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Abstract：Although the YOLOv2 method is extremely fast on object detection, its detection 

accuracy is restricted due to the low performance of its backbone network and the underutilization 

of multi-scale region features. Therefore, a dense connection (DC) and spatial pyramid pooling 

(SPP) based YOLO (DC-SPP-YOLO) method for ameliorating the object detection accuracy of 

YOLOv2 is proposed in this paper. Specifically, the dense connection of convolution layers is 

employed in the backbone network of YOLOv2 to strengthen the feature extraction and alleviate 

the vanishing-gradient problem. Moreover, an improved spatial pyramid pooling is introduced to 

pool and concatenate the multi-scale region features, so that the network can learn the object 

features more comprehensively. The DC-SPP-YOLO model is established and trained based on a 

new loss function composed of MSE (mean square error) loss and cross-entropy loss. The 

experimental results indicated that the mAP (mean Average Precision) of DC-SPP-YOLO is 

higher than that of YOLOv2 on the PASCAL VOC datasets and the UA-DETRAC datasets. The 

effectiveness of DC-SPP-YOLO method proposed is demonstrated. 

Keywords：Object detection, Convolutional neural network，YOLOv2，Dense connection, Spatial 

pyramid pooling  

 
1.Introduction 

The object detection methods based on computer vision have been widely applied in the 

fields of security monitoring, autonomous driving, and medical diagnosis. The early object 

detection methods almost rely on key points, edges, or templates, of which the detection accuracy 

is low and the application range is limited. In this regard, feature extraction methods with better 

object expression such as Haar-like features, HOG (Histogram of Oriented Gradient) and LBP 

(Local Binary Patterns) were proposed and applied for object detection together with machine 

learning [1].  

In 2007, Felzenszwalb et. at.[2] introduced the DPM (Deformable Parts Models) creatively, 

which got higher detection accuracy by a new object detection pipeline based on handcrafted 
futures and machine learning. After that, various object detection methods based on DPM were 

proposed and performed well in successive PASCAL VOC object detection challenges [3,4]. 

However, most of these methods needed to scan through the entire image for detecting the 
object regions by a sliding window, which resulted in the inefficient detection. Also, the further 

improvement of detection accuracy was restricted by the expression performance of 



handcrafted futures. 
With the development of graphics processors and the enrichment of data resources, the 

convolutional neural network (CNN) with powerful image understanding and expression 
performance was proposed [5]. It was proved that object images could be classified more 

accurately by using the CNN features than using the handcrafted futures [6], which provided 
new ideas for object detection. In 2014, the R-CNN proposed by Girshick et. al. [7] employed 

CNN to extract rich features in object detection task for the first time, which got the 

state-of-the-art performance at that time. 

At present, deep learning has become a research hotspot in the object detection field, and two 

types of deep learning object detection methods (the proposal-based methods and the 

regression-based methods) have been developed [8]. 

The proposal-based methods are developed from the R-CNN method. Aiming at the problem 

of inefficient detection caused by the object search strategy using sliding windows, the Fast 

R-CNN method [9] and the Faster R-CNN method [10] respectively utilized the selective search 

strategy and the region proposal network (RPN) to simplify the generation process of region 
proposal generation. Dai et. al. [11] proposed an R-FCN (Region-based Fully Convolutional 

Networks) to solve the problem that the ROI-wise subnetwork of Faster R-CNN did not share 

calculations in different region proposals. In the past two years, based on the Faster R-CNN 

method and the R-FCN method, RRPN (Rotation Region Proposal Networks) [12], R-FCN-3000 

[13] and other proposal-based methods [14,15] have been proposed successively, and the object 

detection accuracy has been further improved. However, these methods all perform the 

region-proposal generation stage and the subsequent feature resampling stage respectively, which 

makes it difficult to meet the real-time requirements for object detection. 

The first regression-based method, YOLO (You Only Look Once), proposed by Redmon et al. 

[16] in 2016 simultaneously predicted the coordinates of bounding boxes and classified the objects 

in an end-to-end neural network. Even if YOLO opened the door for the real-time object detection, 

it was still difficult to detect small-sized objects, and the error of bounding box coordinates was 

large as well. In this regard, Liu et. al. [17] proposed an SSD (Single Shot Multi-Box Detector) 

that introduced reference boxes and detected the object on multi-scale feature maps to improve the 

detection accuracy. Redmon and Farhadi [18] proposed the YOLOv2 method with higher accuracy 

and faster speed compared with the YOLO method. However, this method still used the Darknet19 

backbone network with low performance of feature extraction and did not fully utilize the 

multi-scale region features, which constrained the further improvement of detection accuracy.  

Subsequently, the deep residual network (ResNet) was employed as the backbone network in 

DSSD (Deconvolutional Single Shot Detector) [19] and YOLOv3 [20] to get state-of-the-art 

detection accuracy. But on the other hand, the detection speed of these methods is severely 

degraded due to the more complex network. Zhou et. al. [21] proposed an STDN 

(Scale-Transferrable Detection Network) method. It introduced the DenseNet-169 [22] as the 



backbone network of SSD and got the detection accuracy close to that of DSSD method with the 

faster detection speed. Although many improved SSD methods have been proposed [23-26], but to 

our knowledge, the existing research on the improvements of YOLO series methods are still less.  

Therefore, a DC-SPP-YOLO object detection method is proposed in this paper for improving 

the detection accuracy of YOLOv2 while keeping the real-time detection speed. The main 

contributions of our work are as follows. (1) The connection structure of the backbone network is 

optimized by the dense connection strategy for ameliorating the detection accuracy by 

strengthening the feature propagation and ensuring the maximum information flow in the network. 

(2) An improved spatial pyramid pooling structure is introduced to pool and concatenate the 

regional features on different scales in the same convolutional layer for the less location error 

when detecting the small objects. (3) A new loss function, consisting of the MSE loss for location 

and the cross-entropy loss for classification, is employed for the faster model training speed and 

the higher detection accuracy. 

This paper is organized as the following. Section 2 reviews the related works on YOLOv2 

method, backbone networks, multi-scale detection. Section 3 explains the DC-SPP-YOLO in 

detail. Section 4 gives the object detection process using DC-SPP-YOLO. Section 5 presents a 

series of experiments and discusses the results. Section 6 draws up the conclusions and makes 

prospect about the future work. 

 
2. Related Works 
2.1. YOLOv2 Method 

The YOLOv2 object detection method [18] divides the input image into S×S grids. Each 
grid predicts K bounding boxes. The class-specific confidence of each bounding box is 

truth truth
pred predPr(Class Object) Pr(Object) IoU Pr(Class ) IoUi i∗ ∗ = ∗           (1) 

Where truth
predPr(Object) IoU∗  is the confidence that the bounding box contains objects; 

truth
predIoU  is the Intersection-over-Union between the predictions and the ground truth; 

Pr(Class Object)i is the conditional probabilities that the object belong to C classes [16]. 
Therefore, the predictions of YOLOv2 are encoded as an S×S×(K×(5+C)) tensor. 

The backbone network of the YOLOv2 extracts the object features by the down-sampling 

convolutional structure that is similar to the VGG network. When convolutional neural network 

forward propagates, the relationship between the lth layer and the l-1th layer is a function as 

following 

( ) ( )-1l l l l lf f= = ∗ +x y x w b                       (2) 
The input of the lth layer in the convolutional neural network is represented as lx . The activation 

function is ( ).f . The intermediate variable is represented as -1l l l l∗ +y = x w b ; where lw  is 

the weight of the convolution kernel, lb  is the bias parameter, * represents convolution.  

When convolutional neural network backpropagates, the gradient of the loss function is 
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In Eq. (3), ( )rot180 .  represents the 180° counterclockwise rotation of the weight parameter 

matrix;  is the Hadamard product; ( ).L  is the loss function. As the gradient propagates layer 

by layer in the network, the gradient represented by the product of the derivative of the activation 

functions and the weight parameters will become smaller and smaller. For example, the derivative 

of the Sigmoid activation function is -1
Sigmoid( ) 1 / 4lf ′ ≤y , the initialized weights are usually less 

than 1; the gradient will vanish when it backpropagates in the network. Finally, the 

vanishing-gradient problem appears and results in low detection accuracy. 

Besides, for multi-scale detection, the “Fine-Grained Features” strategy employed in 

YOLOv2 does not fully utilize the multi-scale local region features, which restricts the 

improvement of detection accuracy. 

 
2.2. Backbone network 

As the feature extractor, the backbone network plays a significant role in object detection. 

The accuracy and speed of object detection is directly related to the performance of the backbone 

network. The existing network design ideas mainly include “Repeat”, "Skip-connection" and 

"Multi-path". 

Using the “Repeat” idea, the VGG network [27] employed a stack of small convolutional 

kernels instead of a single large convolutional kernel to deepen the network. It has been adopted as 

the backbone network by many popular object detection methods such as Faster R-CNN and SSD. 

Nevertheless, as the number of convolutional layers increased, further improvement of detection 

accuracy was restricted because of the vanishing-gradient resulted from the connection between 

convolutional layers within the VGG network. 

Highway Network [28] and ResNet [14] was introduced the "Skip-connection" idea to 

deepen the convolutional neural network further while alleviating the vanishing-gradient problem. 

Subsequently, as the backbone network, ResNet was adopted by Faster R-CN, R-FCN, DSSD, and 

other methods. Compared with the methods using VGG network as the backbone network, these 

methods with better feature extraction improved the detection accuracy significantly, while the 

detection speed was severely degraded because of the extreme deep network. In 2017, Huang et. al. 

[22] presented the DenseNet with the dense connection structure of convolutional layers, which 

was faster and more accurate than ResNet on the image recognition task while alleviating the 

vanishing-gradient problem further. In STDN, DenseNet-169 was used as the backbone network. 

The object detection speed was significantly improved compared with the DSSD using the 

ResNet-101 as the backbone network [21].  

The "Multi-path" employed by the Inception series network [29-32] and the Xception 

network [33] was also one of the main ideas for backbone network design and improvement. Li et. 

al. [34] adopted the improved Xception network as the backbone network in the proposed 



Light-head R-CNN method and got better performance than YOLO and SSD on the COCO 

datasets. 

Besides, convolutional neural networks such as MobileNet [35], SqueezeNet [36], ShuffleNet 

[37] compressed the network for higher speed. Even if the object detection methods using 

compressed networks were less accurate than the methods using larger backbone networks like 

ResNet and Inception, the detection speed was significantly increased and was applied widely in 

object detection tasks on mobile terminals. 

At present, the replacement of advanced backbone networks based on "Skip-connection" or 

"Multi-path" to the VGG networks has become one of the main improvements on object detection 

tasks. The accuracy is ameliorated by strengthening the feature extraction and reusing the 
object features, but the detection speed also decreases. The DenseNet has the advantages of 

alleviating the vanishing-gradient and reusing the object features so that the STDN using the 

DenseNet can improve the detection accuracy with maintaining a fast detection speed. However, 

the detection speed of STDN is still lower than that of YOLOv2. Therefore, the dense connection 

will improve the detection accuracy and speed of YOLOv2 effectively. 

 
2.3. Multi-scale Detection 

Multi-scale detection is one of the significant research  fields on CNN-based object 

detection. In recent years, a variety of multi-scale object detection methods have been developed, 

which are mainly divided into two categories: independent detection on multiple feature maps 

extracted by different layers of the networks, and fusing multiple feature maps extracted by 

different layers of the networks. 

The method of independent detection on multiple feature maps was first adopted in the SSD 

proposed by Liu et. al. [17]. It was demonstrated better for detecting small objects than detecting 

objects on the feature map extracted by coarser top layers of the network. In 2016, Cai et. al. [38] 

improved the Faster R-CNN and detected objects on multi-scale feature maps, for which the 

receptive fields could adapt to multi-scale objects. This method provided a good performance in 

the scene where the scales of the object changed considerably. Yang et. al. [39] proposed the SDP 

(Scale Dependent Pooling) method, which pooled features from different convolutional feature 

maps according to the size of each proposal. In 2018, Li et. al. [40] used the scale-aware 

mechanism to weight and combine the prediction results of large and small size Sub-network 

according to the size of input proposal, which got the state-of-the-art performance on pedestrian 

detection. 

The method of fusing multiple feature map improves the accuracy of multi-scale detection by 

fusing information from different scale feature maps and  receptive fields. In 2014, the SPP 

(Spatial Pyramid Pooling Network) method presented by He K et. al. [41] pooled arbitrary size 

feature maps into fixed-size feature vectors, for which the CNN model  didn’t need to fix the size 

of the input images but also became robust for detecting multi-scale objects by fusing the 



multi-scale features. In 2017, different methods of fusing the multi-scale feature maps was 

reported to improve SSD and got better performances than SSD [19,23,42], for which the finer 

layers of the networks could utilize the contextual information learned from the coarser layers of 

the networks. Lin et. al. [43] took one step ahead and proposed the FPN (Feature Pyramid 

Network) method, in which a top-down lateral connection structure was designed based on the 

multi-scale pyramid structure inherent in deep convolutional neural networks, for increasing the 

accuracy of multi-scale detection. In 2019, Zeng et. al. [44] proposed the PPN (proposal pyramid 

networks) that avoids the traditional image pyramid structure and reduces the major computational 

complexity for fast face detection. 

The multi-scale detection methods above detect objects independently on different feature 

maps or multi-scale feature maps fused by utilizing the global features from different 

convolutional layers of the networks to improve the detection accuracy. However, these methods 

do not make full use of the local region features on different scales from the same convolutional 

layer, and it is still difficult to detect small objects with rich local region features accurately. 

 
3. Dense Connection and Spatial Pyramid Pooling Based YOLO 

Based on the network of YOLOv2, we obtain the network of DC-SPP-YOLO by replacing a 

part of laminated convolutional layers with the dense connected convolutional layers and 

introducing the new space pyramid pooling block. The following is a further explanation of our 

improved dense connection and the improved spatial pyramid pooling in the Section 3.1 and 

Section 3.2 respectively. In the Section 3.3, the construction of DC-SPP-YOLO network and loss 

function are explained in details. 
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Fig. 1. The DC-SPP-YOLO Model. 

 
3.1. Improved Dense Connection in YOLOv2 

Considering the low ability of the backbone network on feature extraction and the 



vanishing-gradient in backpropagation, a dense connection structure of convolutional layers was 

employed to improve the accuracy of YOLOv2 by strengthening the feature extraction ability 

while ensuring the maximum information flow in the network. 
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Fig. 2. The Dense Connection of the Convolutional Layers. 

 

The dense connection structure of DC-SPP-YOLO in which the feature maps of the first l-1 

layers are concatenated together and utilized as the input of the lth layer is shown in Fig. 2. When 

the network with dense connection structure forward propagates, the relationship between the lth 

layer and the l-1th layer is represented as 

( ) ( )0 1 -1, , ,l l l l lf f  = = ∗ + x y x x x w b                   (4)  

When convolutional neural network backpropagates, the gradient of the loss function is 

 ( )1 0 1 -2 -1 -1rot180 ( , , , )l l l l l lf− ′  = ∗ ∗ +  w x x x w bδ δ              (5) 

Compared with the derivative term -2 -1 -1( )l l lf ′ ∗ +x w b  of the activation function in Eq. (3), the 

derivative term 0 1 -2 -1 -1( , , , )l l lf ′   ∗ + x x x w b  of the activation function in equation (5) 

always contains the input x0 and the output feature maps of the pr evious layers. Therefore, each 

layer of the CNN can obtain the input features and the gradient can be calculated directly from the 

loss function. It could alleviate the vanishing-gradient and increases the detection accuracy 

through the improvement feature propagation in the network. 

Each convolutional layer of the DC (Dense Connection) block in DC-YOLO (Dense 

Connection Based YOLO) outputs k concatenated feature maps. The lth layer of DC block outputs 

k0+ k×(l-1) concatenated feature maps, where the number of the input feature maps x0 is k0.   

Considering that detection speed was severely degraded due to the excessive number of 

residual connection layers in YOLOv3, only the last convolutional block which extracts the richer 

semantic features in the backbone network of YOLOv2 is improved to be dense connection block.  

As shown in Fig. 3, the DC block has four dense connection units, which was composed of a 

3×3 a 1×1 convolutional layer, and the increments of feature maps are set to be 256, 512, 512, and 

512 respectively. 
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Fig. 3. The DC Block in DC-YOLO. 

 

BN (Batch Normalization) [30] is added to solve the “internal covariate shift” and alleviate 

the vanishing-gradient problem and speed up the model training. The leaky ReLU activation 

function 

( )
    if  0

,  1,   
   if  0

i i

i ii
i

i

x x
y ax x

a

≥
= ∈ +∞ <


                      (6) 

is utilized for the nonlinearization of convolution. When the input is greater than 0 

( -1
leaky ReLU( ) 1lf ′ =y ), the vanishing-gradient can be alleviated.While the input is less than 0 

( -1
leaky ReLU0< ( ) <1lf ′ y ),the dead neuron can be reduced compared to the ReLU activation function. 

Considering that the DC block is in the deeper layer of the network, where the features 

extracted are fine-grained and the receptive field of each feature is also larger, using the larger 

convolution can extract the richer semantic features to describe the object better. Therefore, unlike 

the dense units with the “Bottleneck Layers” structure in DenseNet, each dense unit of DC-YOLO 

first extracts the object features by a 3×3 convolution to ensure more abundant fine-grained 

features are utilized. And then a 1×1 convolution is employed to reduce the number of input 

feature-maps. Nevertheless, this design of connection also leads to an increase in the number of 

model parameters. 

Therefore, the nonlinear mapping function of each dense unit can be represented as BN-leaky 

ReLU-Conv(3×3)-BN-leaky ReLU-Conv(1×1). The DC block with eight convolutional layers 

replaces the original laminated convolutional block with four convolutional layers. Although the 

https://www.baidu.com/link?url=EWof7jynqbgT-pkymcm2U1gHrP6KqZwpHx4UPnXmddqHgazWeK7wYhAwOD1j_NLPchMFXzWWVBd2qFx8zcRQUkTe6agOqmrR2vqhntEKvOW&wd=&eqid=d7d968b70003c659000000035cef81aa
https://www.baidu.com/link?url=EWof7jynqbgT-pkymcm2U1gHrP6KqZwpHx4UPnXmddqHgazWeK7wYhAwOD1j_NLPchMFXzWWVBd2qFx8zcRQUkTe6agOqmrR2vqhntEKvOW&wd=&eqid=d7d968b70003c659000000035cef81aa


number of network layers was increased in a small amount, but the detection accuracy was 

improved while maintaining a fast detection speed. 
 

Table 1 

The comparison of DC-YOLO and YOLOv2. 

Method BFLOP/s mAP (%) on VOC 2007 Speed (fps) 

YOLOv2 29.371 76.8 67 

DC-YOLO 39.383 77.6 58.9 

In Table 1, BFLOP/s (Billion Floating Point Operations per Second) is used as an evaluation 

index to compare the model complexity of YOLOv2 and DC-YOLO, as well as the detection 

accuracy and speed of YOLOv2 and DC-YOLO on the PASCAL VOC 2007 dataset (see Section 5 

for specific experimental settings). As shown in Table 1, the object detection accuracy of 

DC-YOLO is 77.6% on the PASCAL VOC 2007 dataset, which is 0.8% higher than that of the 

YOLOv2. Although the model complexity of DC-YOLO is increased by 10.012 BFLOP/s 

compared to YOLOv2, the detection speed only reduces by about 8.1 fps.This means that 

DC-YOLO still maintains a fast detection speed. 

 
3.2. Improved Spatial Pyramid Pooling in YOLOv2 

The multi-scale prediction of YOLOv2 and YOLOv3 focuses on concatenating the global 

features of multi-scale convolutional layers while ignores the fusion of multi-scale local region 

features on the same convolutional layer. Moreover, although the FPN structure introduced by 

YOLOv3 improves the accuracy of small target detection, it also has comparatively worse 

performance on medium and larger size objects [22]. 

Consequently, a new space pyramid pooling block was designed and introduced into 

YOLOv2 for pooling and concatenating the multi-scale local region features. The global and local 

multi-scale features are utilized together to improve the accuracy of object detection. 
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Fig. 4. The Spatial Pyramid Pooling (a) and the Improved Spatial Pyramid Pooling (b). 

 

As shown in Fig. 4(a), the classical spatial pyramid pooling divides the input feature map into 

i i ia n n= ×  bins (where ia  represents the number of bins in the ith layer of the feature pyramid) 

according to the scales that represent different layers of the feature pyramid. The feature maps are 

pooled by the sliding windows of which the size is the same as that of the bins. The 

ia d⋅ -dimensional feature vector where d is the number of filters is obtained to be the input of the 

fully connected layer. 

Our new spatial pyramid pooling block with three max-pooling layers illustrated in Fig. 4(b) 

is introduced between the DC block and the object detection layer in the network. The 1×1 

convolution is utilized to reduce the number of input feature maps from 1024 to 512. After that, 

the feature maps are pooled in different scales. In Formula (7), sizepool × sizepool denotes the size of 

the sliding windows and sizefmap × sizefmap denotes the size of the feature maps, then 

 pool fmap / isize size n =                              (7) 

We let ni = 1, 2, 3 and pool the feature maps by the different sliding windows of which the sizes 

are fmap fmap/ 3 / 3size size   ×    , fmap fmap/ 2 / 2size size   ×     and fmap fmap/1 /1size size   ×     

respectively , then the stride of pooling is all 1. The padding is utilized to keep a constant size of 

the output feature maps, three feature maps with the sizes of sizefmap × sizefmap × 512 could be 

obtained. 

Different from the traditional spatial pyramid pooling presented by He K et al. [41], our  

SPP block (Spatial Pyramid Pooling block) in SPP-YOLO (Spatial Pyramid Pooling Based YOLO) 



does not resize the feature maps into feature vectors with the fixed size. Instead , the three feature 

maps pooled with the sizes of sizefmap × sizefmap × 512 and the input feature maps of the SPP block 

was concatenated to get sizefmap × sizefmap × 2048 feature maps which extract and converges the 

multi-scale local region features as the output for object detection. 
 

Table 2 

The comparison of SPP-YOLO and YOLOv2. 

Method BFLOP/s mAP (%) on VOC 2007 Speed (fps) 

YOLOv2 29.371 76.8 67 

SPP-YOLO 29.746 77.5 64.6 

The model complexity of YOLOv2 and SPP-YOLO are compared in Table 2 as well as the 

detection accuracy and speed of YOLOv2 and DC-YOLO on the PASCAL VOC 2007 dataset (see 

Section 5 for specific experimental settings). As shown in Table 2 that the object detection 

accuracy of DC-YOLO is 77.5% on the PASCAL VOC 2007 dataset, which is 0.7% higher than 

that of the YOLOv2. Although the model complexity of DC-YOLO is increased by 0.375 

BFLOP/s compared to YOLOv2, the detection speed only reduces by about 2.4 fps. This means 

that SPP-YOLO improves detection accuracy without significantly increasing the model 

complexity and reducing the detection speed. 

 
3.3. Dense Connection and Spatial Pyramid Pooling Based YOLO 

（1）DC-SPP-YOLO Network 

The network of DC-SPP-YOLO consisting of five laminated convolution-pooling blocks, a 

dense connection block with four dense units, a spatial pyramid pooling block with three 

max-pooling layers and a multi-scale object detection block is shown in Figure 1.  

Firstly, the five laminated convolution-pooling blocks decrease the size of features maps’ size 

to 1/32 of the size of input image and increase the number of features maps to 512 by extracting 

and gathering the image features. After that, the DC block with four dense units composed by 3×3 

and 1×1 densely connected convolutional layers, in which the increments of feature maps are set 

to be 256, 512, 512, and 512 respectively, strengthens the feature extraction and outputs 2304 

concatenated feature maps. As a result, the number of output feature maps is reduced by 

3×3×1024 filters. 

The SPP block with three max-pooling layers is introduced after the DC block for 

concatenating the local region features extracted and converged by multi-scale pooling. The 1×1 

convolution is adopted before the pooling to reduce the number of input feature maps from 1024 

to 512. After that, feature maps are pooled by the sliding windows of which the sizes are 

fmap fmap/ 3 / 3size size   ×    , fmap fmap/ 2 / 2size size   ×     and fmap fmap/1 /1size size   ×     

respectively. Then the feature maps pooled and the input feature maps of the SPP block was 

concatenated to get sizefmap × sizefmap × 2048 feature maps as the outputs of the SPP block. 

The last part of the network is object detection block, in which the output feature maps of DC 



block with higher resolution are reconstructed and concatenated with the output feature maps of 

SPP block with lower resolution. Then the feature maps above are convoluted by the 

1×1×(K×(5+C)) convolution to obtain S×S×(K×(5+C)) feature maps for object detection.  
 

Table 3 

The network’s parameters of DC-SPP-YOLO 

Layers 
Parameters 

Output Layers 
Parameters 

Output 
Filters Size / Stride Filters Size / Stride 

Conv 1 32 3×3/ 1 416×416×32 DC Block 

Conv 14-21 

1024 3×3 / 1 
×4 13×13×2304 

Maxpool 1  2×2 / 2 208×208×32 256 or 512 1×1 / 1 

Conv 2 64 3×3 / 1 208×208×64 
Conv 22-25 

1024 3×3 / 1 
×2 

13×13×1024 

Maxpool 2  2×2 / 2 104×104×64 512 1×1 / 1 13×13×512 

Conv 3 128 3×3 / 1 104×104×128 
SPP Block 

Maxpool 6-8 
 

5×5 / 1 

Concat 13×13×2048 Conv 4 64 1×1 / 1 104×104×64 7×7 / 1 

Conv 5 128 3×3 / 1 104×104×128 13×13 / 1 

Maxpool 3  2×2 / 2 52×52×128 Conv 26 512 1×1 / 1 13×13×512 

Conv 6 256 3×3 / 1 52×52×256 Conv 27 1024 3×3 / 1 13×13×1024 

Conv 7 128 1×1 / 1 52×52×128 Reorg Conv13  / 2 13×13×256 

Conv 8 256 3×3 / 1 52×52×256 Concat -1, -2   13×13×1280 

Maxpool 4  2×2 / 2 26×26×256 Conv 28 1024 3×3 / 1 13×13×1024 

Conv 9-12 512 
3×3 / 1 

1×1 / 1 
×2 Conv 31 Conv29 K*5+C 1×1 / 1 13×13×(K*5+C) 

Conv 13 512 3×3 / 1 26×26×512 
Detection    

Maxpool 5  2×2 / 2 13×13×512 

 

Table 3 shows the parameter settings of the DC-SPP-YOLO network and the output of each 

layer when the size of the input image is 416×416×3. In Table 3, the column of "Layers" 

represents the different layers of the convolutional neural network; the column of "Filters" 

represents the channels of the convolution kernel; the column of "Size / Stride" indicates the size / 

sliding step of the convolution kernel; the column of "Output" represents the size of the output 

feature map. 

（2）Loss Function 

The predictions of DC-SPP-YOLO for each bounding box can be denoted as b = [bx, by, bw, 

bh, bc]T, where (bx, by) is the center coordinates of the box, bw and bh are the width and height of 

the box and bc is the confidence. The offsets tx, ty from the top-left corner of the image to the grid 

center in bx, by and the confidence bc are constrained to [0, 1] by the sigmoid function. Similarly, 

the ground truth of the bounding box can be denoted as g = [gx, gy, gw, gh, gc]T. The classification 

result of each bounding box is Class = [Class1, Class2, …, CalssC]T, then the ground truth of the 

classification is Pr( )l l CClass ∈ , and the predicted probability that the object belongs to the l class 

is Pr( )l l CClass ∈ . 

In this paper, a new loss function is constructed for the CNN model training, which applied 

http://www.baidu.com/link?url=YCQT-1rDnvWOM7lj8RcDifHicFSpKdUkkr2O25QXLW9KaaHJr4xFho8sn3G68t7wwhh-0qX4-oOcm3yQ5CKxwm6BeoiiGs5_tjhTreI464pUE6SA9MPSF7pRbozchdR0


the mean squared error of the coordinate regression and the cross-entropy of object classification 
to describe the loss of object detection. Compared with only using the mean squared error to 

represent both of the coordinate regression loss and the object classification loss in YOLOv2, 
using the cross-entropy to represent the object classification loss can alleviate the 

vanishing-gradient and make the model training robust. The new loss function constructed is 

shown in Eq. 8. 

noobj 2
noobj

0 0 0

obj 2
obj

0 0 0

obj
coord

( ) 1 (( ) ( ))

                     1 (( ) ( ))

                     1 ((( ) (

ij ijk ijk

ij ijk ijk

ij ijk ijk

S S K

ijk c c c
i j k

S S K

ijk c c c
i j k

ijk x x x

g b b

g b b

g b b

σ

σ

σ

λ

λ

λ

= = =

= = =

= ⋅ − ⋅∇

+ ⋅ − ⋅∇

+ ⋅ − ⋅∇

∑∑∑

∑∑∑

L b,Class

2

0 0 0

2

2 2

c

))

                                             (( ) ( ))  

                                             ( ) ( ) )            

                     

ij ijk ijk

ij ijk ij ijk

S S K

i j k

y y y

w w h h

g b b

g b g b
σ

λ

= = =

+ − ⋅∇

+ − + −

+

∑∑∑



obj
lass

0 0 0 1

prior 2
prior

0 0 0

1 (- Pr ( ) log(Pr ( )))

                     1 ((( ) ( ))

                                              ((

ijk ijk ijk

S S K C

ijkijk ij l l
i j k l

S S K

ijk x x x
i j k

Class Class

prior b b

pri

σλ

= = = =

= = =

+ ⋅ − ⋅∇

+

∑∑∑ ∑

∑∑∑
2

2 2

) ( ))   

                                              ( ) ( ) )  

ijk ijk ijk

ijk ijk ijk ijk

y y y

w w h h

or b b

prior b prior b
σ− ⋅∇

+ − + −

         (8) 

In the loss function above, if the maximum of truth
predIoU  is greater than the threshold thresIoU , 

obj noobj1 1,  1 0ijk ijk= = ；otherwise obj noobj1 0,  1 1ijk ijk= = . The gradient of the sigmoid function is ( ).σ∇ . 

Since only the maximum of truth
predIoU  is taken as the prediction result of each grid among the K 

anchor boxes, without considering the loss of the other anchor boxes may result in instability of 

model training. In order to improve the stability of model training and make the model easily learn 

the shape of object, we calculate the loss between these bounding boxes above and those bounding 

boxes which do not provide useful predictions. When the number of trained samples is less than 

Nprior, prior1 1ijk = , the predictions of the prior box can be represented as Prior = [Priorx, Priory, 

Priorw, Priorh]T; otherwise, prior1 0ijk = . Besides, the hyperparameters noobjλ , objλ , coordλ , classλ  

and priorλ  are the weight coefficients on each part of the loss function respectively. 

 
Table 4 

The comparison of YOLOv2 and YOLOv2 using new loss function. 

Method mAP (%) on VOC 2007 Convergence (epoch) 

YOLOv2 76.8 160 

YOLOv2 + new loss function 77.0 145 

The object detection accuracy of YOLOv2 and YOLOv2 using new loss function on the 

PASCAL VOC 2007 dataset are compared in Table 4. It’s shows that the object detection accuracy 



of YOLOv2 using new loss function is 77.0% on the PASCAL VOC 2007 dataset, which is 0.2% 

higher than that of the YOLOv2. In the same environment, we also campare the convergent rate of 

two methods above. As shown in Table 4, the YOLOv2 network model converged at the 160th 

epoch while the network model of YOLOv2 using new loss function converged at the 145th epoch 

when training. This means that the new loss function can not only improve detection accuracy but 

make the network model robust and converge faster when training. 

 
4. Object Detection Using DC-SPP-YOLO 

The object detection process based on DC-SPP-YOLO which includes dataset construction, 

model training, and object detection is shown in Fig. 5. 

Firstly, data augmentation methods such as random crop, scale augmentation, PCA jittering, 

are used to preprocess the training images for improving object detection performance and 

preventing the model from over-fitting. The k-means clustering is run for anchor boxes generation 

instead of hand-picked priors, and the IoU (Intersection-over-Union) between the bounding boxes 

of training samples and clustering centroids is utilized for constructing the distance metric  
box box
centroid centroid1 IoUdist = −                             (9) 

Then, the training parameters are set and the convolutional neural network is loaded. The loss 

function is constructed with the sum of squared errors loss on regression and the binary 

cross-entropy loss on classification. The weights of the model are updated iteratively to make the 

loss function converge, and the DC-SPP-YOLO model is obtained for object detection.  
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Fig. 5. The object detection process based on DC-SPP-YOLO. 
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Fig. 6. The flow chart of object detection using DC-SPP-YOLO. 

 

The algorithm’s flowchart of DC-SPP-YOLO for object detection is shown in Fig. 6. 

Step1: Divide the input image into S×S grids; each grid generates K bounding boxes 

according to the anchor boxes. 

Step2: Use the convolutional neural network to extract object features and predict the b = [bx, 

by, bw, bh, bc]T and the Class = [Class1, Class2, …, CalssC]T. 

Step3: Compare the maximum confidence truth
predIoU  of the K bounding boxes with the 

threshold thresIoU ; 

if truth
predIoU > thresIoU , the bounding box contains the object; 

else, the bounding box does not contain the object. 

Step4: Choose the category with the highest predicted probability as the object category. 

Step5: Adopt NMS (Non-Maximum Suppression) to perform a maximum local search for 

suppressing redundant boxes, output and display the results of object detection. 

 
5. Experiments 
5.1. Experimental Setup and Implementation 

（1）Experimental Condition 

Experiments were run on a Windows 10 PC with an Intel Xeon E5-2643 3.3GHz CPU, 32GB 

memory and an NVIDIA Titan X GPU with 12.00 GB memory. The program was developed on 

the Visual Studio 2017 platform by C/C++ language, and the deep learning framework Darknet 

was used. 

（2）Datasets 

The effectiveness of DC-SPP-YOLO compared with state-of-the-art methods was 

demonstrated, especially with YOLOv2, on PASCAL VOC dataset and UA-DETRAC dataset. 

The PASCAL VOC datasets used for the object detection experiments were set as follows. 

The experimental datasets contained 32487 images in which the objects belonged to twenty 

categories. The VOC 2007 trainval dataset and the VOC 2012 trainval dataset were used to train 

the DC-SPP-YOLO model. The VOC 2007 test dataset and the VOC 2012 test dataset were used 

to test the performance of DC-SPP-YOLO. As with the object detection methods such as YOLOv2, 

the truth
pred thresIoU was set to 0.5. The result on the PASCAL VOC 2012 test dataset was given by 

http://www.baidu.com/link?url=yR2rTMI0HTVeQlgjAG2vrB4oxAqa4e4RF3iNIbC2z1aR9HfNm5sieIMo9eq-AsjyHu3Dz9N-PS4r5s1HG5-C2NHJJchfTCvd7iDqQJfsfYltURr-yIXuqUrnubSNXl5O


PASCAL VOC Challenge Evaluation Server. 

The UA-DETRAC dataset used for the object detection experiments contained 82088 vehicle 

images taken by traffic cameras, in which the objects belonged to four categories. There were 

20522 images for model training, 20522 images for validation and 41044 images for the test. 

（3）Model Training 

The training parameters of DC-SPP-YOLO were set as follow: 

① The parameter ia  of leak ReLU was 10, which is the same as YOLOv2.  

②  Our loss function has a similar structure to that of YOLOv2. For ensuring a 

comparative analysis of the loss function under the same experimental conditions, we chose the 

same hyperparameters values. So, the hyperparameters noobjλ , objλ , coordλ , classλ  and priorλ  

of our loss function were 1, 5, 1, 1 and 0.1 respectively. The Nprior was 12800 in our 

experimental experience.  

③ The adaptive moment estimation (Adam) was used to update the weights of the 

network [45], where the momentum was 0.9, and the decay was 0.0005. According to the GPU 

memory used in the experiments, the batch size was set as 64.  

④ We trained the network for 145 epochs with a starting learning rate of 0.001 (according 

to the experimental environment and datasets), and the learning rate on the 20th epoch and the 

70th epoch was reduced to 0.1 times of the original.  

（4）Evaluation 

The object detection accuracy was measured by mAP (mean Average Precision) when 

thresIoU 0.5= , and the detection speed was represented by fps (frames per second). 

 
5.2. Experiments on PASCAL VOC 2007 

 The detailed experimental results of DC-SPP-YOLO on the PASCAL VOC 2007 test 

dataset was shown in Table 5. The detection accuracy and speed of DC-SPP-YOLO with the 

state-of-the-art methods was compared in Table 6. When the size of the input image is 416×416 

pixels, the DC-SPP-YOLO is represented as DC-SPP-YOLO 416, and other methods are also 

represented as described above. 

Since Redmon J and Farhadi A [20] did not give the test results of YOLOv3 on the PASCAL 

VOC dataset, we used their open source code from https://pjreddie.com/darknet/yolo/ for object 

detection experiments on the PASCAL VOC 2007 test dataset. Then, the experimental results of 

YOLOv3 was used as a control group for the experimental results of DC-SPP-YOLO. 

As shown in Table 4 and Table 5, at 55.7 fps, the mAP of DC-SPP-YOLO 416 is 78.4%, 

which is 1.6% higher than that of YOLOv2 416. At 37.9 fps, the mAP of DC-SPP-YOLO 544 is 

79.6%, which is 1.0% higher than that of YOLOv2 544; the accuracy improvement above only 

slightly decreases the detection speed. Although the mAP of YOLOv3 416 is 79.3% in the 

experiments, the speed of YOLOv3, which is as fast as DC-SPP-YOLO 544 but lower than 

DC-SPP-YOLO 416 and YOLOv2 416, has been damaged due to the larger backbone network 

https://pjreddie.com/darknet/yolo/


Darknet53 with residual connection structure.  

 
Table 5 

The detection results of DC-SPP-YOLO on PASCAL VOC2007 test dataset. 

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv 
mAP 

(%) 

Speed 

(fps) 

DC-SPP- 
YOLO 416 

80.0 84.9 76.0 68.0 53.8 87.6 83.9 90.1 62.5 84.1 75.8 88.6 87.3 85.7 77.0 54.3 81.7 80.1 88.3 78.7 78.4 56.3 

DC-SPP- 

YOLO 544 
83.1 85.9 77.2 69.5 59.7 88.5 86.3 89.9 62.6 86.0 78.3 87.6 88.0 86.7 80.1 54.3 81.3 80.4 87.6 79.4 79.6 38.9 

 

Table 6 

The comparison of accuracy and speed on PASCAL VOC2007 test dataset 

Method Year Base network mAP (%) Speed (fps) GPU 

Faster RCNN[10] 2015 VGG16 73.2 7.0 Titan X 

Faster RCNN[14] 2016 ResNet-101 76.4 5.0 Titan X 

SSD 300[17] 2016 VGG16 74.3 46.0 Titan X 

SSD 512[17] 2016 VGG16 76.8 19.0 Titan X 

DSSD 321[19] 2017 ResNet-101 78.6 9.5 Titan X 

DSSD 513[19]] 2017 ResNet-101 81.5 5.5 Titan X 

STDN 300[21] 2018 DenseNet-169 78.1 40.3 Titan X 

STDN 513[21] 2018 DenseNet-169 80.9 28.1 Titan X 

YOLO[16] 2016 Darknet19 63.4 45.0 Titan X 

YOLOv2 416[18] 2017 Darknet19 76.8 67.0 Titan X  

YOLOv2 544[18] 2017 Darknet19 78.6 40.0 Titan X  

YOLOv3 416[20] 2018 Darknet53 79.3 37.9 Titan X 

DC-SPP-YOLO 416 2018 Darknet29 78.4 55.7 Titan X 

DC-SPP-YOLO 544 2018 Darknet29 79.6 38.4 Titan X 

YOLOv3(DC) 416 2018 Darknet54 79.5 37.7 Titan X 

YOLOv3(DC)+SPP 416 2018 Darknet54 79.7 37.0 Titan X 

 

To further test the proposed method, we also compare the DC-SPP-YOLO method with 

YOLOv3, which also improves the backbone network and multi-scale detection of YOLOv2. The 

DC structure proposed was completely used instead of the laminated convolution-pooling 

structure of YOLOv2. Then, the YOLOv3(DC) with 54 convolutional layers in the backbone 

network was obtained as a control group. The SPP block proposed was introduced based on 

YOLOv3(DC), and the YOLOv3(DC)+SPP was obtained as a control group. The experimental 

results of YOLOv3, YOLOv3(DC) and YOLOv3(DC)+SPP also verified the effectiveness of the 

proposed method. 
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Fig. 7. The accuracy and speed on PASCAL VOC2007. 

 

Detection performance of DC-SPP-YOLO was compared with the state-of-the-art methods in 

Table 6. The performance of DC-SPP-YOLO is obviously better than that of Faster R-CNN and 

YOLO on Pascal VOC 2007 test dataset. The DC-SPP-YOLO 544 is not only more accurate than 

SSD 512 and but also runs twice as fast as SSD 512. Even though the mAP of DC-SPP-YOLO 

544 is 1.9% lower than that of DSSD 513, the detection speed is much faster than that of DSSD 

513 (more than seven times ) due to the severe constrainment of the detection speed of the DSSD 

is by the extremely deep backbone network (ResNet-101) and the inefficient feature fusion. STDN 

513 adopts the DenseNet-169 backbone network to improve the speed of DSSD 513, but STDN 

513 is still about one third slower compare to DC-SPP-YOLO 544 even though STDN 513 has a 

1.3% higher mAP compare to DC-SPP-YOLO 544. As shown in Fig. 7, considering both the 

detection accuracy and speed, the general performance of our method is better than that of STDN. 

 
Table 7 

The path from YOLOv2 to DC-SPP-YOLO. 

Improvement 
YOLOv2 

416 
    

DC-SPP-YOLO 

416 

Dense Connection  √   √ √ 

Spatial Pyramid 

Pooling 
  √  √ √ 

New loss function    √  √ 

mAP (%) 76.8 77.6 77.5 77.0 78.0 78.4 

Speed (fps) 67.0 58.9 64.6 67.0 55.7 55.7 

The comparison of the improvement on each component in DC-SPP-YOLO is shown in 

Table 7. The mAP of DC-YOLO in which the improved dense connection of convolutional layers 

is employed is 0.8% higher than that of YOLOv2. The mAP of SPP-YOLO in which the improved 



spatial pyramid pooling block is introduced is 0.7% higher than that of YOLOv2. The mAP of 

YOLOv2 using new loss function is 0.2% higher than that of YOLOv2. And the DC-SPP-YOLO 

without using new loss function gets a 1.2% higher mAP than that of YOLOv2, while the mAP of 

DC-SPP-YOLO using new loss function is 1.6% higher than that of YOLOv2 which shows the 

new loss function make a 0.4% higher mAP contribution on DC-SPP-YOLO. According to the 

results of these experiments, the mAP of DC-SPP-YOLO using new loss function was improved 

from 76.8% to 78.4%, which further demonstrates the effectiveness of the above three improved 

methods respectively. 

 
5.3. Experiments on PASCAL VOC 2012 

Results of the Object detection experiments on the PASCAL VOC 2012 dataset were shown in 

Table 8 and Fig. 8, which demonstrated the good performance of DC-SPP-YOLO further. The 

experimental results have been evaluated by the PASCAL VOC Evaluation Server. The evaluation 

results can be found at http://host.robots.ox.ac.uk:8080/anonymous/TAD5II.html. At 38.4 fps, the 

mAP of DC-SPP-YOLO 544 is 1.2% higher than that of YOLOv2 544. Moreover, the results 

show that the AP variation from DC-SPP-YOLO to YOLOv2 is much higher in the categories of 

"sheep/car" (more small-sized objects) and "bus/mbike/table" (more large-sized objects) than that 

in the other categories. It demonstrates the detection accuracy of YOLOv2 is ameliorated by the 

improved dense connection and the improved spatial pyramid pooling. 

As shown in Table 9, the object detection performance of the DC-SPP-YOLO was compared 

with the state-of-the-art methods on the PASCAL VOC 2012 dataset. The experimental results on 

PASCAL VOC 2012 are similar to those on PASCAL VOC 2007. The mAP of DC-SPP-YOLO 

544 is higher than that of Faster R-CNN and YOLOv2, and is comparable to that of SSD 512, but 

is lower than that of DSSD. On the other side, DC-SPP-YOLO 544 runs much faster than Faster 

R-CNN, DSSD 513 and SSD 512, only runs a little slower than YOLOv2. In general, these results 

above demonstrate the effectiveness of DC-SPP-YOLO both in detection accuracy and speed 

further. 
 

Table 8 

The detection results of DC-SPP-YOLO on PASCAL VOC2012 test dataset. 

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv 
mAP 

(%) 

YOLOv2 

544[18] 
86.3 82.0 74.8 59.2 51.8 79.8 76.5 90.6 52.1 78.2 58.5 89.3 82.5 83.4 81.3 49.1 77.2 62.4 83.8 68.7 73.4 

DC-SPP- 

YOLO 544 
86.9 82.5 75.7 60.1 52.9 82.5 78.4 91.0 52.8 80.2 60.8 89.4 83.5 85.5 82.5 49.5 79.8 63.9 83.7 68.3 74.6 

Variation +0.6 +0.5 +0.9 +0.9 +1.1 +2.7 +1.9 +0.4 +0.7 +2 +2.3 +0.1 +1 +2.1 +1.2 +0.4 +2.6 +1.5 -0.1 -0.4 +1.2 

 

http://www.baidu.com/link?url=Au1eWYnfJqCS9oqCQMjgV6TQUc9rOIQWoa1ePhMQ8vHHbrCkcMXPNLgJPg5IjJ_BTBMFg-_P743BcN8JclPQdxNjFWJ_1loYn6CT7h7d2U3


 
Fig. 8. The object detection using DC-SPP-YOLO on PASCAL VOC2012 test dataset. 

 

Table 9 

The comparison of accuracy and speed on PASCAL VOC2012 test dataset. 

Method Year Base network mAP(%) Speed(fps) GPU 

Faster RCNN[10] 2015 VGG16 70.4 7 Titan X 

Faster RCNN[14] 2016 ResNet-101 73.8 5 Titan X 

SSD 300[17] 2016 VGG16 72.4 46 Titan X 

SSD 512[17] 2016 VGG16 74.9 19 Titan X 

DSSD 321[19] 2017 ResNet-101 76.3 9.5 Titan X 

DSSD 513[19] 2017 ResNet-101 80.0 5.5 Titan X 

YOLO[16] 2016 Darknet19 57.9 45 Titan X 

YOLOv2 544[18] 2017 Darknet19 73.4 40 Titan X 

DC-SPP-YOLO 544 2018 Darknet31 74.6 38.4 Titan X 

 
5.4. Experiments for Vehicles Detection on UA-DETRAC 

Vehicle detection is one of the significant applications of vision-based object detection 

methods. In order to verify the detection performance of our method in the real scene, the 

UA-DETRAC Trainval dataset was utilized to train the DC-SPP-YOLO 416 model and the 

YOLOv2 416 model. The results of vehicle detection in various environmental conditions are 

summarized in Table 10. The DC-SPP-YOLO 416 has a 2.25% higher mAP than YOLOv2 416 at 

57.5 fps. It indicated that the improved dense connection and the new spatial pyramid pooling are 

helpful to increase the accuracy. 

Comparing with the other methods in Table 9, the DC-SPP-YOLO 416 gets the higher mAP 

than SSDR, FRCNN-Res and DFCN. Even if the mAP of DC-SPP-YOLO 416 is lower than that 

of EB, GP-FRCN and RCNN-SC, the DC-SPP-YOLO 416 runs much faster than these methods 

above. Besides，as shown in Fig. 9, the object detection of DC-SPP-YOLO is robust in complex 

scenes such as variable lighting conditions, different weather, object occlusion, object blurring. 
 



Table 10 

The comparison of accuracy and speed on UA-DETRAC dataset. 

Method mAP(%) Speed(fps) GPU 

GP-FRCNN[46] 91.90 4.0 Tesla K40 

EB[47] 89.57 11.0 Titan X 

SSDR[48] 79.47 34.0 GTX 1080 

RCNN-SC[48] 93.43 2.2 2×Tesla K80 

FRCNN-Res[48] 82.90 0.6 Titan X 

DFCN[48] 86.86 11.0 Titan X 

YOLOv2 416[18] 85.48 65.8 Titan X 

DC-SPP-YOLO 416 87.73 57.5 Titan X 

 

 

Fig. 9. The object detection using DC-SPP-YOLO on UA-DETRAC dataset. 

 

 
6. Conclusions 

In this paper, a DC-SPP-YOLO object detection method is proposed for improving the 

detection accuracy of YOLOv2 while keeping the real-time detection speed. In DC-SPP-YOLO, 

the improved dense connection structure of the convolutional layers is utilized to strengthen the 

feature extraction of backbone network in YOLOv2 and to alleviate the vanishing-gradient 

problem. A improved spatial pyramid pooling structure is introduced to pool the multi-scale 

region features on different scales in the same convolutional layer. A new loss function is adopted 

to accelerate the model training. The experiments on the PASCAL VOC datasets and the 

UA-DETRAC datasets demonstrate that the detection accuracy of DC-SPP-YOLO is higher than 

that of YOLOv2 and is as good as that of popular methods on the object detection tasks. 



In the field of object detection, complex environments, large-scale variances, and rotational 

variations still constrain the improvement of accuracy. In the future, the research on robust object 

detection with rotation invariance and scale invariance will be one of the important research 

contents in this field. 
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