 7 , chart on the right shows the k CPQ for real spatial object datasets ( LxP: polygons × polygons, P × R: polygons

× line-strings, RxB: line-strings × polygons and B × RN: polygons × line-strings ) with respect to the execution time. A trend

similar to the chart on the left (for points) is observed for the combination of medium-to-large dataset sizes. LocationSpark

was the fastest, but Quadtree was the fastest partitioning technique for the biggest dataset combinations (it was slightly

better than STR ), and the Grid was the slowest. In SpatialHadoop, Quadtree outperformed all other partitioning techniques

with respect to the running time, since it minimizes the number of overlapping partitions between the two files for a

DJQ by employing regular space partitioning. Moreover, comparing both charts in Fig. 7 , it may be seen that when a k CPQ

is executed between two datasets of spatial objects, it is more costly than when the two datasets are points, although the

trend is very similar. This is because computation of the distance between two spatial objects (e.g., between two polygons or

between a polygon and a line-string) is more costly than to calculate the distance between a pair of points. It should also be

borne in mind that the size of the datasets of spatial objects is larger than the size of point datasets, and are therefore more

costly to retrieve and process. In addition, the distances between spatial objects are much smaller because some objects

occupy a certain area with respect to the centroids that do not have any. This reduction in the distance values between

spatial objects produces a smaller pruning bound by the plane-sweep k CPQ algorithm which discards fewer elements in

each step of the algorithm. 

Fig. 8 shows the εDJ(P , Q , ε) execution times with the same configuration as in Fig. 7 for a fixed ε = 0 . 0 01 ( 10 0 × 10 −5 ).

As for k CPQ, the choice of partitioning technique in SpatialHadoop clearly affected the εDJQ execution time, and again

Quadtree performance was the best for point datasets (slightly better than STR ), even with respect to LocationSpark for

medium-to-large dataset sizes, as seen in the chart on the left. For the combinations of the biggest datasets ( R × B and

B × RN ) SpatialHadoop-Quadtree was the fastest, e.g., for B × RN SpatialHadoop-Quadtree was 2.8 times (1938 s) faster than

LocationSpark and 8% (91 s) faster than SpatialHadoop-STR. Memory pressure problems in LocationSpark appeared again due

to the dataset sizes, the number of elements computed in each partition and the shuffling data and garbage collection

processes performed on them. On the other hand, SpatialHadoop performed better for this problem due to the use of Com-

bineFileSplits [22] , which enables joins by partitioning at disk reading level, and therefore, eliminating the reduce shuffling

cost. 

In the chart on the right in Fig. 8 , the results of εDJQ for real spatial object datasets are shown with respect to execution

time ( ε = 0 . 001 ). The trend is similar to the left-hand chart, where the STR partitioning technique was the fastest in all cases

(slightly better than Quadtree , except for B × RN ), and again the Grid was the slowest. For example, Quadtree was 9% (100 s)

faster than STR in the combination of the biggest datasets. It may therefore be concluded that the bigger the datasets, the

better the performance of Quadtree for εDJQ. A comparison of the two charts in Fig. 8 shows that when a εDJQ is executed

between two datasets of spatial objects, it is more costly than when the two datasets are points (the same as for k CPQ),

although the trend is very similar. This is because calculation of the distance between spatial objects is more costly than the

distance between points, and because, just as above for k CPQ, the distances between spatial objects are smaller, returning
https://doi.org/10.1016/j.ins.2019.10.030



Fig. 8. εDJQ cost considering different partitioning techniques. 

Fig. 9. k CPQ cost (execution time) vs. k values (left). εDJQ cost (execution time) vs. ε values (right). 
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more results for the same ε. For the combination of the largest datasets ( B × RN ), LocationSpark again showed memory

pressure problems, and the execution time was also higher because the size of the datasets for spatial objects is larger than

for points. 

Fig. 9 shows the effect of increasing both k and ε values in the combination of the biggest datasets ( BUI LDI NGS ×
ROAD _ NET W ORKS) for k CPQ and εDJQ. The chart on the left in Fig. 9 shows that the total execution time grew slowly

as the number of results to be found ( k ) increased. SpatialHadoop, employing Quadtree , had very stable execution times,

even for large k values (e.g., k = 10 5 ) and when the sets of spatial objects ( polygons × line-strings ) were joined. This means

that the Quadtree is less affected by the increase of k , because Quadtree employs a regular space partitioning technique

depending on the concentration/density of the points. LocationSpark is also stable when k is small or medium ( k ≤ 10 3 );

however, when k is high ( k = 10 4 and k = 10 5 ), the execution time is very long due to memory constraints in the cluster. As

k increases, the possibility of selecting more cells is also greater, since the distance of the k -th nearest pair increases as well.

Therefore, the number of resources needed by the k CPQ algorithm is increased. In Fig. 9 all algorithms show a deviation for

the highest values of k , more evident in LocationSpark. 

As shown in the chart on the right in Fig. 9 , the total execution time grew as ε increased. Relative performance of both

DSDMSs (SpatialHadoop and LocationSpark) was similar for all ε values, but SpatialHadoop was faster in all cases, even

when the datasets of spatial objects were combined. This difference is due to the way εDJQ is calculated in SpatialHadoop

and its pre-indexing phase, which reduces the time considerably even for very big datasets. At larger values, execution

times started to increase in both systems, due to the increase in the number of elements in the results. A special case
https://doi.org/10.1016/j.ins.2019.10.030



Fig. 10. k NNJQ cost (execution time) considering different datasets (left) and varying the k values (right). 
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is found in LocationSpark, as when ε = 10 −3 , the execution time is very high, because it once again has more has more

aggressive memory pressure problems than SpatialHadoop. If εDJQ behavior in joining points and spatial objects is compared

in SpatialHadoop, it may be seen that when a εDJQ is executed between two point datasets, the execution time is smaller

than when the two datasets are spatial objects for small and medium ε values. However, for higher ε values ( ε > = 75 ×
10 −5 ) its performance is worse, even though calculation of the distance between spatial objects is more costly. That is

because the result from Quadtree partitioning is different for each type, and for spatial objects it tends to create more

partitions with fewer elements. Therefore, in this particular case, the workload is more balanced and there are fewer skewed

data when dealing with spatial objects than with points for higher ε values. 

The main conclusions that can be arrived at for this set of experiments are: 

1. The higher the k or ε values, the higher the possibility that pairs of candidates are not pruned, more tasks are needed,

and more total execution time is consumed. 

2. SpatialHadoop performance is better, especially for higher k and ε values, due to Quadtree partitioning technique and the

reduction in the number of candidates by the Preprocessing step. 

3. The trend of SpatialHadoop is quite stable for the execution time, even if the biggest sets of spatial objects are combined,

which is more costly than for points. 

4. The SpatialHadoop εDJQ had the shortest and most stable execution times, demonstrating the benefits of its Map-based

Join implementation and the use of CombineFileSplits [22] . 

5. LocationSpark is faster than SpatialHadoop with medium and large dataset sizes, but for big datasets it needs a longer

time to execute the k CPQ and εDJQ, even for small k and ε values; this is due to memory pressure problems resulting

from the increase in the number of elements processed and the size of memory consumed, as well as the increase in

the processing time needed for the data shuffling and garbage collection. 

6.3. k NNJQ experiments 

Like k CPQ, the first set of experiments for k NNJQ algorithms measured the variation of different parameters, such as

the dataset sizes to be joined (scalability), repartitioning techniques on SpatialHadoop (the global partitioning technique

is always set to Quadtree due to the excellent results reported in all join operations [14,19] ) and k values. Also, note that

L = 10 0 0 0 0 and r = 2% for Quadtree repartitioning and L = 50 0 0 0 for the Grid repartitioning technique. In the chart on the

left in Fig. 10 , the kN N J (P , Q , k ) query, where P = LAKES has been fixed as the smallest dataset and the others as Q ( PARKS,

ROADS, BUILDINGS and ROAD _ NET W ORKS, resulting in the following combinations: L × P, L × R, L × B and L × RN ) is shown

with respect to the execution time, for a fixed k = 10 . The most important conclusion that can be arrived at from this chart

is that SpatialHadoop using Quadtree repartitioning technique is the fastest, next is Grid , whereas the worst alternative is not

to use any repartitioning technique (mainly when the biggest datasets are joined). For example, for L × P, Quadtree was 1.8

times faster than Grid and for L × RN, Quadtree was 4.8 times faster. Another important result is that Quadtree repartitioning

technique is quite stable with increase in size of Q dataset for fixed k = 10 . For instance, from L × P to L × RN the increment

was 53.4% (1491 s), when the increment of ROAD _ NET W ORKS (717M) with respect to PARKS (10M) was huge in terms of the

number of points. Another conclusion is that both DSDMSs (SpatialHadoop-Quadtree and LocationSpark) are quite stable and

the increment is sub-linear as the size of the datasets ( Q ) grows, with around a 40% difference (note that due to the memory
https://doi.org/10.1016/j.ins.2019.10.030



Fig. 11. k NNJQ cost per phase considering different repartitioning techniques on the combination of the smallest datasets. Execution time (left) and shuffled 

data in GBytes (right). 
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restrictions of the cluster, the k NNJQ could not be performed for the combination of L × RN in LocationSpark). This excellent

behavior of SpatialHadoop with Quadtree repartitioning technique compared to LocationSpark is because its repartitioning

technique deals with skewed data so well. While SpatialHadoop, with the new Quadtree repartitioning technique processes

cells that exceed a certain number of elements, LocationSpark, in the current implementation, treats only the number of

cells with the highest number of elements based on the input datasets. Note that for the same execution conditions in our

cluster, LocationSpark could not execute the k NNJQ for the combination of L × RN because it consumed all available resources

on some workers, and the execution had to be aborted. 

The chart on the right in Fig. 10 shows the effect of increasing the value of k for the combined datasets ( LAKES × PARKS ).

We can observe that SpatialHadoop without any repartitioning technique had the worst performance, which means that the

use of repartitioning techniques improves highly the performance for this DSDMS. Moreover, we can see that for small k

values ( k ≤ 25), Quadtree is faster than Grid , but when k is large ( k > 25) Grid takes a similar or shorter time to report the

query result. This behavior is because the repartitioning techniques produce different types of partition subsets. In the case

of Grid it is a uniform distribution where all cells are the same size, whereas for Quadtree it is a regular space partitioning

technique based on the concentration of elements, and therefore, generates different sized cells. In an algorithm like k NNJQ,

increase in k augments the possibility of selecting more partitions overlapping with the ranges of distances found in the

Bin kNN Join phase. Therefore, the same point must be compared in more than one partition, increasing the size of shuffled

data and having a partial list for each partition that must be combined in the last phase of the algorithm. These results

suggest that as k increases, the number of overlapping partitions also increases to a greater extent and more suddenly

for Quadtree repartitioning than for Grid . Finally, comparing the two DSDMSs, SpatialHadoop is observed to be faster than

LocationSpark, except for k = 50 , where LocationSpark is faster. At first sight, LocationSpark seems to scale better when

increasing the value of k , but from k = 75 problems start to appear due to memory limitations in the cluster, because of

the increase in the number of elements and partitions. It is again demonstrated that LocationSpark is more sensitive to this

type of problems than SpatialHadoop, since it is a memory-based DSDMS. 

The following experiment with the k NNJQ MapReduce algorithms compares the Grid and Quadtree repartitioning tech-

niques in SpatialHadoop by evaluating the cost, in execution time and shuffled data, of each of the phases in these al-

gorithms. In Fig. 11 , in the chart on the left, the kN N J (P , Q , k ) query for the combination of the LAKES × PARKS datasets

is shown for each repartitioning technique and for a fixed k = 10 . We can observe that SpatialHadoop with the Quadtree

repartitioning technique had the best performance. Grid is much slower, especially in the kNNJ on Overlapping Cells phase.

This is because the Quadtree technique partitions the data better, since it takes into account its distribution, so after the Bin

kNNJ phase there are more final k NN lists, and therefore, the processing time for the next phase is shorter. The kNNJ on

Overlapping Cells phase is usually more costly if the number of final k NN lists from the previous phase is smaller, because

during the range query on the nearby cells, the number of partitions to be searched for k NN candidates grows. Finally, the

execution time required for Quadtree repartitioning technique in the Repartitioning phase is very short (2% over the total

time) compared to the saved time (28% faster than Grid ). 

The chart on the right in Fig. 11 shows the results of the same query and parameters as in the previous experiment,

but with the amount of shuffling data exchanged in the different MapReduce phases of the Grid and Quadtree repartitioning

techniques for k NNJQ in SpatialHadoop. On one hand, we can observe that the difference in the Bin kNNJ and kNNJ on

Overlapping Cells phases was almost negligible. On the other hand, there were more shuffled data in the Merge Results

phase for Grid than for Quadtree . This confirms that the Grid repartitioning technique generated more partial k NN lists, and
https://doi.org/10.1016/j.ins.2019.10.030



Fig. 12. k NNJQ cost per phase considering different repartitioning techniques on the combination with the biggest dataset. Execution time (left) and 

shuffled data in GBytes (right). 
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therefore, the Merge Results phase must process all of them for the final result. In addition, Grid has to process more data,

and as a consequence, more time is spent in the Merge Results phase, as seen in Fig. 11 , left-hand chart. 

Continuing with the above experiment, Fig. 12 shows the kN N J (P , Q , k ) query for the combination of the datasets

( LAKE S × ROAD _ NE T W ORKS) for each repartitioning technique and for a fixed k = 10 . The time used by the different phases

of the algorithms is shown in the chart on the left in Fig. 12 . The first conclusion would be that differences are greater than

for the join with smaller datasets. The widest time difference between Grid and Quadtree appears in the kNNJ on Overlapping

Cells phase (10 times slower). This is because the Grid-based repartitioning technique leaves fewer final k NN lists after the

Bin kNNJ phase, and so the algorithm generates more cells than Quadtree , and therefore, requires more tasks. Moreover, Grid

may have problems with skewed data because its uniform partitioning does not take into account the spatial distribution of

the data, which could also generate cells that have many more elements. As a consequence of this increment in the number

of partial results, the Merge Results phase also requires more time to find the final result of the query. Finally, in the Reparti-

tioning phase, the execution time required by Quadtree repartitioning technique is barely 8.5% (234 s) over the total time, in

comparison with the saved time (5 times faster than Grid ). The right-hand chart in Fig. 12 shows the cost in shuffled data

corresponding to the previous execution times. With the Quadtree repartitioning technique, there is a bit more shuffled data

in the Bin kNNJ phase than with Grid , since there are more partitions. The following kNNJ on Overlapping Cells phase presents

practically the same values, because despite having more final k NN lists, the data must be sent for the largest dataset, since

it is unknown in advance whether they will be used in the reduce part of that phase. Finally, in the Merge Results phase, 9.8

times more information is exchanged with Grid than with Quadtree , since more k NN lists were generated in the previous

phase. 

The chart on the left in Fig. 13 shows the kN N J (P , Q , k ) query executed for the combinations of P × Q : L × P, L × R, L × B

and L × RN , and the shuffled data cost in Gigabytes for a fixed k = 10 . The first conclusion is that the shuffled data for both

techniques ( Grid and Quadtree ) grow as the size of the datasets increases. Grid values are a little higher than Quadtree for

all the combinations of datasets, because it usually produces fewer final k NN lists for that fixed k . That is, with Quadtree

shuffled data values are lower for all dataset sizes, despite pre-indexing in the Repartitioning phase. The right-hand chart in

Fig. 13 shows the effect of the increment of k value for the combination of the LAKES × PARKS datasets. For small / medium

k values ( k ≤ 50), the shuffled data cost is lower for Quadtree than Grid , but when k is large ( k > 50) Grid exchanges fewer

data to report the result of the query. As mentioned above, in an algorithm such as k NNJQ, as the value of k increases, the

possibility that the number of overlapping partitions also increases, and thereby, the shuffled data size of the algorithm.

This increment depends on the morphology of the underlying partitioning technique. In Grid , partitioning is uniform, and

all the partitions are the same size and shape, as shown in the right-hand chart in Fig. 13 , since its values are more stable.

Quadtree presents sharper changes because this repartitioning technique is not uniform, partitions have different sizes and

shapes, and therefore, when the distances increase in the range queries, the number of selected partitions does not increase

uniformly. 

The main conclusions extracted from this set of experiments on the proposed k NNJQ MapReduce algorithm based on

phases (see Fig. 3 ) are the following: 

1. SpatialHadoop is the fastest, especially for lower values of k , because Quadtree repartitioning technique and the reduction

in the number of candidates in the Repartitioning phase, although SpatialHadoop with Grid repartitioning technique is

faster when k is higher ( k > 50). 
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Fig. 13. k NNJQ cost (shuffled bytes) considering different datasets (left) and varying the k values (right). 

Fig. 14. εDRJQ cost considering different datasets (left) and varying the k values (right). 
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2. LocationSpark’s execution times are short and stable with medium and large dataset sizes and for small k values, but its

results are poor for larger datasets and higher k values, since it is more sensitive to memory constraints. 

3. It is important to perform a good repartitioning technique in SpatialHadoop that allows to obtain, in a quick and efficient

manner, the largest number of final k NN lists in the Bin kNNJ phase to reduce the size of the search space and the

execution time of the following phases, mainly for the kNNJ on Overlapping Cells phase. 

4. Similarly, for k CPQ, the higher the k value is, the higher the possibility that pairs of candidates will not be pruned, more

tasks will be needed, and more total execution time will be consumed. 

5. In SpatialHadoop, using both repartitioning techniques ( Grid and Quadtree ), the shuffled data grows with datasets of

increasing size. However, with big datasets, the performance of the Quadtree repartitioning technique is reduced in the

Merge Results phase. 

6.4. εDRJQ experiments 

The following experiment compared εDRJQ execution times in SpatialHadoop and LocationSpark. Fig. 14 shows εDRJQ

execution times with the joined datasets ( L × P, P × R, R × B and B × RN ) and fixed ε = 0 . 001 . First, for combined medium-

to-large datasets ( L × P and P × R ), SpatialHadoop execution times were slightly longer. This is because it is a Reduce-based

Join algorithm, and time is consumed by having to perform data shuffling and sorting between the map and reduce phases.

However, for the combinations of the biggest datasets ( R × B and B × RN ) SpatialHadoop was faster than LocationSpark (e.g.,
https://doi.org/10.1016/j.ins.2019.10.030



Fig. 15. Query cost with respect to the number of computing nodes η (Speedup). 
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for B × RN is 40% faster). Therefore, memory pressure problems in LocationSpark seem to influence the execution time more

than those caused by the shuffled data in SpatialHadoop. As shown in the right-hand chart in Fig. 14 , total execution time

grows as ε increases. Performance is relatively similar with both DSDMSs for all ε values, but SpatialHadoop is faster in all

cases. As shown above for εDJQ, the execution time of the SpatialHadoop εDRJQ increases for larger ε values, since more

elements participate in the final results. In addition, execution times grew faster with εDRJQ, because the size of the data

exchanged between the map and reduce phases also increases. 

The main conclusions extracted from this comparison of performance are: 

1. εDRJQ in SpatialHadoop is faster than LocationSpark for large datasets and for any ε value. 

2. LocationSpark is the fastest for medium-to-large datasets ( LxP and PxR ), but when the dataset sizes grow, its performance

in terms of running time is diminished, because of memory pressure problems. 

3. The execution times of SpatialHadoop εDRJQ grow faster than εDJQ as the ε value increases, due to the increase in data

shuffling, since the first is a Reduce-based Join algorithm and the second uses a Map-based Join algorithm. 

6.5. Speedup varying the number of computing nodes 

Finally, our last experiment measured speedup of all the proposed DJQ MapReduce algorithms ( k CPQ, εDJQ, k NNJQ and

εDRJQ), with respect to the number of computing nodes ( η). The first chart in Fig. 15 shows the impact of different numbers

of computing nodes on the performance of the distributed k CPQ algorithm for BUILDINGS × PARKS with the default config-

uration values. From this chart, it may be concluded that the performance of our approach has a direct relationship with

the number of computing nodes. It may also be deduced that performance would improve if more computing nodes were

added, but when the number of computing nodes exceeded the number of map tasks, there was no improvement. Location-

Spark still performed better than SpatialHadoop. In the second chart in Fig. 15 , the trend for εDJQ MapReduce algorithm

was similar with a shorter execution time. However, in this case, LocationSpark shows worse performance for a smaller

number of nodes. This is because LocationSpark and εDJQ depend more on available memory. Thus, when the number of

nodes decreases, this memory also decreases considerably. The third chart in Fig. 15 shows much higher execution times

for k NNJQ than for previous DJQ algorithms, mainly because it is a much more complex algorithm consisting of several

phases. Nevertheless, the trend in the performance of both systems is very similar to k CPQ, exhibiting the lowest execution

times for LocationSpark. Finally, the last chart in Fig. 15 shows the execution times for εDRJQ, and as for k CPQ and εDJQ,

this algorithm has shorter values than k NNJQ, which is based on it. Furthermore, as seen for εDRJQ, SpatialHadoop shows

better performance than LocationSpark when there are fewer computing nodes in use due to the sensitivity of the latter to

memory constraints, a resource which is reduced by this decrease in the number of nodes. 

The main conclusions extracted from these experiments varying the number of computing nodes ( η), are: 

1. All algorithms behave better when the number of computing nodes is increased, but if there are not enough tasks avail-

able for a certain number of nodes, there is no improvement in performance. 

2. For LocationSpark, the number of nodes is not as determinant a parameter for speedup of the algorithms as the avail-

ability of enough memory resources. 

6.6. Discussion of the results 

By analyzing all the above experimental results, several important conclusions may be arrived at as summarized below: 

1. We have experimentally demonstrated the efficiency (in terms of total execution time) and scalability (in terms of k

and ε values, sizes of datasets and number of computing nodes, η) of the distributed algorithms proposed for DJQs in

SpatialHadoop and LocationSpark. 

2. With k CPQ and εDJQ, the larger the k or ε, the higher the possibility that pairs of candidates will not be pruned, more

tasks will be needed, and longer total execution time will be consumed for reporting the final result. SpatialHadoop
https://doi.org/10.1016/j.ins.2019.10.030
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performance for large k and ε were excellent due to use of Quadtree partitioning technique, which was the best parti-

tioning technique of all those included in current SpatialHadoop framework. When more complex spatial objects were

combined, the running time for SpatialHadoop was a bit more costly than for points, following a similar trend. Moreover,

LocationSpark was faster than SpatialHadoop for medium and large dataset sizes, but for big datasets, it required more

time to execute the queries, even for large k and ε values due to memory pressure problems. 

3. For k NNJQ, we have proposed a MapReduce algorithm based on phases in SpatialHadoop, which we improved by using

an initial phase for repartitioning the dense partitions. This makes SpatialHadoop the fastest, especially at lower k values,

because of Quadtree repartitioning technique and the reduction in the number of candidates in the Repartitioning phase,

although SpatialHadoop with Grid repartitioning technique has shorter execution times at higher k values. Moreover, it

is important to mention that the use of repartitioning techniques in the Repartitioning phase generates more k NN lists in

the Bin kNNJ phase to reduce the size of the search space and the execution time in the kNNJ on Overlapping Cells phase.

For shuffled data, again, Quadtree repartitioning technique for combining the biggest datasets lowers this performance

measure considerably in the Merge Results phase. LocationSpark, using the currently available implementation, has short

and stable execution times with medium and large dataset sizes and for small k values, but shows poor results for larger

datasets and k due to its greater sensitivity to memory constraints problems. 

4. With εDRJQ, SpatialHadoop is the fastest for big datasets and at any ε value, except for medium-to-large dataset sizes

where LocationSpark performance is the best. 

5. The larger the number of computing nodes ( η), the faster the DJQ MapReduce algorithms. 

6. The use of CombineFileSplits [22] in SpatialHadoop [15] reduces the execution times considerably by avoiding the cost

of data shuffling and sorting in the reduce phase. Thus, it would be of interest to study its use for the improvement of

other algorithms such as K NNJQ, in which the size of shuffling data is an important factor. 

7. The use of repartitioning techniques in SpatialHadoop considerably reduces execution times and shuffled data cost,

mainly when big datasets are joined in k NNJQ. This indicates that this repartitioning is a good policy for MapReduce

algorithms based on phases. 

8. LocationSpark is very sensitive to memory restrictions problems, making its performance worse than SpatialHadoop for

the same cluster when dataset sizes or k and ε are very large. 

9. Finally, as a general conclusion, performance trends of both DSDMSs are similar in terms of execution time, although

LocationSpark shows better performance when medium datasets are combined (if a suitable number of computing nodes

with adequate memory resources are provided), even without pre-partitioning or pre-indexing is done. This suggests that

further improvements are needed in LocationSpark (which is a very recent DSDMS), such as the treatment of skewed

data. On the other hand, SpatialHadoop is a more robust and mature DSDMS, since several improvements have been

included over the years (this research paper further included the use of a repartitioning technique for k NNJQ) and its

performance is better for the DJQ MapReduce algorithms studied when the sizes of the datasets are large. 

7. Conclusions and future work 

DJQs are spatial operations widely adopted by many spatial and GIS applications. These spatial operations are very costly,

especially when big spatial datasets are combined. These spatial queries have been actively studied in centralized environ-

ments, however, they have not attracted similar attention for parallel and distributed frameworks. Therefore, in this paper,

we proposed new distributed DJQ algorithms ( k NNJQ and εDRJQ) and compared them in two of the most recent and leading

DSDMSs, SpatialHadoop and LocationSpark. 

We designed novel distributed DJQ algorithms in SpatialHadoop and LocationSpark to do this, in particular, the first

MapReduce algorithms in the literature for k NNJQ and εDRJQ in SpatialHadoop and εDRJQ in LocationSpark. Moreover, we

have improved the MapReduce algorithms proposed for k NNJQ and εDRJQ in SpatialHadoop by using repartitioning ( Grid

and Quadtree ) techniques in dense spatial areas. In addition, we have extended the distributed algorithms for more complex

spatial objects, such as polygons and line-segments. An extensive set of exhaustive experiments has demonstrated that Lo-

cationSpark is the clear winner for execution time when medium datasets are combined, due to the efficiency of in-memory

processing provided by Spark and additional improvements, like the Query Plan Scheduler . However, SpatialHadoop is faster

when big real-world datasets are joined, since it is a more mature and robust DSDMS, due to the time invested in research

and development (e.g., it provides more spatial partitioning techniques, computational geometry algorithms, repartitioning 

techniques for skewed data, etc.). Moreover, this detailed performance study also demonstrated that our distributed DJQ

algorithms are efficient, robust and scalable with respect to such parameters as dataset sizes, k , ε, number of computing

nodes ( η), etc. 

As part of our future work, we are planning to extend our current research in several directions: 

– Improve the performance of k NNJQ through the use of SpatialHadoop or LocationSpark features, such as CombineFile-

Splits [22] , which would enable the amount of shuffled data to be reduced and simplification of the different phases

to achieve lower execution times, 

– Implement other complex DJQs in SpatialHadoop and LocationSpark, like iceberg distance joins [34] , multi-way spatial 

joins [28] and multi-way distance join [11] , 
https://doi.org/10.1016/j.ins.2019.10.030
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– Implement other partitioning techniques [1,38] in SpatialHadoop, because this is an important factor for processing

distance-based join queries, as we have demonstrated, 

– Study other Spark-based DSDMSs like GeoSpark [45] , since it being very actively developed and does not include any

distance join queries [32] . 
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