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Abstract

This paper describes a method for identification of the informative variables in
the information system with discrete decision variables. It is targeted specifically
towards discovery of the variables that are non-informative when considered alone,
but are informative when the synergistic interactions between multiple variables are
considered. To this end, the mutual entropy of all possible k-tuples of variables with
decision variable is computed. Then, for each variable the maximal information gain
due to interactions with other variables is obtained. For non-informative variables
this quantity conforms to the well known statistical distributions. This allows for
discerning truly informative variables from non-informative ones. For demonstration
of the approach, the method is applied to several synthetic datasets that involve
complex multidimensional interactions between variables. It is capable of identifying
most important informative variables, even in the case when the dimensionality of
the analysis is smaller than the true dimensionality of the problem. What is more,
the high sensitivity of the algorithm allows for detection of the influence of nuisance
variables on the response variable.

Keywords: All-relevant feature selection, mutual information, multi-dimensional filters

1 Introduction

Modern datasets often contain very large number of variables, most of which are irrelevant
for the phenomena under investigation. There are three main approaches to deal with such
datasets. Omne can either select most relevant variables before modelling (filtering), use
the dimensionality reduction techniques [45l 36}, [40, 23] or apply modelling methodology
that performs variable selection as a part of model building. The last option can be
exercised in two flavours. Once can either use the modelling method with an embedded
feature selection, or apply the wrapper method [12]. The well-known examples of the
first approach are lasso [41] or elastic network [52] within domain of linear models. The
wrappers can be based on various machine learning algorithms, such as SVM [7] — as in
the SVM-RFE algorithm [I3], or random forest [6] — as in the Boruta algorithm [2§].
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The application of feature selection is not limited to building predictive models. One
of its common applications is discovery of genes associated with diseases, either within the
context of genome wide association studies (GWAS)[I7], or analysis of gene expression
profiles [I]. The lists of genes revealed with statistical models are further analysed for their
biological meaning and verified by wet-lab experiments. The number of variables analysed
in gene expression studies can be as large as over fifty thousands [14], however the number
is dwarfed by the GWAS where over ten millions of variables can be analysed [9]. One
should stress, that in both types of experiments the number of subjects is much lower than
the number of variables. With the number of variables that high the computational cost
of wrapper and embedded methods is so high that the initial filtering is de-facto standard
approach, even if other methods are used later for building final models or construction
of the sets of marker genes [20, [30, [14].

1.1 Short review of filtering methods

Numerous filtering approaches that have been proposed in the literature fall in two general
classes. In the first one a simple measure of association between the decision variable and
descriptive variables is computed, and the variables are ranked according this measure.
The association can be measured using for example t-test for population means, signal
to noise ratio, correlations between decision and descriptors, as well as various measures
based on information entropy [8, B9]. The inclusion to the relevant set is decided by
application of the statistical test using either FWER [18], or FDR [4] method. In many
cases the set is heuristically truncated to top IV features, when selection of N is dictated
by convenience [21]. The simple univariate filtering may overlook the variables that affect
the investigated phenomenon only in interaction with other features. The number of
overlooked but important features may be even higher when truncation is used, since
some features that are not very relevant by themselves, may become very relevant when
considered in conjunction with other features.

The second class of filters uses both the measure of dependence between predictors and
dependences within the set of predictor variables to obtain a small set of non-redundant
variables that can be used to build predictive models. In some cases, the optimal subset is
obtained in a two-step procedure, where in the first step the ranking is obtained and then
the selection of non-redundant optimal feature set is performed [51]. The interdependence
between variables is examined using simple measures such as correlations between features
[15 [49], measures based on the information theory [51] [32], monotonous dependence
between variables [5] and various measures of dependency, relevance and redundancy [26],
33, [31), [47]. Recently, the unifying approach based on the Hilbert-Schmidt Independence
Criterion (HSIC) [1I] has been proposed [37]. It uses nonlinear kernels transforming the
feature space and correlations to establish dependence between variables. It has been
shown, that certain selection of kernels are equivalent to the well established methods.

1.2 Case for all-relevant feature selection

The relevant variables, which are identified in the filtering, can be further used for building
predictive models for phenomena under investigation. However, one should not confuse
predictive ability with understanding the mechanisms. Statistical and machine learning
models may achieve very high predictive power without understanding the underlying
phenomena. To obtain such a model, it is merely sufficient when descriptive variables
and decision variables are influenced by some unknown hidden driver mechanism.

On the other hand, the list of relevant variables can be useful for the researchers work-
ing in the field to formulate hypotheses, design experiments and uncover the mechanisms



governing phenomena under scrutiny. We would like to argue that this list should be as
complete as possible; at best it should contain all statistically relevant variables.

There are at least three distinct reasons for that, which can be illustrated by the follow-
ing example set in the context of gene selection. Let us assume the hypothetical situation
when simultaneous but modest increase of activity of three genes a, b and c is required
to represses activity of gene D, which is causing the phenotypic effect under scrutiny.
In parallel the increased activity of these genes triggers the activity of the fourth gene
E, whose expression is changed by orders of magnitude, but is unrelated to phenotypic
effect. In this example the expression levels of genes a, b and c¢ are the driver variables
and expression levels of genes D and E are effector variables. The expression level of gene
”D” is the decision variable, whereas the all remaining variables are descriptors.

In this example, the mechanisms driving the effects under scrutiny are complex and
weakly demonstrated, whereas the effects are strong and easy to see. The simple analysis
of statistical strength of the effect will discover the strong association between E and D,
which may be sufficient to build the good predictive model. At the same time it may fail
to discover any of the driver variables.

Secondly, the measurements are inherently noisy and this influences the measures of
relevance. An example of this effect is presented in the For our token example,
the subtle effects in driver variables a, b and ¢ may be hidden in the noise, whereas the
amplified effects in the effector variable E can be clearly visible.

Finally, the heuristic procedures that are used to build the optimal set may result in
the selection of effector variables that are optimal for model building and drop the driver
variables. In our token example the optimal set consist of variable F.

The procedure that reveals relevance of all genes a, b, ¢ along with easily discovered
relevance of D would give the researcher whole information and could possibly lead to
discovery of the driver mechanism.

The univariate algorithms are simple and efficient and their result is an easy to un-
derstand list of variables which have a statistically significant connection to the decision
variable. Unfortunately, they omit the variables that are relevant only in the interactions
with other variables. Hence, in our token example, such algorithms would discover the
variable F only. Such variables can be identified by the heuristic multi-dimensional meth-
ods, however, in most cases only the subset of all relevant variables is reported - in our
example the variable F.

The example of the algorithm that both returns the full list of relevant variables
and is able to discover variables that are involved in complex non-linear interactions is
Relief-f [26]. Unfortunately, it is biased against weaker and correlated variables [35]. This
problem may be specially important for example when multiple effector variables are
strongly correlated with one driver variable, which is in turn correlated with the decision
variable. The bias against highly correlated variables may result in removing an entire
set of highly correlated variables from the final result. The bias against weaker predictor
variables may lead to diminishing the estimate of their relevance to the point where they
are non-separable from the irrelevant ones.

1.3 Current study

The goal of the current study is to introduce a rigorous approach for the problem of the
all-relevant variable selection, which also includes variables that are relevant due to non-
trivial interactions with other variables, variables that are highly correlated and those
that are weakly connected with the decision variable.

To this end, we propose to use multidimensional exhaustive analysis of the mutual
information between decision variable and descriptor variables. Such analysis requires
both large number of experimental samples and massive computations that were not
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feasible until recently. However, rapid development of experimental technology as well
as the growth of the computing power, especially using GPU for computation, allows for
exhaustive search of pairs and triplets of variables in the context of GWAS [10} [19] as well
as gene expression. Currently, even higher-dimensional interactions can be investigated
in reasonable time for smaller number of variables.

Nonetheless, the technological developments have not been matched by a methodologi-
cal advances that are required to identify the synergistic interactions of multiple variables.
In particular, it has been shown [27, 19] that the standard measure of synergy can give
misleading results in higher-dimensional cases. The attempts to propose different mea-
sures proved unsatisfactory — the tests reported significant multivariate interactions when
there are none, or were unable to discover any interactions when they are doubtlessly
present (see the next section for examples).

The current study introduces a method of identifying variables for which synergistic
interactions with other variables increase information about the response variable. It is
based on the information theory and allows for precise estimates of the statistical impor-
tance of findings. The method is tested using synthetic dataset with complex relations
between descriptive variables, and with four various 3-dimensional response functions.

2 Some previous approaches to the multivariate exhaustive
search

2.1 Regression-based approach

The regression-based tests are widely used for detection of the multivariate interactions
[42, 43, 22]. An example of the regression model of interaction between 2 variables X7,
Xo, and the response variable Y is a linear regression:

Y =ag+ a1 X1+ aeXo + 012 X1 Xo (1)

In the presence of the interaction, the empirically obtained value of a9 differs from 0 in
a statistically significant amount.

There are, however, some limits of the regression test for interactions. First, such a
test is limited to detection of monotonous interactions only. This is not a serious issue
in the case of continuous decision variables, since there are usually some monotonous
components of interactions. The problem appears for discrete response variables and also
possibly for continuous variable with strongly non-monotonous interactions. For discrete
response variables, it has been shown by VanderWeele in [43], that the positive value
of a1 is equivalent to a very strong probabilistic condition. Therefore, the regression-
based test still can ignore some important interactions. Moreover, the test becomes more
complicated and less reliable, when more variables are considered. Then the regression
model contains all the mixed terms — e.g. the model, that describes interactions between
3 explanatory variables consists of 8 terms. The errors of coefficients grow rapidly, which
reduces the sensitivity of the test in more than 2 dimensions.

2.2 Information measure of synergy

Several approaches have been proposed for directly searching for synergies, using informa-
tion theory measure [46, [19] 2]. The most known synergy measure, that uses information

theory, is the interaction information of the variable set v = {Y, X1, ..., X} }:
Linp(v) = =Y (=) H(r) (2)
TCr
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where )~ denotes summation over all subsets of v, and H(7) is an entropy of the

subset 7 [2]. The function becomes positive in presence of k-dimensional synergy, while
less-dimensional interactions don’t contribute the positive terms.
For a pair of variables X1, Xo the interaction information reads:

Lint (Y, X1, Xo2) = — H(Y, X1, X2)
—i—H(}/,Xl) —i—H(Y,XQ) —|—H<X1,X2) (3)
—H(Y) - H(X1) — H(X>)

The interaction information is, however, difficult to use for reliable statistic tests. The
basic problem is connected with the fact, that the interaction information indicates not
only synergy, but also redundancy of the set of variables. The correlations between
features add negative terms to I (Y, {X}). As a result,

e its distribution under the null hypothesis (i.e. in the absence of synergies) is not
uniquely defined. It depends on the correlations between the explanatory variables;

e in the extreme cases of statistically dependent variables, the interaction information
can be zero or negative in spite of existing interactions. The unexpected behaviour
of I;: had been reported for subsets of 3 or more variables [19, 2]. The authors
proposed some improvements that were claimed to fix the problem in these cases.
However, the issue seems to be inherent, since the interaction information test may
happen to fail even for 2 explanatory variables, see Appendix for the illustrative
example.

2.3 Multivariate test of association

The problems with synergy measures led some researchers to examine an association
between the response variable and the entire k-tuple of variables treated as a single feature.
In such a case the features that are not relevant alone but show synergistic relations
with other features can be identified as relevant. However, there is a significant risk
of false positive results, since most k-tuples containing at least one feature, which is
correlated with the response variable, would be reported as relevant. In the case of high-
dimensional datasets with numerous relevant variables, the number of reported k-tuples
can be extremly large [16] [I0]. One could possibly report only those k-tuples, where none
of the variables has been recognised as relevant in the lower-dimensional search, but it is
difficult to implement efficiently. What is more, such an approach would also overlook
k—tuples with variables that are relevant in the univariate test, but are invloved in strong
synergistic relations.

3 Searching for relevant variables

The experiences described above inclined us to focus our attention on the variables and
propose the method that identifies informative variables, including those that are not
recognised as informative by a single-dimensional analysis. Once all the relevant vari-
ables are identified, the search of synergies will be much simpler. In particular, all the
variables, which are identified as relevant in multi-dimensional analysis and not in the
one-dimensional one, are relevant due to synergies.

Identification of all informative variables can be conveniently described using the no-
tion of weak relevance, introduced by Kohavi and John in [24].

Definition 3.1 weak relevance
Let F be a set of descriptors for the response variable Y.
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Let Sx be a set of all subsets S of ¥ that do not contain X.
The X is weakly relevant if for any of S € Sx the following relation is true:

p(Y =ylX = 2,5 =s) #p(Y =y|S = s) (4)

Hence, we can say that a variable X is weakly relevant if there exists such a subset of
variables S, that by adding variable X to this subset increases information on the decision
variable Y. In the same paper authors proposed also a higher level of relevance — the strong
relevance. A a variable X is strongly relevant if for all possible subsets of variables S,
adding variable X to this subset increases information on the decision variable Y.

Definition 3.2 strong relevance

Let F be a set of descriptors for the response variable Y.

Let Sx be a set of all subsets S of ¥ that do not contain X.

The X is strongly relevant if for all of S € Sx the following relation is true:

pY =ylX =z,5=s5) #p(Y =y[S = s) (5)

One may note, that these two notions are not sufficient to fully reflect all relationships
between descriptive variables and decision variable. In particular, the weak relevance may
reflect either correlation or synergy between descriptors.

To demonstrate the first case let’s assume that two variables X; and Xy are strongly
correlated and inclusion of either of to the subset S increases information on decision
variable Y. However, when X7 is already present then adding X does not increase the
information on Y and vice-versa. The X; and X5 are both weakly relevant.

For demonstration of synergy let’s assume that X; and X5 are both binary variables
and that decision variable is also a binary variable. The decision variable depends on
both variables in a nonlinerar fashion: when X; = X, the probability of Y = 1 is
increased by 10%. Both variables are not correlated and adopt value 0 or 1 with equal
probability. When either variable is present in the dataset, then adding another increases
the information on the decision variable. On the other hand, when both variables are
absent, then adding either one does not increase the information. Again, by definition of
weak relevance, both X; and X5 are weakly relevant.

In some cases these definitions lead to counterintuive results. Consider the information
system consisting of three descriptive variables X7, X9, X3 and decision variable Y, where
X1 =Y, X5 is a pure random noise, and X3 = X; + Xo. It is easy to see, that a subset
S consisting of { X2, X3} contains all information on Y, hence adding X; cannot add any
information. On the other hand, adding any variable to X; also cannot add information
on Y, hence all three variables are weakly relevant, despite that X3 is clearly redundant
and Xy by itself has no information on decision variable.

Yu and Liu [50] proposed to split weak-relevance into two classes. In their approach
variables can be weakly relevant non-redundant or weakly relevant redundant. The redun-
dant variables are defined using the notion of a Markov blanket [25].

Definition 3.3 Markov blanket
Let F be a set of descriptors for the response variable Y .
Given the variable X, let Mx € F, X ¢ Mx. Mx is a Markov blanket for X if

p(F = X — M,Y|X, My) = p(F — X — M,Y|Mx) (6)

Definition 3.4 Redundant variable
A wvariable X € G is redundant in G when there exists a Markov blanket for X in G.



With this definition the minimal-optimal feature selection problem becomes a prob-
lem of finding all non-redundant variables. The notion of weakly-relevant and redundant
variables helps to deal with the last example, since the X9 and X3 variables are clearly
redundant. Unfortunately, it is not sufficient to help with other limitations.

The definitions of weak and strong relevance are absolute in the sense that they
require examination of the all possible subsets S of the feature set F', disjoint with X,
either to exclude the weak relevance or to prove the strong relevance of the variable X.
An exhaustive search of all possible combinations is in most cases not possible due to
limited computational resources and limited dataset.

Nevertheless, despite all these shortcomings, the distinction between weak and strong
relevance is very useful concept, that explicitly demonstrates that relevance is not a
unique property, but can be graded. In the context of practical applications weaker and
more specific definitions of weak and strong relevance may be more appropriate than very
general definitons proposed by Kohavi and John. In particular, we propose to introduce
two notions, k-weak relevance and k-strong relevance that better reflect our limited ability
to test exhaustively possible combinations of variables.

The variable X is k-weakly relevant if its relevance can be established by analysing all
(2) subsets of k variables that include variable X. More formally:

Definition 3.5 k-Weak Relevance

Let F be a set of descriptors for the response variable Y.

Let Si_1.x be a set of all subsets S of F with cardinality (k — 1) that do not contain X.
The X is k-weakly relevant if for any of S € Sp_1,x the following relation is true:

p(Y =yl X =12,5=35)#pY =y|S =3) (7)

Similarly, the variable X is k-strongly relevant if its it strongly relevant in all (Z)
subsets of k variables that include variable X. More formally:

Definition 3.6 k-Strong Relevance

Let F be a set of descriptors for the response variable Y.

Let Si_1.x be a set of all subsets S of F with cardinality (k — 1) that do not contain X.
The X is k-strongly relevant if for all of S € Si_1.x the following relation is true:

p(Y =yl X =2,5=5)#p(Y =y[S=35) (8)

One may note, that the standard univariate filtering is equivalent to finding all 1-
weakly relevant variables. In this case the subset S in the definition |8 is simply the empty
set ().

Selection of the particular value of k depends on the available computational resources
and size of the dataset. One should note, that even with infinite computational resources
the analysis in very high dimensions can be applied only for sufficiently large samples,
since good representation of the probability density is necessary to obtain reliable results.
Therefore in practice the dimensionality of the analysis may be limited both by the com-
putational resources, when the number of variables is high, or by the sample size, when
the number of objects is small. The presented method of feature selection is designed as
an initial step of investigation. The analysis of the redundancy and synergies between
variables is not performed here and left for the next step of the analysis.

To obtain a list of all variables, that exhibit the statistically significant influence on a
response variable we use the conditional mutual information between Y and X given the
subset S:

(Y X|S) = [H(X,S) = H(Y, X, S)| - [H(S) - H(Y, )] (9)

where H(X) denotes the information entropy of the variable.
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I(Y; X|S) can be interpreted directly as amount of information about the response
variable Y, that is contributed by the variable X to the subset S. It is always non-negative
and becomes zero, when the variable contributes no information to the subset.

Note that in the univariate case, i.e. if the subset S is empty, I(Y; X|S) reduces to
the mutual information of Y and X, commonly used to test the statistical association
between the variables.

IY; X|0) =1(Y; X)

The conditional mutual information has been used in the context of minimal-optimal
feature selection, see for example [33] [16, 32} [44], however it has not been used for iden-
tification of the synergistic relevant variables.

3.1 The statistics of conditional mutual information

Computation of conditional mutual information is straightforward and efficient for discrete
variables. In the case of continuous variables there are two possibilities. One can either
build an estimate of a multidimensional probablity density function, or one can discretize
variables. In the current study we use the quantile discretisation, which method is both
simple and robust. To avoid overfitting, the discretisation is not well aligned with the
test functions - the descriptive variables are discretised into three equipotent categories,
whereas the decision variable is based on power of two periodicity.

Let the response variable Y, the tested variable X and the variables {S;},i=1,...,k—
1, be the discrete ones with number of categories Cy, Cx, {Cs,}, respectively. The
analysed dataset contains values of the variables for IV objects. The obvious estimate of
the probability, that the variable takes on a particular value, is

Ty
pa::ﬁ

where n, is the number of objects in the dataset, for which the variable X takes on the
value x. Hence, the estimate of information entropy reads:

H(X) == pzlogps
xr

and the estimate of the conditional mutual information is equal to:
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— | D Pygsy 108 Py(sy — D Do 108 P(s,)
y,{Si} {57«}
where
Dya{s;} = %17]\{,5”, Nya{s;} is the number of objects for which

Y:y,X:LIZ, Sizsia

Ma{s;}

ﬁx{sz} =N o Nafs;} — Zy Nyx{s;}s

~ _ Nyfs;) _
Py{si} = —N » Ty{si} = 2ua Tya{si}

n

N _ ™Msi} _
p{si} - N » n{Sz} - Zy,m nyx{si}'



If X contributes no information about the response variable to the subset S = {S;}
and the sample size N is sufficiently large, then 2NI(Y; X|S) follows the well-known x>
distribution, see Appendix for details:

2NI(Y; X|S) ~ X*(df), (11)
k—1

df = (Cy —1)(Cx - 1) [] Cs, (12)
i=1

Some examples of behaviour of conditional mutual information for various cases of

variable associations are shown in Fig. [0 [10]in the Appendix

3.2 The minimum p-value analysis

For each value of [ (Y; X|S), one can compute the associated p-value and determine the
probability, that the variable X contributes no information to the subset S. To check the
k-weak relevance of the variable, we should determine whether there exists any subset S
of k — 1 features, in context of which X is relevant. To this end we find the minimum
p-value over all the subsets for each variable:

Prnin(X) = min [pxz (f(Y;X;S))} . (13)

If the variable X is irrelevant, pp,(X) proves to follow the exponential distribution, for
details, see Appendix

P (pmin(X) <v)=1—e"". (14)

The parameter v can be estimated based on the test results for all the variables, most
of which are irrelevant. This allows us to calculate the probability of being irrelevant
(the p-value) for each variable X. The result can be used directly to decide, whether the
variable should be selected as relevant, via standard FWER (e.g. Bonferroni correction)
or FDC (like Benjamini-Hochberg [4]) methods.

4 The algorithm

The theory described above leads to the algorithm of multivariate feature selection. It
consists of the following steps:

e If the response variable and the explanatory variables are continuous, they are
discretised first.

e For each k-tuple of variables S* the contingency table is built, that contains number
of objects, for which the variables take on particular values. This step is the most
expensive computationally, however, it is simple, so it can be performed in parallel,
for example using GPU.

e For each variable X € S* the conditional mutual information between the response
variable Y and X given the rest of the k-tuple S¥~! is calculated. Then, the
associated x? p-value is calculated.

e For each variable the minimum p-value over all the k-tuples is recorded as ppin (X).
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Figure 1: 2-dimensional illustration of the test dataset for various response variables: a)
XOR: Y = (X; - X3 < 0), b) checkerboard: Y = (sin(27X1) - sin(27X;) < 0), c¢) sphere:
Y = (X? + X2 > 0.9), d) random response.

In a special case, when all the explanatory variables have the same num-
ber of categories (e.g. they are all the discretised continuous variables),
the last two steps can be simplified. In this case, the minimum p-value
corresponds to the maximum value of I(Y; X|S*~!). Instead of comput-
ing all the p-values, it is enough to record the maximum I(Y;X|S*™1),
then calculate the associated p-value once for a variable.

e Based on the statistics of py,:, over all the variables, the parameter v in Eq. is
estimated (see Appendix [A.2)).

e The eventual p-value is calculated for each variable.

e Finally, either Bonferroni-Holm FWER method, or Benjamini-Hochberg FDC method
is used to decide which variables should be selected as relevant.

5 Tests on Synthetic Datasets

To explore the performance of the method, we have generated a complex artificial dataset,

containing 351 descriptive variables, defined for 5000 objects. There are two general

classes of variables in this dataset. The first one consists of variables which are drawn

from a (—1, 1) uniform distribution, with possible admixture of random noise. The second

is obtained as linear combination of primary variables, also with possible admixture of

random noise. The random noise is drawn from the (—0.15,0.15) uniform distribution.
More specifically, the dataset consists of the following groups of variables:
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1. 3 base variables drawn from the uniform distribution. The response variable is a
function of these variables only.

2. 3 base variables with 15% random noise added.

3. 20 linear combinations of the base variables (belonging to group 1) with random
coeflicients.

4. 20 linear combinations of the base variables (belonging to group 1) and nuisance
variables (which are henceforth refferred to as group 5) with random coefficients
and 15% random noise added.

5. 5 nuisance variables drawn from the uniform distribution, see Appendix [B.3.1]
6. 100 random variables.

7. 200 linear combinations of 10 variables from group 6 with 15% additional random
noise.

The variables from the groups 1-5 are expected to be weakly relevant, while groups 6-7
contain irrelevant ones. Obviously, the most important variables belong to the groups 1
and 2. The set simulates real datasets, where the pure signal is usually not available, and
there are many irrelevant variables that are correlated with each other.

The response variable Y is a binary function of first 3 variables. We tested 4 example
functions:

oV =(X;-Xo-X3<0)

o YV = (sin(27X) - sin(2r X3) - sin(27X3) < 0)
o Y = (X}+ X7+ X3 >09)

e Y random, independent of X, Xo, X3

2-dimensional versions of the functions are shown in Fig.

The methodology presented in the current study is general and applies both to con-
tinuous and discrete variables, but for simplicity and efficiency it is restricted here to
the discrete case. Therefore, the descriptive variables were discretised to conduct the
tests. In all cases the variables were discretised into 3 equipotent monotonic categories.
The discretisation was chosen with three criteria in mind. Firstly, it does not give unfair
advantage to the base functions, since the discretisation is not particularly well fitted to
the response functions under consideration. Secondly, it assures that the representation
of each category in multidimensional cases is sufficiently large to minimise variance due
to sampling. Finally, the single predefined split gives insight in the influence of the split
on the results, at least in the case of the base variables. Statistical tests for discovery of
explanatory variables were performed for each response variable, using FDR, procedure
with a = 0.1 with one-, two- and three-dimensonal analyses.

The results of a feature selection procedure are often used to build predictive models
of the phenomena under scrutiny, with the underlying assumption, that the most relevant
(most informative) variables should be used for model building. In the case of the current
study we have tested, whether variables selected by multidimensional feature selection
procedure lead to better models than those obtained using univariate analysis. To this
end, the variables selected by the procedure were used to build a predictive models us-
ing Random Forest classifier [6] implemented in R package randomForest [34, 29]. The
procedure was performed either with three highest scoring variables or with all variables
deemed relevant by the algorithm. As a reference we used predictive models built using
following subsets of relevant variables:
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Table 1: The number of variables identified as relevant for all four response variables
obtained in 1-, 2- and 3-dimensional analysis. The FDR procedure with a = 0.1 was used
in all cases to call relevant variables. Seven categories of variables as labelled as follows:
G1 — base variables, G2 — base variables distorted with 15% random noise, G3 — random
linear combinations of base variables, G4 — random linear combinations of base variables
distorted with 15% of random noise and nuisance variables with the same amplitude, G5
— nuisance variables, G6 — uncorrelated random variables, G7 — linear combinations of

G6.

variable group | G1 G2 | G3 G4 | G5 | G6 G7
# of variables | 3 3 120 20| 5 |100 200
3D sphere
1d 3 3120 8 0 0 0
2d 3 3120 20| 4 0 4
3d 3 3120 20| 5 0 3
3D XOR
1d 0 0|10 2 0 1 0
2d 3 3120 20| 3 1 1
3d 3 3120 20| 5 1 2
3D checkerboard (product of sines)
1d 0 0 2 0 0 0 0
2d 2 2 120 2 0 6
3d 3 3120 4 0 1 3
Random response
1d 0 0 0 0 0 0 0
2d 0 0 0 0 0 0 0
3d 0 0 0 0 0 0 0

all variables,

all relevant variables,

pure base variables

pure combination variables

pure base and combination variables

6 Results

The three response functions that were generated for the same set of descriptive variables
represent a wide range of difficulties - the easy problem in the case of sphere, intermediate
in the case of exclusive or, and the 3D checkerboard is the most difficult, as can be seen
in the Table [1, where the number of variables identified as relevant is reported.

It can be seen, that while the original problems are formulated in three dimensions,
the presence of linear combinations of variables can reduce the apparent dimensionality
of the problem.

6.1 An easy problem - a 3D sphere

In particular, in the case of the spherical decision function, most of the informative vari-
ables are easily identified even in one dimension. Extension of the analysis to higher
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Table 2: The summary for ranks for variables is shown for 7 categories of variables.
Categories are identical as in Table 1. For pure and noisy base variables all ranks are
shown, for remaining informative variables the highest and lowest rank, whereas for the
random variables only the rank of the highest scoring variable is shown.

variable group G1 G2 G3 G4 G5 G6 GT7
# of variables 3 3 20 20 5 100 200
3D sphere
1d 136 257 426 27336| 116294 | 35 42
2d 134 257 626 2748 44 55 56 49
3d 134 258 626 2749 44 51 61 52
3D XOR
1d 26 46 251 251022971283 10306 |71 126 333 | 16 13
2d 7 18 26 815 25 124 2748 | 4549301 | 50 51
3d 616 19 515 20 126 2746 | 474951 | 54 52
3D checkerboard (product of sines)
1d 82 103 318 90 148 271 |1 326 6 350 17 302 3 4
2d 23 28 57 192994 | 124 14 328| 88323 33 25
3d 20 24 26 222325 | 121 27312| 129 294 32 30

dimensions does not lead to large changes of the information gain, see Figure Addi-
tionally, the relative ranking of the groups of variables is mostly preserved. The ranking
of variables is concordant with the intuition - the pure base variables are scored higher
than noisy base variables that are in turn scored higher than linear combinations of pure
variables. The noisy linear combinations are below pure linear combinations, and the nui-
sance variables are scored lowest among informative variables. Nevertheless, increasing
the dimensionality of analysis allows for higher sensitivity in the case of noisy linear com-
bination and nuisance variables. In particular, transition from the 1- to 2-dimensional
analysis improves the ranking of noisy linear combinations and nuisance variables, see
Table [2| and Fig. [2l One should note that nuisance variables are informative only due to
interactions with the noisy linear combinations, hence they are non-informative in one
dimension and the increase of their ranking in higher dimensional analysis is expected.

6.2 Intermediate difficulty - a 3D XOR

Three dimensional XOR is an example of a problem for which the multi-dimensional
analysis and all-relevant feature selection is required for full understanding of the system
under scrutiny. When only 3 base variables are taken into account, it is an example of
pure 3-dimensional synergy, where no variable is informative unless all 3 are analysed
together. However, the introduction of linear combinations of the base variables to the
descriptive variables significantly affects the analysis.

The one-dimensional analysis cannot discover importance of the base variables. On
the other hand, half of the pure linear combinations of base variables along with 2 noisy
ones are deemed relevant, see Table Hence, the univariate approach to this problem
reveals set of twelve variables that can be further used for building predictive models or
to design marker sets. However, this set does not contain any of the original variables
that were used to generate the problem, neither pure nor noisy ones. Therefore, any
reasoning, directed towards elucidation of the mechanism for generation of the response
variable, based on the relevant variables identified by the univariate analysis would be
seriously flawed.

Increasing the dimensionality of analysis to 2D is sufficient to identify nearly all rele-
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Figure 2: Information gain for 1-, 2- and 3-dimensional analysis of relevance for response
variable defined as Y = (X? + X7 + X2 > 0.9) (3-dimensional sphere).

vant variables, only 2 out of 5 nuisance variables were not discovered. Nevertheless, the
ranking of the variables does not reflect the true relevance of the variables. In particular,
five highest scoring variables belong to the pure linear combination class, and the least
informative pure base variable has the rank 25. Therefore, any analysis based on the
highest scoring variables only, would also likely miss some of the truly relevant variables.
Finally, the 3-dimensional analysis reveals all relevant variables, with slightly improved
ranks of the base variables.

It is interesting to see how the relative ranking of different classes of variables is affected
by the dimensionality of the analysis, see Table In the one-dimensional analysis the
highest scoring variables are linear combinations of base variables, with non-noisy versions
consistently scored higher. The ranks of base variables are essentially randomly dispersed
between 25 and 297. In two dimensions the relative ranking between groups of variables
is radically changed. The top ranks still belong to non-noisy linear combinations of base
variables. However, the base variables themselves, both pure and distorted, appear much
higher in the ranking, well within the range spanned by the linear combinations of pure
base variables. Interestingly, the noisy combinations score significantly worse, with large
gap between information gain of the pure and noisy combinations. Nonetheless, all noisy
combinations were also identified as relevant, along with 3 of 5 nuisance variables. The
ranking of base variables is even slightly better in the 3-dimensional analysis. Yet, the
highest rank for the base variable is only 5, and the lowest one is as far as 20.

The graphical summary presented in the Figure [3|shows the results of three stages for
1-, 2- and 3-dimensional analysis. The analysis in 1-, 2- and 3-dimensions are shown in
the 1st, 2nd and 3rd row, respectively. The first column in the figure shows the gain of
information on the decision variable due to knowledge of the variable under scrutiny, for
all variables. The second column shows the P-P plot for the maximal information gain
(2D and 3D case) or standard chi-squared distribution in 1D. The last column contains
plots of the expected value of false discovery rate computed using Benjamini-Hochberg
method.

Particularly interesting is the excellent concordance between the theoretical and ex-
perimental distribution for the irrelevant variables on the P-P plots. In 1D p-values are
computed for the chi-squared with 2 degrees of freedom, whereas for 2D and 3D they
are computed from the extreme value distribution, with the distribution parameter esti-
mated from data. The fit is also reasonably good, although not perfect in 3D. We suspect
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Figure 3: Test results for 1-, 2- and 3-dimensional analysis of relevance for response
variable defined as Y = (X; - X2 - X3 < 0) (3-dimensional XOR function). 1st, 2nd,
and 3rd row correspond to 1D, 2D and 3D analysis, respectively. The plots in the first
column show the information gain, in the second one the p-p plot for the theoretical vs.
experimental distribution. The last column contains plots of the expected value of false
discovery rate.
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three response variables. The ranks for each group of variables are shown side by side for
1D, 2D and 3D analysis.

that this is due to larger number of bins what can increase variance of the underlying
chi-squared distribution. The final step of the algorithm, namely calling the relevant
variables, is illustrated in the third column of the Figure |3 One can observe qualitative
difference between the 1D on one side and 2D and 3D on the other. In the former, the
FDR stays at zero for few variables, and then very rapidly approaches one, whereas for
two latter cases the first horizontal segment is much longer and the following increase
towards one is much more gradual. This reflects the differences between distribution of
ranks in these cases, see Figure [dl In the 1D case, only few truly relevant variables score
high, whereas the distribution of ranks for the remaining is random. In 2D and 3D, nearly
all relevant variables are ranked higher than the irrelevant ones.

6.3 Hard problem - 3D checkerboard

The third example of the informative response function generated using the same descrip-
tor set is a 3-dimensional product of sinus functions that generates 3-dimensional 4 x 4 x 4
checkerboard-like pattern. This function is another example of pure synergy when anal-
ysed for base descriptors only, with more complex distribution of the response function.
What is more, three equipotent splits of descriptors don’t align well with variation of the
decision function what makes the analysis harder. This mismatch results in much smaller
information gains attributed to informative variables than in the previous example, and
lower sensitivity, in particular in lower dimensions. Only two linear combinations of base
variables were detected as relevant in 1-dimensional analysis. The sensitivity of the 2-
dimensional analysis is higher, resulting in discovery of all of the pure linear combinations
along with two of base variables. Finally, the 3-dimensional analysis revealed all the base
variables, both pure and distorted, all pure linear combinations and some of the noisy lin-
ear combinations, see Figure [5| Furthermore, that even in 3D base variables were ranked
lower than all but one linear combinations, see Figure [l The analysis based on highest
scoring variables could miss these most important variables.

6.4 Random decision function

The final test is performed on the random response variable that is not dependent on any
descriptors. This test is performed to check whether the procedure is not too aggressive
and able to call random variables as relevant if there are no true relevant variables. The
test is passed, since no variable has been called relevant neither in 1D, nor 2D nor 3D
analysis. Additionally, the rankings of variables are completely random.
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Table 3: OOB classification error of the Random Forest classifier built using features
selected using 1-,2- and 3-dimensional analysis on the XOR dataset, in comparison with
results obtained by using predefines subsets of variables: B - base, LC - linear combina-
tions, B + LC - base plus linear combinations, and AR - all relevant variables.
Reference
B B+ LC LC AR
0.4% 1.4% 3.1% 1.5%

Selected variables | 1D 2D 3D
All | 54% 1.9% 1.7%
3 top ranking | 9.4% 8.9% 11.4%
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Figure 5: Test results for 3-dimensional analysis of relevance for response variable defined
as Y = (sin(27rX;) -sin(27X1) -sin(27rX1) < 0) (3-dimensional checkerboard pattern). See
Fig. [3] for detailed description.

6.5 Classification using identified relevant variables

The results of feature selection were further used for building predictive Random Forest
models to test whether by extending the search for informative variables into higher
dimension can potentially improve the modelling results. In particular, we were interested
in the problem, where, on the one hand a significant fraction of relevant variables were not
discovered using 1-dimensional analysis, but on the other hand several relevant variables
were found. Therefore, we concentrated on the 3D XOR, since two other problems are
either too easy (3D sphere) or too hard (3D checkerboard).

It turns out, that the 1-dimensional analysis reveals too few variables for building high
quality models, either using all or 3-best variables only, see Table However, both 2-
and 3-dimensional analysis find subset of variables sufficient to build high quality models,
with quality comparable to those built using all informative variables. Interestingly, the
models build on three highest scoring variables are significantly worse than models based
on all relevant variables, with the error level roughly six times higher. It is worthwile to
note, that the models built using just three base variables are significantly better than
models built using all informative variables. This last observation shows that in some
cases identification of the causal variables is possible.

The results of this analysis show that in the presence of synergistic interactions be-
tween variables the extension of the analysis into multiple dimensions allows to find vari-
ables involved in these interactions and to improve predictive models.
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Figure 6: Test results for 3-dimensional analysis of relevance for random response variable.
See Fig. 3| for detailed description.

7 Conclusions

In the current study we have explored the possibility of identification of relevant variables,
when the response variable is a complex multidimensional function of the descriptive fea-
tures with nonlinear and synergistic interactions between variables. To this end, we have
proposed a rigorous methodology for identification of all the relevant variables by the ex-
haustive multidimensional analysis using information theory. Based on the solid statistics,
the method allows either for the false discovery control using BenjaminiHochberg proce-
dure, or family-wise error rate, for example using Bonferoni correction. We have tested
the methodology using the complex multidimensional datasets where response variable
was a 3-dimensional nonlinear function of 3 descriptors and descriptor set contained also
linear combinations of base variables, noisy copies of relevant variables noisy combinations
of base variables, nuisance variables as well as the random noise. We have demonstrated
that univariate analysis fails to identify most of the relevant variables in truly multidi-
mensional cases and requires multidimensional analysis.

The tests on artificial data confirmed that the new approach is able to identify all or
nearly all the weakly relevant variables (in the sense of Kohavi-John [24]), when the dimen-
sionality of the analysis matches the true dimensionality of the problem. The exhaustive
search of all possible combinations of variables limits the practical dimensionality of the
analysis due to the quick growth of the number of combinations with increasing dimen-
sionality. Nevertheless, the presence of linear combinations of variables effectively lowers
the dimensionality of analysis required for discovering the truly important variables. In
the case of 3D sphere and 3D XOR, all base variables and all combination variables, as
well as most of the nuisance variables were identified already in the 2-dimensional analy-
sis. Only the discovery of all subtle nuisance effects required full 3-dimensional analysis
concordant with the true dimensionality of the problem.

Interestingly, in the two more difficult problems the highest scoring variables are not
those that were used for the generation of the response variable, independent of the
dimensionality of the analysis. What is more, in some cases the base variables scored
significantly below their linear combinations. This result suggests that when the goal
of the feature selection is identification of causal variables, then the all-relevant feature
selection approach should be applied.
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A Statistical toolbox

A.1 The probability distribution of the conditional mutual information

The estimate of the conditional mutual information (10) can be rewritten in the form:

(Y X|9) = N Z Nyois) 108 pym{&}p{sz} (15)

vz {si} px{s }py{sl}

which allow us to identify the expression:

Py{si}Pafsi}

pyx{sz} p{s}

as a probability estimate under the null hypothesis. The null hypothesis states, that the
variable X contributes no information about Y to the subset S. p° } is a well-defined
probability estimate, since
0
Z Pya{s;}

yzxv{s’i}

Hence, NI(Y; X|S) can be interpreted as a likelihood ratio between the null-hypothesis
distribution and the estimate distribution of Y, X, S. It has been proved by Wilks [4§],

that R
bi

2 n; log —

; ' p’(L]

(where natural logarithm is used), follows the x? distribution for N — oco. In practice,
the distribution is close to the asymptotic if the contingency table is not sparse, i.e. there
are some objects for each combination of values of the variables.

The number of degrees of freedom of the x? distribution can be calculated as

yz{s;

df = dfest — df (16)

where df.s: and dfy denote the number of degrees of freedom for the estimated model and
the null-hypothesis model, respectively. The df is computed using a number of classes
of the response variable, the variable under scrutiny and of all variables in the subset .S;
using the following formula:

df = (Cy = 1) (Cx — 1) ][] Cs, (17)

A.2 The statistics of pp,(X)

For each variable X multiple statistic tests are performed, over all possible subsets S*~1.
For these variables that contribute no information about the response variable Y, each
test leads to a y2-distributed quantity.

If the tests were mutually independent, then the minimum p-value over all the tests
would follow the distribution:

Ppmin(X)<v)=1—-(1-0v)"~1—-e "™ (18)

for a sufficiently big number of tests n.
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Figure 7: Distribution of p, for the dataset used in the Appendix[B.2] The set contains
72 variables, 22 of which are relevant, and the remaining ones are random. a) P-P plot
of the minimum y? p-value for the variables in logarithmic scale; b) P-P plot of the
experimental vs. exponential distribution with the estimated parameter v. Two outlier
points with high p-value were removed to obtain best fit.

In our case, the tests are not independent — especially for dimensions higher than 2,
where many subsets contain common variables. However, the number of tests is large
enough to produce the exponential distribution, although the value of the distribution
parameter is not known a priori; it can be significantly smaller than the number of tests.

P(pmin(X) <v)m=1—e7 v<n (19)

The distribution parameter v can be estimated a posteriori. Assuming that the investi-
gated dataset contains non-negligible number of irrelevant variables. For those variables
the pmin follows the same exponential distribution end they can be used for the estima-
tion of the distribution parameter. The number of irrelevant variables should be sufficient
for that in most cases. If it is not the case, one can extend the dataset using the non-
informative contrast variables [38], 28].

The maximum likelihood estimate of - is the reciprocal of the average pmin:

1

&:7
< Pmin >

The average should be taken over the variables, that fit the exponential distribution — the
exceptionally small values of p,., are supposed to correspond to relevant variables and
should be ignored.

One additional precaution is necessary. One can expect the average value of ppi, to
be of the order of the reciprocal of the variable number, so even a handful of incorrect
values close to 1 can change it dramatically. Thus, the procedure described above is
vulnerable to numerical artifacts that can produce some pathologically big values of ppyin.
To avoid that effect and assure numerical stability in the presence of numerical artifacts,
the outlying large p-values should be ignored. The number of ignored points can be chosen
to minimize the weighted square error of the estimated coefficient «. An illustration of
the procedure is shown in Fig. []
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Figure 8: The example 2-dimensional dataset and the results of the x? test for a noisy
dataset.

B Examples

B.1 Correlated synergistic variables

Consider two correlated binary variables X7, Xo, and the response variable Y = X; A X5
ie. Y =1 if both X; and Xy = 1, otherwise Y = 0. The correlations between X; and
X5 as well as a decision variable are shown in the following table

X X
0 1
X, 0 & LlX2 O 0
1 1
1| & 3 110 1

The dependence between Y and X7, X5 is a classical example of the epistasis in genet-
ics, as defined by Bateson in 1909 [3]. However, the interaction information I;, (Y, X1, X2) =
0 due to the mutual dependence between X7 and Xo.

B.2 Statistical strength vs. importance of variables

In the example dataset the response variable Y is a function of two variables Xi, Xs,
defined as: {Y = 1if X; > 0.5 and X2 > 0.5; ¥ = 0 otherwise}. The descriptor
set comnsists of X7, X5 and additionally their twenty linear combinations fifty random
variables. The result of the univariate x? test is the same for all of the 22 relevant
variables (result not shown). When 50% noise is added to each variable, what simulates
the real data (left panel of Fig. , X1 and X5 are no longer the statistically strongest
variables. Only one of them lies among the 10 strongest ones (right panel of Fig. . A
procedure that restricts search to a few statistically strongest features could ignore the
most important ones.

B.3 Multivariate interactions

The example datasets discussed in this section consist of 400 random samples of variables
drawn from the same distribution.

B.3.1 Relevant, redundant and nuisance variables

The first example ilustrates notions of relevant, redundant and nuisance variables. The

variables are defined as follows:
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Figure 9: P-P plots of univariate mutual information (MI) and conditional mutual infor-
mation (CMI) for the relevant, redundant and nuisance variables: a)MI for variables X7,
and Xo, b) CMI for (X1, X2), ¢) CMI for (X1, X1 + X2) d) CMI for (X2, X1 + X2).

X1 and X5 are mutually independent random binary variables;

X3 is a mixture of X7 and X5 i.e. X3 is equal to X7 for randomly chosen 50% of objects
and to X5 for the remaining 50%.

Y = X; + random noise (random noise is added to for clarity of P-P plots — otherwise
the relevant variables would be represented by vertical lines at 0).

Fig. [0 shows P-P plots of the uni-variate mutual information tests for each variable and
the conditional mutual information (in both directions) for each pair of variables. In this
set, the X7 and Xsare both informative (top left panel), however, X3 is redundant in pair
with X; (bottom left panel). Variable X3 is not informative, neither alone (top left) nor
in pair with X (top right). However, it is informative, when considered in pair with X3
(bottom right). The mutual information between Y and the irrelevant variable X fits
the theoretical x? distribution, unlike those for the relevant X; and the mixture Xs.
Similarly, when the pair (X1, X3) is considered, the variable X3 contains less infor-
mation about the response variable than X;. It is redundant in this subset, so the
conditional mutual information I(Y, X3|X) follows the x2 distribution. Interestingly, in
the pair (X3, X2), both X3 and X5y are informative. X3 is an example of a nuisance
variable. Such variable has no direct association with the response variable, however it
modifies the value of the truly relevant variable. The so called ”lab”, ”technician” or
“house” effects fall into this category. While measurement of some variable theoretically
should be independent on the person performing the experiment or laboratory where it is
performed, nevertheless, such effects happen in practice. In such a case, the information
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Figure 10: P-P plots of univariate mutual information (MI) and conditional mutual
information (CMI) for the synergistic variables: a) univariate MI for variables X, and
X2, b) CMI in both directions for pair (X1, X2)

on the true variables is not available, only the values modified by the known, or unknown
nuisance factors. If the pure variable X; is not available, the knowledge of X5 can be used
to refine the signal of X3. Although not directly associated with the response variable,
such a variable may be useful for model building. Such effects may be undetectable by a
univariate test.

B.3.2 Pure synergy of independent variables

In this example, the variables are defined as follows:
X1 and X5 are mutually independent random binary variables;

Y = (X1 = X3) + random noise i.e. Y = 1if X; and Xy are equal to one another,
otherwise ¥ = 0.

The test results are presented in Fig. [[0] The univariate test shows that none of the
variables proves relevant alone. However, the test of conditional mutual information for
the pair of variables discovers the relevance of both X; and X5. This is a classic example
of synergy.

B.3.3 Epistasis of correlated variables

This example explores the problem described in Appendix
X1 and X5 are correlated with one another;
Y = (X1 A X3) + random noise i.e. Y =1 if both X; and Xy are equal 1.

The relevance of the variables X1, Xo can be detected by the univariate test, and the
result of the conditional mutual information test is even stronger (see Fig. .
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