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Abstract: Clustering is a fundamental analysis tool aiming at classifying data points into groups based on their 

similarity or distance. It has found successful applications in all natural and social sciences, including biology, 

physics, economics, chemistry, astronomy, psychology, and so on. Among numerous existent algorithms, 

hierarchical clustering algorithms are of a particular advantage as they can provide results under different 

resolutions without any predetermined number of clusters and unfold the organization of resulted clusters. At 

the same time, they suffer a variety of drawbacks and thus are either time-consuming or inaccurate. We propose 

a novel hierarchical clustering approach on the basis of a simple hypothesis that two reciprocal nearest data 

points should be grouped in one cluster. Extensive tests on data sets across multiple domains show that our 

method is much faster and more accurate than the state-of-the-art benchmarks. We further extend our method to 

deal with the community detection problem in real networks, achieving remarkably better results in comparison 

with the well-known Girvan-Newman algorithm.  
 

Introduction 

 
Clustering algorithm is of great importance in the studies of data mining. As an unsupervised machine 

learning method, it can help people to understand data without clearly preassigned labels.  Therefore, clustering 

algorithm has already found many successful applications in disparate fields, such as biology, chemistry, 

physics and social science (1). Accordingly, scientists have been studying clustering algorithms for more than a 

half century, with a large number of excellent algorithms having been put forward and widely used. Well-

known algorithms can be divided into different categories, such as the partition methods (2, 3), the density-

based algorithms (4, 5), the affinity propagation algorithms (6, 7), the feature transformation methods (8-10), 

and so on. The clustering results of these algorithms are often challenged by the poor readability, caused by the 

lack of observable representative data point for each cluster, the exogenously determined number of clusters 

together with the fixed granularity, and the unclear organization of resulted clusters.  

Different from the above algorithms, a hierarchical clustering algorithm will produce a clustering tree, 

which clearly reflects the organization of resulted clusters and could provide clustering results under different 

resolutions without the help of a predetermined number of clusters (11, 12). Such remarkable advantage of 

hierarchical clustering algorithms facilitates their applications in scientific analyses, including gene-related 

predictions (13, 14), graph mining (15, 16), human brain analyses (17, 18), environmental assessment (19), 

incidence relation identification (20, 21), and so on. Traditional hierarchical clustering algorithms are usually 

highly time-consuming, which suffer growing challenges from the increasing data volume in the so-called big 

data era.  

Many fast algorithms for hierarchical clustering have been proposed, such as the algorithms via 

constructing the clustering feature tree (CF Tree) (22, 23), the random sampling algorithms (24, 25), the 

stepwise algorithms based on the nearest neighbor graph (26), and so forth. But these algorithms are subject to a 

common drawback: accompanied by the improvement of efficiency, the algorithms’ accuracy drops. In a word, 



the following general problems are still to be optimized (27-30). (i) The scalability problem: the algorithm 

scales poorly in both memory and computing time with increasing data volume; (ii) The go-back problem: once 

two clusters merge into a new cluster, the new one cannot be unfasten; (iii) The chaining effect problem: a few 

data points (i.e. noisy data points) located between two weakly connected clusters may form a bridge so as to 

merge these two clusters into one, eventually resulting in highly skewed dendrograms.  

Facing the above-mentioned challenges, this article proposes a novel hierarchical clustering algorithm 

(named as Reciprocal-nearest-neighbors Supported clustering, RS for short), which is based only on a compact 

hypothesis that the two reciprocal nearest data points should be put in one cluster. According to extensive 

experiments on University of California Irvine (UCI) data sets for machine learning (31) and Olivetti face data 

set (32), with very low computational complexity, RS algorithm provides more accurate results than classical 

benchmarks (e.g., group average (33) and CURE (25)) and state-of-the-art methods (e.g., affinity propagation (6) 

and clustering via density peaks (4)). We further extend RS algorithm to deal with the community detection 

problem (16, 34) in networks and demonstrate its advantage in comparison with the well-known Girvan-

Newman algorithm (35).  

Algorithm 

 
The RS algorithm treats each data point as a node, and starts from an empty set of sub-clustering trees 

(SCTs for short) and a candidate set of all n nodes. If the candidate set is not empty, one node therein, denoted 

by i , will be randomly selected. This node will be linked to its nearest neighbor 
(1)

i . Notice that, we assume 

the distance xyd  between any two nodes x  and y  is well defined, and to avoid unnecessary complications 

caused by multiple nearest neighbors, we disturb each distance xyd  by adding a very small random variable 

xy xyd  as xy xy xyd d   . After that, each node has only one nearest neighbor. 
(1)

i  will be further linked to 

its nearest neighbor, denoted by 
(2)

i . Setting 
(0)

i i  , such process will produce a chain 

(0) (1) ( )h

i i i     . The construction stops if one of the following two conditions holds: (i) 
( ) ( 2)h h

i i   , 

which means 
( 2)h

i


 and 
( 1)h

i


 are reciprocal nearest neighbors (RNNs); (ii) 
( )h

i  is not in the candidate set. If 

the second condition holds, this chain will be linked to a certain existing SCT, while if the first condition holds, 
(0) (1) ( 1)h

i i i       will constitute a new chain-shaped SCT, with 
( 2)h

i


 and 
( 1)h

i


 being the two 

supporting nodes. A unique artificial root, as the representative of this SCT, will be linked to these two 

supporting nodes. After that, all nodes 
(0) (1) ( 1), , , h

i i i   
 will be removed from the candidate set. If the 

candidate set is not empty, one node therein will be randomly selected and the above process will be 

implemented again. Otherwise the whole procedure to construct SCTs will stop. 

The next task is to prune the SCTs to avoid some very long and thin SCTs, which may accumulate 

transmitted errors and thus reduce the algorithmic performance. For any node i , if it belongs to an SCT with 

two supporting nodes p  and q , its depth is defined as  

                                
1

1
2

i ip iqh l l   ,                                                              (1) 

where ipl  is the shortest path length between i  and p  in this SCT. Though with an artificial root, p  and q  are 

assumed to be directly connected, so that 1ip iql l  . Therefore, 
ih  can be considered as the path length 

between i  and the artificial root. For each SCT C, all nodes whose depths are larger than a threshold ( )C  will 



be pruned. Every pruned node will be linked to an artificial root and form a special SCT consisted of only one 

root and one node. The threshold is defined as  

                         ( ) log (| | 1)C C     ,                                                       (2) 

where | |C  is the number of nodes in C , and x    denotes the smallest integer no smaller than x . In later 

experimental tests, the value of   is fixed as 1.5   and the sensitivity analysis on the selection of the 

parameter   are presented in Figure S1 in the Supplementary Materials. 
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Fig. 1. Illustration of the procedure to construct and prune the sub-clustering trees. (A) The original 

distribution of the seven data points in a two-dimensional plane. (B) Node 6 is randomly selected as the initial 

node to form the chain that ends with nodes 3 and 5 being the two RNNs. An artificial root is thus assigned to 

the two supporting nodes. (C) Node 7 is randomly selected from the updated candidate set {1,2,4,7}, whose 

nearest neighbor is node 6, so it is directed linked to node 6. (D) Node 2 is randomly selected from the updated 

candidate set {1,2,4}, whose nearest neighbor is node 4, and node 4’s nearest neighbor is node 5. Hence this 

chain will be linked to node 5 as 2 4 5  . (E) The last node in the candidate set, node 1, will be linked to its 

nearest neighbor, say node 2. Plot (E) illustrates the full structure of the SCT with nodes 3 and 5 being the two 

supporting nodes. Assuming 2  , so ( ) 3C  , and thus node 1 will be pruned since 
1 4l  . Node 1 will form 

a special SCT as shown in plot (F). Plot (G) shows the heatmap of the normalized distance matrix as well as the 

structure of SCTs after pruning, where the normalized distance between any two nodes i  and j  is defined as 

maxijd d , in which ijd  is the Euclidean distance between nodes i  and j , and 
maxd  is the maximum Euclidean 

distance between any pair of nodes. 

Figure 1 illustrates a simple example where 7 data points are distributed in a two-dimensional plane, and 

the distance between any two nodes is defined as their Euclidean distance. After the construction of SCTs, node 

1 is pruned and thus there are eventually two SCTs. Generally speaking, there are many SCTs after pruning. 

Then, we treat each SCT as a node (represented by its root) and implement the above constructing and pruning 

processes again to obtain a higher-level clustering. Such procedure will be implemented iteratively, resulting in 

the final clustering tree. Initially, all roots are put in the candidate set. The location of a root is either identical to 

its linked node if it represents a special SCT with only one node being pruned in the last pruning process, or 

defined as the midpoint of the two supporting nodes it links to. The distance between two roots is thus defined 

as the Euclidean distance between their locations. From the initial data distribution to the final result, a full 

procedure of the proposed RS algorithm is illustrated in Figure 2.  
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Fig. 2. Illustration of the full procedure of the RS algorithm. (A) The initial data points (green circles) and 

the result of the first iteration where roots are represented by yellow diamonds. Notice that, the SCTs 

emphasized by shadow are the same to those shown in Figure 1. (B) The result of the second iteration where the 

generated roots in this iteration are represented by blue triangles. (C) Final clustering tree obtained after three 

iterations, where the red square is the highest-level root. 

 

In a more general case where data points cannot be properly embedded in an Euclidean space and only a 

distance between each pair of data points is well defined (see the last two examples in the next section), we can 

still construct the SCTs but the distance between two roots cannot be updated as mentioned above, because the 

specific locations of roots are not well defined. In such circumstance, the distance between two roots is updated 

using only the information of distances instead of locations. Denoting 
1r  and 

2r  the two roots under 

consideration, via some simple geometrical calculation, the distance between 
1r  and 2r , say 1 2| |rr , can be 

determined according to the following three different situations: (i) if 
1r  is identical to a single point a , and 2r  

is identical to a single point c , then 
1 2| | | |rr ac ; (ii) if 

1r  is the midpoint of a  and b , and 
2r  is identical to a 

single point c , then 
2 2 2

1 2

| | | | | |
| |

2 4

ac bc ab
rr


  ; (iii) if 

1r  is the midpoint of a  and b , and 
2r  is the midpoint 

of c  and d , then 
2 2 2 2 2 2

1 2

1
| | | | | | | | | | | | | |

2
rr ac ad bc bd ab cd      . 

Results 

 
We test the performance of the proposed RS algorithm on eight selected data sets from the UCI database 

(31), which is well recognized as a standard database for machine learning. The detailed information about 

these data sets is presented in the Materials and Methods. Two classical clustering algorithms (i.e., the group 

average (GA) (33) and CURE (25)) and two state-of-the-art methods (i.e., affinity propagation (AP) (6) and 

clustering via density peaks (DP) (4)) are used for comparison. Detailed information about these benchmarks is 

shown in the Materials and Methods. The Rand Index (36) is adopted to quantify the algorithms’ performance: 

the larger the index is, the better the clustering result is. The mathematical definition of the Rand Index is 

presented in the Materials and Methods.  



Figure 3 compares the performance of RS and other considered algorithms on the UCI data sets. It can be 

observed that RS is competitive with AP and performs overall better than other algorithms. In particular, for 

mfeat-fourier and optidigits, many algorithms perform poorly while RS shows decent clustering ability. In 

addition, we examine the efficiency of RS by comparing the required CPU time of RS with other algorithms. As 

shown in Figure S2 in the Supplementary Materials, RS is the fastest one among all considered algorithms, 

while GA and AP are of the highest and the second highest time complexity.  

We next test the RS algorithm on the Olivetti face data set (32), which is a benchmark data set for 

clustering and classification. This data set consists of 400 real face images in 40 categories, with each category 

containing a person’s 10 different face images. Figure 4(A) illustrates the resulted clustering tree for the first 50 

face images by RS. As shown in Figure 4(B), overall speaking, RS performs best. In particular, after two 

iterations, RS obtains 39 clusters (very close to the value 40K   for the ground truth) with Rand Index being 

0.976. The full illustration is shown in Figure S3 in the Supplementary Materials.  
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Fig. 3. Performance of algorithms on the UCI data sets. The X-axis denotes the number of clusters K , the 

Y-axis shows the Rand Index, and each plot corresponds a selected data set. For GA, CURE and DP, K  is 

preassigned and thus adjustable, while for RS and AP, K  is endogenous. For example, in RS, different 

iterations correspond to different values of K . To be clear to readers, the results of RS and AP are respectively 

emphasized by vertical blue solid lines and vertical red dash lines. The number of cluster, 38K  , produced by 

AP on optidigits is much larger than the value of the ground truth (i.e., 10K  ), so that we don’t show the 

result of AP in plot (C).  

 

The RS algorithm can also be extended to detect communities, which is a significant long-standing 

challenge in network science (16, 34). The community structure is loosely defined as a number of communities 

where each node belongs to one community and connections within a community are much denser than 

connections in between communities (35). The community detection problem can be considered as a specialized 



clustering algorithm where nodes are treated as data points (34), and thus a necessary step before transforming 

community detection problem to clustering problem is to determine the similarity or distance between node 

pairs (38).  

 

 
Fig. 4. Result and Performance of algorithms on the Olivetti face data set. Plot (A) illustrates the resulted 

clustering tree for the first 5 persons’ faces (i.e., 50 images) by RS, where images in the same color belong to 

one category in the ground truth. Plot (B) compares the performance of RS with other considered algorithms. In 

all relevant algorithms, the similarity between two face images is determined by the complex wavelet structural 

similarity (37), and the corresponding distance is defined as the inverse of the similarity.  

 

Denote A the adjacency matrix of an undirected network G . For the unweighted case, 1ija   if nodes i  

and j  are adjacent (being directed connected by an edge), otherwise 0ija  . For the weighted case, 0ija   if 

nodes i  and j  are not adjacent, otherwise ija  represents the weight of the edge ( i , j ). The Laplace matrix of 

G is then defined as L D A  , where D  is a diagonal matrix with its diagonal element 
iid  being equal to the 

degree of node i . We apply the random walk theory (39) to define the distance between any two nodes as  

                    ( , ) ( 2 )G ii jj ijD i j V l l l     ,                                           (3) 

where 
1

N

G iii
V d


 , N is the number of nodes in G, and l   is the corresponding element of the Moore-Penrose 

inverse matrix of  L  (40). In the extended RS algorithm, each node is treated as a data point, the distance 

between two adjacent nodes is calculated by Eq. (3), and the distance between two disadjacent nodes is set as 

infinite. Due to the sparsity of the network, the algorithm will stop when the distance between any two roots is 

infinite. At that time, there may be some isolated nodes resulted from the pruning process, as well as some 

isolated reciprocal nearest neighbors. Each of these nodes, no matter a single node or one of RNNs, will be 

merged to the its nearest community whose size, right after the stop of algorithm, is no less than 3. Here the 

distance between a node i  and a community C is defined as ( , ) min ( , )
j C

D i C D i j


 .  

We test this extended RS algorithm on four real networks: beach (41), netsci (42), jazz (43) and haverford 

(44), of which two are unweighted and other two are weighted (see Materials and Methods for detailed 

description). The corresponding numbers of communities obtained by RS for the above four networks are 6, 30, 

24 and 124, respectively. Statistically speaking, the sizes of communities are relatively small. Therefore, to 

overcome the possible resolution problem in community detection (45), we scan all edges in between 



communities, then at each time step we select the edge with the smallest betweenness (46) (see the definition in 

Materials and Methods) and merge the two communities bridged by this edge. This operation allows us to 

obtain divisions with fewer communities. We use the triangle participation ratio (47) (TPR for short, see the 

definition in Materials and Methods) as the metric to evaluate the algorithms’ performance. As shown in Fig. 5, 

in comparison with the well-known Girvan-Newman algorithm (35) (see Materials and Methods for the 

introduction), in most cases, the extended RS algorithm performs remarkably better.  
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Fig. 5. Performance of the RS and GN algorithms in community detection. Each plot presents the result of a 

real network, with X-axis denoting the number of communities K and Y-axis showing the metric of 

performance (i.e., TPR). The TPRs for RS and GN are blue solid curves and yellow dash curves, respectively. 

The blue shadows emphasize the regions where RS outperforms GN, while the yellow shadows indicate the 

opposite cases.  

 

Discussion 

 
On the basis of a very intuitive hypothesis that two reciprocal nearest data points should belong to the same 

cluster, we propose a simple clustering algorithm that outperforms related techniques on both efficiency and 

accuracy. Beyond the better performance, our method has a strong interpretation power since it provides a 

clustering tree that records the hierarchical organization of resulted clusters under different resolutions. We 

further devise a way to calculate the distance between two artificial roots when their locations cannot be 

explicitly determined, so that we can extend our method to deal with some related yet different challenges, like 

the community detection problem in network science. Because of its simplicity, extendibility, efficiency and 

effectivity, we believe our method will find wide applications in natural science, social science, engineering, 

and so on. 

 

To keep a record of artificial roots and to determine the distance between roots respectively ask for 

additional space and time. Therefore, if one can quickly evaluate which one of the two reciprocal nearest 

neighbors is the better representative data point, then the artificial roots are not necessarily introduced and the 

algorithm’s efficiency can be further improved. We leave this idea as an open issue for future studies. 

Considering the extended algorithm for community detection, the currently applied method (39) to determine 

the distance between two nodes is highly time-consuming. Hopefully we can find out known measures or 

design novel measures on similarity or distance between nodes (see examples in the review article (49) and 

references therein) that can produce equally good or even better results in a much shorter time. 



Materials and Methods 
 

Data Description 
 

UCI database (31) is one of the most well-known standard scientific databases, which maintains more 

than 400 data sets as a service to the machine learning community and is continuously updated. Eight labeled 

data sets are selected to test the performance of the proposed RS algorithm. Four of them are balanced data sets 

(i.e., each category contains approximately equal number of data points) and the others are unbalanced data sets. 

Parameters of these data sets are as shown in the Table 1. 

 

Table 1: Basic information of the eight selected UCI data sets. 

 

Type Data Set #Samples #Features #Classes 

Balanced 

synthetic-control 600 60 6 

mfeat-fourier 2000 76 10 

optdigits 5630 64 10 

iris 600 4 3 

Unbalanced 

ecoli 336 7 8 

dermatology 366 34 6 

glass 214 9 2 

wine 178 13 3 

 

Networks. Four real networks are selected to test the performance of the RS algorithm on community 

detection. (i) beach (41) is a human contact network of windsurfers. Each node represents a sportsman, and the 

weight of an edge represents the number of contacts. (ii) netsci (42) is the largest connected component of the 

co-authorship network of scientists in network science. The weight of an edge denotes the number of 

corresponding co-authorized papers. (iii) jazz (43) is a collaboration network among jazz musicians, where two 

musicians are connected if they have played together in a band. (iv) haverford (44) is a social friendship 

network extracted from Facebook.  

 

Table 2: Basic information of the four networks. 

 

Type  Name #Nodes #Edges Average Degree Clustering Coefficient 

Weighted 
beach 43 336 15.63 0.564 

netsci 379 913 4.82 0.368 

Unweighted 
jazz 198 2742 27.70 0.520 

haverford 1446 59589 82 0.323 

 

Benchmark Clustering Methods 
 

GA (33) is a typical hierarchical clustering algorithm which agglomerates sub-clusters according to their 

distances. That is, two sub-clusters that have the minimum distance will be merged. GA is also named as 

average-linkage method since the distance between two clusters in this algorithm is defined as the mean 

distance between elements of each cluster. 

 

CURE (25) is an efficient hierarchical algorithm, which introduces a sampling strategy before 

agglomeration. Two main stages of CURE are as follows. (i) Choosing a constant number of well scattered 

nodes of a cluster and shrinking them towards the centroid of the cluster. These shrunk nodes are treated as the 

representatives of the cluster. (ii) Agglomerating sub-clusters according to the criteria like GA.  



 

AP (6) is a novel clustering algorithm based on the message passing between nodes. Central nodes of 

clusters are recognized by alternating two message passing steps, in which two matrices, responsibility and 

availability, are updated iteratively. The process will stop after a preassigned number of iterations, or when the 

elements in clusters remain unchanged for 10 iterations. Those nodes whose 'responsibility plus availability' is 

positive are marked as the central nodes of clusters. 

 

DP (4) is a density-based clustering algorithm, in which each node has two quantities, its local density and 

its minimum distance from nodes of higher density, which are used to recognize the central nodes of clusters. 

Each node is assigned to the same label as its nearest neighbor of higher density. 

 

Rand Index 
 

The Rand Index (36) is a widely used evaluation index for clustering algorithms, which measures the 

similarity between two data partitions. Given a set S  of n  data points and its two partitions, the real partition 

X  and the algorithm-produced partition Y , the Rand Index R  is defined as 

a b
R

a b c d




  
,                                                   (4) 

where a  is the number of pairs in S  that are in the same subset in X  and in the same subset in Y ; b  is the 

number of pairs in S  that are in the different subsets in X  and in the different subsets in Y ; c  is the number 

of pairs in S  that are in the same subset in X  but in the different subsets in Y ; d  is the number of pairs in S  

that are in the different subsets in X  but in the same subset in Y . 

 

Betweenness Centrality 
 

Betweenness Centrality (46) of a node i  is defined as  

                    
, ,

( , , )
( )

( , )s i s t i t

g s i t
BC i

g s t  

  ,                                              (5) 

where ( , )g s t  is the number of shortest paths between s  and t , and ( , , )g s i t  is the number of shortest paths 

between s  and t  that pass through node i . 

 

Triangle Participation Ratio 
 

Triangle Participation Ratio (TPR) (47) is defined as the ratio of nodes in a community that belong to the 

triadic closure embedded in the corresponding community. The TPR indicator of the community C  is defined 

as follows: 

|{ : , , , 1} |
( ) uv uw vw

C

u u v w C a a a
f C

n

 
 ,                                   (6) 

where Cn  denotes the number of nodes in the community C , and 1uva   if there is an edge between nodes u  

and v , otherwise, 0uva  . The TPR value of one network is 
1

( )
| | C

f C


 , where  is the sets of communities 

by a certain method.  

 

Girven-Newman Algorithm 
 

The Girven-Newman (GN) algorithm (35) is a classical hierarchical community detection algorithm including 

the following steps: (i) calculating the betweenness centrality of each edge; (ii) removing the edge with the 

largest betweenness centrality; (iii) calculating the betweenness centralities for all remaining edges; (iv) 

repeating the steps of (ii) and (iii) to obtain a series of community divisions.   
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Fig. S1. Sensitivity analysis on the value of the parameter   for the eight UCI data sets. Each point denotes the 

best Rand Index in iterations with the corresponding  . The algorithm’s performance for synthetic-control, 

mfeat-fourier, optdigits and glass is not sensitive to  , while the performance for ecoli, iris, dermatology and 

wine is relatively more sensitive to  . Fortunately, for almost all cases, 1.5   will produce the best or nearly 

the best results subject to the Rand Index, and thus in this paper, we fix 1.5  . If we are allowed to freely 

tune the parameter  , we can achieve slightly better performance than that reported in Fig. 3, Fig. 4 and Fig. 5. 

However, it is not fair to other benchmarks, so that we only report the results corresponding to the fixed  . 
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Fig. S2. CPU times on random data sets. We compare the required CPU times of RS algorithm with other 

algorithms on randomly generated data sets with different sizes. The relation between CPU times and data sizes 

for each algorithm is fitted by a power-law curve, with the exponent shown in the legend. Obviously, RS is the 

fastest algorithm while GA and AP are the slowest ones. The computation is implemented via a 3.4GHz 4 core 

Intel Core i5 CPU. 
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Fig. S3. Result of RS on the whole Olivetti face data set. As shown in this figure, after two iterations we obtain 

the result, where face images that belong to the same cluster are marked in the same number and color. Notice 

that, there are several impure clusters which contain multiple person’s face images, which are marked by red 

boxes. In addition, red crosses are used to mark those incorrectly classified face images. 


