
ar
X

iv
:1

91
2.

12
07

0v
1

 [
cs

.S
I]

 2
7

D
ec

 2
01

9

Combinatorial Trace Method for Network Immunization

Muhammad Ahmada, Sarwan Alia, Juvaria Tariqa, Imdadullah Khana,∗,
Mudassir Shabbirb, Arif Zamana

aLahore University of Management Sciences, Pakistan
bInformation Technology University, Pakistan

Abstract

Immunizing a subset of nodes in a network - enabling them to identify and

withstand the spread of harmful content - is one of the most effective ways to

counter the spread of malicious content. It has applications in network secu-

rity, public health policy, and social media surveillance. Finding a subset of

nodes whose immunization results in the least vulnerability of the network is

a computationally challenging task. In this work, we establish a relationship

between a widely used network vulnerability measure and the combinatorial

properties of networks. Using this relationship and graph summarization tech-

niques, we propose an efficient approximation algorithm to find a set of nodes to

immunize. We provide theoretical justifications for the proposed solution and

analytical bounds on the runtime of our algorithm. We empirically demonstrate

on various real-world networks that the performance of our algorithm is an or-

der of magnitude better than the state of the art solution. We also show that

in practice the runtime of our algorithm is significantly lower than that of the

best-known solution.

Keywords: Network Immunization, Spectral Methods, Combinatorial Trace,

Eigendrop, Closed Walks

∗Corresponding author
Email addresses: 17030056@lums.edu.pk (Muhammad Ahmad), 16030030@lums.edu.pk

(Sarwan Ali), 14070004@lums.edu.pk (Juvaria Tariq), imdad.khan@lums.edu.pk (Imdadullah
Khan), mudassir.shabbir@itu.edu.pk (Mudassir Shabbir), arifz@lums.edu.pk (Arif
Zaman)

Preprint submitted to Journal of Information Sciences December 30, 2019

http://arxiv.org/abs/1912.12070v1

1. Introduction

Graphs or networks are used to model many practical scenarios involving

pairwise interactions between entities. The entities could be humans, computers,

mobile devices, power components, etc. while interactions can be face-to-face

meetings, email and SMS communication and various kind of flows e.g. electric

current in a power infrastructure network or fluid in pipelines. Many of the

practical networks are very large with millions of nodes and edges.

Every interaction in such large networks can not be monitored and there is

a possibility of undesired and potentially harmful communication taking place

among entities in networks. Such undesired spread could be intentional or un-

intentional entailing various degrees of harms. The unintentional spread of

flu-virus, for instance, may be life-threatening and may cause an epidemic. A

rumor, on the other hand, may well be originated intentionally and its effect

might be limited to a particular segment of a network. An effective way to

safeguard a network against the spread of malicious content is to empower the

nodes. The strengthening process may amount to vaccinating people, deploying

surveillance systems at junctures and installing anti-virus software on computers

depending on the underlying network. The nodes with these added capabilities

will be referred to as the immunized nodes and the malicious content, as the

virus. Effectively, when a node is immunized, it will neither get contaminated

nor will it pass the contaminant to other nodes.

There is a cost associated with immunization, hence it is not feasible to

immunize all nodes in large networks. The problem to select a subset of nodes

(not exceeding a given budget) for immunization that will maximally hinder

the virus spread is called the Network Immunization Problem and is abstractly

formulated in [9] as follows:

Problem 1. Given an undirected graph G = (V,E), |V | = n and an integer

k < n, find a subset S of k nodes such that immunizing nodes in S, renders G

the least ‘vulnerable’ to a virus attack over all choices of S.

This requires a quantitative measure for the vulnerability of the graph. As in

2

the literature [9, 8, 3, 30], we use the largest eigenvalue of the adjacency matrix

of the graph to quantify the graph vulnerability. The objective in Problem 1,

therefore becomes that of immunizing a fixed-sized subset so as the remaining

graph has the minimum largest eigenvalue. More precisely,

Problem 2. Given an undirected graph G = (V,E), |V | = n and an integer

k < n, find a subset S of k nodes such that the largest eigenvalue of the adjacency

matrix of G−S (the matrix after removing the rows and columns corresponding

to S) is minimum over all choices of S.

A score function was proposed in [3, 30], for a subset of nodes based on the

number of small length closed walks a node is contained in. The number of fixed

length closed walks containing a node co-relates with the node’s contribution

towards the largest eigenvalue of the adjacency matrix of the graph. However,

while the longer walks provide a better approximation, only shorter walks were

considered due to time complexity. In this work, we propose a randomized

approximation approach to address the time complexity issue, and extend to

walks of length 8, resulting in considerable improvement in accuracy. Formally,

the contribution of this work can be summarized as follows:

• We extend the score function based on the number of closed walks of length

8 for sets of nodes that quantify the importance of sets to reduce the graph

vulnerability defined in [3]. This score function is monotonically non-

decreasing and sub-modular that enables employing greedily constructing

a set with improved approximation quality

• We derive a closed-form formula to compute the number of walks of length

8 passing through a node which may be of independent interest. We also

give an approximate method that closely estimates the number of walks

of length 8 passing through a node

• We evaluate the quality of our solution on several real-world graphs. We

show that our approximate method is a close estimate of the exact solution.

Results show that our approach maximally reduces the virus spread and

3

the vulnerability (the largest eigenvalue) of the immunized graph. More-

over, our algorithm is scalable on large graphs and has a lower runtime

based on the approximation parameters used. Comparisons also demon-

strate that our approach outperforms the state-of-art methods both in

terms of quality and runtime

The rest of the paper is organized as follows. In Section 2, we discuss the

related work and give the background of the problem in Section 3. In Section 4,

we present our solution along with its analysis. We report experimental results

and comparisons with the existing solution in Section 7.

2. Related Work

Information spread in networks is widely studied in epidemiology, sociology

and information sciences. Researchers are usually interested in estimating the

extent to which a contagion will affect the population, predicting the timeline

of infection and methods for containing or limiting the effect. The spreading

process is studied on a network: agents are represented by nodes and the poten-

tial spread of information between a pair of agents is modeled by the presence

of an edge between the corresponding pair of nodes. Popular models assume

the knowledge of an infection rate β (the rate at which an individual/agent

accepts content from its neighbors) and a rate of recovery δ (the rate at which

an individual/agent loses content). A relation between spread rate of virus and

the largest eigenvalue of adjacency matrix A of the graph, λmax(A), was estab-

lished in [36, 15]. In particular, they showed that if β < δ/λmax(A), then the

infection dies out in sub-linear time with respect to the size of the population

following a stochastic model. Similarly, an exponential lower bound on expected

die-out time or time for full network recovery (i.e. ≥ ecN where c is a constant

dependent on the infection rate and N is the size of population) is also known

when β > δ/λmax(A) [32, 33]. Recent works of [4, 16, 17] established a similar

relation of infection and recovery rates with λmax for infection spread or die-out

while approximating the stochastic model by a deterministic one.

4

Various studies have proposed preemptive methods to control virus spread

and avoid a potential outbreak of contagion. These methods remove a subset of

nodes or edges from the graph, so the remaining graph has the least λmax. This

problem has been shown to be Np-Complete in [9, 34]. An approximation

scheme to select nodes for immunization based on eigenvector corresponding to

λmax of the graph is devised in [9].

A combinatorial trace method is adopted in [3, 30, 2] to select a subset of

nodes whose removal will result in the maximum reduction in the λmax. The

trace of a large power of an adjacency matrix, Ap, is closely related to the

λmax(A) (also known as the spectral radius of the graph) [1]. Trace of Ap,

on the other hand, is just the count of the number of closed walks of length

p in the graph. Approximation algorithms are given in [3, 2] to select nodes

removing which will eliminate the most number of closed walks of length 4 from

the graph. Approximation of the number of closed walks of length 6 containing

a node using a randomly constructed summary of a graph is given in [30]. In

this paper, we extend this work by considering walks of length 8 that leads

to improved quality. We note that more sophisticated techniques from graph

summarization literature [19, 25, 26, 6] could be utilized to improve this work.

Edge removal techniques are also devised to minimize graph vulnerability.

Methods for selecting edges whose removal will reduce λmax the most are devised

in [18, 31]. In [18] virus spread is modeled by the dynamical system and the

transition function which defines the interaction of a node with its neighbors

and state of each node (healthy or infected) in order to reduce λmax.

In another line of work, non-preemptive techniques are devised in [38, 39, 28]

to immunize select nodes after the virus spread has started and the healthy and

infected nodes are known. In this setting, methods are evaluated by save ratio

(SR): the ratio of the number of affected nodes in a graph when k nodes are

immunized to the number of infected nodes in case of no immunization.

A reverse engineering technique is used to identify the nodes in a graph

where the virus spread is initiated [24]. A related problem is to decontaminate

the graph by deploying cleaning agents at certain nodes that travel along edges.

5

Monotonicity is assumed in [7, 13, 12, 14] that a node cleaned by the agent will

not get affected again. Non-monotonic strategies are given in [10].

Some other problems related to graph immunization include the influence

maximization [21], the filter placement [11] and the critical node detection prob-

lem (CNDP) [5, 20, 35]. In the influence maximization problem, the goal is to

find a subset of nodes whose activation will lead to the maximal spread of infor-

mation across the graph. The filter placement problem deals with minimizing

the multiplicity of information flowing across the network. In CNDP, the goal

is to identify nodes whose removal results in maximum graph fragmentation.

3. Preliminaries

In this section, we formulate the immunization problem. Given a simple

graphG = (V,E), the goal is to select a subset S of k nodes such that removing S

from the graph maximally reduces the largest eigenvalue of the remaining graph

denoted by λmax(A|−S). Since λmax can be computed in O(|E|), the optimal

subset of nodes can be found by iterating through each of the
(

n
k

)

subsets.

The overall runtime of this brute force algorithm is O(
(

n
k

)

· |E|) rendering it

computationally infeasible even for moderately large graphs.

Indeed, it turns out that Problem 2 is NP-Hard. A reduction from Min-

imum Vertex Cover Problem is as follows: if there exists a set S with |S| = k

such that λmax(A|−S) = 0, then S is a vertex cover of the graph. It follows

from the following implication of famous Perron-Frobenius theorem:

Fact 1. Deleting an edge from a simple connected graph G strictly decreases the

largest eigenvalue of the corresponding adjacency matrix [27].

Also, if there is a vertex cover S of the graph such that |S| = k, then deleting

S will result in an empty graph which has eigenvalue zero.

Although Problem 2 is NP-Hard, its objective function is monotone and

sub-modular. The greedy algorithm (Greedy-1) guarantees (1+1/e)-approximation

(e is the base of the natural logarithm) to Problem 2 by Theorem 1.

6

Theorem 1. [22] Let f be a non-negative, monotone and submodular function,

f : 2Ω → R. Suppose A is an algorithm, that chooses a k elements set S by

adding an element u at each step such that u = argmax
x∈Ω\S

f(S ∪ {x}). Then A is

(1 + 1/e)-approximate algorithm.

Algorithm 1 : Greedy-1 (G,k)

S ← ∅
while |S| < k do

v ← argmin
x∈V \S

(λ1(A−{S∪{x}}))

S ← S ∪ {v}

return S

We refer to the achieved benefit after immunizing subset S as eigendrop and

is defined as λmax(A)−λmax(A|−S). A score, termed as shield-value, is assigned

to each subset S ⊂ V , which quantifies the approximated eigendrop achieved

after removing S. Frequently used symbols in the paper are listed in Table 1.

Symbol Definition & Description

A adjacency matrix of the graph G
G|−S subgraph after removing node set S from the graph G
A|−S adjacency matrix of the graph G|−S

λi(A) ith largest eigen value of matrix A on the basis of magnitude
λmax(A) the largest eigen value of matrix A i.e. λmax(A) = λ1(A)
∆λ(S) λmax(A)−λmax(A|−S); eigendrop achieved by immunizing node

set S
Ap pth power of (adjacency) matrix A
CWp(v,G) the set of p-length closed walks in G containing v
CWp(S,G) the set of p-length closed walks in G containing at least one

vertex from S
Wp(v,G) number of p-length closed walks in G containing v
Wp(S,G) number of p-length closed walks in G containing at least one

vertex from S
dG(v) degree of node v in graph G

Table 1: List of Symbols

7

4. Proposed Shield Value

In this section, we quantify the importance of a subset of nodes for immu-

nization. We first derive a score for each set of size k that closely measures the

value of the objective function of Problem 2. We prove that this score function

is monotonically increasing and submodular. Using Theorem 1 we can greed-

ily build up the set S by iteratively selecting nodes that are contained in the

maximum number of closed walks of length p.

Let A be an n × n matrix; the following two fundamental results from al-

gebraic graph theory [29, 37, 23] relate the eigen spectrum and the trace of

A.

Fact 2.

trace(A) =

n
∑

i=1

A(i, i) =

n
∑

i=1

λi(A)

Fact 3.

trace(Ap) =

n
∑

i=1

λi(A
p) =

n
∑

i=1

(λi(A))
p

From the theory of vector norms [29] and Fact 3 we know that

lim
p→∞
p even

(trace(Ap))1/p = lim
p→∞
p even

(

n
∑

i=1

λi(A)
p

)1/p

= lim
p→∞

(

n
∑

i=1

|λi(A)|
p

)1/p

= max
i
{λi(A)} = λmax(A)

Using the above relation we establish that for the immunization problem, we

want to find a subset S of nodes in graph G which, when removed, minimizes

trace((A|−S)
p). Next, we derive a combinatorial form of this objective function.

As described in Table 1, for a vertex v ∈ V (G), CWp(v,G) is the set of

all closed walks of length p in the graph G containing v at least once and

Wp(v,G) = |CWp(v,G)|. Similarly, CWp(S,G) denotes the set of closed walks

of length p in G containing at least one vertex from S and correspondingly

Wp(S,G) = |CWp(S,G)|. We use the following combinatorial definition of trace.

8

Fact 4. [37] Given a graph G = (V,E) with adjacency matrix A,

Wp(V,G) = trace(Ap)

From Fact 4 and definition of trace (Fact 2), we get that

Wp(V,G) =Wp(V \ S,G|−S) +Wp(S,G) (1)

This is true because any walk in G either contains some vertex in S or it does

not contain any vertex in S. The former type of walks are counted exactly once

in the termWp(S,G), while the first term counts closed walks of the latter type.

Equation (1) can be equivalently rewritten as

trace(Ap) =trace((A|−S)
p) +Wp(S,G)

=⇒ trace((A|−S)
p) = trace(Ap)−Wp(S,G)

Thus for a fixed graphG (since trace(Ap) is constant) minimizing trace((A|−S)
p)

is equivalent to maximizing Wp(S,G). This implies that the set S with the

largest value of Wp(S,G) will yield the maximum eigendrop. Intuitively, we

need to identify nodes contained in many closed walks of length p (nodes with

highWp(v,G)). We define the following shield value of a set S, that in addition

to maximizingWp(S,G), attempts to select those nodes which are far from each

other i.e. having A(u, v) = 0 in order to maximize the number of distinct closed

walks going through nodes in a set S.

scorep(S) = γ
∑

v∈S

Wp(v,G)2 −
∑

u,v∈S

Wp(v,G)A(u, v)Wp(u,G), (2)

where γ is a positive constant. Hence Problem 2 can be rephrased as follows.

Problem 3. Let G = (V,E) be an undirected graph on n nodes and let k be an

integer k < n, find a subset of nodes S ⊂ V , with |S| = k such that scorep(S)

is the maximum over all k-subsets of V .

For fixed p, given Wp(v,G), ∀v ∈ V , scorep(S) can be evaluated in time

O(k2) . Selecting a set with maximum scorep(S) takes O(
(

n
k

)

k2) time which

9

clearly is computationally prohibitive. Furthermore, note that for this we need

to have the values of Wp(v,G) pre-computed, which is not straight-forward.

We show that the objective function of Problem 3 is monotone and sub-

modular. Given Wp(v,G), by Theorem 1, the greedy strategy for building up

the set will yield (1− 1/e)-approximation of the optimal subset.

Theorem 2. For p ≥ 1, scorep(S) is monotonically non-decreasing.

Proof. We prove that for any X ⊂ Y ⊆ V , scorep(X) ≤ scorep(Y). Let

E,F ⊂ V (G) and x ∈ V (G) such that F = E ∪ {x}. Consider

scorep(F)− scorep(E)

=γ
∑

v∈F

Wp(v)
2 −

∑

u,v∈F

Wp(v)A(u, v)Wp(u)− γ
∑

v∈E

Wp(v)
2

+
∑

u,v∈E

Wp(v)A(u, v)Wp(u)

=γWp(x)
2 −

∑

v∈E

Wp(v)A(x, v)Wp(x) =Wp(x)[γWp(x)−
∑

v∈E

Wp(v)A(u, v)] ≥ 0

Since γ > 0, for γ ≥ kmaxv∈V (G){Wp(v)}, the last inequality is satisfied. Hence,

scorep(S) function is monotonically non-decreasing.

Theorem 3. For p ≥ 1, scorep(S) is submodular.

Proof. For any subsets X,Y , with X ⊂ Y ⊆ V and a subset Z ⊂ V such

that Z ∩ Y = ∅, we have scorep(X ∪ Z) − scorep(X) is at least as large as

10

scorep(Y ∪ Z)− scorep(Y). Let I, J,K ⊂ V (G) with I ⊂ J . We have

scorep(I ∪K)− scorep(I)− scorep(J ∪K) + scorep(J)

=
(

γ
∑

v∈I∪K

Wp(v)
2 −

∑

u,v∈I∪K

Wp(v)A(u, v)Wp(u)− γ
∑

v∈I

Wp(v)
2

+
∑

u,v∈I

Wp(v)A(u, v)Wp(u)
)

−
(

γ
∑

v∈J∪K

Wp(v)
2 −

∑

u,v∈J∪K

Wp(v)A(u, v)Wp(u)

− γ
∑

v∈J

Wp(v)
2 +

∑

u,v∈J

Wp(v)A(u, v)Wp(u)
)

=
(

γ
∑

v∈K

Wp(v)
2 −

∑

u,v∈K

Wp(v)A(u, v)Wp(u)− 2
∑

u∈K,v∈I

Wp(v)A(u, v)Wp(u)
)

−
(

γ
∑

v∈K

Wp(v)
2 −

∑

u,v∈K

Wp(v)A(u, v)Wp(u)− 2
∑

u∈K,v∈J

Wp(v)A(u, v)Wp(u)
)

=2
∑

u∈K,v∈J

Wp(v)A(u, v)Wp(u)− 2
∑

u∈K,v∈I

Wp(v)A(u, v)Wp(u)

=2
∑

u∈K,v∈J\I

Wp(v)A(u, v)Wp(u) ≥ 0

5. Computing Walks of Length 8

The proposed shield value,scorep(S), quantifies the importance of set S

based on the number of p-length closed walks containing nodes from S. Build-

ing S requires Wp(v,G) for all v ∈ V . A closed-form of Wp(v,G) depends on

the actual value of p. In practice, the value of p = 8 produces the set S with

sufficient quality. We select nodes in a graph based on the number of closed

walks of length 8 (referred to as 8-walks) for immunization purposes.

5.1. Justification for p=8

Recall that our aim is to find a set S that minimizes λmax(A|−S). From

(1), we get that for large p, trace(Ap) approaches λmax(A)
p. Hence, we find

a set S with minimum trace(A|p−S). We show that in practice trace(A8) =
∑n

i=1 λi(A
8) is sufficiently close to λmax(A

8). This is demonstrated by showing

11

that in real world graphs
λmax(A

8)
∑n

i=1 λi(A8)
=

λmax(A
8)

trace(A8)
is close to 1 specially if

there is significant eigen-gap
(

λmax(A) − λ2(A)
)

. In other words, λmax(A
8) is

the most dominant term in trace(A8) and the combined effect of the other terms
(

λ2(A
8) + · · ·+ λn(A

8)
)

diminishes.

Graph |V | λmax(A) λ2(A) λmax(A
8)

∑n
i=1 λi(A8)

EngineeringApplicationofAI 4164 16 13.2 0.756

Facebook 4039 162.4 125.5 0.859
Email 1005 77.2 36.9 0.993
AICommunication 1203 33 12.1 0.999

Table 2: Ratio of λmax(A8) to
∑n

i=1
λi(A

8) is shown. Note that as relative eigen gap in-
creases, the ratio approaches to 1. We show the ratio only for moderately large graphs because
computing all n eigen values for very large graphs takes very long time.

5.2. Closed-Form Expression for W8(v,G)

We derive a closed-form expression for computing W8(v,G). To the best of

our knowledge, we are the first one to derive such expression.

Theorem 4.

W8(v,G) =8A8(v, v)− 8A2(v, v)A6(v, v)− 8A3(v, v)A5(v, v)− 4(A4(v, v))2

+ 8A2(v, v)(A3(v, v))2 + 8(A2(v, v))2A4(v, v) − 2(A2(v, v))4

Proof. An 8-walk in G is represented as W = (a, b, c, d, e, f, g, h, a) and the goal

is to compute the number of 8-walks containing a node v. Node v can occur

at most four times in an 8-walk and we consider each case of the number of

occurrences of v as follows.

Let T{l1,··· ,li}, 1 ≤ i ≤ 4 be the collection of 8-walks containing v exactly i

times. For W ∈ T{l1,··· ,li}, then W starts and ends at v and can be written

as concatenation of walks of lengths l1, · · · , li, each starting and ending at v.

We note that 2 ≤ lk ≤ 8, for 1 ≤ k ≤ 4, and
∑i

k=1 lk = 8. For example

12

T{2,3,3} contains the walks of type (v, a, v, b, c, v, d, e, v) i.e. it is sequence of

(v, a, v), (v, b, c, v) and (v, d, e, v).

The rotations of nodes in a walk give different, and sometimes distinct,

walks. Given a walk (a, b, c, d, e, f, g, h, a), one vertex left rotation will produce

another walk (b, c, d, e, f, g, h, a, b). So recurrent, one vertex, rotations of walks

in T{l1,··· ,li} can give up to 8|T{l1,·,li}| different walks.

We count the walks of each type i.e. walks in T{2,2,2,2}, T{2,2,4}, T{2,3,3},

T{2,6}, T{3,5}, T{4,4}, T{8} and their distinct rotations. In counting there are

cases when walks in T{2,3,3} are considered and these are different from walks

in T{3,2,3}, but |T{2,3,3}| = |T{3,2,3}|.

First, we count the number of walks containing v exactly 4 times. The

walk (v, a, v, b, v, c, v, d, v), where {a, b, c, d} ∈ N(v), is represented as T{2,2,2,2}

as concatenation of 4 closed walks of length 2. The number of such walks

is (A2(v, v))4. In this case, only one vertex rotation is possible which gives

(a, v, b, v, c, v, d, v, a) because a second rotation gives the same original walk.

Hence, the number of walks containing v exactly 4 times is 2(A2(v, v))4.

The walks having v exactly 3 times are contained in T{2,3,3} and T{2,2,4}.

The number of walks in T{2,3,3} is A2(v, v)(A3(v, v))2 and for each walk in this

set, 8 distinct walks are possible after rotations. The total number of walks

containing v 3 times is 8
[

A2(v, v)(A3(v, v))2
]

.

A walk in T{2,2,4} is concatenation of (v, a, v), (v, b, v), (v, c, d, e, v), where

d 6= v. Number of all walks of form (v, a, v, b, v, c, d, e, v) is at most 8(A2(v, v))2A4(v, v)

but this number includes walks with d = v as well. To exclude those, we note

that when d = v, walk is of type T{2,2,2,2} which we have already counted in

first case. Subtracting the instance when d = v in (v, a, v, b, v, c, d, e, v), we get

|T{2,2,4}| = (A2(v, v))2A4(v, v) − (A2(v, v))4. All 8 vertex rotations of walks in

T{2,2,4} give distinct walks. The total number of 8-walks containing v thrice is

=8|T{2,2,4}|+ 8|T{2,3,3}|

=8
[

(A2(v, v))2A4(v, v)− (A2(v, v))4
]

+ 8
[

A2(v, v)(A3(v, v))2
]

13

Walks containing v exactly twice are represented as T{3,5}, T{2,6} and T{4,4}.

A walk in T{3,5} is of the form (v, a, b, v, c, d, e, f, v) where d, e 6= v. The num-

ber of walks with d = v and e = v is |T{3,2,3}| and |T{3,3,2}|. So |T{3,5}| =

A3(v, v)A5(v, v) − 2A2(v, v)(A3(v, v))2. In this case, vertex rotations give 8

distinct walks.

Walks in T{2,6} are of the form (v, a, v, b, c, d, e, f, v) where c, d, e 6= v. There

are maximum A2(v, v)A6(v, v) walks of type T{2,6} but these include walks with

c = v, d = v, e = v and c, e = v. For c = v and e = v, we get walks of types

T{2,2,4} and T{2,4,2} respectively while if d = v then it is a walk of type T{2,2,2,2}.

For d = v, we get walk of type T{2,3,3}.

|T{2,6}| =A2(v, v)A6(v, v)− 2|T{2,2,4}| − |T{2,3,3}| − |T{2,2,2,2}|

=A2(v, v)A6(v, v)− 2(A2(v, v))2A4(v, v)−A2(v, v)(A3(v, v))2 + (A2(v, v))4

In the case of T{2,6}, rotations of vertices give 8 different walks.

The number of walks of type T{4,4} in (A4(v, v))2 but it also includes |T{2,4,4}|

and |T{2,2,2,2}|. Therefore, we get

|T{4,4}| = (A4(v, v))2 − 2|T{2,2,4}| − |T{2,2,2,2}|

= (A4(v, v))2 − 2(A2(v, v))2A4(v, v) + (A2(v, v))4

In this case, only the first 4 vertex rotations give different walks and 5th

rotation gives the original walk. The total number of walks containing v exactly

twice is

=8|T{3,5}|+ 8|T{2,6}|+ 4|T{4,4}|

=8
[

A3(v, v)A5(v, v) − 2A2(v, v)(A3(v, v))2
]

+ 8[A2(v, v)A6(v, v)

− 2(A2(v, v))2A4(v, v)−A2(v, v)(A3(v, v))2 + (A2(v, v))4] + 4
[

(A4(v, v))2

− 2(A2(v, v))2A4(v, v) + (A2(v, v))4
]

=8A3(v, v)A5(v, v) + 8A2(v, v)A6(v, v) + 4(A4(v, v))2 − 24A2(v, v)(A3(v, v))2

− 24(A2(v, v))2A4(v, v) + 12(A2(v, v))4

14

T{8} consists of walks containing v only once and are of the form (v, a, b, c, d, e, f, g, v).

The number of such walks is A8(v, v). But this includes walks with some com-

binations of b, c, d, e, f equal to v as well. Subtracting already counted walks

from T{8} gives

|T{8}| =A8(v, v) − 2A2(v, v)A6(v, v)− 2A3(v, v)A5(v, v)− (A4(v, v))2

+ 3A2(v, v))2A4(v, v) + 3A2(v, v)(A3(v, v))2 − (A2(v, v))4

In T{8}, vertex rotations give 8 distinct walks so the number of walks con-

taining v once is

8|T{8}| =8A8(v, v) − 16A2(v, v)A6(v, v)− 16A3(v, v)A5(v, v) − 8(A4(v, v))2

+ 24A2(v, v))2A4(v, v) + 24A2(v, v)(A3(v, v))2 − 8(A2(v, v))4

Combining all the four cases of occurrence of v in 8-walk gives

W8(v,G) =2|T{2,2,2,2}|+ 8|T{2,2,4}|+ 8|T{2,3,3}|+ 8|T{3,5}|+ 8|T{2,6}|

+ 4|T{4,4}|+ 8|T{8}|

=8A8(v, v)− 4(A4(v, v))2 − 8A2(v, v)A6(v, v)− 8A3(v, v)A5(v, v)

+ 8A2(v, v)(A3(v, v))2 + 8(A2(v, v))2A4(v, v) − 2(A2(v, v))4

6. Proposed Algorithm

In this section, we give our algorithm to compute the number of 8-walks

passing through each vertex and select nodes for immunization. Recall from

Theorem 4 that computing number of 8-walks requires 8th power of the ad-

jacency matrix A. Let f(n) be the running time for taking 8th power of A.

Computing W8(v,G) for all v ∈ V using Theorem 4 takes O(n + f(n)) time.

Note that while for many real-world graphs A is sparse; this does not necessarily

hold for A2 and higher powers of A. The above runtime, therefore is prohibitive

15

for real-world graphs, since best-known bounds on f(n) are super-quadratic.

We propose to approximately compute W8(v,G) from a summary of G [19,

26, 6]. Given a graph G = (V (G), E(G)) on n nodes, a summary H of G,

H = (V (H), E(H)) is a graph on t nodes with weights on both its nodes and

edges. V (H) = {V1, . . . , Vt} is a partition of V (G), i.e. Vi ⊂ V (G) for 1 ≤

i ≤ t, Vi ∩ Vj = ∅ for i 6= j and
⋃t

i=1 Vi = V (G). Each Vi (called supernode)

is associated with two integers ni = |Vi| and ei = |{(u, v)|u, v ∈ Vi, (u, v) ∈

E(G)}|. Weight of an edge (Vi, Vj) ∈ E(H) (called superedge), is eij : the

number of edges in the bipartite subgraph induced between Vi and Vj i.e. eij =

|{(u, v)|u ∈ Vi, v ∈ Vj , (u, v) ∈ E(G)}|. The original graph G is approximately

reconstructed from H as the expected adjacency matrix, A′
n×n with a row and

column corresponding to each u ∈ V (G) given as:

A′(u, v) =



























0 if u = v

ei

(ni
2)

if u, v ∈ Vi

eij
ninj

if u ∈ Vi, v ∈ Vj

Let H be a summary graph of G on t supernodes and let C be its adjacency

matrix. Clearly, Cp(i, j) is the number of walks of length p from nodes in Vi to

nodes in Vj . We estimate the contributions of v ∈ Vi to Cp(i, i) by αp(v).C
p(i, i),

where αp(v) =
dG(v)

p

∑

u∈Vi
dG(u)p

. Our estimate for W8(v,G) is

W ′
8(v,G) =8C8(i, i)α8(v) − 8dG(v)6C

6(i, i)α6(v)− 8C5(i, i)α5(v)C
3(i, i)α3(v)−

4
(

C4(i, i)α4(v)
)2

+ 8dG(v)
(

C3(i, i)α3(v)
)2

+ 8dG(v)
2C4(i, i)α4(v)− 2dG(v)

4

(3)

This expression is same as that of Theorem 4 except for p ≥ 3, Ap(v, v) is

substituted by αp(v).C
p(i, i) where Vi ∋ v. Note that A2(v, v) = dG(v).

We construct a summary H of G by randomly partitioning V (G) into t

parts. There are better techniques [19, 26, 6] for graph summarization that

might result in enhanced estimates.

16

6.1. Proposed Walk-8 Algorithm

We select a subset S that approximately maximizes score8(S) as given in (2).

In Algorithm 2, Line 3 computes W vector using (3) and W [i] is the estimated

number of walks of length 8 containing vertex vi. In each iteration of Lines 7-15,

we greedily extend S by adding a node with the highest score (Line 11). Line

13 excludes nodes already selected in S from further consideration.

Algorithm 2 : Walk-8(A,k,t)

1: S ← ∅
2: W2, Score← zeros(n)
3: W ← EstimateWalks(A, t) ⊲ compute approx. count of walks using

super graph of order t based on Eq. (3)
4: γ ← maxi W [i]
5: for i = 1 to n do

6: W2[i]← γW [i]2

7: for i = 1 to k do

8: u ← A[:, S] ∗W [S]
9: for j = 1 to n do

10: if j /∈ S then

11: Score[j]←W2[j]− 2u[j]W [j]
12: else

13: Score[j]← −1

14: maxNode← argmaxj Score[j]
15: S ← S ∪ {maxNode}

16: return S

6.2. Runtime Analysis of Walk-8

We derive analytical bounds on the runtime of Algorithm 2. Partitioning

G into t supernodes takes O(n) time as it can be done with a linear scan on

V (G) to put nodes in respective buckets (supernodes). Computing the summary

graph (populating the weighted adjacency matrix, C) requires traversing the

edges E(G) and incrementing the appropriate entry of C. This takes a total of

O(|E(G)|) time. The powers of C matrix can be computed in O(t3) time. Thus

EstimateWalks function takes O(n + |E(G)| + t3) time. Line 4 and the first

for loop (Lines 5-6) takes O(n) steps. An iteration of the inner for loop (Lines

9-13) takes O(n+ nk) and Line 14 takes O(n) steps. This shows that the outer

17

loop (Line 7-15) takes
∑k

i=1 O(n+nk) = O(nk2). Therefore, Algorithm 2 takes

total O(n+ |E(G)| + t3 + nk2) time.

7. Experimental Evaluation

We present the results of the detailed experimentation of our proposed solu-

tion in this section. Experiments are performed on several real-world datasets to

analyze the performance of our method and results are compared with NetShield1,

the state of art algorithm, to evaluate quality, scalability and efficiency. NetShield

computes the score of each node using the eigenvector corresponding to the

largest eigenvalue λmax of the original graph. Walk-6 and Walk-8 versions

of our algorithm select nodes for immunization based on 6-walks and 8-walks

respectively passing through each node.

We evaluate the performance of our algorithm across a range of budgets for

the number of nodes to be immunized in the graphs and different counts of

supernodes for approximation. First, we evaluate the quality of our approxi-

mation technique. To show that our approach maximally reduces the spread

of the virus across the graph, we give results for the virus spread simulation

on graphs immunized by NetShield, Walk-6 and Walk-8. Furthermore, we

measure quality in terms of the reduction in λmax (vulnerability) of the graph

after immunizing the set S of selected nodes. We report results using eigendrop

percentage, which is ∆λ(S)
λmax(A) × 100. Finally, we give runtime comparisons for

the above-mentioned techniques.

We performed experiments on a standard desktop machine with 3.6 GHz

Intel Core i7-7700 and 8 GB of main memory. The Matlab code for our

algorithm is available 2 for reproducibility and further experimentation.

1https://www.dropbox.com/s/aaq5ly4mcxhijmg/Netshieldplus.tar
2https://www.dropbox.com/sh/n7hwjc4imh62pe6/AADCyHG7uMGX6o9xtr1pdH6Qa?dl=0

18

https://www.dropbox.com/sh/n7hwjc4imh62pe6/AADCyHG7uMGX6o9xtr1pdH6Qa?dl=0

Network Number of Nodes Number of Edges λmax(A)
HEP-TH 9,877 25,998 31.03
Facebook 4,039 88,234 162.37
Gowalla 196,591 950,327 170.94
Dblp 317,080 1,049,866 115.85
Amazon 334,863 925,872 23.98
AA 418,236 2,753,798 -
Youtube 1,134,890 2,987,624 210.40
Skitter 1,696,415 11,095,298 670.35

Table 3: Statistics of Datasets

7.1. Datasets

Experiments are performed on real-world graphs of order ranging from a few

thousands to a few millions nodes. All graphs are undirected and unweighted.

HEP-TH3 is a collaboration network of High Energy Physics - Theory category

extracted from the e-print arXiv. A node in the network represents an author

and an edge between two authors shows collaboration between them. Facebook3

graph shows the friendship network among users in which people are represented

as nodes and relationships among two users are shown as edges.

To test our algorithm on large networks we use five different real-world

graphs. Gowalla3 dataset shows friendship relations in a location-based so-

cial network. Amazon3 is a co-purchasing graph of products where each node

is a product and there is an edge between two nodes if the products are pur-

chased by a user in a single basket. Dblp3 is a co-authorship network in which

two authors are connected if they have co-authored at least one publication.

Youtube3 graph shows the friendship network of users in the Youtube social

network. Skitter3 is an internet topology network where nodes correspond to

autonomous systems and communication between them constitutes edges.

The dataset AA4 is a co-authorship network extracted from DBLP archive

data. We select 4 different smaller co-authorship subgraphs each corresponding

to manuscripts in a distinct journal. Node count goes up to a few thousands

3https://snap.stanford.edu/
4http://dblp.uni-trier.de/xml/

19

Network Number

of Nodes

Number

of Edges

λmax(A)

Applied Mathematics and
Computing (AMC)

18,371 24,224 10.99

Decision Support Systems (DSS) 4,926 14,660 12.0
Ecological Informatics (EI) 1,990 4,913 16.68
Communication ACM 11,476 16,687 32.90

Table 4: Statistics of AA subgraphs

and edge count goes up to a few ten thousands for extracted subgraphs. Details

of the subgraphs of AA data set are provided in Table 4.

7.2. Approximation Quality of Walk-8

In order to evaluate the goodness of our approximate method, we compare it

with the exact solution as described in Theorem 4. The exact number of closed

walks of length 8 can be computed using the original adjacency matrix A as

given in Theorem 4 instead of using a summary graph. We analyze the quality

of our approximation method by comparing the eigendrop percentages achieved

using the exact and approximate method. We report comparison results of the

exact solution with the summary graphs of order {100, 500, 1000}.

0 50 100 150 200
0

10

20

30

40

50

60

k

E
ig

en
d
ro

p
%

(a) HEP-TH

0 50 100 150 200
0

10

20

30

40

50

60

k

(b) AMC

0 50 100 150 200
0

10

20

30

40

50

60

k

(c) DSS

Walk-8(100) Walk-8(500) Walk-8(1000) Walk-8(exact) NetSheild

Figure 1: The effect of the order of summary graph on the quality of the approximation. Eigen-
drop percentages using different numbers of supernodes have been reported (Walk-8(t), where
t is the number of supernodes). It is clear that as t increases, the quality of approximation
tends to match with that of the exact solution.

20

It is clear from Figure 1 that the performance of our approximate method

improves with the increase in the number of supernodes in the summary graph.

As the order of the summary graph increases, the achieved benefit tends to

match with that of the exact solution. Note that we compute the exact number

of walks for small graphs having the order of a few thousands only as it is

computationally infeasible to compute the exact solution for large graphs.

7.3. Virus Spread Simulation

Another criterion used for quality evaluation is to estimate the spread of

virus propagation in the immunized version of the graph. We use SIR virus

propagation model to observe the spread of contagion after immunizing a small

subset (∼ 5 %) of nodes in a graph. Let s = λmax × β/δ be the virus strength

(larger value of s corresponds to more strength of virus while the virus gradually

dies out if s ≤ 1), where β and δ denote the infection and recovery rate respec-

tively. In our experimentation, we immunize k nodes in a graph and infect all

the nodes in the immunized version of the graph. We then observe the spread of

the virus under different virus strengths with varying values of β and δ. Results

in Figure 2 show that the graphs immunized by our approach have less number

of infected nodes as compared to NetSheild. We report the average of 3 runs

of experiments to mitigate the effect of randomness.

7.4. EigenDrop Percentage Comparison

We compare the quality of approximate versions of our algorithms with Net-

Sheild in terms of eigendrop and results are shown in Figure 3. For smaller

graphs and subgraphs of AA which consist of a few thousand nodes, a budget

of up to 100 nodes is used and for large graphs with more than 100, 000 nodes,

we immunize up to 1000 nodes. We have used summary graphs with different

orders (100, 500, 1000) to perform experiments. Time complexity increases as

the number of supernodes increases but we observe that there is a proportion-

ately minor improvement in the quality of solution for increasing order of graph

21

0 0.2 0.4 0.6 0.8 1

·104

0.1

0.2

0.4

0.8
1

Time step

F
ra

ct
io

n
o
f
In

fe
ct

ed
N

o
d
es

(DSS, 250, 12, 0.2, 0.2)

0 0.2 0.4 0.6 0.8 1

·104

0.2

0.4

0.6

0.8

1

Time step

(DSS, 250, 24, 0.2, 0.1)

0 0.2 0.4 0.6 0.8 1

·104

0.2

0.4

0.6

0.8

1

Time step

(DSS, 250, 30, 0.25, 0.1)

0 0.4 0.8 1.2 1.6 2

·104

0.5

0.6

0.8

1

Time step

F
ra

ct
io

n
o
f
In

fe
ct

ed
N

o
d
es

(AMC, 200, 43, 0.2, 0.05)

0 0.4 0.8 1.2 1.6 2

·104

0.3

0.4

0.6

0.8

1

Time step

(AMC, 200, 21, 0.2, 0.1)

0 0.4 0.8 1.2 1.6 2

·104

0.3

0.4

0.6

0.8

1

Time step

(AMC, 200, 14, 0.2, 0.15)

0 0.4 0.8 1.2 1.6 2

·104

0.1

0.2

0.6

0.8

1

Time step

F
ra

ct
io

n
o
f
In

fe
ct

ed
N

o
d
es

(EI, 100, 8, 0.1, 0.2)

0 0.4 0.8 1.2 1.6 2

·104

0.1

0.2

0.6

0.8

1

Time step

(EI, 100, 6, 0.1, 0.25)

0 0.4 0.8 1.2 1.6 2

·104

0.1

0.2

0.6

0.8
1

Time step

(EI, 100, 5, 0.1, 0.3)

Walk-6 Walk-8 NetSheild

Figure 2: Virus propagation simulation for varying virus strength s on the immunized version
of graphs. Caption of each plot represents (graph name, number of immunized nodes k, s,
infection rate β, recovery rate δ). Initially, all the nodes in the graphs were contaminated and
the plots show the fraction of infected nodes (y-axis logged scale) as the time proceeds.

after a certain threshold is reached. For smaller graphs, we report results for

supernode count of 500 and for large graphs, the number of supernodes is set

to 1000.

22

0 200 400 600 800 1000

0

10

20

30

40

50

E
ig

en
d
ro

p
%

(a) Amazon

0 200 400 600 800 1000

0

10

20

30

40

50

(b) Dblp

0 200 400 600 800 1000

10

20

30

40

50

60

70

(c) Gowalla

0 200 400 600 800 1000

20

30

40

50

60

E
ig

en
d
ro

p
%

(d) Youtube

0 200 400 600 800 1000

0

10

20

30

40

50

60

70

(e) Skitter

0 20 40 60 80 100

0

10

20

30

40

(f) Facebook

0 20 40 60 80 100

0

10

20

30

40

50

k

E
ig

en
d
ro

p
%

(g) Communication ACM

0 20 40 60 80 100

0

10

20

30

40

k

(h) EI

0 20 40 60 80 100

0

10

20

k

(i) AMC

Walk-6 Walk-8 NetSheild

Figure 3: Comparison of NetSheild, Walk-6 and Walk-8 in terms of eigendrop percentages
(y-axis) against budget k, number of nodes immunized, (x-axis). Walk-6 and Walk-8 achieve
significantly higher eigendrop for increasing k. Results in (a)-(e) are computed using 1000
supernodes while in (f)-(i) experiments are performed using summary graph of order = 500.
The range for k is chosen keeping in view the number of nodes in the host graphs.

We observe that the immunizing quality of our algorithm clearly outperforms

NetSheild in terms of eigendrop. The improvement in quality of solution is

particularly evident on large graphs Gowalla Figure 3c, Youtube Figure 3d,

and Skitter Figure 3e. For reasonably large budget, Walk-8 outperforms both

23

NetSheild and Walk-6. Experiments also reveal that NetSheild performs

better than our approach for very small values of budget k but as the count of

nodes to be immunized increases, its effectiveness degrades.

7.5. Run Time Comparison

We also present comparable computational cost while achieving much better

quality as one of the merits of our algorithm as discussed in the theoretical

time complexity in Section 4. Comparison of runtimes of NetSheild, Walk-

6 and Walk-8 is provided in Figure 4. Results show that the runtime of our

algorithm matches with that of NetSheild. The results are reported with 1000

supernodes (t) in summary graphs.

0 200 400 600 800 1000
0

1

2

3

4

5

k

T
im

e
T
a
k
en

(s
)

Amazon

0 200 400 600 800 1000
0

1

2

3

4

5

k

Gowalla

0 200 400 600 800 1000

4

8

12

16

20

22

k

Youtube

Walk-6 Walk-8 NetSheild

Figure 4: Comparison of time taken (in seconds) to immunize graphs using NetSheild,
Walk-6 and Walk-8 approach against the number of nodes to be immunized (k). Results
are reported on summaries with 1000 supernodes.

Recall that runtime of our algorithm is O(n + |E(G)| + t3 + nk2), where

the first three terms comprise runtime of constructing a summary of order t

and computing the W8(v,G) for all v ∈ V (G), while the last term (nk2) is the

runtime to select the best k nodes (NetSheild also requires O(nk2) for this

task). Hence runtime of our algorithm depends quadratically only on k, which

generally is a small constant. We note that our runtime is superior to that

of NetSheild in the sense that in relatively less time we achieve significantly

more eigendrop even for a small value of t (see Figure 1).

24

8. Conclusion

In this work, we address the problem of finding a small subset of nodes in a

network whose immunization results in a significant reduction in network vulner-

ability towards the spread of undesirable content. We explored the relationships

between spectral and graph-theoretic properties of networks and exploit these

relationships to design an efficient algorithm to find crucial nodes in the network.

We select a subset of nodes for immunization based on the number of closed

walks of length 8. With the use of easily computable local graph properties and

approximation techniques, the running time of our technique is linear in the size

of the graph. Thus, our method is scalable and can be applied to large graphs.

Experiments on large real-world networks suggest that our algorithm provides

better results than previously employed methods and is significantly faster in

terms of time complexity. The approximation quality comparison shows that

our method is a close approximation of the exact solution. Experimental results

for various quality measures like virus spread simulation, reduction in network

vulnerability and the run time comparison show that our method performs bet-

ter than the state of the art solution.

Potential extensions of this work include i) utilizing specialized graph sum-

marization methods, this will further reduce computational cost as well as im-

prove immunization performance of the solution ii) extending this work to in-

corporate dynamic graphs. Dynamic graphs evolve with time and edges are

added/removed iii) exploring non-preemptive graph immunization approaches,

where the immunization process starts after the virus attack and the information

of infected nodes is available.

References

[1] Abbas, S., Tariq, J., Zaman, A., & Khan, I. (2017). Sampling based effi-

cient algorithm to estimate the spectral radius of large graphs. In IEEE

International Conference on Distributed Computing Systems Workshops,

ICDCSW (pp. 175–180). doi:10.1109/ICDCSW.2017.71.

25

http://dx.doi.org/10.1109/ICDCSW.2017.71

[2] Ahmad, M., Tariq, J., Farhan, M., Shabbir, M., & Khan, I. (2016). Who

should receive the vaccine ? In 14th Australasian Data Mining Conference,

AusDM . ACS volume 170 of CRPIT .

[3] Ahmad, M., Tariq, J., Shabbir, M., & Khan, I. (2017). Spectral methods

for immunization of large networks. Australasian Journal of Information

Systems , 21 . doi:http://dx.doi.org/10.3127/ajis.v21i0.1563.

[4] Ahn, H. J., & Hassibi, B. (2013). Global dynamics of epidemic spread over

complex networks. In IEEE Conference on Decision and Control, CDC

(pp. 4579–4585). doi:10.1109/CDC.2013.6760600.

[5] Arulselvan, A., Commander, C. W., Pardalos, P. M., & Shylo, O. (2007).

Managing network risk via critical node identification. Risk Management

in Telecommunication Networks, Springer , .

[6] Beg, M. A., Ahmad, M., Zaman, A., & Khan, I. (2018). Scalable ap-

proximation algorithm for graph summarization. In Pacific-Asia Confer-

ence on Knowledge Discovery and Data Mining, PAKDD (pp. 502–514).

doi:10.1007/978-3-319-93040-4_40.

[7] Bienstock, D., & Seymour, P. (1991). Monotonicity in graph searching.

Journal of Algorithms, 12 , 239–245. doi:10.1016/0196-6774(91)90003-H.

[8] Chakrabarti, D., Wang, Y., Wang, C., Leskovec, J., & Faloutsos, C. (2008).

Epidemic thresholds in real networks. ACM Transactions on Information

and System Security, 10 , 1:1–1:26. doi:10.1145/1284680.1284681.

[9] Chen, C., Tong, H., Prakash, B., Tsourakakis, C., Eliassi-Rad, T., Falout-

sos, C., & Chau, D. (2016). Node immunization on large graphs: Theory

and algorithms. IEEE Transactions on Knowledge and Data Engineering,

28 , 113–126. doi:10.1109/TKDE.2015.2465378.

[10] Daadaa, Y., Jamshed, A., & Shabbir, M. (2016). Network decontam-

ination with a single agent. Graphs and Combinatorics, 32 , 559–581.

doi:10.1007/s00373-015-1579-5.

26

http://dx.doi.org/http://dx.doi.org/10.3127/ajis.v21i0.1563
http://dx.doi.org/10.1109/CDC.2013.6760600
http://dx.doi.org/10.1007/978-3-319-93040-4_40
http://dx.doi.org/10.1016/0196-6774(91)90003-H
http://dx.doi.org/10.1145/1284680.1284681
http://dx.doi.org/10.1109/TKDE.2015.2465378
http://dx.doi.org/10.1007/s00373-015-1579-5

[11] Erdös, D., Ishakian, V., Lapets, A., Terzi, E., & Bestavros, A. (2012).

The filter-placement problem and its application to minimizing information

multiplicity. PVLDB , 5 , 418–429. doi:10.14778/2140436.2140439.

[12] Flocchini, P., Huang, M. J., & Luccio, F. (2007). Decontaminating chordal

rings and tori using mobile agents. International Journal of Foundations

of Computer Science, 18 , 547–563. doi:10.1142/S0129054107004838.

[13] Flocchini, P., Huang, M. J., & Luccio, F. L. (2008). Decontam-

ination of hypercubes by mobile agents. Networks , 52 , 167–178.

doi:10.1002/net.20240.

[14] Fraigniaud, P., & Nisse, N. (2008). Monotony properties of connected

visible graph searching. Information and Computation, 206 , 1383–1393.

doi:10.1016/j.ic.2008.09.002.

[15] Ganesh, A., Massoulié, L., & Towsley, D. (2005). The effect of network

topology on the spread of epidemics. In IEEE Annual Joint Conference of

the Computer and Communications Societies, INFOCOM (pp. 1455–1466).

doi:10.1109/INFCOM.2005.1498374.

[16] Khanafer, A., Basar, T., & Gharesifard, B. (2014). Stability properties of

infected networks with low curing rates. In American Control Conference,

ACC (pp. 3579–3584). doi:10.1109/ACC.2014.6859418.

[17] Khanafer, A., Başar, T., & Gharesifard, B. (2014). Stability prop-

erties of infection diffusion dynamics over directed networks. In

IEEE Conference on Decision and Control, CDC (pp. 6215–6220).

doi:10.1109/CDC.2014.7040363.

[18] Kuhlman, C. J., Tuli, G., Swarup, S., Marathe, M. V., & Ravi, S.

(2013). Blocking simple and complex contagion by edge removal. In

IEEE International Conference on Data Mining, ICDM (pp. 399–408).

doi:10.1109/ICDM.2013.47.

27

http://dx.doi.org/10.14778/2140436.2140439
http://dx.doi.org/10.1142/S0129054107004838
http://dx.doi.org/10.1002/net.20240
http://dx.doi.org/10.1016/j.ic.2008.09.002
http://dx.doi.org/10.1109/INFCOM.2005.1498374
http://dx.doi.org/10.1109/ACC.2014.6859418
http://dx.doi.org/10.1109/CDC.2014.7040363
http://dx.doi.org/10.1109/ICDM.2013.47

[19] LeFevre, K., & Terzi, E. (2010). GraSS: Graph structure summarization.

In SIAM International Conference on Data Mining, SDM (pp. 454–465).

doi:10.1137/1.9781611972801.40.

[20] Li, J., Pardalos, P. M., Xin, B., & Chen, J. (2019). The bi-objective

critical node detection problem with minimum pairwise connectivity and

cost: theory and algorithms. Soft Computing, (pp. 1–16).

[21] Morone, F., & Makse, H. A. (2015). Influence maximization in

complex networks through optimal percolation. Nature, 524 , 65.

doi:10.1038/nature14604.

[22] Nemhauser, G. L., Wolsey, L. A., & Fisher, M. L. (1978). An analysis of

approximations for maximizing submodular set functions. Mathematical

programming, 14 , 265–294. doi:10.1007/BF01588971.

[23] Neri, F. (2019). Linear Algebra for Computational Sciences and Engineer-

ing. Springer.

[24] Prakash, B. A., Vreeken, J., & Faloutsos, C. (2012). Spotting culprits in

epidemics: How many and which ones? In IEEE International Conference

on Data Mining, ICDM (pp. 11–20). doi:10.1109/ICDM.2012.136.

[25] Riondato, M., García-Soriano, D., & Bonchi, F. (2014). Graph summariza-

tion with quality guarantees. In IEEE International Conference on Data

Mining, ICDM (pp. 947–952). doi:10.1109/ICDM.2014.56.

[26] Riondato, M., García-Soriano, D., & Bonchi, F. (2017). Graph summariza-

tion with quality guarantees. Data Mining and Knowledge Discovery, 31 ,

314–349. doi:10.1007/s10618-016-0468-8.

[27] Serre, D. (2002). Matrices . Springer.

[28] Song, C., Hsu, W., & Lee, M. L. (2015). Node immunization over infectious

period. In ACM International Conference on Information and Knowledge

Management, CIKM (pp. 831–840). doi:10.1145/2806416.2806522.

28

http://dx.doi.org/10.1137/1.9781611972801.40
http://dx.doi.org/10.1038/nature14604
http://dx.doi.org/10.1007/BF01588971
http://dx.doi.org/10.1109/ICDM.2012.136
http://dx.doi.org/10.1109/ICDM.2014.56
http://dx.doi.org/10.1007/s10618-016-0468-8
http://dx.doi.org/10.1145/2806416.2806522

[29] Strang, G. (1988). Linear Algebra and its Applications. Academic Press.

[30] Tariq, J., Ahmad, M., Khan, I., & Shabbir, M. (2017). Scalable approx-

imation algorithm for network immunization. In Pacific Asia Conference

on Information Systems, PACIS (p. 200).

[31] Tong, H., Prakash, B. A., Eliassi-Rad, T., Faloutsos, M., & Faloutsos,

C. (2012). Gelling, and melting, large graphs by edge manipulation. In

ACM International Conference on Information and Knowledge Manage-

ment, CIKM (pp. 245–254). doi:10.1145/2396761.2396795.

[32] Van Mieghem, P. (2014). Exact markovian Sir and Sis epidemics on net-

works and an upper bound for the epidemic threshold. arXiv preprint

arXiv:1402.1731 , .

[33] Van Mieghem, P., Sahnehz, F. D., & Scoglioz, C. (2014). An upper bound

for the epidemic threshold in exact markovian sir and sis epidemics on

networks. In IEEE Conference on Decision and Control, CDC (pp. 6228–

6233). doi:10.1109/CDC.2014.7040365.

[34] Van Mieghem, P., Stevanović, D., Kuipers, F., Li, C., Van De Bovenkamp,

R., Liu, D., & Wang, H. (2011). Decreasing the spectral ra-

dius of a graph by link removals. Physical Review E , 84 , 016101.

doi:10.1103/PhysRevE.84.016101.

[35] Ventresca, M., & Aleman, D. (2015). Efficiently identifying critical

nodes in large complex networks. Computational Social Networks , 2 , 6.

doi:10.1186/s40649-015-0010-y.

[36] Wang, Y., Chakrabarti, D., Wang, C., & Faloutsos, C. (2003).

Epidemic spreading in real networks: An eigenvalue viewpoint.

In Symposium on Reliable Distributed Systems, SRDS (pp. 25–34).

doi:10.1109/RELDIS.2003.1238052.

[37] West, D. (2001). Introduction to graph theory. Prentice Hall.

29

http://dx.doi.org/10.1145/2396761.2396795
http://dx.doi.org/10.1109/CDC.2014.7040365
http://dx.doi.org/10.1103/PhysRevE.84.016101
http://dx.doi.org/10.1186/s40649-015-0010-y
http://dx.doi.org/10.1109/RELDIS.2003.1238052

[38] Zhang, Y., & Prakash, B. A. (2014). Dava: Distributing vaccines over

networks under prior information. In SIAM International Conference on

Data Mining, SDM (pp. 46–54). doi:10.1137/1.9781611973440.6.

[39] Zhang, Y., & Prakash, B. A. (2014). Scalable vaccine distribution in large

graphs given uncertain data. In ACM International Conference on Confer-

ence on Information and Knowledge Management, CIKM (pp. 1719–1728).

doi:10.1145/2661829.2662088.

30

http://dx.doi.org/10.1137/1.9781611973440.6
http://dx.doi.org/10.1145/2661829.2662088

	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Proposed Shield Value
	5 Computing Walks of Length 8
	5.1 Justification for p=8
	5.2 Closed-Form Expression for W8(v,G)

	6 Proposed Algorithm
	6.1 Proposed Walk-8 Algorithm
	6.2 Runtime Analysis of Walk-8

	7 Experimental Evaluation
	7.1 Datasets
	7.2 Approximation Quality of Walk-8
	7.3 Virus Spread Simulation
	7.4 EigenDrop Percentage Comparison
	7.5 Run Time Comparison

	8 Conclusion

