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Abstract

Numerous image superresolution (SR) algorithms have been proposed for reconstruct-

ing high-resolution (HR) images from input images with lower spatial resolutions.

However, effectively evaluating the perceptual quality of SR images remains a chal-

lenging research problem. In this paper, we propose a no-reference/blind deep neural

network-based SR image quality assessor (DeepSRQ). To learn more discriminative

feature representations of various distorted SR images, the proposed DeepSRQ is a

two-stream convolutional network including two subcomponents for distorted struc-

ture and texture SR images. Different from traditional image distortions, the artifacts

of SR images cause both image structure and texture quality degradation. Therefore,

we choose the two-stream scheme that captures different properties of SR inputs in-

stead of directly learning features from one image stream. Considering the human vi-

sual system (HVS) characteristics, the structure stream focuses on extracting features

in structural degradations, while the texture stream focuses on the change in textural

distributions. In addition, to augment the training data and ensure the category balance,

we propose a stride-based adaptive cropping approach for further improvement. Exper-

imental results on three publicly available SR image quality databases demonstrate the

effectiveness and generalization ability of our proposed DeepSRQ method compared

with state-of-the-art image quality assessment algorithms.

Keywords: Image superresolution, blind image quality assessment, two-stream

convolutional networks, stride-based adaptive cropping, human vision
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1. Introduction

Image superresolution (SR) aims at constructing a high-resolution (HR) image with

fine details using one or several low-resolution (LR) images as inputs [29], which is

desirable in various practical scenarios, such as medical imaging, video surveillance,

and high-definition television (HDTV) [23]. Through SR technologies, people can

better view LR images on HR displays. During the past few decades, many generic

single image superresolution algorithms have been proposed [40]. However, much less

has been done to fairly evaluate the perceptual quality of superresolved images (SRIs)

and the performance of SR algorithms [2].

For image superresolution quality assessment, in the literature, small-scale subjec-

tive experiments are usually used for evaluation. Specifically, subjects are asked to

rate the visual quality of SR images generated by different SR algorithms. The rating

provided for each SR image under examination is termed the opinion score. The mean

of these ratings, i.e., the mean opinion score (MOS), is calculated as the ground-truth

image quality measurement, which is a common practice in quality assessment. Thus,

although some viewers may have different feelings, the MOS score is a statistical con-

cept. Subjective tests were performed in [41] to explore the visually subjective quality

of SR images. Such subjective testing is reliable for providing a fair evaluation of SR

image quality but is expensive, labor intensive, and time consuming. More importantly,

subjective tests cannot be integrated into the automatic design process of perception-

driven SR algorithms. Therefore, it is desirable to develop objective IQA methods for

automatically predicting the subjective visual quality of SR images.

When the original distortion-free image is available, full-reference image quality

assessment (FR-IQA) can be carried out by comparing the distorted image with the

reference image. Two classic FR-IQA metrics, namely, the peak signal-to-noise-ratio

(PSNR) and the structural similarity index (SSIM) [33], are usually employed to eval-

uate the visual perceptual quality of reconstructed SR images. However, they do not

match well with a subjective evaluation. Three publicly available SR image quality

databases considering several typical SR algorithms have been built [17, 32, 48], upon

which state-of-the-art IQA metrics are tested. The results demonstrate that it is difficult
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Figure 1: Overview of the network architecture of our proposed model for learning the perceptual quality

of image superresolution. In DeepSRQ, representative features are extracted from distorted structure and

texture SR images by two subnetworks. The extracted features are then used to estimate the quality scores

by late fusion regression layers.

for the existing IQA metrics to effectively predict the perceptual quality of SR images.

In addition, reference images seldom exist in most situations, and these FR-IQA met-

rics require the resolution of the distorted image to be the same as that of the original

image. As a result, a no-reference/blind image quality assessment (NR-IQA) met-

ric specifically designed for image superresolution, which evaluates perceptual quality

with no access to reference LR or HR images, is directly applicable and highly de-

manded.

In recent years, deep learning-related methods have been extensively used and have

achieved great achievements for a variety of image processing and computer vision

problems, such as image recognition [8], video quality assessment [49], and social

image understanding [15]. In this paper, we exploit deep convolutional neural net-

works (DCNNs) to address the no-reference image superresolution quality assessment

problem. Specifically, we propose a deep neural network-based SR image quality as-

sessor (DeepSRQ). Inspired by [48], the proposed model shown in Figure 1 contains

two subcomponents accounting for structure and texture SR images. To the best of

our knowledge, for objective SR IQA models, this is the first study of applying the

two-stream network architecture to learn the perceptual SR image quality. The human
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visual system (HVS) is not only sensitive to structural information but also considers

textural details [1]. Moreover, the distortions of SR images are different from con-

ventional artifacts, which degenerate both image structure and texture [48]. Thus, we

first extract structure and texture images from distorted SR images. Second, since ex-

isting image superresolution quality databases (i.e., the superresolution (SR) quality

database [17], superresolution reconstructed image database (SRID) [32]) and qual-

ity assessment database for SRIs (QADS)) are relatively small-scale, and we opt to

utilize a stride-based adaptive cropping approach to augment the training data and en-

sure the category balance. This approach also considers the local visual information

of the whole distorted structure and texture SR images. Third, we take the distorted

structure and texture SR patches as inputs and train the two-stream convolutional net-

work to extract the discriminative feature representations. Fourth, different from the

original classification-based DCNN [13], we aim to map the feature representations

to estimated scores, which adopts a fully connected layer instead of a softmax layer.

Specifically, two fully connected layers are followed by each substream. Then, we use

concatenation to further obtain one quality score for each SR image patch. Finally, we

average these estimated scores as the perceptual quality for the entire SR image.

In addition, the training process of DeepSRQ produces both low-level visual in-

formation and high-level semantic features. Our experimental results show that the

synthetically learned features are more effective than both the handcrafted low-level

features and high-level semantic features extracted from pretrained DCNN models.

Each substream is verified in our experiments. We also conducted an ablation study to

demonstrate that the proposed stride-based adaptive cropping approach indeed plays a

critical role in DeepSRQ.

The contributions of this work are summarized as follows:

• Since the distortions of SR images cause both image structure and texture qual-

ity degradation, we propose a two-stream deep convolutional network for the

blind quality estimation of superresolution images. The proposed network ex-

tracts the discriminative features from various distorted structure and texture SR

images, where each subnetwork adapts and differs from the classification-based
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architecture.

• To ensure the category balance, we propose a stride-based adaptive cropping

approach for augmenting the training data. We show the effectiveness of the

proposed adaptive cropping method for further improving the performance of

the whole framework.

• We conduct extensive experiments on various databases demonstrating the effec-

tiveness of the proposed network and the corresponding adopted techniques. In

addition, the synthetic features learned from the proposed two-stream network

are more effective than traditional features.

The remainder of this paper is organized as follows. In Section II, we introduce the

proposed deep neural network-based SR image quality assessor (DeepSRQ) for no-

reference/blind superresolution image quality prediction in detail. Section III presents

the experimental results and analysis. In Section IV, we conclude the paper and discuss

future research directions.

2. Proposed DeepSRQ

The network architecture of the proposed blind quality assessor for learning the per-

ceptual quality of image superresolution is shown in Figure 1. We design our proposed

DeepSRQ network with a two-stream architecture, which takes distorted structure and

texture SR images as inputs through two subnetworks, i.e., structure stream and texture

stream. Each subnetwork adapts and differs from AlexNet [13]. It replaces the last

softmax layer with a fully connected layer for the regression task. We thus adopt MSE

loss rather than cross-entropy loss. The whole network design, such as kernel number

and network parameters, is also different. Since existing image superresolution quality

databases are relatively small-scale, we opt to augment the training set by cropping the

distorted structure and texture SR images into multiple patches. In addition, to ensure

the category balance, we propose a stride-based adaptive cropping operation in the pre-

processing stage for further boosting the performance of our DeepSRQ method. Next,
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Figure 2: Examples of natural images and the corresponding structure as well as texture images in the QADS

database [48]. (a) Original HR image with higher visual quality. (b) Extracted structure image of (a). (c)

Extracted texture image of (a). (d) Distorted SR image with lower visual quality. (e) Extracted structure

image of (d). (f) Extracted texture image of (d).

we present the details of our proposed DeepSRQ. The training and quality prediction

steps are also presented.

2.1. Image Representation

As demonstrated in previous studies, the distortions of SR images cause both image

structure and texture degradation [48]; we first extract structure and texture images

from distorted SR images. Specifically, we adopt the relative total variation-based

structure extraction method [38] with default parameters to extract structure images

from distorted SR images. From the perspective of perception, the texture map obtained

directly by subtracting the structure map from the original image is not necessarily the

texture perceived by human eyes. The texture map obtained by the texture descriptors

is more consistent with human perception. For texture description, the local binary

pattern (LBP) is an effective texture description operator and has significant advantages

of rotation invariance and gray invariance [22]. Moreover, the LBP is widely used in

image quality evaluation tasks [50]. Therefore, we utilize it to extract texture images
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from distorted SR images. Some examples of natural images and the corresponding

structure as well as texture images in the QADS database [48] can be seen in Figure 2.

We observe that the structure and texture images can discriminate images with different

visual qualities, which demonstrates the effectiveness of the extracted structure and

texture images.

To train the two-stream deep neural network, a large quantity of training data is

needed. Moreover, we need to use the same fixed sizes during training and testing

because fully connected layers exist in the proposed network, and their number of pa-

rameters is not flexible. Since the existing publicly available image superresolution

quality databases are small-scale, cropping SR images is an effective method for in-

creasing the quantity of training data. Moreover, compared with resizing, cropping

ensures that the perceptual image quality is unchanged [12]. Hence, we choose to crop

multiple patches from different spatial locations to cover the local visual information

of the whole SR image without introducing any geometric deformation. The resolution

of SR images in the SR quality database [17] and QADS database [48] is fixed for

different scaling factors and the corresponding Gaussian kernel widths. Therefore, the

total number of nonoverlapping cropped patches for each SR image is given by:

Nump =

⌊
M

m

⌋
×
⌊
N

n

⌋
, (1)

where M and m are the SR image width and cropped patch width, respectively, while

N and n are the SR image height and cropped patch height, respectively. In other

words, M × N is the SR image resolution, and m × n denotes the cropped patch

resolution. Note that M > m, N > n, and m = n in our experiments.

2.2. Stride-Based Adaptive Cropping Method

It should be noted that there exist three amplification factors (i.e., 2, 4, and 8)

in the SRID [32]. A larger amplification factor leads to a higher resolution of SR

images. Therefore, we propose a stride-based adaptive cropping approach to ensure

the category balance for different amplification factors. Specifically, the stride of the

maximum amplification factor (i.e., fmax) is the cropped patch size denoted by m.
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Figure 3: Illustration of the proposed stride-based adaptive cropping method with several SR image ex-

amples, where 8, 16, and 32 denote the stride sizes for SR images with amplification factors 2, 4, and 8,

respectively. The cropping patch size is 32× 32. (a) SR image with amplification factors equal to 2. (b) SR

image with amplification factors equal to 4. (c) SR image with amplification factors equal to 8.

Then, the strides for the other amplification factors (i.e., f ) are computed as:

Stridef =
f

fmax
×m. (2)

Specifically, as shown in Figure 3, we illustrate several SR image examples with

three amplification factors. As the cropping patch size is 32×32, the stride sizes are 8,

16, and 32 for SR images with amplification factors equal to 2, 4, and 8, respectively.

By using the proposed stride-based adaptive cropping approach, the quantity of train-

ing data for each amplification factor generally remains balanced. Furthermore, our

ablation experiments show that this adaptive cropping approach brings about improved

performance.

2.3. Network Architecture

Given a distorted SR image I , we first extract the structure and texture images from

it. Then, we can represent the structure and texture images by a set of cropped patches.

Let {s1, s2, ..., sNump
} and {t1, t2, ..., tNump

} be the cropped structure and texture

patches used to train the DCNN. As shown in Figure 1, we first take distorted structure

and texture SR image patches as inputs. Following local normalization [42], we rescale
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Table 1: Detailed subnetwork configurations of the proposed method. CONV: convolution, ELU: activation,

POOL: max pooling, DENSE: fully connected, DROP: dropout.

Layer Output Shape Parameter Number

INPUT (32, 32, 3) 0

CONV1+ELU1 (32, 32, 16) 448

POOL1 (16, 16, 16) 0

CONV2+ELU2 (16, 16, 16) 2320

POOL2 (8, 8, 16) 0

CONV3+ELU3 (8, 8, 32) 4640

CONV4+ELU4 (8, 8, 32) 9248

CONV5+ELU5 (8, 8, 64) 18496

POOL5 (4, 4, 64) 0

DENSE1+ELU6+DROP1 128 131200

DENSE2+ELU7+DROP2 128 16512

DENSE3 1 129

each patch to the range [0, 1] by dividing all channels by 255 before feeding it into the

two-stream network. The last fully connected layer of each subnetwork is concatenated

to obtain a 256 − dim feature vector, and then two fully connected layers with sizes

equal to 256 and 1 are employed to regress the inputs onto one single visual quality

score.

Moreover, we show the ablation substream of our proposed two-stream network.

The detailed subnetwork configurations of the proposed method can be found in Table

1. Inspired by the work in [13], the designed framework of the subnetwork consists of

12 layers, which include one input layer, five convolutional layers, three max pooling

layers, and three fully connected layers. First, for the convolutional layers Conv1 and

Conv2, the kernel number is 16. The kernel number is 32 for the convolutional layers

Conv3 and Conv4. The kernel number of the last convolutional layer (i.e., Conv5) is

64. Note that each kernel size for the convolutional layers is set to 3 × 3. We also

adopt padding to ensure the unchanged patch size during the process of convolution

operations.

In addition, we apply the exponential linear unit (ELU) instead of traditional acti-

vation functions such as the sigmoid, tanh, and rectified linear unit (ReLU) after the
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convolution layer. Formally, the output of the nonlinear activation function ELU can

be represented by:

u(x) =

x, x ≥ 0

α(ex − 1), x < 0
, (3)

where α denotes the parameter to control negative factors and can output information

even if the input is negative. Moreover, the mean of the overall output is approximately

0, which is more robust than other traditional activation functions. After the convolu-

tion and ELU layers, we exploit max pooling with a window size of 2× 2. Therefore,

for the feature extractor, the output shape of each feature map is 1/8 of the original

input patch size.

We then flatten these feature maps to obtain 128 − dim feature vectors that can

represent the input distorted structure or texture SR image patches. To conduct the

perceptual quality regression, we use three fully connected layers with sizes equal to

128, 128, and 1. The ELU layers are also employed after the first two fully connected

layers. Meanwhile, dropout is utilized to avoid overfitting. Specifically, the outputs of

neurons are set to zero randomly with a particular probability. In our experiments, the

probability is either 0.35 or 0.5. The last fully connected layer (i.e., the output layer)

has one dimension that represents the predicted quality score.

Finally, to estimate the entire SR image quality, we assume that the visual distor-

tions in reconstructed SR images are roughly homogeneous, which is appropriate for

most practical situations. In this case, we thus take estimated scores of image patches

as inputs and outputs the average mean of these scores, which is computed as the per-

ceptual quality for the whole SR image.

2.4. Learning Quality

We need to obtain a large quantity of training data to train the proposed DeepSRQ

network. Meanwhile, the input sizes should be fixed. Hence, we train our network

on 32 × 32 cropped patches extracted from relatively larger distorted structure and

texture SR images with the stride-based adaptive cropping approach. The subjective

quality scores are taken as ground-truth labels. During the training process, the learning

objective function of the network with weights w and updated weights ŵ is defined to
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minimize the mean squared error (MSE) as follows:

LMSE = ||cw(si, ti)− yi||22

ŵ = min
w
L, (4)

where yi represents the label of the distorted SR image patch, which is the human

rating score. cw(pi, ti) denotes the quality score computed by the proposed DeepSRQ

method. In addition, si ∈ {s1, s2, ..., sNump
}, ti ∈ {t1, t2, ..., tNump

}, and yi ∈

{y1, y2, ..., yNump
}. Nump is the total number of input image patches.

To estimate the whole SR image quality by the predicted quality scores of input

image patches, we adopt the average quality pooling as:

Q =
1

Nump

Nump∑
i=1

cw(si, ti), (5)

where Q is the final perceptual quality prediction for the SR image. Note that using

average pooling for quality evaluation tasks is a common practice because the spa-

tial distortion in SR images is generally homogeneous. Indeed, we also test different

saliency models, but the performance does not improve. One possible explanation is

that state-of-the-art saliency detection algorithms focus on objects rather than distor-

tion, which is more important for image quality assessment.

3. Experimental Results and Analysis

In this section, we report the results of several experiments to test the perfor-

mance of DeepSRQ on three existing publicly available image superresolution quality

databases, i.e., the SR quality database [17], SRID [32], and QADS [48]. We also

pretrain DeepSRQ on the SR quality database, then perform cross validation on SRID,

and vice versa. Moreover, we examine the effects of several parameter settings, in-

cluding patch size and kernel size, and visualize the feature map to discover what has

been learned from our proposed two-stream deep learning architecture. Furthermore,

we carry out ablation experiments to test and quantify the performance gain of each

key technique for learning the perceptual quality of image superresolution.

11



Table 2: The values of scaling factors (s) and the corresponding kernel width values (σ) in SR quality

database [17].

s 2 3 4 5 6 8

σ 0.8 1.0 1.2 1.6 1.8 2.0

3.1. Protocol

We briefly introduce three publicly available image superresolution quality databases

and the three commonly used criteria employed in the experiments.

The SR quality database includes a total of 1,620 SR images that are generated

from LR images by nine SR algorithms. These SR algorithms are applied with a variety

of scaling factors and kernel widths, denoted by s and σ, respectively. The numbers

of ground-truth HR images and LR images are 30 and 60, respectively. Note that the

larger subsampling factor requires a larger blur kernel width for better performance.

Therefore, the optimal kernel width is applied for each scaling factor. The parameter

selection details of this database can be found in Table 2. A subjective experiment

is conducted to collect the subjective quality scores from 50 subjects. The mean of

the median 40 subject scores is computed as the ground truth in the form of the mean

opinion score (MOS), ranging from 0 to 10. Here, higher MOS means better perceptual

quality.

SRID consists of 480 distorted SR images that are directly generated by LR im-

ages using two interpolation methods and six SR enhancement algorithms with three

amplification factors of 2, 4, and 8. Nondistorted HR images are unavailable in this

database. Subjective quality scores are provided in the form of MOS ranging from 0 to

10; the higher the value, the better the perceptual quality.

QADS contains 20 source images and 980 SRIs. The source images are selected

from the MDID database [28] and Set14 database [43]. Three magnification scales are

introduced to obtain the 980 SRIs, including 2 times, 3 times, and 4 times. Twenty-one

image superresolution algorithms are applied to obtain the distorted SR images. Sub-

jective quality ratings are given in MOS ranging from 0 to 1. A higher value indicates

better perceptual quality.

We adopt three commonly used criteria to evaluate the performance of DeepSRQ:
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Spearman rank-order correlation coefficient (SROCC), Pearson linear correlation coef-

ficient (PLCC), and root mean square error (RMSE). Here, SROCC is used to evaluate

prediction monotonicity, while PLCC and RMSE are used to evaluate prediction ac-

curacy. Higher correlation coefficients and lower error indicate better agreement with

human quality ratings. Moreover, before calculating the PLCC and RMSE performance

of objective quality assessment methods, a nonlinear logistic fitting is applied to map

the predicted scores to the same scales of subjective quality scores. Following [30], we

adopt a four-parameter logistic function as follows:

g(x) =
τ1 − τ2

1 + e
x−τ3
τ4

+ τ2, (6)

where τ1 to τ4 are four free parameters to be determined in the curve fitting process. x

denotes the raw objective score, and g(x) represents the mapped score after the fitting.

3.2. Training Details

In the experiments, we use the stochastic gradient descent (SGD) as the optimiza-

tion algorithm with 0.9 momentum. The learning rate is initially set to 10-2 with 10-6

decay. We update the network weights through backpropagation. The batch size is 128

in our experiments. For each image superresolution quality database, we randomly se-

lect 80% image data as the training set and the remaining 20% for testing. There is no

overlap of source image content between the training and testing sets. The performance

of the proposed DeepSRQ method is reported after 1,000 epochs.

3.3. Baselines

The proposed DeepSRQ method not only combines feature extraction with quality

regression as well as pooling evaluation in a joint learning process but also creates

synthetically learned features (i.e., both low-level visual information and high-level

semantic features). To verify the effectiveness of our proposed method, it is compared

with state-of-the-art IQA metrics using the handcrafted low-level features and the high-

level semantic features extracted from pretrained DCNN models.

Due to the existence of original distortion-free HR images in the SR quality database

[17], we compare our method with both the FR-IQA (i.e., PSNR, SSIM [33], multi-

scale SSIM denoted by MS-SSIM [35]) and NR-IQA algorithms, which include the
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blind/referenceless image spatial quality evaluator (BRISQUE) [18], natural image

quality evaluator (NIQE) [19], local natural image quality evaluator (ILNIQE) [44],

convolutional neural networks for no-reference image quality assessment (CNN-IQA)

[11], and the shallow convolutional neural network for SR IQA (CNNSR) [4]. More-

over, we employ the pretrained DCNN (i.e., the well-known ResNet50 [8]) to extract

high-level semantic features using the Caffe framework [10], and then combine the

high-level semantic features (i.e., the 2,048 dimensions output of the pool5 layer) with

other handcrafted features such as the NSS features. We then input these features into

the support vector regression (SVR) model to predict the quality score.

For the QADS database [48], we compare the proposed DeepSRQ with 15 types of

both traditional FR-IQA and NR-IQA metrics, including PSNR, SSIM [33], MS-SSIM

[35], information fidelity criterion (IFC) [26], visual information fidelity (VIF) [25],

most apparent distortion (MAD) [14], information content weighted SSIM (IW-SSIM)

[34], feature similarity (FSIM) index [45], gradient similarity (GSIM) index [16],

internal generative mechanism (IGM) [36], gradient magnitude similarity deviation

(GMSD) [39], directional anisotropy structure measurement (DASM) [3], superpixel-

based similarity (SPSIM) index [27], structure-texture decomposition-based IQA ap-

proach called SIS [48], and local pattern statistics index (LPSI) [37]. It should be

noted that the SIS [48] is an FR method that considers structure and texture informa-

tion based on traditional handcrafted features. However, our proposed DeepSRQ is a

DCNN-based NR algorithm. Therefore, we also compare the proposed DeepSRQ with

two deep learning-based image quality evaluation methods, namely, CNN-IQA [11]

and deep bilinear CNN (DBCNN) [46].

Since the SRID database [32] applies three different amplification factors to gener-

ate the SR images, the resolutions of these SR images vary. Moreover, the input size of

ResNet50 is fixed to 224× 224. Therefore, only the performance result of this method

on the SR quality database [17] is shown. In addition, note that the SRID database has

no-reference HR images; thus, more NR-IQA metrics are used for performance com-

parison except for those used on the SR quality database, which include no-reference

free energy-based robust metric (NFERM) [6], blind image quality index (BIQI) [20],

blind image integrity notator using DCT statistics (BLIINDS-II) [24], codebook rep-
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resentation for no-reference image assessment (CORNIA) [42], derivative statistics-

based image quality evaluator (DESIQUE) [47], distortion identification-based image

verity and integrity evaluation index (DIIVINE) [21], and six-step blind metric (SIS-

BLIM) [5].

In addition, we compare the proposed DeepSRQ with several state-of-the-art image

sharpness assessment methods, including spectral and spatial sharpness measure (S3)

[31], local phase coherence-based sharpness index (LPC-SI) [7], HVS-MaxPol-1 [9]

using the best single kernel, and HVS-MaxPol-2 [9] adopting the combination of the

best two kernels.

3.4. Performance Comparison

In this part, three publicly available SR image quality databases [17, 32] are used

for performance comparison. For the SR quality database [17], we compare the perfor-

mance of our proposed DeepSRQ method with three classical FR-IQA metrics, namely

PSNR, SSIM [33], and MS-SSIM [35]. Additionally, several state-of-the-art NR-

IQA metrics, including BRISQUE [18], NIQE [19], ILNIQE [44], CNN-IQA [11] and

CNNSR [4], are taken for performance comparison. Among these four NR-IQA met-

rics, the CNNSR [4] is a shallow convolutional neural network specifically designed

for evaluating the quality of SR images. As shown in Table 3, our proposed DeepSRQ

outperforms both the FR and NR algorithms. The reason why the RMSE values of

BRISQUE and ILNIQUE are much larger might be that they are not designed, opti-

mized and tested for image superresolution applications.

Furthermore, since DeepSRQ considers both low-level visual information and high-

level semantic features, we experimentally show that the synthetically learned features

are more effective than both the handcrafted low-level features and the high-level se-

mantic features extracted from pretrained DCNN models. Specifically, we employ the

remarkable residual learning-based network (i.e., ResNet50) to extract high-level se-

mantic features from its pool5 layer. In addition, before extracting the features, we

crop the SR images into patches with 224 × 224 pixels due to the fixed input size

of ResNet50. For each cropped image patch, we then obtain a 2, 048 − dim feature.

Since each patch in a particular SR image is equally important to the contribution of
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Table 3: Performance comparison on SR quality database [17]. FR: full-reference, NR: no-reference.

Type Method SROCC PLCC RMSE

FR

PSNR 0.3110 0.3335 2.9383

SSIM [33] 0.5562 0.5726 1.7980

MS-SSIM [35] 0.6452 0.6218 1.0272

NR

BRISQUE [18] 0.5721 0.6176 10.0747

NIQE [19] 0.6254 0.6364 1.5582

ILNIQE [44] 0.6282 0.6198 18.3748

LPSI [37] 0.4896 0.5276 2.0422

S3 [31] 0.5066 0.5494 2.0087

LPC-SI [7] 0.5441 0.5665 1.9812

HVS-MaxPol-1 [9] 0.6423 0.6706 1.7834

HVS-MaxPol-2 [9] 0.6314 0.6417 1.8438

CNN-IQA [11] 0.7983 0.8398 1.312

CNNSR [4] 0.8394 0.9156 1.2527

ResNet50-pool5+NSS+SVR 0.8734 0.8873 1.1060

Proposed DeepSRQ 0.9206 0.9273 0.9042

final perceptual quality, we input the average values of these high-level semantic fea-

tures and the handcrafted low-level features (i.e., NSS features) into the SVR model

for predicting the quality scores of SR images. The database is also divided randomly

into 80% for training and 20% for testing. Finally, the procedure is repeated 1,000

times, and the median values are taken as the experimental results reported in Table 3.

We find that our proposed DeepSRQ outperforms ResNet50-pool5+NSS+SVR, which

further demonstrates the effectiveness of synthetically learned features in a deep neural

network.

For the QADS [48], we compare the proposed DeepSRQ with state-of-the-art FR-

IQA and NR-IQA metrics. The performance comparison results are shown in Table 4,

which demonstrate that our proposed DeepSRQ method outperforms the other FR-IQA

approaches. The compared FR-IQA algorithms include PSNR, SSIM [33], MS-SSIM

[35], IFC [26], VIF [25], MAD [14], IW-SSIM [34], FSIM [45], GSIM [16], IGM

[36], GMSD [39], DASM [3], SPSIM [27], SIS [48], and LPSI [37]. Note that the SIS

adopts a structure-texture decomposition method and then calculates similarities from

textural, structural and high-frequency aspects to form a parametric model. Our pro-
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Table 4: Performance comparison on QADS database [48]. FR: full-reference, NR: no-reference.

Type Method SROCC PLCC RMSE

FR

PSNR 0.3544 0.3897 0.2530

SSIM [33] 0.5290 0.5327 0.2325

MS-SSIM [35] 0.7172 0.7240 0.1895

IFC [26] 0.8609 0.8657 0.1375

VIF [25] 0.8152 0.8210 0.1568

MAD [14] 0.7234 0.7311 0.1874

IW-SSIM [34] 0.8195 0.8234 0.1559

FSIM [45] 0.6885 0.6902 0.1988

GSIM [16] 0.5538 0.5684 0.2260

IGM [36] 0.7145 0.7192 0.1907

GMSD [39] 0.7650 0.7749 0.1736

DASM [3] 0.7512 0.7585 0.1790

SPSIM [27] 0.5751 0.5822 0.2233

SIS [48] 0.9232 0.9230 0.1057

NR

LPSI [37] 0.4051 0.4207 0.2492

S3 [31] 0.4636 0.4671 0.2429

LPC-SI [7] 0.4902 0.4846 0.2403

HVS-MaxPol-1 [9] 0.6160 0.6169 0.2162

HVS-MaxPol-2 [9] 0.5739 0.5817 0.2234

CNN-IQA [11] 0.8665 0.8709 0.1280

DBCNN [46] 0.8707 0.8589 0.1508

Proposed DeepSRQ 0.9528 0.9557 0.0767

posed DeepSRQ performs better than this SIS method due to the powerful learned dis-

criminative features from the two-stream network. Moreover, the proposed DeepSRQ

outperforms state-of-the-art NR-IQA methods, such as CNN-IQA [11] and DBCNN

[46]. This is mainly because the characteristics of SR images are not well considered

in these algorithms.

For the SRID [32], since the originally nondistorted HR images are unavailable

in this database, we compare our method with more state-of-the-art NR-IQA metrics,

which include BRISQUE [18], NIQE [19], ILNIQE [44], NFERM [6], BIQI [20],

BLIINDS-II [24], CORNIA [42], DESIQUE [47], DIIVINE [21], and SISBLIM [5].

The performance comparison values are provided in Table 5. It can be seen that the
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Table 5: Performance comparison on the SRID database [32].

Method SROCC PLCC RMSE

BRISQUE[18] 0.6666 0.6738 1.1953

NIQE [19] 0.4759 0.5247 1.3769

ILNIQE [44] 0.4233 0.4136 1.4729

NFERM [6] 0.6177 0.6011 1.2927

BIQI [20] 0.4336 0.4253 1.2682

BLIINDS-II [24] 0.3687 0.3783 1.4973

CORNIA [42] 0.5985 0.6767 1.1909

DESIQUE [47] 0.5453 0.5253 1.3763

DIIVINE [21] 0.4826 0.4286 1.4614

SISBLIM [5] 0.5965 0.6223 1.2661

LPSI [37] 0.7454 0.7457 1.0777

S3 [31] 0.1797 0.1800 1.5910

LPC-SI [7] 0.0234 0.1978 1.6613

HVS-MaxPol-1 [9] 0.3736 0.3307 1.5264

HVS-MaxPol-2 [9] 0.4561 0.4237 1.4651

CNN-IQA [11] 0.8541 0.8783 0.7753

DBCNN [46] 0.6439 0.7422 4.5729

Proposed DeepSRQ 0.9138 0.9309 0.5922

proposed DeepSRQ method outperforms the other NR-IQA metrics.

In all three adopted SR image quality databases, several state-of-the-art image

sharpness assessment methods are compared with our proposed DeepSRQ. As shown

in Tables 3, 4 and 5, the proposed DeepSRQ can achieve better performance on all SR

image quality databases.

3.5. Cross Dataset Validation

In addition, we test the generalization ability of our proposed DeepSRQ method

through cross dataset validation. Since a similar data distribution is assumed between

the training and testing images, we report the performance on the three image super-

resolution quality databases [17, 32].

As shown in Table 6, DeepSRQ has a promising generalization ability for different

databases. In other words, our proposed DeepSRQ is independent and robust for the
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Table 6: Performance values in cross dataset evaluation.
Train→ Test SROCC PLCC RMSE

SR quality database→ SRID 0.7225 0.7486 1.0749

SRID→ SR quality database 0.8431 0.8415 1.3055
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Figure 4: SROCC and PLCC performance with respect to the patch sizes including 16 × 16, 24 × 24,

32× 32, and 80× 80 on SR quality database [17].

used image superresolution quality databases. Note that the reason for the performance

difference is due to different distributions in the three SR image quality databases.

3.6. Effects of Parameters

Several network parameters are involved in the proposed DeepSRQ design. To un-

derstand how these network parameters affect the performance of our proposed Deep-

SRQ method, we carry out experiments to test the DeepSRQ with different parameter

settings.

Since the cropping approach is applied to increase our training data and the local

visual information of the whole SR images is considered in our experiments, we ex-

amine how the patch size affects the performance of the proposed DeepSRQ method.

Note that a fixed sampling stride (i.e., 32) is used for the SR quality database [17] to

ensure that the amount of training data remains unchanged. Then, we vary the patch

size while fixing the rest of the network architecture to plot the performance for the SR

quality database [17].
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Figure 5: SROCC and PLCC performance with respect to the kernel sizes ranging from 1× 1 to 9× 9. (a)

Run on SR quality database [17]. (b) Run on SRID [32].

Figure 4 shows the change in performance with respect to the patch sizes including

16× 16, 24× 24, 32× 32, and 80× 80. From Figure 4, we can see that a larger patch

size results in better performance of the trained network. Moreover, the performance

increases slightly as the patch size increases from 32 × 32 to 80 × 80. However, a

larger patch size not only reduces the spatial quality resolution but also causes more

processing time for training. Therefore, we prefer a relatively small patch size that can

also yield promising performance.

In addition, different kernel sizes in the convolutional layers may lead to various

performances because of the receptive field. Therefore, to discover how the kernel size

affects the performance of our DeepSRQ algorithm, we change the kernel size while

fixing the rest of the network architecture to plot the performance for the SR quality

database [17] and SRID [32].

Figure 5 shows the change in SROCC and PLCC performance with respect to the

kernel sizes ranging from 1 × 1 to 9 × 9. Except for the kernel size of 1 × 1, we

can observe that a small kernel size creates an increase in both SROCC and PLCC

performance. One possible explanation is that the relatively small receptive field (i.e.,

3× 3) is important for the image SR problem, which can effectively capture the notion

of five orientations: up, down, left, right, and center.
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Figure 6: Examples of distorted structure and texture SR images as well as the corresponding feature maps

in the first convolutional layer. (a) Distorted structure SR image. (b) Distorted texture SR image. (c) Feature

map of (a). (d) Feature map of (b).

3.7. Visualize Learned Feature Map

To discover what has been learned from the proposed two-stream deep learning

scheme, we visualize the feature maps in the first convolutional layer. Figure 6 depicts

one of the feature maps at the first convolutional layer for both distorted structure and

texture SR images. We can observe that the structural information and textural details

can be separately learned from the structure and texture substreams, respectively, which

further verifies the effectiveness of our DeepSRQ method.

3.8. Ablation Experiments

To validate the necessity of each subnetwork and how they contribute to the whole

two-stream framework, we use each substream to perform the perceptual quality pre-

diction of SR images. The results of this ablation study are provided in Table 7. We

find that the combination of structure and texture streams helps improve the final per-

formance. Moreover, since the LBP texture descriptor involves the radius parameter,

which is denoted by r, we also vary different values of r to discover how it influences

the performance of our algorithm. Table 8 shows the change in SROCC, PLCC and

RMSE performance with respect to the radius r on the QADS database [48]. Exam-

ples of distorted SR images and the corresponding texture images with different LBP
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Table 7: Ablation study of each substream on SR quality database [17], SRID database [32], and QADS

database [48].

SR quality database [17] SROCC PLCC RMSE

Structure 0.8242 0.8213 1.3787

Texture 0.9049 0.9153 0.9733

Proposed DeepSRQ 0.9206 0.9273 0.9042

SRID database [32] SROCC PLCC RMSE

Structure 0.8619 0.8797 0.7709

Texture 0.8840 0.9094 0.6742

Proposed DeepSRQ 0.9138 0.9309 0.5922

QADS database [48] SROCC PLCC RMSE

Structure 0.9137 0.9214 0.1012

Texture 0.9138 0.9242 0.0995

Proposed DeepSRQ 0.9528 0.9557 0.0767

Table 8: Parameter experiment results on QADS database [48].

Parameter Settings SROCC PLCC RMSE

r = 1 0.9138 0.9242 0.0995

r = 2 0.9116 0.9197 0.1023

r = 3 0.8988 0.9028 0.1121

r = 4 0.8809 0.8839 0.1218

r = 5 0.8807 0.8808 0.1233

radii r ranging from 1 to 5 in the QADS database [48] are illustrated in Figure 7. We

can observe that a smaller radius brings about an increase in performance due to more

reserved texture details.

Additionally, to demonstrate that the adopted techniques are critical for the perfor-

mance of DeepSRQ for perception-driven image superresolution, we further conduct

several ablation experiments. Specifically, we remove the adaptive cropping approach

and then test the performance of the remaining framework. As shown in Table 9, the

proposed stride-based adaptive cropping approach is validated to further improve the

performance of our proposed DeepSRQ.
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Figure 7: Examples of distorted SR images and the corresponding texture images with different LBP radii

r in the QADS database [48]. (a) Distorted SR image. (b) Extracted texture image with LBP radius r = 1.

(c) Extracted texture image with LBP radius r = 2. (d) Extracted texture image with LBP radius r = 3. (e)

Extracted texture image with LBP radius r = 4. (f) Extracted texture image with LBP radius r = 5.

Table 9: Ablation experiment about adaptive cropping approach on SRID database [32]. DeepSRQ\ADA

denotes the removed adaptive cropping approach. The best results are in bold.

Ablation SROCC PLCC RMSE

DeepSRQ\ADA 0.8988 0.9061 0.6736

Proposed DeepSRQ 0.9138 0.9309 0.5922

4. Conclusions

In this paper, we propose a two-stream network to predict the perceptual quality of

SR images in a no-reference manner, which is demonstrated to be more consistent with

human perception. We consider both the structural and textural characteristics of the

distortions in SR images. The top performance and promising generalization capacity

of our proposed DeepSRQ method are validated by comparison with state-of-the-art

IQA algorithms on three publicly available SR image quality databases. Experimental

results also show that the synthetically learned features in a deep neural network are

more effective than both the handcrafted low-level visual features and the high-level

semantic features. Moreover, we validate that the two-stream scheme performs bet-
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ter than each substream through an ablation study. Extensive parameter experiments

also show various aspects of our proposed DeepSRQ. In addition, the proposed stride-

based adaptive cropping approach is verified to further improve the performance of the

proposed DeepSRQ method.

In future studies, we will apply the DeepSRQ metric to automatically optimize

image SR frameworks, including both learning-free and learning-based SR algorithms.

Furthermore, it is worth designing more effective and robust deep neural networks by

considering more relevant characteristics of image superresolution.
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