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Abstract

In this paper we propose an algorithm for online clustering of data stream. This

algorithm is called AutoCloud and it is based on the recently introduced concept

of Typicality and Eccentricity Data Analytics, mainly used for anomaly detec-

tion tasks. AutoCloud is an evolving, online and recursive technique that does

not need training or prior knowledge about the data set to be processed. Thus,

AutoCloud is fully online, requiring no offline processing. It allows creation and

merging of clusters in an autonomous manner as new data observations become

available. The clusters created by AutoCloud are called data clouds, which are

structures without pre-defined shape or boundaries. Auto-Cloud allows each

data sample to belong to multiple data clouds simultaneously using fuzzy con-

cepts. AutoCloud is also able to handle concept drift and concept evolution,

which are problems that are inherent to data streams in general. Since the algo-

rithm is recursive and online, its suitable for applications that requires real-time
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response. We validate our proposal with applications to multiple well known

data sets in literature.

Keywords: online clustering, data stream, eccentricity, typicality, anomaly

detection
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1. Introduction

Data clustering is the basis for solving several different classes of problems

in various fields of application such as data mining, pattern recognition, data

classification, system identification and image segmentation [1, 2, 3]. Due to

great demand, the task of clustering data has been object of study of many5

different authors in the past decades, resulting in a great variety of approaches

presented in literature. The intrinsic mechanisms of each of these approaches

define its realm of applicability.

Most of the approaches proposed in the literature require some prior knowl-

edge about the analyzed data set [1]. This knowledge is often presented in10

form of a mathematical model that describes the behavior of the data. In other

cases prior training is required using a representative set of data, allowing the

algorithm to learn some pattern in this set. For instance, traditional clustering

techniques, such as K-means [4], require offline availability of the whole data set

from the start. However, there are several problems in which data samples are15

acquired over time, during the execution of the algorithm, such as general data

streams.

A data stream is an ordered sequence of samples, obtained over time, con-

tinuously, such as time series. Since the order of the samples is a crucial feature

of the problem and they are usually obtained in an online manner, this type20

of data set require not only an algorithm that can perform clustering online,

but also ability to adapt, since very little knowledge about the data is available

a priori [5]. Thus, the algorithm must be able to handle during data stream

analysis the occurrence of problems such as concept evolution and concept drift.
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Algorithms and techniques designed handle this and other problems that25

involve data sets in dynamic and non-stationary environments are often called

evolving intelligent systems [6]. One of the main features of such systems is their

ability to adapt and evolve autonomously according to the natural changes on

the data over time. Evolving intelligent systems are object of study of many

authors [7, 8] and solutions based on this concept were recently introduced to30

many different problems [9], such as systems modeling, process controls, data

prediction and classification [10, 11, 12, 13, 14, 15, 16].

Recently, several incremental learning algorithms have been proposed in the

context of evolving clustering. Many of them assume a specific format for clus-

ters, such as ellipsoids. It is important to notice that ellipsoids, for example,35

assume that the data follow a Gaussian distribution. [17] and [18] are two great

examples of successful attempts to tackle evolving clustering that are based on

such assumption. In [17], the authors propose an interesting approach based on

the evolving vector quantization method that was originally published in [18],

named AutoClust. The proposed algorithm has merge-and-split functionalities40

for the clusters. It assumes that the clusters have ellipsoid shapes, and then

it uses the geometric information about cluster overlapping and joint cluster

homogeneity to merge and/or split them. In [19], the authors present a fuzzy

evolving clustering approach that also assumes ellipsoidal shape for the clus-

ters, using Gaussian mixture model and fuzzy inference to define the clusters45

and their evolution.

In this paper we propose an algorithm for data stream clustering entitled

AutoCloud. AutoCloud is fully data driven and does not require specific math-

ematical models or any prior knowledge about the data set to be analyzed.

It is based on the recently introduced concept of Typicality and Eccentricity50

Data Analytics (TEDA), mostly applied to anomaly detection problems. Al-

though the current form of AutoCloud its eccentricity calculation are based on

Euclidean distance, which virtually force the definition of clusters as ellipses,

the underlying idea of the algorithm does not assume any pre-defined shape,

as other similarity measures can be used and data clouds, per definition, do55
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not have specific shapes or bounderies [20]. Therefore, AutoCloud is able to

perform evolving clustering for data streams fully online and very low compu-

tational complexity.

Algorithms for evolving clustering in arbitrary shaped clusters have been in-

troduced and follow the classic DBSCAN algorithm [21], with concepts of micro60

and macro clusters. These algorithms work generally in two stages: micro-

clustering is performed online while macro-clustering is executed offline, as in

[22, 23, 24]. From another perspective, [25] proposes a fully online clustering of

evolving data streams with arbitrarily shaped clusters, named CEDAS, that up-

dates micro-clusters and macro-clusters in online way. It uses a graph structure65

to associate a set of micro-clusters to a macro-cluster, where the micro-clusters

are the nodes and the edges are its pairs with intersecting micro-clusters. More

recently, [26] proposed the BOCEDS algorithm, which is also a fully online

density-based clustering algorithm using micro-clusters and macro-clusters con-

cepts for evolving data streams. It uses an energy function based on the spatial70

information of the data stream for online updating of the micro-clusters. In ad-

dition, it adopts a buffer for storing temporarily micro-clusters and when these

micro-clusters are non-significant, they are removed from the buffer. Two stage

algorithms are hard to compare with the approach presented in this paper, since

we decided to focus on a fully online solution. If a scenario permits a training75

stage, AutoCloud can be easily adapted to perform micro/macro clustering.

AutoCloud is also an evolving algorithm, being able to autonomously adapt

to the changes in the data over time, such as concept drift and concept evolu-

tion [6]. It is also recursive and online, which means it does not require storing

and processing past data samples. This greatly reduces the computational bur-80

den, computer- and memory-wise. One of the main practical advantages of

AutoCloud is that it introduces an elegant and efficient way of creating new

clusters and merging existing ones according to the evolution of data over time.

The remainder of this paper is organized as follows. In Section 2 we present

the concepts of TEDA. In Section 3, we detail our proposed technique. In85

Section 4, we describe and discuss the experiments and results obtained with
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the application of AutoCloud to several well-known data sets. Finally, in Section

5, we present our conclusions and discuss potential future work.

2. Typicality and Eccentricity Data Analytics

TEDA is an evolving method for anomaly and outlier detection, introduced90

by [20]. However, the concepts of typicality and eccentricity have been success-

fully applied to, among other problems, data classification [27, 28]. The concept

of typicality is related to the similarity of a specific n-dimensional data sample

to the values of its past readings. Eccentricity, conversely, describes how dif-

ferent a data sample is from the data distribution. Hence, a data sample with95

high eccentricity (and thus low typicality) is usually an anomaly.

Eccentricity is summarized as the the sum of distances of a particular data

sample to all other existing data samples divided by the sums of distances

from all data samples to all other data samples. In the realm of data strems,

consider a data input X ∈ <n, which consists of a sequence of n-dimensional

data samples, i.e. X = {x1, x2, . . . , xk, . . .}, xi ∈ Rn, i ∈ N, where k is the

discrete time instant in which the sample was acquired. Consider also d(xi, xj)

as some distance between samples xi e xj , in which d can be any type of distance

such as Euclidean, cosine or Mahalanobis. For the complete

πk(x) =

k∑
i=1

d(x, xi) (1)

where πk(x) is the sum of distances from a particular sample x ∈ X, for each

of the k elements of the data set.

The eccentricity ξ of the data sample x at the time instant k is defined as [20]

ξk(x) =
2πk(x)∑k
i=1 πk(xi)

= 2

∑k
i=1 d(x, xi)∑k

i=1

∑k
j=1 d(xi, xj)

, k ≥ 2,

k∑
i=1

πk(x) > 0 (2)

However, equation 2 refers to the offline formula of eccentricity. It has been
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shown [20] that eccentricity can be derived exactly as

ξk(x) =
1

k
+

(µx
k − xk)T (µx

k − xk)
k[σ2]xk

, [σ2]xk > 0 (3)

where ξk(x) is the eccentricity of the sample xk in relation to all previous samples

in the data set, while µx
k is the mean and [σ2]xk is the aggregated variance of x

up to the time instant k. Both µx
k and [σ2]xk can be recursively updated by

µx
k =

(k − 1)

k
µx
k−1 +

1

k
xk, k ≥ 1, µx

0 = 0 (4)

[σ2]xk =
(k − 1)

k
[σ2]xk−1 +

1

k
||xk − µk||2, k ≥ 1, [σ2]x0 = 0 (5)

Conversely, the τ of the sample x at the time instant k can be calculated as

a complement of eccentricity, as in [20]:

τk(x) = 1− ξk(x) (6)

In Section 3, we develop the idea on how eccentricity in its form presented in

equation 3 can be used to determine whether a data point belongs to an existing

data cloud and how it can be used to determine when a new data cloud must

be created to compensate for a potential data drift. Eccentricity and typicality

are bounded by [20]

0 ≤ ξk(x) ≤ 1,

k∑
i=1

ξk(xi) = 2, k ≥ 2

0 ≤ τk(x) ≤ 1,

k∑
i=1

τk(xi) = k − 2, k ≥ 2

k∑
i=1

πk(xi) > 0, k ≥ 2

Finally, the normalized eccentricity ζk(x) and typicality tk(x) can be ob-
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tained by [20]:100

ζk(x) =
ξk(x)

2
,

k∑
i=1

ζi(x) = 1, k >= 2 (7)

tk(x) =
τk(x)

k − 2
,

k∑
i=1

ti(x) = 1, k >= 2 (8)

The threshold used to distinguish normal from anomalous data samples is

based on the Chebyshev inequality [29], which states that, under any distri-

bution, no more than 1/m2 of the data observations are more than mσ away

from the mean, where σ represents the standard deviation of the data. Thus, a

particular data sample xk is considered to be an anomaly if the condition

ζk >
m2 + 1

2k
, m > 0 (9)

is satisfied. The parameter m is user-defined and directly affects the sensitivity

of the anomaly detector. Although it can be defined using multiple criteria,

m = 3 is largely used in literature [8, 30] as a standard value and presents

satisfactory results for different data sets and different configurations. Once

again, equation 9 is central to the method proposed in this paper and in Section105

3, we demonstrate how it is used in the determination of membership of points

to existing data cloud and potentially triggering of creation of new ones.

3. AutoCloud

The evolving clustering algorithm proposed in this paper is called AutoCloud

and is based on TEDA, which makes it suitable for online processing of data110

streams. Among its characteristics, one can mention:

i) It leverages ever-evolving cluster-like granular structures - the data clouds

- where not only the parameters of each granule can be adapted, but

also new clusters can be created and existing ones merged, which makes
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it suitable for handling dynamic and evolving data (concept drift and115

concept evolution).

ii) Calculations are recursive, in such a way that it does not require storing

previous data samples in memory, executing batch processing tasks nor

using sliding windows. Therefore, the resulting algorithm is very fast and

and computational cheap, hence, suitable for real-time applications.120

iii) It is fully unsupervised, does not require offline training or prior knowledge

about the data and can be started from an empty knowledge basis.

3.1. Data Clouds

The granular structures used in AutoCloud are called data clouds [6]. Sim-

ilarly to traditional clusters, they are local sets of data samples with common125

properties. Data clouds, however, do not have a particular shape nor predefined

boundaries, therefore, are a much more realistic representation of the actual

data distribution than traditional fuzzy membership functions (e.g. triangular,

trapezoidal, Gaussian), in which, instead, one only targets an approximation of

an expected/desired distribution.130

Although data clouds do not have specific shapes or boundaries (these are

indirectly derived from the type of similarity measure used), they are visually

represented as ellipses in this paper.

AutoCloud calculates the data eccentricity ζk for each new data sample xk

in relation to each existing cloud independently, as showed in Figure 1. In135

this example, note that AutoCloud determines the membership of the sample

xk to the two existing clouds c1 and c2, based on the eccentricity value ζk

for each cloud and the dynamic threshold proposed in equation 9. When this

condition holds, AutoCloud determines that the membership of xk to such cloud

is significant enough that the xk affects that cloud.140

Since AutoCloud is a recursive algorithm, past data samples do not to be

stored in memory. Instead, only a small number of statistical variables are
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Figure 1: Auto-Cloud overview.

required for each cloud ci: the number of samples (sik), the mean (µi
k) and the

variance ([σ2]ik) of samples that affect/belong to ci at the time instant k.

For instance, Figure 2 illustrates a scenario with two data clouds, c1 e c2,145

after the reading of k samples. The number of samples that belong to each

cloud is s1k = 7 and s2k = 8, while three samples belong to both c1 e c2 simul-

taneously. Finally, the mean of each existing cloud, µ1
k, µ

2
k, respectively, are

visually represented in the same image by the centers of c1 and c2, while the

variances [σ2]1k and [σ2]2k are represented by the spreading/radii of each cloud150

in the data space.

samples
only in

samples in     and

c
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samples
only in c
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c
1

c
2

c
1

c
2

μ
k

2μ
k

1

s  = 8
k

2s  = 7
k

1

Figure 2: Data clouds c1 and c2 at the time instant k.

3.2. Data clouds update

For each new data sample, AutoCloud determines its relevance to each ex-

isting cloud based on the value of the normalized eccentricity to ci. When the
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eccentricity is significantly high, the sample xk is considered irrelevant in rela-155

tion to ci and, therefore, does not affect that specific cloud. However, if xk has

low eccentricity, AutoCloud determines that the sample belongs to ci (i.e. xk

is similar to the other samples that belong to ci) and updates that cloud. In

that case, the number of samples sik, the mean µi
k and the variance [σ2]ik are

recursively updated to reflect the influence of the new sample on ci.160

It is important to highlight that a data sample can belong to multiple points

simultaneously, preserving the nature of fuzzy membership. Alternatively, the

algorithm may also determine that xk has high eccentricity in relation to all

existing clouds. In that case, a new cloud is created.

The threshold used to determine whether a sample xk belongs or not to a

cloud ci, we generalize the equation 9 to reflect local membership to individual

clusters:

ζi(xk) <=
m2 + 1

2sik
(10)

where m represents the sensitivity of the threshold. Hence, if the condition165

represented in equation 10 holds, it is determined that xk belongs to ci. On the

other hand, if the condition does not hold, xk does not belong ci.

The remaining equations are also generalized versions of the equations pre-

sented in Section 2. Thus, the eccentricity ξi(xk) and the normalized eccentricity

ζi(xk) of the sample xk in relation to the i-th data cloud are given by170

ξi(xk) =
1

[sik]
′ +

([µi
k]
′ − xk)T ([µi

k]
′ − xk)

[sik]
′[[σ2]ik]

′ (11)

ζi(xk) =
ξi(xk)

2
(12)

where [sik]
′, [µi

k]
′ and [[σ2]ik]

′ are temporary values for the number of samples,

mean and variance of the i-th data cloud, respectively, supposing that xk belongs

to ci. Such supposition is necessary in order to verify, in sequence, if xk indeed

belongs to ci. These values are calculated by, respectively
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[sik]
′ = sik−1 + 1 (13)

[µi
k]
′ =

[sik]
′ − 1

[sik]
′ µi

k−1 +
1

[sik]
′xk, (14)

[[σ2]ik]
′ =

[sik]
′ − 1

[sik]
′ [σ2]ik−1 +

1

[sik]
′ ‖xk − [µi

k]
′‖2 (15)

For each cloud ci, with i = [1...N ], where N is the number of existing clouds,175

and if equation 10 holds, the values of sik, µ
i
k and [σ2]ik are updated, respectively,

by [sik]
′, [µi

x]
′ and [[σ2]ik]

′, previously calculated by equations 13, 14 and 15. This

update must be executed since the supposition that xk belongs to ci is true and

hence, ci needs to be updated to reflect the influence of xk. On the other hand,

if equation 10 does not hold, that means xk does not belong and, therefore,180

should not affect ci.

Figure 3 illustrates this procedure by showing three data clouds (c1, c2 and

c3) and an input sample xk. According to the image, AutoCloud calculates

the normalized eccentricity of xk in relation to each cloud, ζ1(xk), ζ2(xk) and

ζ3(xk), respectively. In this particular example, it can be seen that xk belongs185

to both c1 and c3, but not to c2. Hence, only c1 and c3 are updated, while no

action is performed for c2, as shown in Figure 3(b).

c2 c3

c1

xk
ζ
k

1

ζ
k

3
ζ k
2

c2 c3

c1

xk

(a) (b)

Figure 3: Update of data clouds: (a) c1, c2, c3 and a newly read sample xk, and (b) c1, c2,
c3 after the update
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In the case where equation 10 does not hold for any of the existingN clouds, a

new data cloud cN+1 is created and added to the rule bases. It is initialized with

sN+1
k = 1, µN+1

k = xk and [σ2]N+1
k = 0. As an illustrative example, consider190

Figura 4, in which the three clouds c1, c2 and c3 and a new data sample xk are

presented. It is easy to observe in Figure 4(a) that xk is significantly distant

from all existing data clouds, hence a new cloud c4 is created, as shown in

Figure 4(b).

ζ
k

1

ζ k
2

ζ
k

3

c2 c3

c1

xk

c2 c3

c1

xk

c
4

(a) (b)

Figure 4: Creation of a new data cloud: (a) three existing clouds, c1, c2, c3 and a new sample
xk and (b) a new cloud c4 is created

3.3. Merging data clouds195

In order to limit the number of clouds and, at the same time, preserve

the evolving characteristics of this approach, AutoCloud is able to merge two

partially overlapping data clouds, when applicable. Merge is executedwhen the

number of overlapping samples, i.e. the number of samples that belong to both

clouds simultaneously, is significantly high. This operation is fully autonomous200

and non-parametric.

Given two clouds ci and cj at the time instant k, merge happens when at

least one of the following conditions is true:

s
ci∩cj
k > sik − s

ci∩cj
k (16)
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s
ci∩cj
k > sjk − s

ci∩cj
k (17)

where sci∩cjk corresponds to the number of intersecting samples in ci and cj at

the time instant k.205

In summary, these two conditions tell us that two clouds are merged when

the number of samples that belong to both clouds simultaneously is higher

than the number of samples that belongs to only one of them separately. The

process of merging overlapping data clouds prevents an uncontrolled growth in

the rule/cloud basis.210

Figure 5 illustrates the process of merging clouds on AutoCloud. In Fig-

ure 5(a) the number of intersecting points in clouds c1 and c2 is less than the

number of exclusive points in both clouds. Hence, in this case, merge does not

take place. Conversely, Figure 5(b) illustrates a concrete merge example, with

resulting cloud basis presented in Figure 5(c).215

c2c1 c2c1
c3

(a) (b) (c)

Figure 5: Data cloud fusion: c1 and c2, (b) c1 and c2 right before merging and (c) resulting
cloud c3 after merging

When two clouds merge, the properties of the resulting cloud are defined as

per

slk = sik + sjk − s
ci∩cj
k (18)

µl
k =

sikµi + sjkµj

sik + sjk
(19)
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[σ2]lk =
(sik − 1)σ2

i + (sjk − 1)σ2
j

sik + sjk − 2
(20)

where the values of µl
k and [σ2]lk are obtained through a weighted mean of the

respective values of each original cloud.

Analyzing the overall update, merge and creation of clouds, it is easy to note

that AutoCloud is an algorithm that is able to handle two of the problems that

are inherent to data stream analysis: concept drift and concept evolution.220

3.4. AutoCloud Algorithm

Finally, Algorithm 1 shows in details each step of AutoCloud. In this ex-

ample, we use Euclidean distance as the underlying similarity measure between

samples and clouds.

For each obtained data sample, AutoCloud determines if it belongs to any of225

the existing clouds. If that is the case, any of the affected (and only the affected)

clouds are updated in order to reflect the addition of this new sample. Else,

i.e. the sample is significantly different from all existing clouds, a new cloud is

created. Finally, each pair of clouds is analyzed in order to determine if merge

is necessary. Considering n the number of features in the dataset and Ck the230

number of existing clusters at the time instant k, the complexity of AutoCloud

is O(n ∗ C2) for a data sample xk processed at the time instant k.

Analyzing the algorithm, we can verify that at its startup the first data cloud

is created and the first two samples obtained (k = 1 and k = 2) are added to

this data cloud. The process of creating new data clouds starts only from the235

third sample. The reason for this is that the distance between points is relative

to the feature ranges. There is no way of determining if 2 points are near or far

if there is no pre-defined range, which is the case. That is why a third point

is expected before starting by determining how significant the distance between

any two points is.240

Algorithms 2 and 3 detail the steps for creation and merge of data clouds,

respectively.
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Algorithm 1: Algorithm Auto-Cloud using euclidean distance.
Input: set of samples X = {x1, x2, x3, . . . } ∈ Rn

1 begin
2 while xk ← read next sample do
3 if k = 1 then

// create data cloud 1 and add x1
4 s11 ← 1
5 µ1

1 ← x1
6 [σ2]11 ← 0
7 N ← 1

8 else
9 if k = 2 then

// add x2 in data cloud 1
10 s12 ← 2
11 µ1

2 ← (µ1
1 + x2)/2

12 [σ2]12 ← ‖x2 − µ1
2‖/2

13 else
14 if k >= 3 then
15 forall existing data cloud ci do
16 calculate [s′]ik, [µ

′]ik and [[σ2]′]ik by equations 13, 14 e 15
17 calculate ζik by equation 12
18 if ζik <= (m2 + 1)/(2 ∗ [s′]ik) then

// add xk in data cloud i

19 sik ← [s′]ik
20 µi

k ← [µ′]ik
21 [σ2]ik ← [[σ2]′]ik
22 else
23 sik ← sik−1

24 µi
k ← µi

k−1

25 [σ2]ik ← [σ2]ik−1

26 end
27 end
28 if xk 6∈ ci, ∀i then
29 createDataCloud(xk)
30 end
31 forall pair of data clouds ci and cj do
32 verifyMerge(ci, cj)
33 end
34 end
35 end
36 end
37 end
38 end

15



Algorithm 2: Procedure that create a new data cloud using euclidean
distance.
1 procedure createDataCloud (xk)

// create new data cloud l

2 nl
k ← 1

3 µl
k ← xk

4 [σ2]lk ← 0
5 αcl ← 1
6 N ← N + 1

7 end

Algorithm 3: procedure that performs the merge between two data clouds
using euclidean distance.
1 procedure verifyMerge (ci, cj)
2 if sci∩cjk > sik − s

ci∩cj
k or s

ci∩cj
k > sjk − s

ci∩cj
k then

// merge data clouds i and j to data cloud l

3 calculate slk, µ
l
k and [σ2]lk by equations 18, 19 e 20

4 N ← N − 1

5 end
6 end

At the end of each iteration k, AutoCloud outputs the following values:

• The number of samples (sik), the mean (µi
k) and the variance ([σ2]ik) of

each existing cloud (ci) at the time instant k.245

• The list with membership degrees (γci) of the sample xk to each cloud

(ci).

4. Results

To validate AutoCloud, we will present in this section the results obtained

by applying the proposed algorithm to data stream clustering problems. These250

results were obtained using data sets already consolidated and widely used in the

field of machine learning. In addition to this data, we also used some artificially

generated data to demonstrate some features of AutoCloud.
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4.1. Data sets

The data sets used were obtained from a specific repository for data cluster-255

ing [31]. This repository has some data sets, both artificial and real, that are

widely used in data clustering tasks. For each data set, the number of samples

and the number of existing clusters are specified. In some cases, the centroid

of each group is also available and the information about to which group each

sample belongs.260

The data sets of the adopted repository are divided into several categories.

Among the existing synthetic data categories, we make use of the following:

S-sets, A-sets, DIM-sets (high), Shape-sets, and Unbalance.

We have selected some of the data sets belonging to these categories to

perform our experiments. Table 1 shows a summary of the selected data sets,265

indicating the number of samples, N , the number of clusters, K, and the size

of each of cluster. Note that most of the selected data is 2-dimensional, but

this is not a prerequisite for AutoCloud, since it is capable of handling data of

any dimensionality. This choice was made only to facilitate the visualization

of the data and the obtained results. To prove this, we will also use two high-270

dimension data sets, dim512 and dim1024 which have dimensions 512 and 1024,

respectively.

Table 1: Synthetic data sets used in data clustering experiments.
Data set Category N K Dimension

S1 S-sets 5000 15 2
S2 5000 15 2
A1 A-sets 3000 20 2
A2 5250 35 2

dim512 Dim-sets (high) 1024 16 512
dim1024 1024 16 1024

Aggregation Shape-sets 788 7 2
Compound 399 6 2
Unbalance Unbalance 6500 8 2

4.2. Experimental Results

AutoCloud was applied to each of the selected data sets in order to get

evaluate the proposed clustering approach. Table 2 shows the number of data275
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clouds obtained, K̂, the quality of data clouds obtained, the processing time for

each data stream, ts, and the average processing time of each sample, ta. This

table also shows the real number of clusters, K, in each data set.

Table 2: Results obtained in the clustering of analyzed data sets.
Data set K K̂ Quality ts (s) ta (ms)

S1 15 15 0.30 3.71 0.74
S2 15 15 0.41 3.48 0.70
A1 20 20 0.30 3.0 1.00
A2 35 35 0.23 11.79 2.24

dim512 16 16 0.16 22.52 2.20
dim1024 16 16 0.39 90.13 88.02

Aggregation 7 7 0.52 0,18 0.23
Compound 6 4 0.53 0.07 0.10
Unbalance 8 8 0.34 1.21 0.19

Analyzing the results shown in Table 2, we can verify that AutoCloud was

able to accurately identify the actual number of clusters in almost all analyzed280

data sets. The number of data clouds created by AutoCloud was not equal to

the number of clusters in the compound base, where AutoCloud created only

4 data clouds, two less than expected. In this experiment, the performance of

AutoCloud was satisfactory, regardless of the dimensionality of the data sets

analyzed, since it was able to correctly identify the number of clusters in the285

low and high dimension data sets.

To measure the quality of the obtained data clouds we used the same metric

used by [17]. According to this metric, the quality value is calculated using the

following equation:

quality =

∑C
i=1

∑N
j=1 µ

2
ij ||~xi − ~xj ||

Nmini,j=1,...,C,i6=j(||~ci − ~cj ||)
(21)

where C denotes the number of data clouds obtained, N is the total number290

of samples and µij is the membership degree of sample j in data cloud i. The

value of µij was calculated using the typicality of sample j in data cloud i. The

quality values obtained were similar to those obtained by [17] using AutoClust

in data sets A1, A2, S1 e S2. The lower calculated value, the better the quality
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of the data clouds.295

Regarding the processing time required by AutoCloud, we verified that this

value is proportional to the size of the analyzed data stream, as well as the

dimension of the samples. The largest obtained values were in the processing of

the two high dimension data sets used (dim512 e dim1024). It is important to

note that the measured processing time does not take into account any sampling300

rate when reading the data. The average processing time of each sample was

obtained by dividing the total processing time of the stream by the number of

samples in that stream. Analyzing the obtained values of ta, AutoCloud proved

to be an time-efficient algorithm and adequate to on-line applications. In the

worst presented case, each sample was processed at about 88ms. This result305

allows AutoCloud to be used in time-constrained applications that require fast

responses.

In order to evaluate the quality of the obtained data clouds in the experi-

ments, we have to go beyond the identified number of clusters/data cloud. It is

also necessary to verify that the centroid of each identified cloud date was cal-310

culated correctly by comparing the obtained with the expected centroids. The

obtained centroids in each of the analyzed data sets are shown in Figures 6, 7,

8, 9 and 10. In each of these figures the samples belonging to each data set are

shown in blue. The black dots represent the real centroids of the clusters and

the red dots correspond to the centroids of data clouds obtained by AutoCloud.315

The centroids obtained for data sets S1 and S2 are shown in Figure 6. In

the image, it is possible to visualize that the data are grouped in well-defined

clusters, but with different shapes, quantity of samples and spreading of samples.

In data set S2, the clusters are closer to each other than in S1, thus there is a

greater degree of overlap between them in that set. It is also possible to visualize320

that the centroids of all the data clouds obtained correspond to the expected

values in both S1 and S2. This can be verified by observing that the points

marked with red X coincide with the points marked with the black circle.

The obtained centroids in sets A1 and A2 are shown in Figure 7. We have

verified that the clusters are well defined in these two sets. Another character-325
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Figure 6: Obtained centroids in clustering of S-Sets: (a) S1 e (b) S2.

istic of these two sets is that the amount of samples in each of the clusters is

equal. By observing the Figure, we find that the centroids obtained in all data

clouds correspond to the real values expected for each cluster in the two sets.
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Figure 7: Obtained centroids in clustering of A-Sets: (a) A1 e (b) A2.

Figure 8 shows the obtained centroids in the high-dimension sets dim512

and dim1024. The data from these two sets were presented to AutoCloud in its330

entirety, without any prior feature selection. However, to facilitate the visual-
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ization of the data and the results obtained, the graphs presented in this Figure

show only the first two dimensions of the samples. Once again, the centroids

in each identified data cloud corresponded to the expected values, which was

obtained regardless of the high dimension in analyzed data. In only a few cases,335

one in the set dim512 and two in the set dim1024, there was a small error in the

identified centroids. However, this error was not very significant, still allowing

the identification of data clouds correctly.
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Figure 8: Obtained centroids obtidos in clustering of Dim-Sets: (a) dim512 e (b) dim1024.

The obtained results for the Shape-sets used in the experiments are shown in

Figure 9. These two data sets are among those analyzed the ones with the least340

number of samples. In addition, the clusters have different shapes and sizes, but

can also be easily identified visually. In the Aggregation set, all centroids were

identified quite accurately by AutoCloud. In Compound set, an error occurred

in the identification of the clusters. In this data set the number of identified

data clouds did not match the number of expected clusters. Analyzing Figure 9345

we find that there are two clusters that are comprised in two others clusters.

This caused each of these two pairs of clusters to be identified as a single data

cloud, reflecting both data clouds unless they should have been identified.

Finally, Figure 10 shows the centoids obtained for data set Unbalance. This

21



5 10 15 20 25 30 35

0

5

10

15

20

25

30

feature 2

fe
at

ur
e

1

Aggregation

5 10 15 20 25 30 35 40 45

6

8

10

12

14

16

18

20

22

24

feature 2

fe
at

ur
e

1

Compound

(a) (b)

Figure 9: Obtained centroids in clustering of Shape-Sets: (a) Aggregation e (b) Compound.

data set presents 8 clusters and most samples are concentrated in 3 of them.350

These 3 clusters have 2,000 samples each, while the remaining 5 have only 100

samples each. We can observe in Figure 10 that the centroids were obtained

again satisfactorily, regardless of the amount of samples presented by each clus-

ter.
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Figure 10: Obtained centroids in clustering of Unbalance.

Based on the presented results, it is possible to note that the AutoCloud was355
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able to determinate the clusters and their respective centers adequately. It is

important to highlight all input data were processed in the form of data streams

by AutoCloud. More specifically, at the k − th time instant, AutoCloud only

has access to the k − th data sample. In addition, AutoCloud does not require

storing previous data samples.360

Aiming to analyze the influence the order of samples into the data stream

for clustering in an evolving context, we used again the unbalance data set, but

the order of the data was randomized. Figure 11 shows the obtained results with

this experiment. Figure 11(a) presents the original data stream and Figure 11(b)

presents the randomized data stream. Figure 11(c) and Figure 11(d) present the365

obtained clusters by AutoCloud for the original data stream and the randomized

data stream, respectively. The obtained centroids are indicated by red dots. As

expected, for the former case the algorithm obtained 8 clusters, while for the

latter it resulted in a single cluster, since the nature of the algorithm requires

the samples to be processed in the order they are acquired.370

Therefore, it is important to highlight that AutoCloud is not suitable for the

analysis of data that does not have a time dependency between samples. How-

ever, for the vast majority of real-world problems, one of the main characteristics

of data streams is that they carry very strong temporal relationship between

neighbor data samples (e.g. In a control process, none of the input/output vari-375

ables are expected to randomly oscillate between two sequential time instants).

That is precisely the type of problem AutoCloud is proposed to address.

The only tunable parameter of AutoCloud is the value of m, that is used to

determine the threshold defined by equation 9. All previous presented results

used m = 2, which is equivalent to using a 2σ threshold under normal distri-380

bution. This parameter was set up based in previous successful works [8, 30].

Then, in order to analyze the impact of the parameter m over AutoCloud’s

performance, we have used m = 1, 2 and 3 to data sets used previously. The

obtained results are presented in Table 3 and confirm that AutoCloud’s sensitiv-

ity for creating new clusters increase when value of m decreases and vice-versa.385

Although we have used only integer values for m, any real positive number
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Figure 11: Obtained centroids in clustering of data set Unbalance modified: (a) original data
stream, (b) randomized data stream, (c) obtained centroids for original data stream and (d)
obtained centroids for randomized data stream.

Table 3: Obtained results of analyzed data sets using several values of m.
Data set K K̂m=1 K̂m=2 K̂m=3

S1 15 114 15 10
S2 15 123 15 1
A1 20 150 20 1
A2 35 250 35 1

dim512 16 30 16 16
dim1024 16 42 16 16

Aggregation 7 278 7 1
Compound 6 126 4 1
Unbalance 8 103 8 8

can be used. Thus, by adjusting this value, AutoCloud is able to achieve different

granularization during identification of data clouds. The best value of m will

depend on the characteristics of analyzed data distribution. However, once the
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AutoCloud is executed online from the very first data sample, m can only be390

optimized if previous information about the data is available, which is not the

case for the problems presented in this paper. As future work, we will investigate

how to relate the value of m to some measure of data dispersion. Thus, we could

estimate a value of m adaptive, updated for each sample analyzed.

AutoCloud is built to cope with concept evolution by design, since it starts395

from scratch and creates and updates clusters on-demand. In Figure 12, we

illustrate the processes of creation and merging of data clouds for dim1024,

aggregation, and unbalance data sets.
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Figure 12: Creation and merging of data clouds in data sets (a) dim1024, (b) Aggregation e
(c) Unbalance.

It is possible to observe that, as the data stream is processed, the number

of data clouds tends to increase. This is due to the fact that AutoCloud can400

identify new concepts in the data stream and create new clusters to represent

them properly. Complementary, procedures of merging data clouds tend to

occur soon after the creation of a new cluster since, in many cases, the algorithm

realizes that the data cloud creation was not necessary, thus performing a self-
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regulating activity by the merging procedure.405

5. Conclusion

In this paper we presented an algorithm for data streams clustering called

AutoCloud. The obtained clusters are called data clouds. AutoCloud is an

evolving algorithm capable of autonomously identifying changes that occur in

the data stream distribution over time. Its evolving properties allow updating410

of data cloud parameters (concept drift), creation of new data clouds (concept

evolution) and merging of existing data clouds, in order to auto-adapt to changes

in the data stream over time.

Based on presented results, AutoCloud was able to correctly identify both

the quantity and the location of the analyzed clusters. In addition, the proposed415

strategy for merging of data clouds proved to be quite efficient. Other relevant

aspect that must be highlighted is that AutoCloud does not use representation

models of data distribution, thus it was able to identify clusters regardless of

their format.

Since AutoCloud is executed recursively and does not required data samples420

to be stored, it is very computationally efficient, processing- and memory-wise.

For future works, in order to improve the AutoCloud we intend to investigate

the use of the Mahalanobis distance as metric and to propose efficient strategies

to split clouds dynamically. In addition, we will also investigate how to obtain

an adaptive value of m, with this value being updated with each new sample425

analyzed.
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