

University of Birmingham

Parallel design of sparse deep belief network with
multi-objective optimization
Li, Yangyang; Fang, Shuangkang; Bai, Xiaoyu; Jiao, Licheng; Marturi, Naresh

DOI:
10.1016/j.ins.2020.03.084

License:
Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Li, Y, Fang, S, Bai, X, Jiao, L & Marturi, N 2020, 'Parallel design of sparse deep belief network with multi-
objective optimization', Information Sciences, vol. 533, pp. 24-42. https://doi.org/10.1016/j.ins.2020.03.084

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 30. Apr. 2024

https://doi.org/10.1016/j.ins.2020.03.084
https://doi.org/10.1016/j.ins.2020.03.084
https://birmingham.elsevierpure.com/en/publications/ad07b9f6-4758-4d0a-b5f3-8ed0dce38829

1

 Parallel Design of Sparse Deep Belief Network with Multi-objective

Optimization

Yangyang Li1*, Shuangkang Fang1, Xiaoyu Bai1, Licheng Jiao1, and Naresh Marturi2

1Key Laboratory of Intelligent Perception and Image Understanding of Ministry of Education, International

Research Center for Intelligent Perception and Computation, Joint International Research Laboratory of

Intelligent Perception and Computation, School of Artificial Intelligence, Xidian University, Xi'an, Shaanxi

Province 710071

2Extreme Robotics Laboratory, University of Birmingham, Edgbaston, B15 2TT, UK

*yyli@xidian.edu.cn

Abstract

Deep belief network (DBN) is an import deep learning model and restricted Boltzmann

machine (RBM) is one of its basic models. The traditional DBN and RBM have numerous

redundant features. Hence an improved strategy is required to perform sparse operations on

them. Previously, we have proposed our own sparse DBN (SDBN): using a multi-objective

optimization (MOP) algorithm to learn sparse features, which solves the contradiction between

the reconstruction error and network sparsity of RBM. Due to the optimization algorithm and

millions of parameters of the network itself, the training process is difficult. Therefore, in this

paper, we propose an efficient parallel strategy to speed up the training of SDBN networks.

Self-adaptive Quantum Multi-objectives Evolutionary algorithm based on Decomposition

(SA-QMOEA/D) that we have proposed as the multi-objective optimization algorithm has the

hidden parallelism of populations. Based on this, we not only parallelize the DBN network but

also realize the parallelism of the multi-objective optimization algorithm. In order to further

verify the advantages of our approach, we apply it to the problem of facial expression

recognition (FER). The obtained experimental results demonstrate that our parallel algorithm

achieves a significant speedup performance and a higher accuracy rate over previous CPU

implementations and other conventional methods.

Keywords: restricted Boltzmann machine; deep belief network; multi-objective optimization;

parallel acceleration; facial expression recognition; GPU

1. Introduction

In recent years, deep learning has attracted significant attention from both academia and

industry due to its ability to boost performance in various computer vision applications. The

fast layer-wise training algorithm proposed by Hinton et al. [1], where multiple restricted

Boltzmann machines (RBM) are stacked and trained in a greedy manner to form deep belief

networks (DBN), ameliorated the learning ability of deep learning algorithms for image

recognition, natural language processing, motion capture etc. The DBN model, which is

considered to be one of the most effective deep learning algorithms, can learn a complex

2

nonlinear model with millions of parameters from unlabeled data [2-3]. However, with large

number of parameters, the model may produce redundant features without any constraints. In

such cases, to learn more abstract features, some previous studies have added a regularization

term on the hidden units [4-8]. In addition to constraining the hidden units to be sparse, we also

need to ensure that the reconstruction error is minimized to learn more useful representation

from inputs. Nevertheless, this will inevitably lead to compressed representation and loss of

information [9]. When taken together, the reconstruction error and the regularization term are

in conflict. Dealing with it, previously we have proposed a sparse DBN (SDBN) based on

multi-objective optimization (MOP) to avoid the problem of parameter selection [10].

When using MOP algorithms to optimize a DBN, the choice of objective function is

crucial. It requires both a good representation of the problem to be optimized and an

implementation that cannot be overly complex. To this extent we have selected the

Kullback-Leibler divergence (KL divergence) [11] and the L1 norm of hidden units [12] as our

objective functions. The underlying reason for selecting KL divergence is that it can show the

proximity of two probability distributions, which can measure the distribution error between

the input data and the reconstructed data in RBM. Similarly, L1 norm of hidden units has been

selected to consider the balance between the implementation of subsequent parallel algorithms

and the optimization effect. Usually, sparse representation is represented by L0 norm

minimization. However, solving it is a NP-hard problem [13], which requires more iterations

to find a feasible solution. Also, since the activation value of the hidden units is non-zero under

the action of the sigmoid activation function, the L0 norm is always constant. In contrast, the

L1 norm can generate sparse coefficients and is robust to uncorrelated features [14-15].

For solving MOP problems, multi-objective evolutionary algorithm (MOEA) [16] is a

common choice. Multi-objective evolutionary algorithm based on decomposition (MOEA/D)

[17] is an efficient MOEA algorithm (based on mathematical programming) that has the

advantages of fast convergence and good distribution performance. In 2015, Gong et al.

proposed a self-adaptive multi-objective evolutionary algorithm based on decomposition

(SA-MOEA/D) for sparse feature learning [9]. However, one main drawback of this method is

it is very slow to converge to an optimal value. In this regard, we introduce a quantum

mechanism based on SA-MOEA/D to increase population diversity, which can speed up the

convergence of the algorithm and improve its search ability. Also, with this, the major

advantage is it is easier to design parallel algorithms. We call this new algorithm as

self-adaptive quantum multi-objectives evolutionary algorithm based on decomposition

(SA-QMOEA/D). Although the MOP algorithm can significantly improve the performance of

a DBN, it greatly increases the difficulty of network training [18]. A common handling

strategy is to accelerate the training process in parallel. However, most of the conventional

methods only focus on speeding up the complex matrix operations in the network and are

inattentive to the optimization algorithm.

Designing a parallel algorithm that considers both rapid computations and network

3

optimization is an extremely difficult process due to aforementioned reasons. Also, it has to be

noted that not all optimization algorithms can demonstrate high performance merely by

following a parallel architecture. In this context, we propose a method to parallelize the SDBN

using graphics processing unit (GPU). The proposed parallel acceleration algorithm accelerates

both the SDBN network and the SA-QMOEA/D optimization algorithm. The main reason for

selecting a GPU as our accelerating device is that it is suitable for large-scale parallel

computing on a two-level hierarchy of blocks and threads [19]. Alternative works regarding

parallel implementations, e.g. using FPGA [21] and Hadoop framework [22], can be found in

[18-20]. In case of FPGA or Hadoop, implementations usually require special (expensive)

hardware external to a PC and are not flexible enough. Whereas with GPU, which is generally

available as an inbuilt hardware with a modern-day PC, is comparatively inexpensive and can

achieve similar accuracy with faster computations. Also, when compared to a conventional

CPU, its consumption is very less.

Apart from this, we have analyzed the performance of the proposed method by applying it

to the facial expression recognition problem, which is an active and challenging problem in

computer vison research. Although a convolutional network with a two-dimensional (2-D)

input space has more advantages, its performance can be compared with the conventional

methods such as nearest neighbors (NN) [46], support vector machine (SVM) [47-48], sparse

representation classification (SRC) [49] etc. Similar to these other methods, we also extract

and reduce the dimension of the image features, and the resultant 1-D vector is used as the

input for the SDBN. The obtained experimental results using two publicly available datasets

demonstrate the efficiency of our proposed approach.

The rest of the paper is organized as follows: Section 2 presents our SRBM and SDBN

algorithms. Section 3 provides our parallel implementation of SRBM and SDBN. Section 4

introduces the application of parallel SDBN in FER. Section 5 reports the experimental results.

Section 6 draws the conclusion.

2. SRBM and SDBN

Currently, the combination of evolutionary algorithms and neural networks is mostly

concerned with the hyperparameter optimization and neural network architecture search. In

our SDBN, we construct a multi-objective optimization problem with RBM, and use the

evolutionary algorithms to solve it. This is an alternate way of combining evolutionary

algorithms and neural networks.

2.1 RBM and DBN

Boltzmann machines were first proposed by Hinton and Sejnowski in 1986 [2]. Later,

Paul Smolensky proposed a modified Boltzmann machine, which is also called as a restricted

Boltzmann machine [23]. In general, RBM is an energy model, which is consisted of two

4

layers, namely visible and hidden layers. The design architecture of an RBM is shown in Fig.

1.

...

...

h

v

hn
b R∈

h vn n
W R

×
∈

vn
a R∈

vn
v

3v2v
1v

vn

a
3a2a

1a

hn

b
3b2b

1b

hn
h3h2h

1h

Fig. 1. Design architecture of an RBM showing various nodes in hidden (top) and visible (bottom) layers.

In Fig. 1, the visible layer v is used to input training data whereas the hidden layer h

contains feature detectors. h
n and v

n represent the number of hidden and visible units

respectively. i
v and

i
h denote respectively the ith visible and hidden units.

i
a and

i
b are the

biases. There are no connections between the individual units of the same layer; however, each

unit is still fully connected with the units of the other layer by a symmetrical weight matrix W.

The energy of visible and hidden units is represented as follows

1 1 1 1

(v,h)
v h v hn n n n

ij i j i i j j

i j i j

E w h v a v b h
= = = =

= − − − (1)

The marginal distribution of a visible vector is given by Eq. (2).

(v,h)1

(v) (v, h) E

h h

p p e
Z

−= = (2)

where, Z is a normalization constant given by Eq. (3).

(v,h)

,

E

v h
Z e−= (3)

It is necessary to maximize the likelihood function given by Eq. (2) to learn the value of the

RBM parameter { , , }w a bθ = [25-26]. The gradient
L

θ

∂

∂
 can be calculated as follows.

0 1

,

(v,h) (v, h)
(v,h) (h | v)

(v,h) (v,h)

v h h

P P

L E E
p p

E E

θ

θ θ θ

θ θ

∂
= ∂ − ∂

∂ ∂ ∂

= ∂ − ∂
∂ ∂

 (4)

5

where 0P
� represents the expectation of

(v, h)E

θ
∂

∂
 under the joint distribution (v, h)p .

1
Pθ

� represents the expectation of
(v, h)E

θ
∂

∂
 under the conditional distribution (h | v)p . It

is relatively easy to calculate (h | v)p ; however, the computation of (v, h)p is not

straightforward. One way to solve this is by using the contrastive divergence (CD) algorithm

with one-step Gibbs sampling proposed by Hinton [27]. Following which the gradient given

in Eq. (4) is re-written as:

0 1

0 1

0 1

i j i jP P
ij

i iP P

i

j jP P
j

L
v h v h

w

L
v v

a

L
h h

b

θ

θ

θ

∂
= −

∂

∂
= −

∂

∂
= −

∂

 (5)

Next, as mentioned before, a DBN is formed by stacking multiple RBMs. Its architecture and

the training process are depicted in Fig. 2.

Output

...

...

...

...

 Data

Target

feedback

fine-tuning

fine-tuning

fine-tuning

BP

RBM

RBM

RBM

W2

W1

W0
V0

H0

V1

H1

Fig. 2. Architecture and training process of a DBN.

The DBN shown in Fig. 2 is formed by stacking three RBMs where each of them is

represented by a dotted box. Its training process is divided into two stages: unsupervised

training and fine-tuning. In the first stage, i.e., during unsupervised training, the very first

6

RBM (bottom one in Fig. 2) is trained using CD algorithm. Later, its hidden layer is used as

the visible layer to train the subsequent RBM. This process is repeated for all the remaining

RBMs. Next, during the second stage, i.e., fine-tuning, the DBN is fine-tuned by

back-propagation (BP) using the parameters obtained from the first stage as initial values [35].

It is worth noting that by initializing the network using the parameters obtained from the first

stage instead of random initialization avoids the local optima during training.

2.2 Sparse RBM based on multi-objective optimization

Although a DBN can learn a complex nonlinear model from unlabeled data, with the

increased number of parameters, the model may produce redundant features without any

constraints. To avoid this, we have proposed the sparse RBM and the sparse DBN based on

multi-objective optimization. The multi-objective optimization problem with q objective

functions is expressed as:

 1 2min () ((), (), , ())T

q
F x f x f x f x

st x

=

∈Ω

L
 (6)

where, Ω represents the feasible region of decision space, : q
F RΩ → represents q

objective functions, and qR denotes the objective space. As mentioned previously, in DBN,

the reconstruction error and the regularization term are in conflict. To that end, we have

selected KL divergence and L1 norm of hidden units as our objective functions. Using which,

our cost function *()L θ and objective function min ()F θ can be expressed as follows.

* 0 () ()

1
1

() KL(||) || (||) ||
T

l l

l

L P P p h vθθ λ∞

=

= + (7)

0 () ()

1 2 1
1

min () (,) (KL(||), || (||) ||
T

l l

l

F f f P P p h vθθ ∞

=

= = (8)

where, λ is the regularization parameter, T is the number of layers, 0P and Pθ

∞ represent

the initial and balanced distributions of the data. It is known that maximizing the log

likelihood is equivalent to minimizing the KL divergence [1]. Accordingly, the gradient of

KL divergence KLg∇ can be obtained as in Eq. (5), while for the L1 regular term, the gradient

is computed as follows:

() () () () ()

1
1 1

|| (||) || (1)
T T

l l l l l

j j i

l lij

p h v p p v
w = =

∂
− = − −

∂
 (9)

() () () ()

1
1 1

|| (||) || (1)
T T

l l l l

j j

l lj

p h v p p
b = =

∂
− = − −

∂
 (10)

7

Because the degree of activation of hidden units is directly controlled by bias, we only update

the bias for the sake of simplicity. The learning algorithm of SRBM based on MOP is

summarized in algorithm 1.

Algorithm 1 (Learning algorithm of SRBM based on MOP)

Step 1 Initialization:

� Initialize the parameters { , , }w a b of SRBM

� Initialize termination conditions

Step 2 Update the parameters:

Step 2.1 calculate gradients:

� Use Eq. (5) to get the gradient KLg∇ of KL divergence

� Use Eq. (9) and Eq. (10) to compute the gradient 1L
g∇ of L1 regular term

Step 2.2 Update the parameters according to the following rule:

1: (), { , , }
KL L

g g w a bθ θ ε θ= + ∇ + ∇ ∈ (11)

where, ε is the learning rate

Step 3 MOP

� Use SA-QMOEA/D algorithm (shown in algorithm 2) to get EP

� Randomly select a solution from EP as the new parameters

Step 4 Repeat Steps 2-3 until the termination conditions are satisfied

We use our SA-QMOEA/D algorithm to optimize the objective function in Eq. (8). The

two main advantages of this algorithm are the quantum mechanism and the hidden population

parallelism [28], which can effectively increase the diversity of the population and accelerate

the convergence rate. The details of SA-QMOEA/D algorithm are presented in algorithm 2. It

uses Chebyshev decomposition [17] to convert the MOP problem into several scalar

optimization problems. Main parameters of our method are listed below:

� N is the number of individuals.

�
1[,...,]Nx x ∈Ω are all individuals of the population.

�
1[,...,]N

Qθ θ ∈Ω are quantum chromosomes.

� (), 1,...,i iFV F x i N= = represents the fitness function of each individual.

� 1(z ,..., z)
m

z = represents the best value set for every objective function, m is the

number of objective functions. For instance, in Eq. (8), 1z represents the optimal

8

solution of the objective function 1f .

�
1[,...,]Nλ λ represent N uniformly spread weight vectors, which can be obtained by the

Chebyshev approach [17].

�
teg is the subproblem of objective functions [17], which can be defined as follow.

 { }* *

1
(| ,) max | ()te j i

j j j
j m

g x z f x zλ λ
≤ ≤

= − (12)

Algorithm 2 (SA-QMOEA/D algorithm)

Step 1 Initialization:

Step 1.1 Initialize N uniformly spread weight vectors 1[,...,]Nλ λ .

Step 1.2 Initialize the field B :

 � compute the Euclidean distances between any of the two weight vectors

� select T closest weight vectors 1[,....]i iTλ λ for each iλ and then get

1() (,....)i iTB i λ λ=

 Step 1.3 Initialize the population:

� Initialize the chromosome space
1[,...,]N

Q
θ θ ∈ Ω

� transform
Q

Ω to get 1[,...,]Nx x ∈Ω

� for each i
x in Ω : calculate ()i iFV F x=

 Step 1.4 Initialize solution 1(,...,)
m

z z z= according to i
FV

Step 2 Population evolution:

for each i
λ in

1[,...,]Nλ λ :

� Randomly select three different elements from ()B t to get the

corresponding quantum chromosomes. Then, apply the recombination and

mutation operator on them to get a new solution y .

� for each jz in 1(,...,)
m

z z : if
 ()j jz f y> :set ()j jz f y= .

 � for each jλ in B : if (y | , z) (| , z)te j te j jg g xλ λ≤ : , ()j jx y FV F y= = .

 � if there is no solution in EP is better than ()F y : add ()F y to EP.

Step 3 Repeat Step 2 until the termination condition is satisfied.

Step 4 Output EP

9

SA-QMOEA/D algorithm can find a balanced optimal solution between the reconstruction

error and the regularization term. In other words, the algorithm not only ensures that the RBM

learns a complex nonlinear mapping but also guaranties that the network parameters are

sparse.

3. Parallel implementation

Although the SRBM algorithm based on MOP can learn sparse features, its training time

is high due to the higher number of iterations it takes to find an optimal solution. Furthermore,

additional computations are required to find the numerous network parameters. In this section,

we use the population implicit parallelism to design the optimization algorithm in parallel,

which significantly reduces the SDBN training time.

3.1 Compute unified device architecture - CUDA

In the early days, a GPU has been designed for high-speed graphics that are inherently

parallel. It has the architecture that is suitable for highly parallelized computation tasks with

less logic control as it can generate several threads in parallel to speed up the process. In order

to fully utilize the capabilities of a GPU a specialized software framework is indispensable.

The parallel computing platform, CUDA, developed by the Nvidia Corporation is one of the

well-known software platforms for general purpose processing as well as for computing and

executing programs on GPU [31]. It has been used in this work to implement and execute our

parallel algorithms on a GPU.

Host
(CPU)

Kernel 1

Kernel 2

Block
(0,0)

Block
(1,0)

Block
(0,1)

Block
(1,1)

Block
(0,0)

Block
(1,0)

Block
(0,1)

Block
(1,1)

Thread
(0,0)

Thread
(1,0)

Thread
(2,0)

Thread
(0,1)

Thread
(1,1)

Thread
(2,1)

Thread
(0,2)

Thread
(1,2)

Thread
(2,2)

Block(1,1)

Device
(GPU)

Grid 1

Grid 2

Fig. 3. Illustration of the CUDA programming model.

The programming model of CUDA is shown in Fig. 3. It consists of two modules: host

10

and device. The serial code is executed on the host, while the parallel code (also called kernel

function) is executed on the device [31]. The thread model, i.e., multiple thread blocks are

combined to form a grid and each kernel function has several grids. All thread blocks in a grid

contain equal number of threads. A thread is the basic execution unit and contains unique

block and thread IDs. When using CUDA to execute parallel programs, it is necessary to

specify the type of the memory to store data and intermediate computation parameters.

Host
(CPU)

Device (GPU)

Grid 1

Block(0,0)

Shared Memory

Registers Registers

Thread (0,0) Thread (1,0)

Local
Memory

Local
Memory

Global
Memory

Constant
Memory

Texture
Memory

Fig. 4. The memory structure of CUDA.

The memory structure of CUDA is shown in Fig. 4. Arrows in the figure indicate data

flow directions. Global memory, constant memory and texture memory are visible to all blocks

and threads. In a block, each thread has its own local memory and registers, which is a

fine-grained parallelism between different threads. Threads in a same block have a shared

memory that enables the GPU to perform secondary parallelism, which is a coarse-grained

parallelism between different blocks. It is worth noting that the read-write speed of shared

memory is notably high that the threads in a same block running in parallel can synchronize

with each other at different instances during the execution [32].

Blocks and threads are software concepts which are indeed allocated with specific

hardware resources called streaming multiprocessors (SM) that perform actual computations.

An SM is composed of multiple streaming processors (SP) [32]. The schematic diagram

illustrating the SMs and SPs is shown in Fig. 5. When the program is implemented, a block is

allocated to an SM to execute, and each thread in the block is allocated to an SP. 32 threads

within a block are put into a warp to execute the same instruction synchronously. An SM can

only execute one warp at a time.

11

SM n

...
SM 1

SM 0

SP SP

SP SP

SP SP

SP SP

Fig. 5. The schematic diagram of GPU computing units.

3.2 Parallel learning algorithm of SDBN

Learning-based methodologies, particularly those involving neural networks, often

employ parallel designs to accelerate matrix operations. However, when an evolutionary

algorithm is added to the network training process, a modified design is required as it now

needs to run both evolutionary algorithm and network training in parallel on GPU. In addition,

it is necessary to ensure that the parallel design scheme can be easily migrated.

3.2.1. Parallel SA-QMOEA/D algorithm

The communication speed between CPU and GPU is relatively slow. In order to reduce

the communication time, the parameters are usually stored in the global memory of GPU, and

the input data is transferred to the GPU in batches. When using evolutionary algorithms to

update parameters, there are some potential problems if we choose and reorganize individuals

in a block as we don't know whether all fitness values of individuals are calculated. Therefore,

a synchronization operation is required [31]. Only when all individuals complete the

calculation they can be selected or reorganized. In addition, when the number of threads is

less than the number of individuals, a thread needs to compute more than one individual. In

order to solve this problem, we sample the population of individuals into multiple partitions

as shown in Fig. 6. Consecutively, each partition is divided into various sub-populations.

1 2 3 4 5 6 7 8

...
N-2 N-1 N

Partition1 Partition2 Partition3 PartitionH

First_1 Last_1 First_2 Last_2 First_3 First_H Last_H

Fig. 6. The partition of population.

The population shown in Fig. 6 is divided into H partitions. “First_i” and “Last_i” are

respectively the first and the last sub-populations of ith partition. This partitioning strategy has

two advantages: first it ensures the portability of the program, and the other is that the

12

multiple sub-populations can find an optimal solution more effectively. Developed

SA-QMOEA/D parallel algorithm is summarized in algorithm 3.

Algorithm 3 (SA-QMOEA/D parallel algorithm)

Step 1 Initialization:

Step 1.1 Initialize N uniformly spread weight vectors 1[,...,]Nλ λ

Step 1.3 Initialize a field B:

� compute the Euclidean distances between any of the two weight vectors

� select T closest weight vectors 1[,....]i iTλ λ for each iλ and then get

1() (,....)i iTB i λ λ=

Step 1.3 Initialize the population:

� Initialize the chromosome space
1[,...,]N

Q
θ θ ∈ Ω

� transform
Q

Ω to get 1[,...,]Nx x ∈Ω

� for each i
x in Ω : calculate ()i iFV F x=

Step 1.4 Initialization solution 1(,...,)
m

z z z= according to iFV

Step 1.5 Sample the population into several sub-populations

Step 1.6 Transfer the above parameters to the global memory of GPU

Step 2 Population evolution:

for each sub-population:

for each individual i in the sub-population:

� Synchronization: Randomly select three different elements from ()B t

 to get the corresponding quantum chromosomes. And apply the

 recombination and mutation operator on them to get new solution y .

� for each jz in 1(,...,)
m

z z : if ()j jz f y> : set ()j jz f y= .

� Synchronization: for each jλ in B : if (y | , z) (| , z)te j te j jg g xλ λ≤ :

set , ()j jx y FV F y= = .

� Synchronization: if a solution in EP is dominated by ()F y : remove it

from EP; else: add ()F y to EP.

Step 3 Repeat Step 2 until the termination condition is satisfied.

Step 4 Output EP

13

When comparing the parallel version (algorithm 3) with its counterpart (algorithm 2), the

main difference lies in steps 1.5, 1.6 and 2. Step 1.5 is our partition strategy shown in Fig. 6

and step 1.6 prepare things to run the evolutionary algorithm on GPU. In Step 2, the operation

of synchronization is required because the evolution is for the entire population and not for an

individual.

3.2.2. Parallel learning algorithm of SRBM and SDBN

In section 2, we have introduced the forward and backward propagation formulas of

SRBM. All these formulae contain matrix operations, which can be accelerated on GPU by

splitting them on to multiple threads. The entire training data cannot all be stored in global

memory; so, it needs to be transferred in as large chunks as possible to reduce the transfer

frequency. Our overall SRBM parallel learning process is illustrated in Fig. 7 and the

algorithm is summarized in algorithm 4.

CPU GPU
Initialize parameters of
SRBM and the training
termination conditions;

Input the training data Input the data in batches

Transfer the parameters to
GPU

Updating the parameters
of SRBM using the
blocks and threads

parallelism

Update the parameters
using SA-QMOEA/D

If stop ?

Obtain parameters of
SRBM

Transfer the results to
CPU

Y

N

Fig. 7. The parallel learning process of SRBM.

As SDBN is composed of multiple SRBMs, it can be trained layer by layer as shown in

Fig. 2 (see section 2 for details). Similarly, its training process is divided into two steps:

pre-training and fine-tuning. The parallel learning algorithm of SDBN is shown in algorithm 5.

14

Algorithm4 (Parallel learning algorithm of SRBM based on MOP)

Step 1 Initialization:

� Initialize the parameters { , , }w a b of SRBM

� Initialize termination conditions

� Transfer the above parameters to the global memory of GPU

Step 2 Update parameters:

 Step 2.1 Transfer the training data in batches to the global memory regularly

Step 2.2 Calculate the gradients in parallel:

� Use Eq. (5) to get the gradient KLg∇ of KL divergence

� Use Eq. (9) and Eq. (10) to get the gradient 1L
g∇ of L1 regular term

Step 2.3 Update the parameters according to Eq. (11)

Step 3 Multi-objective optimization:

� Use parallel SA-QMOEA/D algorithm (algorithm 3) to get EP

� Randomly select a solution from EP as the new parameters

Step 4 Repeat Steps 2-3 until the termination condition is satisfied

Algorithm5 (Parallel learning algorithm of SDBN)

Step 1 pre-training:

Step 1.1 Using algorithm 4, train an SRBM in parallel, and its parameters are

fixed after training

Step 1.2 Use the hidden layer state of the trained SRBM in Step 1.1 as the input

for the next SRBM, and train the next SRBM using algorithm 4

Step 1.3 Repeat Step 1.1 and Step 1.2 until all SRBMs are trained to complete.

Step 2 fine-tuning:

Step 2.1 Use the parameters of these SRBMs obtained in Step 1 as the initial

parameters of SDBN.

Step 2.2 Use BP algorithm to update SDBN network parameters in parallel until

the termination condition is satisfied.

The pre-training process in algorithm 5 is based on algorithm 4. Likewise, the SDBN uses

the parameters obtained in step 1 as the initial parameters of the network instead of random

initialization, which can make the SDBN to converge faster while avoiding local minima.

15

4. Facial expression recognition algorithm based on parallel SDBN

Facial expression recognition (FER), is a challenging and prominent area of research in

computer vision with a variety of applications for human-computer interaction. Main

challenge lies in extracting effective features due to high intra-class variations, which raises

the difficulty in developing a generalized approach [40-44]. Previous research suggests that

the DBN-based methods are effective for FER where multiple RBMs are used to represent

multi-level features. In this section, we show how our parallel SDBN can be used for FER.

Our approach first learns abstract features in an unsupervised way through SRBM, and then

performs supervised fine-tuning for effective expression recognition.

4.1 Traditional facial expression recognition method

Traditional FER methods are composed of four major steps: face detection, positioning,

extracting expression features, and recognizing expressions. Most of these methods are based

on manual local feature extraction and uses Gabor wavelets [36-37], local binary model (local

binary pattern, LBP) [38], scale invariant feature transformation (SIFT) features [39] etc. as

visual features combined with Bayesian classification, SVM, AdaBoost etc. Although the

results achieved with those methods are satisfactory, they are prone to loss of related

information [38-41]. Also, different illuminations and angles have a great influence on the

information extracted of the face. Moreover, different people have different facial expressions.

Therefore, traditional methods need to extract different features for different scenes.

While using deep neural networks for FER, feature extraction and classification steps can

be combined to simplify the work [40]. At present, the neural networks used for the FER

mainly include BP neural network, DBN, CNN etc. For DBN, the input must be a

one-dimensional vector, so the original image needs to be preprocessed. The work-flow using

a conventional DBN for FER is shown in Fig. 8.

images preprocessing

category
prediction

output

pre-training
network

fine-tuning
network

output
Train

Test

Fig. 8. Flowchart of traditional DBN for FER.

In Fig. 8, the blue line represents the training process and the yellow line represents the

prediction process after training. Excessive features are not necessary for expression

recognition, because expressions are usually related to the face, and are independent of scene

background. Therefore, if the traditional DBN is used directly without any sparse restrictions,

16

the unrestricted RBM will extract a lot of redundant features. This not only increases the

computation cost but also introduces a lot of noise resulting in accuracy reduction. This

shortcoming can be handled effectively using our SDBN.

4.2 Facial expression recognition algorithm based on parallel SDBN

Few active hidden units can effectively extract advanced features from an image. Therefore,

we use our SRBM to extract the information of the image, which can learn more effective

features to achieve better recognition results. In order to generalize the algorithm, in this paper

we do not perform any complex preprocessing but only reduce the dimensions of the original

image by principal component analysis (PCA) [42]. The preprocessing and the process of

recognizing a facial expression using our SDBN is shown in Fig. 9.

image 1

image 2

image C

.

.

.

W

H

matrix 1

matrix 2

matrix C

.

.

.

normalize

W

W

H

H

C

K

reshape

K

vector 1

K

K

vector 2

vector C

.

.

.

K=WH

C

M

PCA

neutral
happiness

sadness

fear

surprise

anger

disgust

FC

softmax

image vector

........

SRBM
SRBM

SRBM

SDBN

resize

Fig. 9. The process of recognizing a facial expression using SDBN.

The preprocessing process shown in the Fig. 9 is consisted of two steps. In the first step

the images are resized, normalized, and are converted into one-dimensional vectors. In the

second step, these vectors are combined into a matrix which are then processed by PCA for

dimensionality reduction. This step results in a new image vector, which is used as the input of

SDBN. We use the hidden layer of the last SRBM as the fully connected layer and use a

softmax layer at the end to perform expression recognition. These details are shown in

algorithm 6.

17

Algorithm6 (Training process of FER algorithm based on parallel SDBN)

Step 1 Preprocessing:

 Step 1.1 Obtain C training images and move them to GPU

Step 1.2 Resize and normalize the C training images. Each image is then

expanded into a vector
i

x with K elements. Finally, the C vectors are combined

into a matrix { }1 2, , , C⋅ ⋅⋅X = x x x . The size of the matrix X is [K, C]

Step 1.3 PCA:

 Step 1.3.1 For each
i

x in X :
1

1 C

i i jjC =
← − x x x

 Step 1.3.2 Calculate the covariance matrix cov of X : T
cov = XX

 Step 1.3.3 Calculate the eigenvalues 1 2, , ,
K

λ λ λ⋅⋅ ⋅ and eigenvectors

1 2, , ,
K

⋅ ⋅ ⋅w w w of matrix X by singular-value decomposition (SVD)

 Step 1.3.4 Select the M largest eigenvalues and their corresponding

eigenvectors 1 2, , ,
M

⋅ ⋅⋅W = w w w . The size of the matrix W is [K, M]

 Step 1.3.5 Get the new matrix *X after dimension reduction: * T
X W X =

The size of the matrix *X is [M, C], where M < K

Step 1.4 Save *X to CPU.

Step 2 training SDBN:

Use the pre-processed data *X and algorithm 5 to train SDBN.

In Step 1, PCA requires many matrix operations, so we use GPU for acceleration. Besides,

the dataset used for the experiments is not very large, so we can move all the data to the GPU

at once. However, if the dataset is large, it needs to be transferred in batches. Another point to

note is that in Step 2, the SDBN uses a softmax layer as the classifier. It is only used for

fine-tuning of the SDBN.

5. Experiments

In this section, we test the effectiveness of our parallel algorithm by using it for FER. The

experiments are conducted on a PC with an Intel i5-6500 CPU and a Nvidia GTX950M GPU.

The presented methods are implemented in Python using Pycuda library [30].

5.1 Parallel acceleration analysis

 We use the MNIST dataset [33] of handwritten digits to evaluate the performance of GPU

acceleration. The dataset contains 60,000 training images and 10,000 test images. Each image

18

is of size 28 x 28 pixels. The values of the parameters used for the experiments are as follows:

 SA-QMOEA/D algorithm: The number of individuals is 256. The number of

sub-populations is 4. The number of elements in field B is 20. And the number of

population iterations is 100. 4 thread blocks are allocated for the kernel, each with 64

threads.

 SRBM: The number of visible units is 784. The learning rate of SRBM is 1e-3. 96

thread blocks are allocated for the kernel, each with 512 threads.

 The batch size is 64.

Firstly, we test our SRBM algorithm on a single SRBM with different number of samples,

N, and hidden units. Fig. 10 (a) – (d) show the reconstruction error for 1k, 5k, 10k, and 60k

samples, respectively.

(a) (b)

(c) (d)

Fig. 10. Reconstruction error of a single SRBM with different number of samples and hidden units. The horizontal

axis of each subgraph is the number of hidden units, and the vertical axis is the average reconstruction error of the

SRBM after 30 epochs of training. (a) – (d) respectively show the errors for 1k, 5k, 10k, and 60k samples.

It can be seen from the figure that the performance of both CPU and GPU are reasonably

same for the cases (a) and (c). However, GPU showed slightly better performance than CPU in

case of (b) and (d). This is because the population is partitioned in our parallel algorithm, so it

is more likely to find the optimal solution.

19

We calculate the speedup of the above experiment to analyze GPU acceleration. Speedup

is calculated by dividing the running time of a program on the CPU by the running time on the

GPU. The results are shown in Table 1 and the speedup trend is shown in Fig. 11.

Table 1. The speedup performance of a single SRBM with different number of samples and hidden units.

number of

samples

number of hidden units

100 200 300 400 500 600 700 800 900 1000 1024

1000 1.33 1.40 1.44 1.53 1.55 1.56 1.66 1.67 1.68 1.68 1.69

5000 1.63 1.66 1.66 1.67 1.71 1.72 1.74 1.74 1.80 1.81 1.82

10000 1.82 1.86 1.86 1.87 1.87 1.97 1.97 1.97 2.01 2.01 2.07

60000 2.25 2.53 2.55 2.74 3.24 3.45 3.53 3.92 3.94 4.07 4.29

Fig. 11. The speedup trend of a single SRBM with different number of samples and hidden units.

It can be seen from Table 1 and Fig. 11 that with more hidden units and samples, the

speedup is improved. And, when trained using all 60000 samples, our parallel algorithm can

achieve 4 times better acceleration over CPU on a single SRBM. Furthermore, two important

points can be noted here:

 In Table 1, although only a difference of 24 hidden units, speedup is higher for 1024

hidden units than for 1000 hidden units. This is since a warp contains 32 threads,

when the number of hidden units is a multiple of 32, each thread can be fully utilized.

 In Fig. 11, when N=60000, the speedup is higher than other cases. This is mainly

because when the sample size is small, both GPU and CPU complete the calculations

rapidly; and, in this case, the time that the GPU spends reading data cannot be

ignored, so the speedup of GPU is not evident. However, when the sample size is

large, e.g. for N = 60k, the running time of a program depends mainly on the

calculations. In this case, the data reading time can be ignored, and the advantage of

20

the GPU is clearly reflected.

In order to analyze the effect of number of layers and number of epochs of training, we

design two SDBNs. The first SDBN is composed of 2 SRBMs, and both their hidden layers

contain 1024 hidden units. The second SDBN is composed of 3 SRBMs and their hidden

layers contain 1024, 1024 and 2048 hidden units, respectively. The learning rate of fine-tuning

of SDBN is 1e-4. And we only take 20 epochs of fine-tuning. The training time of the two

SDBNs is shown in Table 2 and Table 3.

Table 2. Training time of SDBN composed of 2 SRBMs under different sample sizes and epoch numbers. The

unit of time is seconds.

number of

samples

device number of epochs of SRBM training

100 300 500 700 1000

6000

CPU 753 2875 4381 8789 12183

GPU 91 96 101 103 108

speedup 8.1 29.8 43.2 84.6 112.4

60000

CPU 18619 34418 87600 94488 140231

GPU 95 99 101 105 109

speedup 194.8 346.3 859.8 896.4 1276.4

Table 3. Training time of SDBN composed of 3 SRBMs under different sample sizes and epoch numbers. The

unit of time is seconds.

number of

samples

device number of epochs of SRBM training

100 300 500 700 1000

6000

CPU 4858 7989 15162 18823 22581

GPU 163 171 177 185 196

speedup 29.6 46.7 85.2 101.4 114.8

60000

CPU 35346 57693 93163 130672 157983

GPU 166 174 182 190 202

speedup 212.6 330.0 509.7 686.9 778.5

From the results shown in Tables 2 and 3, we can notice that with the increase of iterations,

the training time of serial algorithm increases exponentially, while for the parallel algorithm it

only increased by a few seconds. It also can be seen that the speedup is in the range of 8 to

1276, and the highest speedup appears in case of the SDBN containing 2 SRBMs instead of 3

SRBMs for the limitations of our computer hardware. Because, the number of threads that are

contained in a block is limited by GPU. In our GPU, a block can only contain up to 1024

threads. However, the number of hidden units in the last layer of the SDBN composed of 3

SRBMs is 2048. Therefore, the training time of the SDBN with 3 SRBMs increases rapidly

compared to the SDBN with 2 SRBMs. Although the speedup of the SDBN composed of 3

21

SRBMs is lower than that of 2 SRBMs, it still achieves a good acceleration effect with a

maximum speedup of 778. The trend followed by the speedup is shown in Fig. 12.

(a)

(b)

Fig. 12. The trend of speedup under different number of samples and epochs.

From Fig. 12, we can see that, in both cases, the speedup is higher for 60000 samples

(yellow line with stars) than 6000 samples (blue line with circles). This means that the larger

the sample size, the more evident the GPU advantage. Simultaneously, we calculate the

classification accuracy of these two SDBNs on the MNIST dataset. The results are shown in

Fig. 13 and Fig. 14.

(a) (b)

Fig. 13. The accuracy rate of SDBN composed of 2 SRBMs.

22

Fig. 14. The accuracy rate of SDBN composed of 3 SRBMs.

From these results, we can see that the accuracy is increased with the number of samples

and epochs. Also, parallel algorithm performs better than the serial one. This is because the

sub-populations in our parallel algorithm can converge to a better optimal solution. The highest

accuracy of our model is over 99%, which shows that our algorithm can learn abstract features

to achieve better classification performance with significantly lower training time.

All the above experimental results demonstrate the superiority of our parallel algorithm of

SRBM and SRBN in terms of acceleration and accuracy performance. In the following section

we study the performance of our method by applying it to perform facial expression

recognition.

5.2 Facial expression recognition analysis

For these experiments, we use the publicly available JAFFE [43-44] and CK+ [45] datasets

to verify the effectiveness of our algorithm. JAFFE is a small dataset with 213 images, with an

image size of 256 x 256 pixels. While CK+ is a large dataset with 2100 images, each of which

has a size of 640 x 490 pixels. Sample images from each dataset are shown in Fig. 15.

(a) (b)

Fig. 15. Examples of the two datasets. (a): JAFFE dataset. (b): CK+ dataset.

23

As discussed in Section 4, if the original image size is directly used as the input of SDBN,

it increases the computation cost. For example, using an image of size 640 x 490 pixels, the

number of units in the visual layer should be 313600, which is extremely expensive to

calculate and makes it difficult for SRBM to learn effective features. Therefore, we first

preprocess the dataset according to the method described in Section 4. The following

parameters are used for the experiments:

 The SDBN used in the following experiments is composed of 3 SRBMs, and their

hidden layers contain 1024, 1024 and 2048 hidden units, respectively. The number of

units in SDBN visual layer is the size of the resultant image vector after preprocessing.

 SA-QMOEA/D algorithm: The number of individuals is 256. The number of

sub-populations is 4. The number of the field B is 20, and the number of population

iterations is 100. This kernel is allocated 4 blocks, each with 64 threads.

 The learning rate of SRBM is 1e-3. The initial learning rate of fine-tuning for training

SDBN is 1e-4, but if the loss does not decrease after 5 epochs, the learning rate of

fine-tuning will be halved. And the maximum number of training epochs is 30. This

kernel is allocated 96 blocks, each with 512 threads. And the batch size is 64.

5.2.1. Facial expression recognition using JAFFE dataset

In this subsection, we use the small JAFFE dataset to verify the effectiveness of our

algorithm. We use three different image vectors whose dimensions are 30x36, 60x72, and

90x108. Note that here we use 30x36 instead of 1080 to represent the size of an image vector,

which is more in line with the image size. The accuracy rate of our SDBN with different

dimensions and different training epochs is shown in Table 4, and its accuracy rate trend is

shown in Fig. 16.

Table 4. Accuracy rate of SDBN with different image sizes and number of epochs in JAFFE dataset.

image

size

number of epochs of SRBM training

100 200 300 400 500 600 700 800 900 1000

30x36 0.33 0.59 0.65 0.71 0.79 0.82 0.84 0.86 0.89 0.91

60x72 0.57 0.63 0.77 0.88 0.90 0.92 0.94 0.97 0.98 0.99

90x108 0.585 0.684 0.752 0.78 0.885 0.95 0.965 0.98 0.99 0.992

24

Fig. 16. Accuracy rate trend of SDBN with different image sizes and number of epochs in JAFFE dataset.

Form Table 4 we can see that with the increase of epochs, the FER accuracy rate increases

and reaches its highest at 1000. The lower the image size, the less information they contain, so

the accuracy rate is low. But the image size cannot be increased indefinitely, because it

requires additional computations and storage. From Fig. 16 we can see that 60x72 is a better

choice for the image size because it requires less computation to achieve higher FER accuracy.

Next, we use the SDBN with the best results achieved and compare its performance

against the conventional methods like nearest neighbor, support vector machine, sparse

representation classification and traditional DBN algorithm. The comparison results are shown

in Table 5. It can be seen from the results that our method outperformed all the conventional

methods for all the image sizes.

Table 5. Comparison of accuracy rate with different methods using JAFFE dataset.

image size method

NN SVM SRC DBN SDBN

30x36 78.75 90.63 83.13 90.25 91.12

60x72 86.25 91.88 89.38 98.75 99.00

90x108 88.65 94.48 90.38 98.95 99.20

5.2.2. Facial expression recognition using CK+ dataset

As a further validation of our method, we have conducted more experiments using CK+

dataset. We process the image into three different dimensions: 24x24, 32x32 and 64x49. And

the number of epochs of SRBM training is 800. We explore the effect of the number of hidden

units on the accuracy rate. The obtained results are shown in Fig. 17.

25

Fig. 17. Accuracy rate of SDBN with different number of hidden units and image size in CK+ datasets.

As can be seen from the figure, at the beginning, the accuracy rate increased with the

number of hidden units up to an extent and started to fall with further increase in the number of

hidden units. The lower the image size, the fewer the hidden units are needed to achieve the

highest accuracy rate, which means the network structure that needs to interpret the data is

simpler when the image size is relatively small. The comparison results between our SDBN

and other methods using CK+ dataset are shown in Table 6. Even in this case our method

outperformed the rest. Unlike sudden change of accuracy rate in case of NN and SVM, our

method exhibited stable performance.

Table 6. Comparison of FER accuracy rate with different methods in CK+ datasets.

image size method

NN SVM SRC DBN SDBN

24x24 95.71 65.23 97.14 97.28 97.52

32x32 74.28 98.09 97.10 97.75 98.30

64x49 88.65 95.48 98.58 98.57 98.90

All the experimental results of FER show that our method has high recognition accuracy

rate and stable performance.

5.2.3. Train time and inference time

In order to further illustrate the superiority of our algorithm in terms of speed, we have

recorded the training time and inference time of all the methods used for FER. Results are

summarized in Tables 7 and 8.

26

Table 7. Training time and inference time in seconds for different methods in JAFFE dataset. '-'

indicates that there is no training process.

time
image

size

method

NN SVM SRC DBN
SDBN

(CPU)

SDBN

(GPU)

training

30x36 - 146.2 - 672.3 2734.6 184.1

60x72 - 683.5 - 1419.7 5068.2 197.0

90x108 - 1342.2 - 2378.4 8624.3 215.8

inference

30x36 4.6 0.3 42.1 7.7 6.2 0.3

60x72 17.7 0.4 106.2 15.7 12.4 0.3

90x108 37.4 0.6 314.9 24.5 21.7 0.5

Table 8. Training time and inference time in seconds for different methods in CK+ dataset. '-' indicates

that there is no training process.

time
image

size

method

NN SVM SRC DBN
SDBN

(CPU)

SDBN

(GPU)

training

24x24 - 973.3 - 5396.7 21072.1 282.4

32x32 - 1727.8 - 6021.5 24396.3 294.3

64x49 - 5124.1 - 9614.4 37323.0 331.6

inference

24x24 1135.2 1.4 321.2 54.7 48.9 1.7

32x32 1996.7 1.8 416.7 78.9 56.7 1.8

64*49 6102.3 2.1 757.4 126.3 86.4 2.2

The following conclusions can be drawn from these results:

 Our parallel SDBN has more advantages in terms of training time and inference time, and

it does not change dramatically with the increase of data dimensions. But the inference

time of NN and the training time of SVM increase rapidly with the increase of data

dimensions and the number of images (CK+ dataset is larger than JAFFE dataset).

 Because our SDBN uses evolutionary algorithm to optimize, it takes longer training time

without parallel implementation. While using parallel SDBN (with GPU) the training

time is short.

 On CK+ dataset, SDBN (with GPU) inference time is slightly slower than SVM. There

are two main reasons. First, the LIBSVM library [48] has been greatly optimized for

computational speed. Second, SDBN (with GPU) inference time is limited by the batch

size. If GPU memory increases, we can use larger batch sizes to further reduce the

inference time. It is worth noting that the SVM is generally more suitable for small

datasets, and its classification accuracy is not as good as our SDBN for larger ones.

27

 In inference time, our SDBN (CPU) is slightly faster than DBN because of the sparsity of

our SDBN.

6. Conclusion

In this paper, we have elaborated the principles and advantages of SDBN. In our SDBN,

we construct a multi-objective optimization problem from RBM, and use the evolutionary

algorithm to solve the problem, which is an alternate way of combining evolutionary

algorithms and neural networks. Our multi-objective optimization algorithm can automatically

search a set of optimal solutions for the sparse penalty term in RBM, which can achieve the

balance between over-fitting and under-fitting, and achieve better results. Next, we have

proposed an efficient parallel algorithm to overcome the weak points that are difficult to train.

We have not only realized the parallelism of the DBN network, but also have realized the

parallelism of the multi-objective optimization algorithm. We have implemented the parallel

design of SDBN on the GPU. Obtained experimental results show that our parallel

implementation on GPU achieves a speedup performance ranging from 8 to 1200 with a higher

accuracy rate when compared to that on CPU. We have also compared the training time of our

sparse DBN with different number of samples, hidden units and hidden layers. Later, we

analyzed the performance of our parallel SDBN by applying it to the problem of facial

expression recognition and by comparing its results to that of the conventional methods using

two publicly available datasets, JAFFE and CK+. The obtained results clearly demonstrated

the efficiency of our approach. In future, we will study the application of SDBN to a wider

range of problems, such as video, audio, text and other higher dimensional data problems.

Compliance with Ethical Standards

Funding: This work was supported by the National Natural Science Foundation of China under

Grant 61772399, Grant U1701267, Grant 61773304, Grant 61672405 and Grant 61772400, the

Technology Foundation for Selected Overseas Chinese Scholar in Shaanxi (Nos. 2017021 and

2018021), the Program for Cheung Kong Scholars and Innovative Research Team in

University Grant IRT_15R53, the Fund for Foreign Scholars in University Research and

Teaching Programs (the 111 Project) Grant B07048, the Major Research Plan of the National

Natural Science Foundation of China Grant 91438201, and the Key Research and

Development Plan of Innovation Chain of Industries in Shaanxi Province under Grant

2019ZDLGY09-05.

Conflict of Interest: Yangyang Li, Shuangkang Fang, Xiaoyu Bai, Licheng Jiao, and Naresh

Marturi declare that they no conflict of interest.

Ethical approval: This article does not contain any studies with human participants or animals

performed by any of the authors.

28

Informed consent: Informed consent was obtained from all individual participants included in

the study.

Reference

[1] Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J].

Neural computation, 2006, 18(7): 1527-1554.

[2] Hinton G E, Sejnowski T J. Learning and relearning in Boltzmann machines[J]. Parallel

distributed processing: Explorations in the microstructure of cognition, 1986, 1(282-317):

2.

[3] Geng Z, Li Z, Han Y. A new deep belief network based on RBM with glial chains[J].

Information Sciences, 2018, 463: 294-306.

[4] Chen L, Zhou M, Su W, et al. Softmax regression based deep sparse autoencoder network

for facial emotion recognition in human-robot interaction[J]. Information Sciences, 2018,

428: 49-61.

[5] Ranzato M A, Boureau Y L, Cun Y L. Sparse feature learning for deep belief

networks[C]//Advances in neural information processing systems. 2008: 1185-1192.

[6] Zheng P, Zhao Z Q, Gao J, et al. A set-level joint sparse representation for image set

classification[J]. Information Sciences, 2018, 448: 75-90.

[7] Ji N N, Zhang J S, Zhang C X. A sparse-response deep belief network based on rate

distortion theory[J]. Pattern Recognition, 2014, 47(9): 3179-3191.

[8] Keyvanrad M A, Homayounpour M M. Normal sparse deep belief network[C]//2015

international joint conference on neural networks (IJCNN). IEEE, 2015: 1-7.

[9] Gong M, Liu J, Li H, et al. A Multiobjective Sparse Feature Learning Model for Deep

Neural Networks[J]. IEEE Transactions on Neural Networks & Learning Systems, 2015,

26(12):3263-3277.

[10] Li Y, Bai X, Liang X, et al. Sparse Restricted Boltzmann Machine Based on

Multiobjective Optimization[C]//Asia-Pacific Conference on Simulated Evolution and

Learning. Springer, Cham, 2017: 899-910.

[11] Hinton G E. Training products of experts by minimizing contrastive divergence[J].

Neural computation, 2002, 14(8): 1771-1800.

[12] Banach S. Theory of linear operations[M]. Elsevier, 1987.

[13] Davis G, Mallat S, Avellaneda M. Adaptive greedy approximations[J]. Constructive

approximation, 1997, 13(1): 57-98.

[14] Ng A Y. Feature selection, L 1 vs. L 2 regularization, and rotational

invariance[C]//Proceedings of the twenty-first international conference on Machine

learning. ACM, 2004: 78.

[15] Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms[C]// International

Conference on Neural Information Processing Systems. MIT Press, 2006:801-808.

29

[16] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm:

NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.

[17] Zhang Q, Li H. MOEA/D: A Multiobjective Evolutionary Algorithm Based on

Decomposition[J]. IEEE Transactions on Evolutionary Computation, 2008,

11(6):712-731.

[18] Franco M A, Bacardit J. Large-scale experimental evaluation of GPU strategies for

evolutionary machine learning[J]. Information Sciences, 2016, 330: 385-402.

[19] Zhang J, Zhu Y, Pan Y, et al. Efficient parallel boolean matrix based algorithms for

computing composite rough set approximations[J]. Information Sciences, 2016, 329:

287-302.

[20] Li T, Dou Y, Jiang J, et al. Optimized deep belief networks on CUDA GPUs[C]//

International Joint Conference on Neural Networks. IEEE, 2015:1-8.

[21] Ly D L, Chow P. A high-performance fpga architecture for restricted boltzmann

machines[C]//Proceedings of the ACM/SIGDA international symposium on Field

programmable gate arrays. ACM, 2009: 73-82.

[22] Zhang K, Chen X W. Large-Scale Deep Belief Nets with MapReduce[J]. Access IEEE,

2015, 2(2):395-403.

[23] Aarts E, Korst J. Simulated annealing and boltzmann machines[J]. Handbook of Brain

Theory & Neural Networks, 1989.

[24] Bengio Y. Learning deep architectures for AI[J]. Foundations and trends® in Machine

Learning, 2009, 2(1): 1-127.

[25] Hinton G E. A practical guide to training restricted Boltzmann machines[M]//Neural

networks: Tricks of the trade. Springer, Berlin, Heidelberg, 2012: 599-619.

[26] Carreira-Perpinan M A, Hinton G E. On contrastive divergence learning[C]//Aistats.

2005, 10: 33-40.

[27] Hinton G E. Training products of experts by minimizing contrastive divergence[J].

Neural computation, 2002, 14(8): 1771-1800.

[28] Yang S Y, Jiao L C, Liu F. The Quantum Evolutionary Algorithm[J]. Chinese Journal of

Engineering Mathematics, 2006, 23(2):235-246.

[29] Venske S M S, Gonçalves R A, Delgado M R. ADEMO/D: Adaptive Differential

Evolution for Multiobjective Problems[C]//Brazilian Symposium on Neural Networks.

IEEE, 2012:226-231.

[30] Klöckner A, Pinto N, Lee Y, et al. PyCUDA: GPU Run-Time Code Generation for

High-Performance Computing[J]. Parallel Computing, 2009, 38(3):157-174.

[31] Cook S. CUDA programming: a developer's guide to parallel computing with GPUs[M].

Newnes, 2012.

[32] Xu Y, Rui W, Goswami N, et al. Software Transactional Memory for GPU

Architectures[J]. IEEE Computer Architecture Letters, 2017, 13(1):49-52.

30

[33] LeCun Y. The MNIST database of handwritten digits[J]. http://yann. lecun.

com/exdb/mnist/, 1998.

[34] Bengio Y. Learning Deep Architectures for AI[J]. Foundations & Trends® in Machine

Learning, 2009, 2(1):1-127.

[35] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating

errors[J]. Nature, 1986, 323(6088):533-536.

[36] Tian Y, Kanade T, Cohn J F. Evaluation of Gabor-wavelet-based facial action unit

recognition in image sequences of increasing complexity[C]//Proceedings of Fifth IEEE

International Conference on Automatic Face Gesture Recognition. IEEE, 2002: 229-234.

[37] Lyons M, Akamatsu S, Kamachi M, et al. Coding facial expressions with gabor

wavelets[C]//Proceedings Third IEEE international conference on automatic face and

gesture recognition. IEEE, 1998: 200-205.

[38] Ojala T, Pietikäinen M, Mäenpää T. Multiresolution gray-scale and rotation invariant

texture classification with local binary patterns[J]. IEEE Transactions on Pattern Analysis

& Machine Intelligence, 2002 (7): 971-987.

[39] Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International

journal of computer vision, 2004, 60(2): 91-110.

[40] Ranzato M, Susskind J, Mnih V, et al. On deep generative models with applications to

recognition[C]//Computer Vision and Pattern Recognition. IEEE, 2011:2857-2864.

[41] Rifai S, Bengio Y, Courville A, et al. Disentangling factors of variation for facial

expression recognition[C]//European Conference on Computer Vision. Springer, Berlin,

Heidelberg, 2012: 808-822.

[42] Wold S, Esbensen K, Geladi P. Principal component analysis[J]. Chemometrics and

intelligent laboratory systems, 1987, 2(1-3): 37-52.

[43] Lyons M J, Akamatsu S, Kamachi M, et al. The Japanese female facial expression

(JAFFE) database[C]//Proceedings of third international conference on automatic face

and gesture recognition. 1998: 14-16.

[44] Lyons M J, Budynek J, Akamatsu S. Automatic classification of single facial images[J].

IEEE transactions on pattern analysis and machine intelligence, 1999, 21(12): 1357-1362.

[45] Lucey P, Cohn J F, Kanade T, et al. The Extended Cohn-Kanade Dataset (CK+): A

complete dataset for action unit and emotion-specified expression[C]// Computer Vision

and Pattern Recognition Workshops. IEEE, 2010:94-101.

[46] Cover T M, Hart P. Nearest neighbor pattern classification[J]. IEEE transactions on

information theory, 1967, 13(1): 21-27.

[47] Suykens J A K, Vandewalle J. Least squares support vector machine classifiers[J]. Neural

processing letters, 1999, 9(3): 293-300.

[48] Chang C C, Lin C J. LIBSVM: A library for support vector machines[J]. ACM

transactions on intelligent systems and technology (TIST), 2011, 2(3): 27.

[49] Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation[J].

31

IEEE transactions on pattern analysis and machine intelligence, 2008, 31(2): 210-227.

