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ABSTRACT

Complex network reconstruction is a hot topic in many fields. Currently, the most popular data-
driven reconstruction framework is based on lasso. However, it is found that, in the presence of
noise, lasso loses efficiency for weighted networks. This paper builds a new framework to cope
with this problem. The key idea is to employ a series of linear regression problems to model the
relationship between network nodes, and then to use an efficient variational Bayesian algorithm
to infer the unknown coefficients. The numerical experiments conducted on both synthetic and
real data demonstrate that the new method outperforms lasso with regard to both reconstruction
accuracy and running speed.

1. Introduction
The networked-systems are ubiquitous in many fields, including social-tech science [16, 38], bioinformatics [27,

25, 3, 26], epidemic dynamics [19, 37, 39] and power grid [15, 17]. As is often the case, it is unable to observe the
topology of a network, while data generated by this network is available. Therefore, in interdisciplinary science, one of
the most important but challenging problems is to reconstruct the complex network from observed data or time series
[28].

Suppose that a complex network consists ofN nodes, and we are given the time series of the states for theN nodes.
A decade ago, the main network reconstruction technique was causality analysis (CA) [6, 8, 9, 34, 35] which infers the
causal influence between two variables via a pair of linear regression models. With the rapid development of variable
selection and feature learning [18, 32, 40], CA has been replaced with lasso [22] (a.k.a. compressive sensing). Wang
et al. [29] made the first attempt to apply lasso to reconstructing networks with game-theoretic dynamics. Thereafter,
Wang’s group applied lasso to networks with epidemic [20], geospatial [21] and electrical power [10] data. They
also studied the application to related problems (e.g., the prediction of catastrophes in nonlinear dynamical systems
[30]). Recently, Wu’s group has extended this framework to multilayer networks [14] and the networks with time-
varying nodal parameters[31]. To some extent, lasso is a “black-box” tool for the complex network reconstruction
task. Recently, an increasing number of researchers start to develop alternative techniques to lasso. For example, Ma
et al. and Xiang et al. cast the problem into a statistical inference issue [13, 36].

Essentially, lasso [22] solves anL1-norm penalized least squares problem, i.e.,minw∈RN ‖y−Xw‖22+�lasso||w||1.
Owing to the property of the L1-norm penalty [7], the solution ofw is sparse, that is, many entries ofw are zero. The
parameter �lasso > 0 controls the sparsity, and larger �lasso makes w sparser. In the context of (unweighted) network
reconstruction, y andX are observed data, and the element of regression coefficient vectorw indicates whether a pair
of nodes are connected or not. In other words, w corresponds to a column of the adjacent matrix A of a network.
Therefore, the network topology can be recovered column-by-column via applying lassoN times.

Unfortunately, the current researchers pay little attention to the weighted network reconstruction task. In the cases
of weighted networks, besides determining whether each pair of nodes are connected or not, it is also required to
estimate the connection strength. To meet the demands, lasso based framework has to carefully select �lasso. In general,
a good �lasso can be obtained by cross validation (CV) technique [1]. But it is a time-consuming strategy. Additionally,
lasso in theory cannot precisely estimate the connection strength owing to lasso’s biased estimation property [22].
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Table 1
The list of notations in the paper.

Notation Description
A,W The adjacency and weighted matrix of a network
Â, Ŵ The reconstructed network
y Response vector
X Design matrix
w Regression coefficient vector
a Binary regression coefficient vector

N,M The number of nodes and observed data, respectively
�, �2 Noise item and its variance

c0, d0, g0, ℎ0 Parameters in Gamma distribution
e0, f0 Parameters in Beta distribution
� A parameter in Bernoulli distribution
�j A parameter in the distribution of wj

A toy example shown in Fig. 1 illustrates the drawback of lasso. To the best of our knowledge, there are only two
references related to weighted network reconstruction, but they focus on small-scale networks [12, 41] (the number of
nodes is less than 10).

By putting the network reconstruction task into the hierarchical Bayesian modeling framework, we in this paper
propose an elegant solution to weighted complex network reconstruction, especially for large-scale networks. This
work contains the following threefold contributions.

(i) Firstly, to overcome the shortcoming of lasso, we consider a special regression problemwith multiple regression
coefficients, that is,minw,a ‖y−X(a⊙w)‖2, where⊙ denotes the element-wise product,w ∈ RN plays the same role
as the traditional regression coefficient vector, and a ∈ {0, 1}N indicates variables are active or not. In the context of
complex networks, the real-valuedw is used to estimate the connection strength, while the binary-valued a represents
whether nodes are connected or not. In later discussions, it will be found that this formulation is very suitable for
handling large-scale network reconstruction problems.

(ii) Secondly, a full hierarchical Bayesian inference technique is used to estimate the unknown parameters w
and a. By the virtue of hierarchical Bayesian inference, our model overcomes the shortcoming of lasso, i.e., tun-
ing hyper-parameters. To speed up the inference, a variational Bayesian technique rather than Markov chain Monte
Carlo (MCMC) sampling is employed to approximate the posterior distributions of unknown variables [5, 11, 24]. To
the best of our knowledge, this is the first attempt to utilize the variational Bayesian technique to reconstruct networks.

(iii) The experiments conducted on simulated networks (scale-free and small-world networks with electrical cur-
rent transportation (ECT) and communication dynamics) and a stock network show that our framework significantly
outperforms lasso.

The rest of this paper is organized as follows. In Section 2, we provide the definition of the network reconstruction
task. In Section 3, we formulate the new framework and show how to infer the network topology with it. Then, some
experiments are conducted in Section 4. Finally, the paper ends with conclusions and future works.

2. Problem Statement
To facilitate later discussions, Table 1 lists the main notations and symbols used in the paper. By following the

common practice of many references [10, 12, 14, 20, 21, 29, 30, 31, 41], we consider a weighted complex network
without loops. Suppose that its weighted matrix is W = (wij), where wij represents the connection strength from
node i to j. We set wij = 0 if nodes i and j are not connected. Its adjacency matrix is A = (aij), where aij = 1 if
wij ≠ 0 and 0 otherwise. Moreover, we assume that the nodes are governed by a specific dynamics. As defined in
the reference [28], the network reconstruction task is to infer the network topology according to observed data or time
series from nodal dynamics.

Here, to facilitate illustration, we take the ECT in a power network consisting of resistors as a special example to
introduce the network reconstruction task. The resistance of a resistor between nodes i and j is denoted by rij , where
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Figure 1: (a) The heatmap of networks. Note that the (i, j)th cell of heatmap corresponds to (i, j)th entity
of weighted matrix W . (b) The visualization of the original network as well as the reconstructed ones by our
method and lasso with CV, respectively. The size of each node and edge is proportional to its degree and
weight, respectively. It is shown that our method correctly identifies all edge, while lasso with CV fails to
detect 2 existing edges (i.e., the false negative edges colored by red) and identifies 36 fake edges (i.e., the false
positive edges colored by blue). The error of connection strength of lasso and our method is 0.297 and 0.006,
respectively. The running time of lasso and our method is 0.851 and 0.016 second, respectively. Simulation
details: the original network W is a BA network of 30 nodes; the number of data points is M = 30 and the
scale of noise is σ = 0.05.

3

Figure 1: Top: The heatmap of networks. Note that the (i, j)th cell of heatmap corresponds to (i, j)th entity of weighted
matrix W . Bottom: The visualization of the original network as well as the reconstructed ones by our method and lasso
with CV, respectively. The size of each node and edge is proportional to its degree and weight, respectively. It is shown
that our method correctly identifies all the edges, while lasso with CV fails to detect 2 existing edges (i.e., the false negative
edges colored by red) and identifies 36 fake edges (i.e., the false positive edges colored by blue). The error of connection
strength of lasso and our method is 0.297 and 0.006, respectively. The running time of lasso and our method is 0.851 and
0.016 second, respectively. Simulation details: the original network W is a BA network of 30 nodes; the number of data
points is M = 30 and the scale of noise is � = 0.05.

rij = ∞ if they are not connected. Based on the Kirchhoff’s law, there is

N
∑

j=1

aij
rij
(Vi − Vj) = Ii (i = 1, 2,⋯ , N), (1)

where Vi and Ii denote the voltage and the electrical current of node i, respectively. Generally speaking, in the real
world, we are able to observe the nodes’ voltage and electrical current, while the network structure is invisible. If we
record the voltage and electrical current at different time points, the reconstruction task for this power network is to
infer the network topology (including aij and rij) based on the observed data.

3. Bayesian complex network reconstruction
3.1. Reconstructing network by regression

In this subsection, we show that the network reconstruction task can be accomplished by solving a series of regres-
sion problems. In what follows, we define x(i)j = Vi − Vj and wij = 1∕rij . At the same time, we use y(i) to refer to Ii.
Since the network simulates a dynamic system, it is reasonable to assume that data are collected atM different time
points. To facilitate description, let {tm}Mm=1 denote the time index set. With the above assumptions, according to Eq.
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(1), the variables should satisfy

⎡

⎢

⎢

⎢

⎢

⎣

y(i)t1
y(i)t2
⋮
y(i)tM

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

x(i)1,t1 x(i)2,t1 ⋯ x(i)N,t1
x(i)1,t2 x(i)2,t2 ⋯ x(i)N,t2
⋮ ⋮ ⋮

x(i)1,tM x(i)2,tM ⋯ x(i)N,tM

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

ai1wi1
ai2wi2
⋮

aiNwiN

⎤

⎥

⎥

⎥

⎦

. (2)

It is noteworthy that the item y(i)tm = Ii,tm represents the electrical current of node i and x(i)j,tm = Vi,tm − Vj,tm denotes the
difference of voltage between nodes i and j at time tm. In the matrix form, there is

y(i) = X(i)D(a(i))w(i), (3)

where D(a(i)) is a diagonal matrix whose main diagonal is a(i), and a(i) =
(

ai1,⋯ , aiN
)T is the ith row of matrix A.

As stated above, the nodal states are observable. In other words, y(i) and X(i) in Eq. (3) are observed data; a(i) and
w(i) are unknown items. The network’s weighted matrix can recovered column-by-column via solving Eq. (3) with
i = 1,⋯ , N . In this manner, the network reconstruction can be cast into a series of regression problems.

3.2. Model formulation
Since the network reconstruction actually corresponds to solving some special regression problems, in this subsec-

tion we cast it into a new framework based on Bayesian statistics.
In the following discussions, we reformulate the estimation problem in Eq. (3) as a linear regression model via

y = XD(a)w + �, (4)

where � denotes the noise item. The response vector y ∈ RM and the design matrix X ∈ RM×N are observable,
while the binary coefficient vector a and the continuous coefficient vectorw need to be estimated. Here D(a) denotes
a diagonal matrix whose main diagonal is the vector a. We emphasize that this framework can handle weighted
networks with many kinds of dynamics [28], including communication dynamics [10], evolutionary game dynamics
[29], epidemics [20], synchronization dynamics [14], to name but a few. Besides ECT, we introduce how to apply our
framework to communication dynamics in Appendix B.

In general, it can be assumed that �tm are independently and identically distributed (i.i.d.) as Gaussian, namely,
�tm ∣ � ∼  (�tm ∣ 0, �

2), m = 1,⋯ ,M , where �2 denotes the variance. Note that the popular reconstruction method
lasso also falls into this category. The significant advantage of lasso over the simple least-squares method lies in
that it can provide a sparse solution. However, its performance highly depends on the tuning of its parameter �lasso.
In contrast, Bayesian methods can provide satisfactory estimates for w and a while avoiding the tedious parameter
adjustment. The core idea of Bayesian methods is to impose a prior distribution on each unknown variable (i.e.,w and
a), then MCMC sampling or a variational technique is employed to approximate the posterior distribution according
to the famous Bayes theorem. There are hyper-parameters in the prior distribution sometimes, and some proper hyper-
prior distributions can be hypothesized. In what follows, we will adopt a full hierarchical Bayesian inference process
to infer our interested items in Eq. (4).

To facilitate illustration, we let �−1 ≡ �2 and � is often called precision. Thereafter, the conditional distribution of
y is given by

y ∣ a,w, � ∼
(

y ∣ XD(a)w, �−1IM
)

, (5)

where IM denotes an identity matrix of orderM . For each regression coefficient (connection strength) wj , we place
the following Gaussian prior

wj ∼ (wj ∣ 0, �−1j ), j = 1, 2,⋯ , N, (6)

where �−1j is the variance. Since each entry aj of the coefficient vector a takes binary value {0, 1}, it is natural to
consider a Bernoulli prior for aj , that is,

aj ∣ � ∼ Bernoulli
(

aj ∣ �
)

, j = 1,⋯ , N, (7)
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Figure 2: The graphical representation of the Bayesian complex network reconstruction model. Here c0, d0, e0, f0, g0, ℎ0 are
hyper-parameters. Note that Γ(⋅) and B(⋅, ⋅) denote the gamma and beta functions, respectively.

where � denotes the probability of aj taking value 1. At last, to make a full Bayesian inference, we impose conjugate
priors on the parameters �j , � and �, namely, � ∼ Gamma(� ∣ c0, d0), � ∼ Beta(� ∣ e0, f0), �j ∼ Gamma(�j ∣ g0, ℎ0),
where c0, d0, e0, f0, g0, ℎ0 are hyper-parameters. To facilitate the understanding of the Bayesian framework, Fig. 2
shows the hierarchical Bayesian graph and the probability density functions of related random variables.

Subsequently, it is able to write the joint distribution of all variables, viz.,

p (y,a,w,�, �, �) = p (y ∣ a,w, �) p(�)

[ N
∏

j=1
p(aj ∣ �)p(wj ∣ �j)p(�j)

]

p(�). (8)

Our aim is to obtain the posterior distribution of a,w,�, � and �. Based on the Bayes theorem, we have

p (a,w,�, �, � ∣ y) = p (y,a,w,�, �, �) ∕p (y) . (9)

However, the margin distribution

p (y) = ∫ p (y ∣ a,w,�, �, �) p(a,w,�, �, �) dadwd�d�d�

= ∫ p (y ∣ a,w, �) p(a|�)p(w|�)p(�)p(�)p(�) dadwd�d�d�
(10)

is computationally infeasible, because our model is complicated. We have to seek an alternative so as to dispense with
the computation of p (y). In the literature of Bayesian methods [18, 40, 4], there are mainly two types of algorithms to
deal with the inference of complex posterior distributions. One is MCMC sampling which approximates the posterior
distribution p (a,w,�, �, � ∣ y) via iteratively drawing samples from the full conditional distributions of each variable.
Although MCMC sampling behaves very well in many cases, it is time-consuming when the number of unknown
variables is large (i.e., largeN). The other one is approximation-based techniques [5, 11, 24] such as variational Bayes
or expectation propagation (EP) which works by directly utilizing another easily estimated distribution to approximate
the desired posterior distribution. The prominent advantage of these methods is their good performance at the much
lower computational cost.

Here, we employ a variational Bayesian method to infer this model. The basic idea is to use a variational distri-
bution q(a,w,�, �, �) to approximate the posterior one. The Kullback-Leibler (KL) divergence is utilized to measure

Xu et al.: Preprint submitted to Elsevier Page 5 of 18



Variational Bayesian Weighted Complex Network Reconstruction

the difference between two distributions [5]. Hence, the original problem is converted into the following optimization
issue, namely,

q∗ = min
q(a,w,�,�,�)

KL (q(a,w,�, �, �)||p(a,w,�, �, � ∣ y)) . (11)

Specifically, we hypothesize that the variational distributions for each item are independent, that is,

q(a,w,�, �, �) = q(w)q(�)q(�)
N
∏

j=1
q(�j)q(aj). (12)

Then, the optimal variational posterior distribution can be obtained by the Theorem 1.

Theorem 1. The optimal variational posterior distributions of our model are

q(w) = (w ∣ �,�),
q(�) = Gamma(� ∣ c, d),
q(�) = Beta(� ∣ e, f ),
q(aj) = Bernoulli(aj ∣ �j), j = 1,⋯ , N,

q(�j) = Gamma(�j ∣ gj , ℎj), j = 1,⋯ , N,

(13)

where


 = ��T + D(�)⊙ (IN − D(�)),

� =
[ c
d
(XTX)⊙
 + D

(g
h

)]−1
, � = c

d
�D(�)XTy,

gj = g0 +
1
2
,

ℎj = ℎ0 +
1
2
(Σjj + �2j ),

c = c0 +
M
2
,

d = d0 +
1
2
{

‖y‖2 − 2yTXD(�)� + trace
[(

(XTX)⊙

)

(� + �T�)
]}

,

�j =
1

exp(−uj) + 1
,

uj =  (e) −  (f ) +
c
2d

{

XT
j Xj[�2jD(�) − 0.5(Σjj + �

2
j )] + �jX

T
j (y −XD(�)�)

}

,

e = e0 +
N
∑

j=1
�j , f = f0 +

N
∑

j=1
(1 − �j).

(14)

PROOF. Please see Appendix A for details.

3.3. Algorithm and implementation details
In this part, we describe how to apply our model to network reconstruction tasks. Algorithm 1 lists the main steps of

the inference process of our model. In the non-informative fashion [4], the hyper-parameters are initialized as shown
in line 1. Algorithm 2 summarizes the workflow of Bayesian complex network reconstruction, that is, repeatedly
computing the response vector and the design matrix and then carrying out Algorithm 1 until all nodes’ structures are
recovered. At last, the output of Algorithm 2, Ŵ , is the final reconstructed network. In what follows, we abbreviate
our method (Variational Bayesian Reconstruction) as VBR.
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Algorithm 1 Inference of model (8): (�,�) = vbr(X, y)
Input: X, y
1: Initialize g0 = c0 = 10−2, d0 = ℎ0 = 10−4, e0 = f0 = 1, t = 1,�(0) = 1, c = c0 +M∕2, gj = g0 + 1∕2, (j =
1,⋯ , p).

2: while the convergence criterion does not satisfy do
3: Update parameters according to (14);
4: Let t = t + 1;
5: end while

Algorithm 2 Bayesian complex network reconstruction: Ŵ = BayesRecon(V , I)
Input: V , I
1: for i = 1, 2,⋯ , N do
2: Compute the response vector y(i) = (y(i)t1 ,⋯ , y(i)tM )

T and the design matrix X(i) = (x(i)j,tm )M×(N−1) with x
(i)
j,tm

=
Vi(tm) − Vj(tm), where m = 1, 2,⋯ ,M and j = 1, 2,⋯ , i − 1, i + 1,⋯ , N .

3: Apply Algorithm 1 to (X(i), y(i)) and let (�i,�i) = vbr(X(i), y(i)).
4: end for
5: Let ŵij = �ij if �ij > 0.5, and 0 otherwise.

4. Experiments
In this section, we will carry out experiments to study the behavior of our model. The source code of VBR is

available at https://xsxjtu.github.io/Projects/VBR/index.html. Lasso with 5-fold CV to select its tuning
parameter is used as the benchmark algorithm and it is implemented by the built-in function lasso in Statistics and
Machine Learning Toolbox. All the experiments are carried out on a computer with Intel Core CPU 3.60 GHz, 8.00
GB RAM and Windows 10 (64-bit) system.

To evaluate the reconstruction accuracy of a method, two metrics, TPR (true positive rate) and TNR (true negative
rate), are employed. They are defined as

TPR = TP
P
=

∑N
i=1

∑N
j=1 aij âij

∑N
i=1

∑N
j=1 aij

,

and

TNR = TN
N

=

∑N
i=1

∑N
j=1(1 − aij)(1 − âij)

∑N
i=1

∑N
j=1(1 − aij)

,

respectively. As a matter of fact, TPR is the proportion that existed edges are correctly identified while TNR is the
proportion that non-existed edges are correctly excluded. Then, error of connection strength is evaluated by

Error =

√

∑N
i=1

∑N
j=1(ŵij −wij)2

√

∑N
i=1

∑N
j=1w

2
ij

.

In the meanwhile, we also utilize the computational time (in seconds) to compare the efficiency of each algorithm.
In the following subsections, we will carry out five groups of experiments. In the first experiment, we study the

performance of VBR and lasso on Barabasi-Albert (BA) [2] and Watts-Strogatz (WS) [33] models. BA and WS are
typical scale-free and small-world network models, respectively. Generally speaking, small-world networks have large
cluster coefficient and small path length; the degree of scale-free networks follows the power-law distribution. Since the
exponential-law coefficient of BA networks is a fixed value, in the second experiment, the random scale-free network
model with adjustable exponential-law coefficient is employed. As for the third experiment, it aims at investigating
the relationship between execution time and network scale. In the forth experiment, we apply VBR and lasso to four
real-world networks rather than simulated ones. In the last experiment, we attempt to reconstruct a stock network based
the opening price data.
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Figure 3: The performance on BA networks (Experiment 1). The experiments were conducted 100 times. The marker
and bar denote the mean and standard deviation, respectively. The horizontal axis denotes the scale of noise �.

4.1. Experiment 1: Performance on BA and WS networks
In this first case, we mainly compare the performance of VBR and lasso with regard to reconstruction accuracy and

running speed on BA and WS networks with ECT and communication dynamics. The aim is to study their behaviors
in the cases with different scales of noise. The detailed experimental settings can be found in Appendix C.

The results are shown in Figs. 3 and 4. From left to right, the mean values of TPR, TNR, Error and the time
consumed by each algorithm are plotted as a function of �, respectively. In each panel, the bar indicates the mean plus
or minus one standard deviation. As a matter of fact, it is not surprising that the performance of both VBR and lasso
weakens as � increases. Additionally, the following conclusions can be drawn: (1) For lasso, the fluctuation of TNR
and Error curves is much greater. So, compared with VBR, lasso is more sensitive to the scale of noise �. The reason
is that, VBR uses the full Bayesian inference and the variance of noise is directly modeled by the latent variable �,
while lasso does not consider this factor. Besides, this phenomenon is partially caused by lasso’s biased estimation
property. (2) It is found that in most cases the standard deviation of lasso is higher than that of VBR. It means that
lasso may be instable. (3) As for computational time, VBR takes a great advantage over lasso and its speed is very
robust to �. However, the computational time of lasso dramatically increases as � becomes larger. In general, VBR
consumes around 0.05-0.2s and lasso takes 2-21s.

As a result, in the context of BA and WS networks, VBR outperforms lasso in both reconstruction accuracy and
running speed.

4.2. Experiment 2: Performance on random scale-free networks
The previous investigations have shown that more heterogeneous networks are harder to be reconstructed [13, 36].

Note that the degree of a scale-free network follows the scale-free distribution, i.e., p(degree = k) ∝ k
 , where
exponential-law coefficient 
(< 0) typically ranges from −3 to −2. In general, the smaller |
| is, the more heteroge-
neous a network is. Specifically, the exponential-law coefficient of a BA network is −3. In this part, we aim to study
the methods’ behaviors on scale-free networks with adjustable 
 . The detailed experimental settings can be found in
Appendix C.

Fig. 5 reports the results. Firstly, it is shown that VBR outperforms lasso with different exponential-law coefficients
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Figure 4: The performance on WS networks (Experiment 1). The experiments were conducted 100 times. The marker
and bar denote the mean and standard deviation, respectively. The horizontal axis denotes the scale of noise �.

in terms of all metrics. Secondly, both VBR and lasso perform worse as |
| becomes smaller. This phenomenon
coincides with the former investigations [13, 36]. However, Fig. 5 shows that the pace of change for lasso is greater
than that for VBR. For example, with communication dynamics, the TNR curve of lasso decreases significantly faster
when |
| is going smaller. It indicates lasso tends to mistakenly identify null edges as active ones if the scale-free
network is more heterogeneous. In conclusion, VBR is more robust to |
| than lasso.

4.3. Experiment 3: Running speed versus network scale
Here, we conduct experiments on relatively large-scale complex networks. Because lasso with CV is extremely

slow in this case, we only implement VBR. And, the aim is to study how the running speed of VBR varies with the
growing of network scale.

Fig. 6 depicts the execution time of VBR versus N , an index indicating the network scale. It can be found in
Fig. 6 that the running speed of VBR grows faster than network scale. The main crux lies in the update of w, which
requires the computation of the inverse of anN-dimensional matrix. In general, its computation complexity isO(N3).
Note that it is able to avoid the intensive computation if we assume that wj(j = 1, 2,⋯ , N) are independent in Eq.
(12). However, we find that, in our experiments, this strategy is very likely to be tapped into the local minimum, and
the values of TPR and TNR are small. Unfortunately, there is still no efficient approach to reduce the computation
complexity and it is extremely interesting to study this issue in the future. At last, it is worth pointing out that the
computation complexity of lasso is also O(N3) if it is solved by alternating direction multipliers method.

4.4. Experiment 4: Performance on real-world networks
Here, we will conduct experiments on four real-world networks. Since there is no available network with the

observed design matrix and response vector, we still simulate them in this subsection. The aim of this experiment
is to study the performance of VBR and lasso on real networks rather than the simulated ones (that is, BA, WS and
SF networks). HB494BUS and HB1138BUS are available at https://www.cise.ufl.edu/research/sparse/
matrices/HB/index.html; Jazz and Karate are available at http://konect.uni-koblenz.de/networks/. In
this experiment, we did not include noise item and set � = 0.
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Figure 5: The performance on random SF networks (Experiment 2). The experiments were conducted 100 times. The
marker and bar denote the mean and standard deviation, respectively. The horizontal axis denotes exponential-law coeffi-
cient 
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Figure 6: The running speed of VBR with different network scale (Experiment 3). The experiments were conducted 100
times. The marker and bar denote the mean and standard deviation, respectively. BA networks and ECT dynamics are
employed.

The results reported in Table 2 show that VBR always achieves higher TNR and lower Error than lasso. The
values of TPR also manifest the superiority of VBR over lasso. Meanwhile, VBR is very efficient with regard to the
execution time. For example, on HB1138BUS, lasso takes about one hour to accomplish the reconstruction task. As for
our method VBR, it consumes only less than half an hour to recover the whole network. In summary, the experiments
conducted with real-world topology still reveals the superiority of VBR over lasso in terms of all the metrics.
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Table 2
Results on empirical networks (Experiment 4). ECT is simulated on the first two networks and communication is simulated
on the rest ones.

Networks N Method TPR TNR Error Time

HB494BUS 494 Lasso 0.972 1.000 0.028 238.549
VBR 0.987 1.000 0.002 73.710

HB1138BUS 1138 Lasso 0.948 1.000 0.027 3381.924
VBR 0.977 1.000 0.001 1553.495

Jazz 198 Lasso 0.981 0.998 0.031 49.361
VBR 0.969 1.000 0.003 0.913

Karate 34 Lasso 0.983 0.999 0.031 0.665
VBR 0.997 1.000 0.000 0.015

4.5. An empirical study on stock network
In the last experiment, we apply the reconstruction algorithm to a stock market. Tse et al. state that “the fluctuations

of stock prices are not independent, but are highly inter-coupled with strong correlations with the business sectors and
industries to which the stocks belong” [23]. The financial economists have made attempts to analyze the stock market
by means of methodologies of complex network. We assume that the price of a stock is the combination of the prices
of other stocks and the correlation strengths between stocks do not change in a short period, that is,

sit =
∑

k≠i
aikwikskt + �t, (15)

where sit denotes the price of the ith stock at time t, binary variable aik denotes whether the kth stock affects the ith
stock, andwik is the strength of influence. And �t is the factor that is independent on skt(k = 1, 2,⋯ , i−1, i+1,⋯ , N).

To reconstruct the stock network, we collect the data of stocks in Shanghai Stock Exchange and Shenzhen Stock
Exchange from 2018-11-08 to 2019-09-27. It contains the opening prices of 50 stocks during 212 trading days. Each
stock is assigned with a label li, that is, the industry to which it belongs. In this dataset, there are five industries,
including agriculture, finance & insurance, information technology, real estate and transportation. Since there is no
ground truth for the network topology, it is hard to evaluate the performances of VBR and lasso. Based on the prior
knowledge that the stocks in the same industry tend to correlate with each other [23], we define the cohesion index
(CI) for each node as follows,

CIi =
∑

k≠i(aik + aki)I(li = lk)
∑

k≠i(aik + aki)I(li ≠ lk)
. (16)

The numerator (or denominator) of CI counts the number of linkages between node i and the one that belongs to the
same (or different) industry. Therefore, greater CI indicates that the node tends to connect with ones from the same
industry, and, in other words, the reconstructed network is better. Besides CI, we apply a state-of-the-art community
detection algorithm, nonnegative matrix factorization, to the reconstructed network, and then use normalized mutual
information (NMI) to assess whether the reconstructed network satisfies the prior knowledge. The NMI is defined by

NMI =
2I(l̂; l)

H(l̂) +H(l)
, (17)

where I(l̂; l) =
∑

l̂∈
∑

l∈ p(l̂, l) log[p(l̂, l)∕p(l̂)p(l)] denotes the mutual information between the true industry label
l and the cluster label l̂,  is the label space, andH(l) = −

∑

l∈ p(l) log p(l) denotes the entropy. Note that the initial-
ization of nonnegative matrix factorization may affect the result of community detection. To exclude this randomness,
we apply nonnegative matrix factorization 100 times and compute the average NMI. The algorithm with larger NMI
is better.

Fig. 7 displays the reconstructed stock networks. Each node is colored and labeled by its industry and CI value,
respectively. The edge is colored by orange if it connects two nodes from the same industry and gray otherwise.
The mean CI of VBR and lasso are 0.2977 and 0.2825, respectively. The NMI of VBR and lasso are 0.2722 and
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Figure 7: The reconstructed stock network (Experiment 5).

0.2138, respectively. Both metrics demonstrate that the network recovered by VBR is better in the sense of whether
the reconstructed network satisfies the prior knowledge.

5. Conclusion and future works
In this paper, we propose a general framework based on Bayesian statistics to reconstruct weighted complex net-

works. By reformulating the task as a series of regression problems, prior distributions are assigned to the unknown pa-
rameters. To efficiently infer from their posterior distributions, a variational Bayesian method is employed. Compared
with lasso, the novel method does not need the fine tuning of its associated parameters. The experiments conducted
with both synthetic and real networks show that, in the presence of noise, our method VBR outperforms lasso with
regard to both reconstruction accuracy and running speed.

Finally, we would like to point out the future work. (a) As shown in Eq. (14), the update of w requires the
computation of the inverse of an N ×N matrix. The cost will be unacceptable if N (that is, the number of nodes) is
large. At the same time, our experiments show that the lasso basedmethods also suffer from the similar drawback. With
the development of big data era, designing a fast network reconstruction algorithm is one of the key future works. (b)
To the best of our knowledge, all papers evaluate the effectiveness of algorithm by simulated data (the design matrix
and the response vector). To make the comparisons fairer, it is necessary to create and release a dataset with the
observed design matrix, response vector, and the ground truth network topology as a benchmark. (c) Last but not least,
both VBR and Lasso cannot handle networks with loops. It is worth paying attention to this problem.

A. Proof of theorem 1
In this part, we provide more details about the variational inference (VI), which includes a brief introduction of VI

and how the variational distributions for the items shown in Theorem 1 are derived.
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A.1. Variational inference
At first, we show how to use VI to infer the optimal solution for a general model. Let z denote all the variables to

be inferred, where zj is the jth variable; and y represents the observed data. According to the main principle of VI,
the optimal variational distribution is given by

q∗(z) = minKL(q(z)‖p(z ∣ y)). (18)

According to the definition of KL divergence, we have

KL(q(z)||p(z ∣ y)) = log p(y) + Eq(z)[log q(z) − log p(z, y)]. (19)

We define the evidence lower bound (ELBO) as ELBO = Eq(z)[log p(z, y) − log q(z)], where Eq(z) represents the
expectation operator with regard to (w.r.t.) variational distribution q(z). Note that Eq. (19) can be reformulated as

log p(y) = KL(q(z)||p(z ∣ y)) + ELBO. (20)

Because log p(y) is a constant which does not depend on the variational distribution q(z), minimizing KL divergence
is thus equivalent to maximizing ELBO. Because we assume variational distributions are independent, ELBO can be
rewritten as

ELBO = −∫
∏

j
q(zj) log

∏

j q(zj)
p(z, y)

dz − ∫ q(zj){log q(zj) − E−q(zj ) log p(z, y)}dzj + const., (21)

where E−q(zj ) represents the expectation operator w.r.t. all variational distributions but q(zj). The const. refers to all
items that do not depend on zj . Hence, the optimal variational distribution for zj should satisfy

log q∗(zj) = E−q(zj )
[

log p(z, y)
]

. (22)

Because of this property, the variational distribution q(z) can be efficiently attained by coordinately updating q(zj).
Remark that p(z, y) is the joint distribution. For our model, it refers to Eq. (8). In the next, we show how to acquire
the optimal solution to our model.

A.2. Inference of w
According to Eq. (22), we have

log q∗(w) =E−q(w) {log p (y,a,w,�, �, �)}
=E−q(w) {log p (y ∣ a,w, �) + log p (w ∣ �)} + const.

=E−q(w)
{

−�
2
‖y −XD(a)w‖2 − 1

2
wTD(�)w

}

+ const.

=E−q(w)
{

−�
2
[

wTD(a)XTXD(a)w − 2yTXD(a)w
]

− 1
2
wTD(�)w

}

+ const.

=E−q(w)
{

−1
2
wT

[

�D(a)XTXD(a) + D(�)
]

w + �yTXD(a)w
}

+ const.

(23)

From Eq. (23), it can be seen that the q(w) is still a Gaussian distribution. In what follows, we denote it by (w ∣ �,�)
with

� =
(

Eq[�]Eq[D(a)XTXD(a)] + Eq[D(�)]
)−1 ,

� = Eq[�]�Eq[D(a)]XTy.
(24)

It should be mentioned that in � and �, the expectations w.r.t. their corresponding variational distribution will be
computed in subsection “The expectation computations”.
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A.3. Inference of �j
According to Eq. (22), there is

log q∗(�j) =E−q(�j ) {log p (y,a,w,�, �, �)}

=E−q(�j )
{

log p(wj ∣ �j) + log p(�j)
}

+ const.

=E−q(�j )
{

1
2
log �j −

�j
2
w2j + (g0 − 1) log �j − ℎ0�j

}

+ const.

(25)

Therefore, q(�j) is still a Gamma distribution. In what follows, we denote it by Gamma(gj , ℎj), where

gj = g0 +
1
2
, ℎj = ℎ0 +

1
2
Eq(w2j ). (26)

A.4. Inference of �
As for �, we have

log q∗(�) =E−q(�) {log p (y,a,w,�, �, �)}
=E−q(�) {log p(y ∣ a,w, �) + log p(�)} + const.

=M
2
log � − �

2
E−q(�)

[

‖y −XD(a)w‖2
]

+ (c0 − 1) log � − (d0 − 1)� + const.

=
(

c0 +
M
2
− 1

)

log � − (d0 + E−q(�)
[

‖y −XD(a)w‖2
]

− 1)� + const.

(27)

according to Eq. (22). Hence, q(�) is still a Gamma distribution. In what follows, we denote it by Gamma(� ∣ c, d),
where

c = c0 +
M
2
, d = d0 +

1
2
Eq

[

‖y −XD(a)w‖2
]

. (28)

A.5. Inference of aj
To facilitate the derivation, it is worthy mentioning one fact that, if x ∼ Bernoulli(�), then x2 ∼ Bernoulli(�). That

is, x and x2 have the identical distribution. According to Eq. (22), the optimal variational distribution for aj should
satisfy

log q∗(aj) =E−q(�) {log p (y,a,w,�, �, �)}

=E−q(aj ){−
�
2
‖y −XD(a)w‖2 + aj log � + (1 − aj) log(1 − �)} + const.

=E−q(aj )

{

−�
2
‖y −

∑

n≠j
Xnanwn −Xjajwj‖

2 + aj log
�

1 − �

}

+ const.

=E−q(aj )
{

−�
2
‖rj −Xjajwj‖

2 + aj log
�

1 − �

}

+ const.

=E−q(aj )
{

−�
2
(−2rTjXjajwj +XT

j Xja
2
jw

2
j ) + aj log

�
1 − �

}

+ const.

=ajE−q(aj )
{

−�
2
XT
j (w

2
jXj − 2wjrj) + log

�
1 − �

}

+ const.

(29)

Here, Xj represents the jth column of matrix X and rj ≡ y −
∑

n≠j Xnan. Obviously, q(aj) is still a Bernoulli
distribution. In what follows, we denote it by Bernoulli(�j) with

�j =
1

exp(−uj) + 1
, uj = Eq

{

log
�

1 − �
− �
2
XT
j (w

2
jXj − 2wjrj)

}

. (30)
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A.6. Inference of �
Similar to Eq. (21), the optimal variational distribution for � should satisfy

log q(�) =E−q(�)

{

log p(�) +
N
∑

j=1
log p(aj ∣ �)

}

+ const.

=E−q(�){(e0 − 1) log � + (f0 − 1) log(1 − �) +
N
∑

j=1
aj log � + (1 − aj) log(1 − �)} + const.

=

(

f0 +
N
∑

j=1
(1 − E−q(�)[aj]) − 1

)

log(1 − �) +

(

e0 +
N
∑

j=1
E−q(�)[aj] − 1

)

log � + const.

(31)

Therefore, q(�) is still a Beta distribution. In the current paper, we denote it by Beta(e, f ), where

e = e0 +
N
∑

j=1
Eq[aj], f = f0 +

N
∑

j=1
(1 − Eq[aj]). (32)

A.7. The expectation computations
So far, we have attained the variational distributions for all (hyper)parameters. However, there are some expecta-

tions remaining unsolved. In this part, we show how these expectations can be computed. For simplicity, the subscript
‘q’ is omitted from Eq in the following discussions.

1. E[�] = c∕d.
2. E[a] = � = (�1,⋯ , �N )T.
3. E[D(�)] = D(g∕h) = D(g1∕ℎ1,⋯ , gN∕ℎN ).
4. Since E[ajan] = �j�n(j ≠ n) and E[a2j ] = �j = �2j + �j(1 − �j), we can thus obtain that E[aaT] = 
 =
��T + D(�)⊙ (IN − D(�)), where D(�) = diag(�) and IN is anN-dimensional identity matrix.

5. Note that there is w ∼  (w ∣ �,�). Hence, we have (w − �)(w − �)T ∼ Wishart(1,�), where 1 denotes the
degree of freedom and � is the location parameter of the Wishart distribution. Then, there is

E[(w − �)(w − �)T] = � ⇒ E[wwT] = � + ��T.

Furthermore, E[w2j ] = Σjj + �
2
j .

6. According to 4, we have E[D(a)XTXD(a)] = E
[(

XTX
)

⊙
(

aaT
)]

=
(

XTX
)

⊙
.
7. According to 5 and 6, we have

E[wTD(a)XTXD(a)w] =E
{

trace
[

wTD(a)XTXD(a)w
]}

=trace
{

E
[

wwTD(a)XTXD(a)
]}

=trace
{

(� + ��T)
[(

XTX
)

⊙

]}

.

8. According to 5 and 6, we have

E
[

‖y −XD(a)w‖2
]

= ‖y‖2 − 2yTXD(�)� + trace
{

(� + ��T)
[(

XTX
)

⊙

]}

.

9. E[rj] = y −
∑

n≠j Xn�n�n;

10. E
[

log �
1−�

]

=  (e) −  (e + f ) −  (f ) +  (e + f ) =  (e) −  (f ), where  (x) denotes the digamma function
defined as the logarithmic derivative of the gamma function.

By plugging these expectations into the variational distributions derived in previous subsections, and the final
solutions shown in Theorem 1 can be easily obtained.
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B. Communication dynamics
In this subsection, we introduce how to apply VBR to communication dynamics described in literature [10]. The

communication dynamics is used to capture communications in populations via phones or Emails. At time tm, indi-
vidual i contact one of its neighbors j with probability wji by sending data packets. In this period, the total incoming
flux of i is

f (i)tm =
N
∑

j=1
ajiwjioj,tm , (33)

where oj,tm is the total outgoing flux from j to its neighbors at time tm and
∑N
j=1 ajiwji = 1. Note the total outgoing

flux fluctuates with time. Therefore, we have

⎡

⎢

⎢

⎢

⎢

⎣

f (i)t1
f (i)t2
⋮
f (i)tM

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

o1,t1 o2,t1 ⋯ oN,t1
o1,t2 o2,t2 ⋯ oN,t2
⋮ ⋮ ⋮

o1,tM o2,tM ⋯ oN,tM

⎤

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎣

a1iw1i
a2iw2i
⋮

aNiwNi

⎤

⎥

⎥

⎥

⎦

. (34)

Obviously, VBR can be employed to deal with this case.

C. Experimental Settings
C.1. Experiment 1

We mimic the electrical current transportation (ECT) on a networkW that is described by following equation,

N
∑

j=1

aij
wij

(Vi − Vj) = Ii (i = 1, 2,⋯ , N), (35)

where the node’s voltage is generated by alternating current Vi = V̄ sin[(! + Δ!i)t] with V̄ = 1, ! = 103 and Δ!i
and the resistance wij are uniformly sampled from [0, 20] and [2, 3], respectively.

As for the communication dynamics on a networkW that is described by Eq. (33), the communication probability
wji is uniformly sampled from [0,1], and then is normalized such that

∑N
j=1 ajiwji = 1. The total outgoing flux oj,tm

is uniformly sampled from [0,20].
The variance of the noise item is �2. In the experiments, we consider � = 0.1, 0.2,⋯ , 1.0. For each case, the

experiment was conducted 100 times by generating different data. The network sizeN = 50. For ECT dynamics, we
set the number of observationsM = 50. Since network reconstruction of communication dynamics is harder than that
of ECT, we set the number of observationsM = 200 for communication dynamics.

The experiments are conducted on simulated BA and WS networks. The BA networks are generated by the code
written by Mathew George 1. The WS networks are generated by the official code of Matlab 2.

C.2. Experiment 2
The most settings of Experiment 2 are the same to those of Experiment 1. However, in this part, we set � = 0.1.

The random scale-free network with exponential-law coefficient 
 is generated by mexGraphCreateRandomGraph, a
function of Complex Networks Package 3. This function is able to generate a graph of given size and with the given
node’s degree distribution. In the experiments, 
 = −2,−2.2,⋯ ,−3. The number of node isN = 100.
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