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Abstract 

Deep belief network (DBN) is an import deep learning model and restricted Boltzmann 

machine (RBM) is one of its basic models. The traditional DBN and RBM have numerous 

redundant features. Hence an improved strategy is required to perform sparse operations on 

them. Previously, we have proposed our own sparse DBN (SDBN): using a multi-objective 

optimization (MOP) algorithm to learn sparse features, which solves the contradiction between 

the reconstruction error and network sparsity of RBM. Due to the optimization algorithm and 

millions of parameters of the network itself, the training process is difficult. Therefore, in this 

paper, we propose an efficient parallel strategy to speed up the training of SDBN networks. 

Self-adaptive Quantum Multi-objectives Evolutionary algorithm based on Decomposition 

(SA-QMOEA/D) that we have proposed as the multi-objective optimization algorithm has the 

hidden parallelism of populations. Based on this, we not only parallelize the DBN network but 

also realize the parallelism of the multi-objective optimization algorithm. In order to further 

verify the advantages of our approach, we apply it to the problem of facial expression 

recognition (FER). The obtained experimental results demonstrate that our parallel algorithm 

achieves a significant speedup performance and a higher accuracy rate over previous CPU 

implementations and other conventional methods.  

Keywords: restricted Boltzmann machine; deep belief network; multi-objective optimization; 

parallel acceleration; facial expression recognition; GPU 

1. Introduction 

In recent years, deep learning has attracted significant attention from both academia and 

industry due to its ability to boost performance in various computer vision applications. The 

fast layer-wise training algorithm proposed by Hinton et al. [1], where multiple restricted 

Boltzmann machines (RBM) are stacked and trained in a greedy manner to form deep belief 

networks (DBN), ameliorated the learning ability of deep learning algorithms for image 

recognition, natural language processing, motion capture etc. The DBN model, which is 

considered to be one of the most effective deep learning algorithms, can learn a complex 
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nonlinear model with millions of parameters from unlabeled data [2-3]. However, with large 

number of parameters, the model may produce redundant features without any constraints. In 

such cases, to learn more abstract features, some previous studies have added a regularization 

term on the hidden units [4-8]. In addition to constraining the hidden units to be sparse, we also 

need to ensure that the reconstruction error is minimized to learn more useful representation 

from inputs. Nevertheless, this will inevitably lead to compressed representation and loss of 

information [9]. When taken together, the reconstruction error and the regularization term are 

in conflict. Dealing with it, previously we have proposed a sparse DBN (SDBN) based on 

multi-objective optimization (MOP) to avoid the problem of parameter selection [10].  

When using MOP algorithms to optimize a DBN, the choice of objective function is 

crucial. It requires both a good representation of the problem to be optimized and an 

implementation that cannot be overly complex. To this extent we have selected the 

Kullback-Leibler divergence (KL divergence) [11] and the L1 norm of hidden units [12] as our 

objective functions. The underlying reason for selecting KL divergence is that it can show the 

proximity of two probability distributions, which can measure the distribution error between 

the input data and the reconstructed data in RBM. Similarly, L1 norm of hidden units has been 

selected to consider the balance between the implementation of subsequent parallel algorithms 

and the optimization effect. Usually, sparse representation is represented by L0 norm 

minimization. However, solving it is a NP-hard problem [13], which requires more iterations 

to find a feasible solution. Also, since the activation value of the hidden units is non-zero under 

the action of the sigmoid activation function, the L0 norm is always constant. In contrast, the 

L1 norm can generate sparse coefficients and is robust to uncorrelated features [14-15].  

For solving MOP problems, multi-objective evolutionary algorithm (MOEA) [16] is a 

common choice. Multi-objective evolutionary algorithm based on decomposition (MOEA/D) 

[17] is an efficient MOEA algorithm (based on mathematical programming) that has the 

advantages of fast convergence and good distribution performance. In 2015, Gong et al. 

proposed a self-adaptive multi-objective evolutionary algorithm based on decomposition 

(SA-MOEA/D) for sparse feature learning [9]. However, one main drawback of this method is 

it is very slow to converge to an optimal value. In this regard, we introduce a quantum 

mechanism based on SA-MOEA/D to increase population diversity, which can speed up the 

convergence of the algorithm and improve its search ability. Also, with this, the major 

advantage is it is easier to design parallel algorithms. We call this new algorithm as 

self-adaptive quantum multi-objectives evolutionary algorithm based on decomposition 

(SA-QMOEA/D). Although the MOP algorithm can significantly improve the performance of 

a DBN, it greatly increases the difficulty of network training [18]. A common handling 

strategy is to accelerate the training process in parallel. However, most of the conventional 

methods only focus on speeding up the complex matrix operations in the network and are 

inattentive to the optimization algorithm. 

Designing a parallel algorithm that considers both rapid computations and network 
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optimization is an extremely difficult process due to aforementioned reasons. Also, it has to be 

noted that not all optimization algorithms can demonstrate high performance merely by 

following a parallel architecture. In this context, we propose a method to parallelize the SDBN 

using graphics processing unit (GPU). The proposed parallel acceleration algorithm accelerates 

both the SDBN network and the SA-QMOEA/D optimization algorithm. The main reason for 

selecting a GPU as our accelerating device is that it is suitable for large-scale parallel 

computing on a two-level hierarchy of blocks and threads [19]. Alternative works regarding 

parallel implementations, e.g. using FPGA [21] and Hadoop framework [22], can be found in 

[18-20]. In case of FPGA or Hadoop, implementations usually require special (expensive) 

hardware external to a PC and are not flexible enough. Whereas with GPU, which is generally 

available as an inbuilt hardware with a modern-day PC, is comparatively inexpensive and can 

achieve similar accuracy with faster computations. Also, when compared to a conventional 

CPU, its consumption is very less.  

Apart from this, we have analyzed the performance of the proposed method by applying it 

to the facial expression recognition problem, which is an active and challenging problem in 

computer vison research. Although a convolutional network with a two-dimensional (2-D) 

input space has more advantages, its performance can be compared with the conventional 

methods such as nearest neighbors (NN) [46], support vector machine (SVM) [47-48], sparse 

representation classification (SRC) [49] etc. Similar to these other methods, we also extract 

and reduce the dimension of the image features, and the resultant 1-D vector is used as the 

input for the SDBN. The obtained experimental results using two publicly available datasets 

demonstrate the efficiency of our proposed approach. 

The rest of the paper is organized as follows: Section 2 presents our SRBM and SDBN 

algorithms. Section 3 provides our parallel implementation of SRBM and SDBN. Section 4 

introduces the application of parallel SDBN in FER. Section 5 reports the experimental results. 

Section 6 draws the conclusion. 

2. SRBM and SDBN 

Currently, the combination of evolutionary algorithms and neural networks is mostly 

concerned with the hyperparameter optimization and neural network architecture search. In 

our SDBN, we construct a multi-objective optimization problem with RBM, and use the 

evolutionary algorithms to solve it. This is an alternate way of combining evolutionary 

algorithms and neural networks. 

2.1 RBM and DBN  

Boltzmann machines were first proposed by Hinton and Sejnowski in 1986 [2]. Later, 

Paul Smolensky proposed a modified Boltzmann machine, which is also called as a restricted 

Boltzmann machine [23]. In general, RBM is an energy model, which is consisted of two 
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layers, namely visible and hidden layers. The design architecture of an RBM is shown in Fig. 

1.   
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Fig. 1. Design architecture of an RBM showing various nodes in hidden (top) and visible (bottom) layers. 

 

In Fig. 1, the visible layer v is used to input training data whereas the hidden layer h 

contains feature detectors. h
n  and v

n  represent the number of hidden and visible units 

respectively. i
v and 

i
h  denote respectively the ith visible and hidden units. 

i
a  and 

i
b  are the 

biases. There are no connections between the individual units of the same layer; however, each 

unit is still fully connected with the units of the other layer by a symmetrical weight matrix W. 

The energy of visible and hidden units is represented as follows 

 
1 1 1 1

(v,h)
v h v hn n n n

ij i j i i j j

i j i j

E w h v a v b h
= = = =

= − − −    (1) 

The marginal distribution of a visible vector is given by Eq. (2). 

 
(v,h)1

(v) (v, h) E

h h

p p e
Z

−= =   (2) 

where, Z is a normalization constant given by Eq. (3). 

 
(v,h)

,

E

v h
Z e−=  (3) 

It is necessary to maximize the likelihood function given by Eq. (2) to learn the value of the 

RBM parameter { , , }w a bθ =  [25-26]. The gradient 
L

θ

∂

∂
 can be calculated as follows.  
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∂ ∂

 
 (4) 
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where 0P
� represents the expectation of 

(v, h)E

θ
∂

∂
 under the joint distribution (v, h)p . 

1
Pθ

�  represents the expectation of 
(v, h)E

θ
∂

∂
 under the conditional distribution (h | v)p . It 

is relatively easy to calculate (h | v)p ; however, the computation of (v, h)p  is not 

straightforward. One way to solve this is by using the contrastive divergence (CD) algorithm 

with one-step Gibbs sampling proposed by Hinton [27]. Following which the gradient given 

in Eq. (4) is re-written as: 

 

0 1

0 1

0 1

i j i jP P
ij

i iP P

i

j jP P
j

L
v h v h

w

L
v v

a

L
h h

b

θ

θ

θ

∂
= −

∂

∂
= −

∂

∂
= −

∂

 (5) 

Next, as mentioned before, a DBN is formed by stacking multiple RBMs. Its architecture and 

the training process are depicted in Fig. 2. 
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Fig. 2. Architecture and training process of a DBN. 

 

The DBN shown in Fig. 2 is formed by stacking three RBMs where each of them is 

represented by a dotted box. Its training process is divided into two stages: unsupervised 

training and fine-tuning. In the first stage, i.e., during unsupervised training, the very first 
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RBM (bottom one in Fig. 2) is trained using CD algorithm. Later, its hidden layer is used as 

the visible layer to train the subsequent RBM. This process is repeated for all the remaining 

RBMs. Next, during the second stage, i.e., fine-tuning, the DBN is fine-tuned by 

back-propagation (BP) using the parameters obtained from the first stage as initial values [35]. 

It is worth noting that by initializing the network using the parameters obtained from the first 

stage instead of random initialization avoids the local optima during training. 

 

2.2 Sparse RBM based on multi-objective optimization 

Although a DBN can learn a complex nonlinear model from unlabeled data, with the 

increased number of parameters, the model may produce redundant features without any 

constraints. To avoid this, we have proposed the sparse RBM and the sparse DBN based on 

multi-objective optimization. The multi-objective optimization problem with q objective 

functions is expressed as: 

 1 2min ( ) ( ( ), ( ), , ( ))T

q
F x f x f x f x

st x

=

∈Ω

L
 (6) 

where, Ω  represents the feasible region of decision space, : q
F RΩ →  represents q 

objective functions, and qR  denotes the objective space. As mentioned previously, in DBN, 

the reconstruction error and the regularization term are in conflict. To that end, we have 

selected KL divergence and L1 norm of hidden units as our objective functions. Using which, 

our cost function *( )L θ  and objective function min ( )F θ  can be expressed as follows. 

 
* 0 ( ) ( )

1
1

( ) KL( || ) || ( || ) ||
T

l l

l

L P P p h vθθ λ∞

=

= +   (7) 

 
0 ( ) ( )

1 2 1
1

min ( ) ( , ) ( KL( || ), || ( || ) ||
T

l l

l

F f f P P p h vθθ ∞

=

= =    (8) 

where, λ  is the regularization parameter, T is the number of layers, 0P and Pθ

∞  represent 

the initial and balanced distributions of the data. It is known that maximizing the log 

likelihood is equivalent to minimizing the KL divergence [1]. Accordingly, the gradient of 

KL divergence KLg∇ can be obtained as in Eq. (5), while for the L1 regular term, the gradient 

is computed as follows: 

 
( ) ( ) ( ) ( ) ( )

1
1 1

|| ( || ) || (1 )
T T

l l l l l

j j i

l lij

p h v p p v
w = =

∂
− = − −

∂
   (9) 

 
( ) ( ) ( ) ( )

1
1 1

|| ( || ) || (1 )
T T

l l l l

j j

l lj

p h v p p
b = =

∂
− = − −

∂
   (10) 
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Because the degree of activation of hidden units is directly controlled by bias, we only update 

the bias for the sake of simplicity. The learning algorithm of SRBM based on MOP is 

summarized in algorithm 1. 

Algorithm 1 (Learning algorithm of SRBM based on MOP) 

Step 1 Initialization: 

� Initialize the parameters { , , }w a b  of SRBM 

� Initialize termination conditions 

Step 2 Update the parameters: 

Step 2.1 calculate gradients: 

� Use Eq. (5) to get the gradient KLg∇  of KL divergence  

� Use Eq. (9) and Eq. (10) to compute the gradient 1L
g∇  of L1 regular term 

Step 2.2 Update the parameters according to the following rule: 

1: ( ), { , , }
KL L

g g w a bθ θ ε θ= + ∇ + ∇ ∈                   (11) 

where, ε  is the learning rate  

Step 3 MOP 

� Use SA-QMOEA/D algorithm (shown in algorithm 2) to get EP 

� Randomly select a solution from EP as the new parameters 

Step 4 Repeat Steps 2-3 until the termination conditions are satisfied 

 

We use our SA-QMOEA/D algorithm to optimize the objective function in Eq. (8). The 

two main advantages of this algorithm are the quantum mechanism and the hidden population 

parallelism [28], which can effectively increase the diversity of the population and accelerate 

the convergence rate. The details of SA-QMOEA/D algorithm are presented in algorithm 2. It 

uses Chebyshev decomposition [17] to convert the MOP problem into several scalar 

optimization problems. Main parameters of our method are listed below: 

� N is the number of individuals.   

� 
1[ ,..., ]Nx x ∈Ω  are all individuals of the population.  

� 
1[ ,..., ]N

Qθ θ ∈Ω  are quantum chromosomes. 

� ( ), 1,...,i iFV F x i N= =  represents the fitness function of each individual.  

� 1(z ,..., z )
m

z =  represents the best value set for every objective function, m is the 

number of objective functions. For instance, in Eq. (8), 1z  represents the optimal 
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solution of the objective function 1f .  

�
1[ ,..., ]Nλ λ represent N uniformly spread weight vectors, which can be obtained by the 

Chebyshev approach [17]. 

�
teg  is the subproblem of objective functions [17], which can be defined as follow. 

 { }* *

1
( | , ) max | ( )te j i

j j j
j m

g x z f x zλ λ
≤ ≤

= −  (12) 

Algorithm 2 (SA-QMOEA/D algorithm) 

Step 1 Initialization:  

Step 1.1 Initialize N uniformly spread weight vectors 1[ ,..., ]Nλ λ .  

Step 1.2 Initialize the field B : 

       � compute the Euclidean distances between any of the two weight vectors  

� select T closest weight vectors 1[ ,.... ]i iTλ λ  for each iλ  and then get 

1( ) ( ,.... )i iTB i λ λ=  

   Step 1.3 Initialize the population: 

� Initialize the chromosome space 
1[ ,..., ]N

Q
θ θ ∈ Ω  

� transform 
Q

Ω  to get 1[ ,..., ]Nx x ∈Ω  

� for each i
x  in Ω : calculate ( )i iFV F x=  

    Step 1.4 Initialize solution 1( ,..., )
m

z z z=  according to i
FV  

Step 2 Population evolution: 

for each i
λ  in 

1[ ,..., ]Nλ λ : 

� Randomly select three different elements from ( )B t  to get the 

corresponding quantum chromosomes. Then, apply the recombination and 

mutation operator on them to get a new solution y . 

� for each jz  in 1( ,..., )
m

z z : if
 ( )j jz f y>  :set ( )j jz f y= . 

    � for each jλ  in B : if (y | , z) ( | , z)te j te j jg g xλ λ≤ : , ( )j jx y FV F y= = . 

      � if there is no solution in EP is better than ( )F y : add ( )F y  to EP. 

Step 3 Repeat Step 2 until the termination condition is satisfied. 

Step 4 Output EP 
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SA-QMOEA/D algorithm can find a balanced optimal solution between the reconstruction 

error and the regularization term. In other words, the algorithm not only ensures that the RBM 

learns a complex nonlinear mapping but also guaranties that the network parameters are 

sparse. 

3. Parallel implementation 

Although the SRBM algorithm based on MOP can learn sparse features, its training time 

is high due to the higher number of iterations it takes to find an optimal solution. Furthermore, 

additional computations are required to find the numerous network parameters. In this section, 

we use the population implicit parallelism to design the optimization algorithm in parallel, 

which significantly reduces the SDBN training time. 

3.1 Compute unified device architecture - CUDA 

In the early days, a GPU has been designed for high-speed graphics that are inherently 

parallel. It has the architecture that is suitable for highly parallelized computation tasks with 

less logic control as it can generate several threads in parallel to speed up the process. In order 

to fully utilize the capabilities of a GPU a specialized software framework is indispensable. 

The parallel computing platform, CUDA, developed by the Nvidia Corporation is one of the 

well-known software platforms for general purpose processing as well as for computing and 

executing programs on GPU [31]. It has been used in this work to implement and execute our 

parallel algorithms on a GPU. 

 

Host 
(CPU)

Kernel 1

Kernel 2

Block
(0,0)

Block
(1,0)

Block
(0,1)

Block
(1,1)

Block
(0,0)
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(1,0)
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(0,1)
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(1,1)

Thread
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(1,0)
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(1,1)
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(2,1)

Thread
(0,2)

Thread
(1,2)
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(2,2)

Block(1,1)

Device 
(GPU)

Grid 1

Grid 2

 
Fig. 3. Illustration of the CUDA programming model. 

 

The programming model of CUDA is shown in Fig. 3. It consists of two modules: host 
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and device. The serial code is executed on the host, while the parallel code (also called kernel 

function) is executed on the device [31]. The thread model, i.e., multiple thread blocks are 

combined to form a grid and each kernel function has several grids. All thread blocks in a grid 

contain equal number of threads. A thread is the basic execution unit and contains unique 

block and thread IDs. When using CUDA to execute parallel programs, it is necessary to 

specify the type of the memory to store data and intermediate computation parameters.  

 

Host 
(CPU)

Device (GPU)

Grid 1

 

Block(0,0)

Shared Memory

Registers Registers

Thread (0,0) Thread (1,0)

Local
Memory

Local
Memory

Global 
Memory

Constant 
Memory

Texture 
Memory

 

 

 

  

  

 

 

 

  

 

Fig. 4. The memory structure of CUDA. 

 

The memory structure of CUDA is shown in Fig. 4. Arrows in the figure indicate data 

flow directions. Global memory, constant memory and texture memory are visible to all blocks 

and threads. In a block, each thread has its own local memory and registers, which is a 

fine-grained parallelism between different threads. Threads in a same block have a shared 

memory that enables the GPU to perform secondary parallelism, which is a coarse-grained 

parallelism between different blocks. It is worth noting that the read-write speed of shared 

memory is notably high that the threads in a same block running in parallel can synchronize 

with each other at different instances during the execution [32].  

Blocks and threads are software concepts which are indeed allocated with specific 

hardware resources called streaming multiprocessors (SM) that perform actual computations. 

An SM is composed of multiple streaming processors (SP) [32]. The schematic diagram 

illustrating the SMs and SPs is shown in Fig. 5. When the program is implemented, a block is 

allocated to an SM to execute, and each thread in the block is allocated to an SP. 32 threads 

within a block are put into a warp to execute the same instruction synchronously. An SM can 

only execute one warp at a time. 
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SM n

...
SM 1

SM 0

SP SP

SP SP

SP SP

SP SP

 

Fig. 5. The schematic diagram of GPU computing units. 

 

3.2 Parallel learning algorithm of SDBN 

Learning-based methodologies, particularly those involving neural networks, often 

employ parallel designs to accelerate matrix operations. However, when an evolutionary 

algorithm is added to the network training process, a modified design is required as it now 

needs to run both evolutionary algorithm and network training in parallel on GPU. In addition, 

it is necessary to ensure that the parallel design scheme can be easily migrated. 

 

3.2.1. Parallel SA-QMOEA/D algorithm  

The communication speed between CPU and GPU is relatively slow. In order to reduce 

the communication time, the parameters are usually stored in the global memory of GPU, and 

the input data is transferred to the GPU in batches. When using evolutionary algorithms to 

update parameters, there are some potential problems if we choose and reorganize individuals 

in a block as we don't know whether all fitness values of individuals are calculated. Therefore, 

a synchronization operation is required [31]. Only when all individuals complete the 

calculation they can be selected or reorganized. In addition, when the number of threads is 

less than the number of individuals, a thread needs to compute more than one individual. In 

order to solve this problem, we sample the population of individuals into multiple partitions 

as shown in Fig. 6. Consecutively, each partition is divided into various sub-populations.  

1 2 3 4 5 6 7 8

...
N-2 N-1 N

Partition1 Partition2 Partition3 PartitionH

First_1 Last_1 First_2 Last_2 First_3 First_H Last_H

 
Fig. 6. The partition of population. 

 

The population shown in Fig. 6 is divided into H partitions. “First_i” and “Last_i” are 

respectively the first and the last sub-populations of ith partition. This partitioning strategy has 

two advantages: first it ensures the portability of the program, and the other is that the 



12 

 

multiple sub-populations can find an optimal solution more effectively. Developed 

SA-QMOEA/D parallel algorithm is summarized in algorithm 3.   

 

Algorithm 3 (SA-QMOEA/D parallel algorithm) 

Step 1 Initialization: 

Step 1.1 Initialize N uniformly spread weight vectors 1[ ,..., ]Nλ λ  

Step 1.3 Initialize a field B: 

� compute the Euclidean distances between any of the two weight vectors 

� select T closest weight vectors 1[ ,.... ]i iTλ λ  for each iλ  and then get 

1( ) ( ,.... )i iTB i λ λ=  

Step 1.3 Initialize the population: 

� Initialize the chromosome space 
1[ ,..., ]N

Q
θ θ ∈ Ω  

� transform 
Q

Ω  to get 1[ ,..., ]Nx x ∈Ω  

� for each i
x  in Ω : calculate ( )i iFV F x=  

Step 1.4 Initialization solution 1( ,..., )
m

z z z=  according to iFV  

Step 1.5 Sample the population into several sub-populations 

Step 1.6 Transfer the above parameters to the global memory of GPU 

Step 2 Population evolution: 

for each sub-population: 

for each individual i in the sub-population: 

� Synchronization: Randomly select three different elements from ( )B t   

  to get the corresponding quantum chromosomes. And apply the  

  recombination and mutation operator on them to get new solution y . 

� for each jz  in 1( ,..., )
m

z z : if ( )j jz f y> : set ( )j jz f y= . 

� Synchronization: for each jλ  in B : if (y | , z) ( | , z)te j te j jg g xλ λ≤ : 

set , ( )j jx y FV F y= = . 

� Synchronization: if a solution in EP is dominated by ( )F y : remove it 

from EP; else: add ( )F y  to EP. 

Step 3 Repeat Step 2 until the termination condition is satisfied. 

Step 4 Output EP 
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When comparing the parallel version (algorithm 3) with its counterpart (algorithm 2), the 

main difference lies in steps 1.5, 1.6 and 2. Step 1.5 is our partition strategy shown in Fig. 6 

and step 1.6 prepare things to run the evolutionary algorithm on GPU. In Step 2, the operation 

of synchronization is required because the evolution is for the entire population and not for an 

individual.  

3.2.2. Parallel learning algorithm of SRBM and SDBN 

In section 2, we have introduced the forward and backward propagation formulas of 

SRBM. All these formulae contain matrix operations, which can be accelerated on GPU by 

splitting them on to multiple threads. The entire training data cannot all be stored in global 

memory; so, it needs to be transferred in as large chunks as possible to reduce the transfer 

frequency. Our overall SRBM parallel learning process is illustrated in Fig. 7 and the 

algorithm is summarized in algorithm 4. 

CPU GPU
Initialize parameters of 
SRBM and the training 
termination conditions; 

Input the training data Input the data in batches

Transfer the parameters to 
GPU

Updating the parameters 
of SRBM using the 
blocks and threads 

parallelism

Update the parameters 
using SA-QMOEA/D

If stop ?

Obtain parameters of 
SRBM 

Transfer the results to 
CPU

Y

N

 

Fig. 7. The parallel learning process of SRBM. 

 

As SDBN is composed of multiple SRBMs, it can be trained layer by layer as shown in 

Fig. 2 (see section 2 for details). Similarly, its training process is divided into two steps: 

pre-training and fine-tuning. The parallel learning algorithm of SDBN is shown in algorithm 5. 
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Algorithm4 (Parallel learning algorithm of SRBM based on MOP) 

Step 1 Initialization: 

� Initialize the parameters { , , }w a b  of SRBM 

� Initialize termination conditions 

� Transfer the above parameters to the global memory of GPU  

Step 2 Update parameters: 

    Step 2.1 Transfer the training data in batches to the global memory regularly 

Step 2.2 Calculate the gradients in parallel: 

� Use Eq. (5) to get the gradient KLg∇  of KL divergence 

� Use Eq. (9) and Eq. (10) to get the gradient 1L
g∇  of L1 regular term 

Step 2.3 Update the parameters according to Eq. (11) 

Step 3 Multi-objective optimization: 

� Use parallel SA-QMOEA/D algorithm (algorithm 3) to get EP 

� Randomly select a solution from EP as the new parameters 

Step 4 Repeat Steps 2-3 until the termination condition is satisfied 

 

Algorithm5 (Parallel learning algorithm of SDBN) 

Step 1 pre-training: 

Step 1.1 Using algorithm 4, train an SRBM in parallel, and its parameters are 

fixed after training 

Step 1.2 Use the hidden layer state of the trained SRBM in Step 1.1 as the input 

for the next SRBM, and train the next SRBM using algorithm 4 

Step 1.3 Repeat Step 1.1 and Step 1.2 until all SRBMs are trained to complete. 

Step 2 fine-tuning: 

Step 2.1 Use the parameters of these SRBMs obtained in Step 1 as the initial 

parameters of SDBN. 

Step 2.2 Use BP algorithm to update SDBN network parameters in parallel until 

the termination condition is satisfied. 

The pre-training process in algorithm 5 is based on algorithm 4. Likewise, the SDBN uses 

the parameters obtained in step 1 as the initial parameters of the network instead of random 

initialization, which can make the SDBN to converge faster while avoiding local minima. 
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4. Facial expression recognition algorithm based on parallel SDBN 

Facial expression recognition (FER), is a challenging and prominent area of research in 

computer vision with a variety of applications for human-computer interaction. Main 

challenge lies in extracting effective features due to high intra-class variations, which raises 

the difficulty in developing a generalized approach [40-44]. Previous research suggests that 

the DBN-based methods are effective for FER where multiple RBMs are used to represent 

multi-level features. In this section, we show how our parallel SDBN can be used for FER. 

Our approach first learns abstract features in an unsupervised way through SRBM, and then 

performs supervised fine-tuning for effective expression recognition.  

4.1 Traditional facial expression recognition method 

Traditional FER methods are composed of four major steps: face detection, positioning, 

extracting expression features, and recognizing expressions. Most of these methods are based 

on manual local feature extraction and uses Gabor wavelets [36-37], local binary model (local 

binary pattern, LBP) [38], scale invariant feature transformation (SIFT) features [39] etc. as 

visual features combined with Bayesian classification, SVM, AdaBoost etc. Although the 

results achieved with those methods are satisfactory, they are prone to loss of related 

information [38-41]. Also, different illuminations and angles have a great influence on the 

information extracted of the face. Moreover, different people have different facial expressions. 

Therefore, traditional methods need to extract different features for different scenes. 

While using deep neural networks for FER, feature extraction and classification steps can 

be combined to simplify the work [40]. At present, the neural networks used for the FER 

mainly include BP neural network, DBN, CNN etc. For DBN, the input must be a 

one-dimensional vector, so the original image needs to be preprocessed. The work-flow using 

a conventional DBN for FER is shown in Fig. 8.  

images preprocessing

category 
prediction

output

pre-training 
network

fine-tuning 
network

output
Train

Test

 

Fig. 8. Flowchart of traditional DBN for FER. 

 

In Fig. 8, the blue line represents the training process and the yellow line represents the 

prediction process after training. Excessive features are not necessary for expression 

recognition, because expressions are usually related to the face, and are independent of scene 

background. Therefore, if the traditional DBN is used directly without any sparse restrictions, 
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the unrestricted RBM will extract a lot of redundant features. This not only increases the 

computation cost but also introduces a lot of noise resulting in accuracy reduction. This 

shortcoming can be handled effectively using our SDBN. 

4.2 Facial expression recognition algorithm based on parallel SDBN 

Few active hidden units can effectively extract advanced features from an image. Therefore, 

we use our SRBM to extract the information of the image, which can learn more effective 

features to achieve better recognition results. In order to generalize the algorithm, in this paper 

we do not perform any complex preprocessing but only reduce the dimensions of the original 

image by principal component analysis (PCA) [42]. The preprocessing and the process of 

recognizing a facial expression using our SDBN is shown in Fig. 9. 
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Fig. 9. The process of recognizing a facial expression using SDBN. 

 

The preprocessing process shown in the Fig. 9 is consisted of two steps. In the first step 

the images are resized, normalized, and are converted into one-dimensional vectors. In the 

second step, these vectors are combined into a matrix which are then processed by PCA for 

dimensionality reduction. This step results in a new image vector, which is used as the input of 

SDBN. We use the hidden layer of the last SRBM as the fully connected layer and use a 

softmax layer at the end to perform expression recognition. These details are shown in 

algorithm 6. 
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Algorithm6 (Training process of FER algorithm based on parallel SDBN) 

Step 1 Preprocessing: 

    Step 1.1 Obtain C training images and move them to GPU 

Step 1.2 Resize and normalize the C training images. Each image is then 

expanded into a vector 
i

x  with K elements. Finally, the C vectors are combined 

into a matrix { }1 2, , , C⋅ ⋅⋅X = x x x . The size of the matrix X  is [K, C] 

Step 1.3 PCA: 

    Step 1.3.1 For each 
i

x  in X : 
1

1 C

i i jjC =
← − x x x  

    Step 1.3.2 Calculate the covariance matrix cov  of X : T
cov = XX  

     Step 1.3.3 Calculate the eigenvalues 1 2, , ,
K

λ λ λ⋅⋅ ⋅  and eigenvectors 

1 2, , ,
K

⋅ ⋅ ⋅w w w  of matrix X  by singular-value decomposition (SVD) 

     Step 1.3.4 Select the M largest eigenvalues and their corresponding 

eigenvectors 1 2, , ,
M

⋅ ⋅⋅W = w w w .  The size of the matrix W  is [K, M] 

    Step 1.3.5 Get the new matrix *X  after dimension reduction: * T
X W X =   

The size of the matrix *X  is [M, C], where M < K 

Step 1.4 Save *X  to CPU. 

Step 2 training SDBN: 

Use the pre-processed data *X  and algorithm 5 to train SDBN.  

In Step 1, PCA requires many matrix operations, so we use GPU for acceleration. Besides, 

the dataset used for the experiments is not very large, so we can move all the data to the GPU 

at once. However, if the dataset is large, it needs to be transferred in batches. Another point to 

note is that in Step 2, the SDBN uses a softmax layer as the classifier. It is only used for 

fine-tuning of the SDBN.                                                                       

5. Experiments  

In this section, we test the effectiveness of our parallel algorithm by using it for FER. The 

experiments are conducted on a PC with an Intel i5-6500 CPU and a Nvidia GTX950M GPU. 

The presented methods are implemented in Python using Pycuda library [30]. 

5.1 Parallel acceleration analysis 

 We use the MNIST dataset [33] of handwritten digits to evaluate the performance of GPU 

acceleration. The dataset contains 60,000 training images and 10,000 test images. Each image 
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is of size 28 x 28 pixels. The values of the parameters used for the experiments are as follows:  

 SA-QMOEA/D algorithm: The number of individuals is 256. The number of 

sub-populations is 4. The number of elements in field B  is 20. And the number of 

population iterations is 100. 4 thread blocks are allocated for the kernel, each with 64 

threads. 

 SRBM: The number of visible units is 784. The learning rate of SRBM is 1e-3. 96 

thread blocks are allocated for the kernel, each with 512 threads. 

 The batch size is 64.  

Firstly, we test our SRBM algorithm on a single SRBM with different number of samples, 

N, and hidden units. Fig. 10 (a) – (d) show the reconstruction error for 1k, 5k, 10k, and 60k 

samples, respectively. 

  

(a) (b) 

  

(c) (d) 

Fig. 10. Reconstruction error of a single SRBM with different number of samples and hidden units. The horizontal 

axis of each subgraph is the number of hidden units, and the vertical axis is the average reconstruction error of the 

SRBM after 30 epochs of training. (a) – (d) respectively show the errors for 1k, 5k, 10k, and 60k samples. 

 

It can be seen from the figure that the performance of both CPU and GPU are reasonably 

same for the cases (a) and (c). However, GPU showed slightly better performance than CPU in 

case of (b) and (d). This is because the population is partitioned in our parallel algorithm, so it 

is more likely to find the optimal solution. 
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We calculate the speedup of the above experiment to analyze GPU acceleration. Speedup 

is calculated by dividing the running time of a program on the CPU by the running time on the 

GPU. The results are shown in Table 1 and the speedup trend is shown in Fig. 11.  

Table 1. The speedup performance of a single SRBM with different number of samples and hidden units. 

number of 

samples 

number of hidden units 

100 200 300 400 500 600 700 800 900 1000 1024 

1000 1.33 1.40 1.44 1.53 1.55 1.56 1.66 1.67 1.68 1.68 1.69 

5000 1.63 1.66 1.66 1.67 1.71 1.72 1.74 1.74 1.80 1.81 1.82 

10000 1.82 1.86 1.86 1.87 1.87 1.97 1.97 1.97 2.01 2.01 2.07 

60000 2.25 2.53 2.55 2.74 3.24 3.45 3.53 3.92 3.94 4.07 4.29 

 

 

Fig. 11. The speedup trend of a single SRBM with different number of samples and hidden units. 

 

It can be seen from Table 1 and Fig. 11 that with more hidden units and samples, the 

speedup is improved. And, when trained using all 60000 samples, our parallel algorithm can 

achieve 4 times better acceleration over CPU on a single SRBM. Furthermore, two important 

points can be noted here: 

 In Table 1, although only a difference of 24 hidden units, speedup is higher for 1024 

hidden units than for 1000 hidden units. This is since a warp contains 32 threads, 

when the number of hidden units is a multiple of 32, each thread can be fully utilized. 

 In Fig. 11, when N=60000, the speedup is higher than other cases. This is mainly 

because when the sample size is small, both GPU and CPU complete the calculations 

rapidly; and, in this case, the time that the GPU spends reading data cannot be 

ignored, so the speedup of GPU is not evident. However, when the sample size is 

large, e.g. for N = 60k, the running time of a program depends mainly on the 

calculations. In this case, the data reading time can be ignored, and the advantage of 
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the GPU is clearly reflected. 

In order to analyze the effect of number of layers and number of epochs of training, we 

design two SDBNs. The first SDBN is composed of 2 SRBMs, and both their hidden layers 

contain 1024 hidden units. The second SDBN is composed of 3 SRBMs and their hidden 

layers contain 1024, 1024 and 2048 hidden units, respectively. The learning rate of fine-tuning 

of SDBN is 1e-4. And we only take 20 epochs of fine-tuning. The training time of the two 

SDBNs is shown in Table 2 and Table 3.  

Table 2. Training time of SDBN composed of 2 SRBMs under different sample sizes and epoch numbers. The 

unit of time is seconds. 

number of 

samples 

device number of epochs of SRBM training 

100  300 500 700 1000 

6000 

CPU 753 2875 4381 8789 12183 

GPU 91  96 101 103 108 

speedup 8.1 29.8 43.2 84.6 112.4 

60000 

CPU 18619 34418 87600 94488 140231 

GPU 95 99 101 105 109 

speedup 194.8 346.3 859.8 896.4 1276.4 

 

Table 3. Training time of SDBN composed of 3 SRBMs under different sample sizes and epoch numbers. The 

unit of time is seconds.  

number of 

samples 

device number of epochs of SRBM training 

100  300 500 700 1000 

6000 

CPU 4858 7989 15162 18823 22581 

GPU 163 171 177 185 196 

speedup 29.6 46.7 85.2 101.4 114.8 

60000 

CPU 35346 57693 93163 130672 157983 

GPU 166 174 182 190 202 

speedup 212.6 330.0 509.7 686.9 778.5 

 

From the results shown in Tables 2 and 3, we can notice that with the increase of iterations, 

the training time of serial algorithm increases exponentially, while for the parallel algorithm it 

only increased by a few seconds. It also can be seen that the speedup is in the range of 8 to 

1276, and the highest speedup appears in case of the SDBN containing 2 SRBMs instead of 3 

SRBMs for the limitations of our computer hardware. Because, the number of threads that are 

contained in a block is limited by GPU. In our GPU, a block can only contain up to 1024 

threads. However, the number of hidden units in the last layer of the SDBN composed of 3 

SRBMs is 2048. Therefore, the training time of the SDBN with 3 SRBMs increases rapidly 

compared to the SDBN with 2 SRBMs. Although the speedup of the SDBN composed of 3 
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SRBMs is lower than that of 2 SRBMs, it still achieves a good acceleration effect with a 

maximum speedup of 778. The trend followed by the speedup is shown in Fig. 12. 

 

(a)  

 

(b)  

Fig. 12. The trend of speedup under different number of samples and epochs. 

 

From Fig. 12, we can see that, in both cases, the speedup is higher for 60000 samples 

(yellow line with stars) than 6000 samples (blue line with circles). This means that the larger 

the sample size, the more evident the GPU advantage. Simultaneously, we calculate the 

classification accuracy of these two SDBNs on the MNIST dataset. The results are shown in 

Fig. 13 and Fig. 14. 

  

(a) (b) 

Fig. 13. The accuracy rate of SDBN composed of 2 SRBMs. 
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Fig. 14. The accuracy rate of SDBN composed of 3 SRBMs.  

 

From these results, we can see that the accuracy is increased with the number of samples 

and epochs. Also, parallel algorithm performs better than the serial one. This is because the 

sub-populations in our parallel algorithm can converge to a better optimal solution. The highest 

accuracy of our model is over 99%, which shows that our algorithm can learn abstract features 

to achieve better classification performance with significantly lower training time.   

All the above experimental results demonstrate the superiority of our parallel algorithm of 

SRBM and SRBN in terms of acceleration and accuracy performance. In the following section 

we study the performance of our method by applying it to perform facial expression 

recognition. 

5.2 Facial expression recognition analysis 

For these experiments, we use the publicly available JAFFE [43-44] and CK+ [45] datasets 

to verify the effectiveness of our algorithm. JAFFE is a small dataset with 213 images, with an 

image size of 256 x 256 pixels. While CK+ is a large dataset with 2100 images, each of which 

has a size of 640 x 490 pixels. Sample images from each dataset are shown in Fig. 15.  

  

(a) (b) 

Fig. 15. Examples of the two datasets. (a): JAFFE dataset. (b): CK+ dataset. 
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As discussed in Section 4, if the original image size is directly used as the input of SDBN, 

it increases the computation cost. For example, using an image of size 640 x 490 pixels, the 

number of units in the visual layer should be 313600, which is extremely expensive to 

calculate and makes it difficult for SRBM to learn effective features. Therefore, we first 

preprocess the dataset according to the method described in Section 4. The following 

parameters are used for the experiments: 

 The SDBN used in the following experiments is composed of 3 SRBMs, and their 

hidden layers contain 1024, 1024 and 2048 hidden units, respectively. The number of 

units in SDBN visual layer is the size of the resultant image vector after preprocessing.  

 SA-QMOEA/D algorithm: The number of individuals is 256. The number of 

sub-populations is 4. The number of the field B  is 20, and the number of population 

iterations is 100. This kernel is allocated 4 blocks, each with 64 threads. 

 The learning rate of SRBM is 1e-3. The initial learning rate of fine-tuning for training 

SDBN is 1e-4, but if the loss does not decrease after 5 epochs, the learning rate of 

fine-tuning will be halved. And the maximum number of training epochs is 30. This 

kernel is allocated 96 blocks, each with 512 threads. And the batch size is 64.  

5.2.1. Facial expression recognition using JAFFE dataset 

In this subsection, we use the small JAFFE dataset to verify the effectiveness of our 

algorithm. We use three different image vectors whose dimensions are 30x36, 60x72, and 

90x108. Note that here we use 30x36 instead of 1080 to represent the size of an image vector, 

which is more in line with the image size. The accuracy rate of our SDBN with different 

dimensions and different training epochs is shown in Table 4, and its accuracy rate trend is 

shown in Fig. 16. 

Table 4. Accuracy rate of SDBN with different image sizes and number of epochs in JAFFE dataset. 

image 

size 

number of epochs of SRBM training 

100 200 300 400 500 600 700 800 900 1000 

30x36 0.33 0.59 0.65 0.71 0.79 0.82 0.84 0.86 0.89 0.91 

60x72 0.57 0.63 0.77 0.88 0.90 0.92 0.94 0.97 0.98 0.99 

90x108 0.585 0.684 0.752 0.78 0.885 0.95 0.965 0.98 0.99 0.992 
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Fig. 16. Accuracy rate trend of SDBN with different image sizes and number of epochs in JAFFE dataset.  

 

Form Table 4 we can see that with the increase of epochs, the FER accuracy rate increases 

and reaches its highest at 1000. The lower the image size, the less information they contain, so 

the accuracy rate is low. But the image size cannot be increased indefinitely, because it 

requires additional computations and storage. From Fig. 16 we can see that 60x72 is a better 

choice for the image size because it requires less computation to achieve higher FER accuracy.  

Next, we use the SDBN with the best results achieved and compare its performance 

against the conventional methods like nearest neighbor, support vector machine, sparse 

representation classification and traditional DBN algorithm. The comparison results are shown 

in Table 5. It can be seen from the results that our method outperformed all the conventional 

methods for all the image sizes.  

Table 5. Comparison of accuracy rate with different methods using JAFFE dataset. 

image size method 

NN SVM SRC DBN SDBN 

30x36 78.75 90.63 83.13 90.25 91.12 

60x72 86.25 91.88 89.38 98.75 99.00 

90x108 88.65 94.48 90.38 98.95 99.20 

5.2.2. Facial expression recognition using CK+ dataset 

As a further validation of our method, we have conducted more experiments using CK+ 

dataset. We process the image into three different dimensions: 24x24, 32x32 and 64x49. And 

the number of epochs of SRBM training is 800. We explore the effect of the number of hidden 

units on the accuracy rate. The obtained results are shown in Fig. 17.  
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Fig. 17. Accuracy rate of SDBN with different number of hidden units and image size in CK+ datasets. 

 

As can be seen from the figure, at the beginning, the accuracy rate increased with the 

number of hidden units up to an extent and started to fall with further increase in the number of 

hidden units. The lower the image size, the fewer the hidden units are needed to achieve the 

highest accuracy rate, which means the network structure that needs to interpret the data is 

simpler when the image size is relatively small. The comparison results between our SDBN 

and other methods using CK+ dataset are shown in Table 6. Even in this case our method 

outperformed the rest. Unlike sudden change of accuracy rate in case of NN and SVM, our 

method exhibited stable performance. 

Table 6. Comparison of FER accuracy rate with different methods in CK+ datasets. 

image size method 

NN SVM SRC DBN SDBN 

24x24 95.71 65.23 97.14 97.28 97.52 

32x32 74.28 98.09 97.10 97.75 98.30 

64x49 88.65 95.48 98.58 98.57 98.90 

 

All the experimental results of FER show that our method has high recognition accuracy 

rate and stable performance. 

5.2.3. Train time and inference time 

In order to further illustrate the superiority of our algorithm in terms of speed, we have 

recorded the training time and inference time of all the methods used for FER. Results are 

summarized in Tables 7 and 8.  
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Table 7. Training time and inference time in seconds for different methods in JAFFE dataset. '-' 

indicates that there is no training process.  

time 
image 

size 

method  

NN SVM SRC DBN 
SDBN 

(CPU) 

SDBN 

(GPU) 

training 

30x36 - 146.2 - 672.3 2734.6 184.1 

60x72 - 683.5 - 1419.7 5068.2 197.0 

90x108 - 1342.2 - 2378.4 8624.3 215.8 

inference 

30x36 4.6 0.3 42.1 7.7 6.2 0.3 

60x72 17.7 0.4 106.2 15.7 12.4 0.3 

90x108 37.4 0.6 314.9 24.5 21.7 0.5 

 

Table 8. Training time and inference time in seconds for different methods in CK+ dataset. '-' indicates 

that there is no training process.  

time 
image 

size 

method  

NN SVM SRC DBN 
SDBN 

(CPU) 

SDBN 

(GPU) 

training 

24x24 - 973.3 - 5396.7 21072.1 282.4 

32x32 - 1727.8 - 6021.5 24396.3 294.3 

64x49 - 5124.1 - 9614.4 37323.0 331.6 

inference 

24x24 1135.2 1.4 321.2 54.7 48.9 1.7 

32x32 1996.7 1.8 416.7 78.9 56.7 1.8 

64*49 6102.3 2.1 757.4 126.3 86.4 2.2 

The following conclusions can be drawn from these results: 

 Our parallel SDBN has more advantages in terms of training time and inference time, and 

it does not change dramatically with the increase of data dimensions. But the inference 

time of NN and the training time of SVM increase rapidly with the increase of data 

dimensions and the number of images (CK+ dataset is larger than JAFFE dataset). 

 Because our SDBN uses evolutionary algorithm to optimize, it takes longer training time 

without parallel implementation. While using parallel SDBN (with GPU) the training 

time is short. 

 On CK+ dataset, SDBN (with GPU) inference time is slightly slower than SVM. There 

are two main reasons. First, the LIBSVM library [48] has been greatly optimized for 

computational speed. Second, SDBN (with GPU) inference time is limited by the batch 

size. If GPU memory increases, we can use larger batch sizes to further reduce the 

inference time. It is worth noting that the SVM is generally more suitable for small 

datasets, and its classification accuracy is not as good as our SDBN for larger ones.  



27 

 

 In inference time, our SDBN (CPU) is slightly faster than DBN because of the sparsity of 

our SDBN. 

6. Conclusion 

In this paper, we have elaborated the principles and advantages of SDBN. In our SDBN, 

we construct a multi-objective optimization problem from RBM, and use the evolutionary 

algorithm to solve the problem, which is an alternate way of combining evolutionary 

algorithms and neural networks. Our multi-objective optimization algorithm can automatically 

search a set of optimal solutions for the sparse penalty term in RBM, which can achieve the 

balance between over-fitting and under-fitting, and achieve better results. Next, we have 

proposed an efficient parallel algorithm to overcome the weak points that are difficult to train. 

We have not only realized the parallelism of the DBN network, but also have realized the 

parallelism of the multi-objective optimization algorithm. We have implemented the parallel 

design of SDBN on the GPU. Obtained experimental results show that our parallel 

implementation on GPU achieves a speedup performance ranging from 8 to 1200 with a higher 

accuracy rate when compared to that on CPU. We have also compared the training time of our 

sparse DBN with different number of samples, hidden units and hidden layers. Later, we 

analyzed the performance of our parallel SDBN by applying it to the problem of facial 

expression recognition and by comparing its results to that of the conventional methods using 

two publicly available datasets, JAFFE and CK+. The obtained results clearly demonstrated 

the efficiency of our approach. In future, we will study the application of SDBN to a wider 

range of problems, such as video, audio, text and other higher dimensional data problems. 
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