
Aberystwyth University

WOTS-S
Shahid, Furqan; Khan, Abid; Malik, Saif Ur Rehman; Choo, Kim Kwang Raymond

Published in:
Information Sciences

DOI:
10.1016/j.ins.2020.05.024

Publication date:
2020

Citation for published version (APA):
Shahid, F., Khan, A., Malik, S. U. R., & Choo, K. K. R. (2020). WOTS-S: A Quantum Secure Compact Signature
Scheme for Distributed Ledger. Information Sciences, 539, 229-249. https://doi.org/10.1016/j.ins.2020.05.024

Document License
CC BY-NC-ND

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 27. Apr. 2024

https://doi.org/10.1016/j.ins.2020.05.024
https://doi.org/10.1016/j.ins.2020.05.024

 1

WOTS-S: A Quantum Secure Compact Signature Scheme for
Distributed Ledger

Furqan Shahid1, Abid Khan2*, Saif Ur Rehman Malik3, Kim-Kwang Raymond Choo4

1Department of Computer Science, COMSATS University, Islamabad (CUI), Pakistan.
2Department of Computer Science, Aberystwyth University, Aberystwyth, SY23 3DB, United

Kingdom.
3Cybernetica AS, Estonia

4Department of Information Systems and Cyber Security, University of Texas at San Antonio,
San Antonio, TX 78249, USA

Abstract
The digital signature scheme, which underpins most of the existing distributed ledgers, is generally based on non-
quantum-resilient algorithms (e.g. elliptic curve digital signature algorithm). This highlights the need for quantum-
secure signature schemes in future distributed ledgers (and other products). Therefore, in this paper, we propose a
novel quantum-secure digital signature scheme designed specifically for cryptocurrencies. Our proposed scheme is a
hash-based signature scheme, which is a variant of Winternitz-one-time signature scheme. A comparison of the
proposed scheme and two other competing quantum-secure cryptocurrencies (IoTA and QRL) reveals that our
scheme respectively achieves 59% and 24% reductions in signature lengths without compromising the level of
security. A salient feature of the proposed approach is that, unlike the previously proposed variants of Winternitz
scheme, we avoid the need for any expensive computation. In addition, we formally model the classical
cryptocurrency and the proposed quantum-secure cryptocurrency using high-level Petri-nets, which allows the
implementer to understand their workings in the presence of a quantum attacker. Furthermore, we also provide
formal security proof in the random oracle model.

Key words: Distributed ledger, Cryptocurrency, Digital signature scheme, Quantum secure

1. Introduction

Digital currencies at their core are about creating, representing, storing, and exchanging coins digitally

rather physically [1]. The roots of digital currencies can be traced back to 80’s in the work of Chaum,

which was later followed by a series of innovations and improvements [2, 3]. However, none of the

digital currencies proposed before Bitcoin have been successful in practice [4]. Bitcoin is the first widely

used cryptocurrency. Despite the many concerns raised by governmental financial institutions and some

economists, Bitcoin has captured a significant market and has started to compete against real-world

currencies like Dollars and Euros.

*Abid Khan [Email: abk15@aber.ac.uk]

2Department of Computer Science, Aberystwyth University, Aberystwyth, SY23 3DB, United Kingdom

 2

 Due to its increasing popularity, governmental revenue institutions have started planning to tax financial

activities involving the use of Bitcoins. Decentralization is a distinguishing feature, which plays an

important role in the popularity of Bitcoin. Specifically, the role of a central controlling authority (such as

a bank) is eliminated from such a system. Users can create and maintain their accounts at their computers,

the balance information of a user is stored in a distributed public ledger called as the blockchain, and

transactions are verified and accepted by the mutual consensus of the community. Bitcoin network is a

peer-to-peer network, in which every peer can access complete history of the transactions which prevents

users from double spending attacks. The distributed ledgers are publicly available and tamper-free

databases of the financial transactions ever made by the system. The sizes of the distributed ledgers of the

popular cryptocurrencies are usually extremely large, for example Bitcoin is reportedly approaching

several hundred GBs. Because of the rapidly increasing and ever-growing size of the distributed ledger,

the cryptocurrencies are concerned with the size of their financial transactions. The major data elements

of a transaction are ID, time, inputs, and outputs. An output binds some coin(s) to a user’s public key,

whereas, an input redeems an output with the help of digital signatures. The size of transaction mainly

depends on the size of public key and the size of signatures. Currently, the digital signature scheme used

by most of the distributed ledgers is Elliptic Curve Digital Signature Algorithm (ECDSA), which is not

quantum-safe [5]. ECDSA is based on the hard mathematical problem Elliptic Curve Discrete Logarithm

Problem (ECDLP), which is breakable using a sufficiently powerful quantum computer as demonstrated

by Shor [6]. Therefore, the present signature scheme of the distributed ledgers must be replaced by a

quantum-secure signature scheme to assure survival of this technology in the quantum era. A number of

quantum-secure signature schemes have been proposed including, hash-based schemes, lattice-based

schemes, code-based schemes, isogeny-based schemes, and multi-variate based schemes [7]. However,

existing quantum-secure signature schemes may not be practical for deployment in distributed ledgers

because of certain limitations such as execution times, security level provided, and/or key and signature

sizes [8]. The isogeny-based schemes and multi-variate based schemes, for example, both have extremely

large key/signature sizes or execution times. The code-based schemes provide just marginal level of post-

quantum security. The hash-based schemes and lattice-based schemes offer appropriate security with an

acceptable key and signature size and therefore may be considered as suitable alternates of ECDSA in

distributed ledgers [9, 10]. A number of recent post quantum cryptographic schemes leverage the

hardness of hash functions or lattice based hard problems (e.g. learning with error - LWE). The latest post

quantum cryptographic schemes proposed using lattice-based or hash-based assumptions include, proxy

oriented identity based encryption with keyword search (PO-IBEKS) [11], forward secure public key

 3

encryption keywords search (FS-PEKS) [12], identity based key exposure resilient auditing (IB-KERA)

scheme [13], and PQ-Chain [9].

Hash-based schemes are quite efficient and offer an appropriate level of security. However, a common

problem of hash based digital signature schemes is larger key and signature sizes [14], which must be

addressed very carefully before adapting these schemes for distributed ledgers. A hash-based scheme is

constructed using a one-time signature (OTS) scheme, which determines key and signature sizes of the

corresponding hash based scheme. The key size in a hash-based scheme can be compressed to an

acceptable level with the help of hash tress (like XMSS L-tree); however, compressing the signature size

remains an open challenge. The current signature sizes of the popular post-quantum cryptocurrencies

which use hash based schemes are 3.9 KB (for IoTA [15]) and 2.1 KB (for QRL [16]) respectively, which

are significantly larger than Bitcoin (which is just about 1 KB). The increment in signature size is justified

as being a trade-off for post-quantum security. Both IoTA and QRL, for example, offer 128-bit post-

quantum security. IoTA uses the Winternitz-one time signatures (WOTS) [17], whereas QRL uses a

variant of WOTS (i.e. WOTS+) [18]. In order to reduce signature size, WOTS+ replaces a collision

resistant (CR) hash function with a simple undetectable one-way function. For this purpose, WOTS+

involves bitmasks and randomizations. However, research shows that CR is actually cheaper to achieve

on quantum processors as compared to bitmasks [19].

Therefore, in this paper we propose a new variant of WOTS, which achieves a reduction in the signature

size without involving bitmasks or randomizations. Our proposed variant is based on CR hash functions,

which avoid any type of quantum-expensive processing. The proposed variant is hereafter referred to as

WOTS-S, where S stands for short signatures.

Problem statement: The signature scheme used by most of the distributed ledgers is ECDSA, which is

not quantum-safe [5]; therefore the cryptocurrencies would be at significant risk once quantum computers

are available at large scale. Existing quantum-secure cryptocurrencies [15, 16], which are using quantum-

secure signature schemes, suffer from larger signature sizes. The signature sizes of the two state of the art

quantum-secure cryptocurrencies IoTA and QRL are 3.9 KB and 2.1 KB respectively, which are

significantly greater than non-quantum-resilient cryptocurrencies e.g. Bitcoin. The signature size of the

QRL is relatively smaller, however, it uses bitmasks and randomizations, which are expensive for

quantum processors [19].

Our contributions in this paper can be summarized as follows:

1. We propose a new quantum-secure digital signature scheme (WOTS-S), which is a variant of the

well-known hash-based OTS scheme WOTS. The salient features of WOTS-S are as follows:

 4

 WOTS-S reduces length of signatures by 59% and 24% in comparison to IoTA (WOTS) and

QRL (WOTS+), respectively.

 WOTS-S is based on CR hash functions. Therefore, unlike WOTS+ [18] the design of WOTS-

S does not involve any expensive computations in order to reduce the signature size. The

existing compact variants of WOTS replace a collision resistant (CR) hash function with a

simple undetectable one-way function in order to reduce the signature size. Thus, the existing

variants of WOTS, like WOTS+, use bitmasks and randomization operations, which are more

expensive for quantum processors than CR hash functions. On the other hand, WOTS-S just

uses CR hash functions and adopts inexpensive approaches to achieve a reduction in the

signature size.

2. We formally model the classical cryptocurrency and the proposed quantum-secure cryptocurrency

using high-level Petri-nets. This helps us understand their workings in the presence of a quantum

attacker.

The next two sections briefly review the related literature and the attacker model used in this paper. In

Section 4, we describe the proposed scheme and the algorithms. In Section 5, we introduce a new

cryptocurrency created using our proposed signature scheme, with the help of High Level Petri-Nets

(HLPNs). Finally, in Section 6, we provide security and performance analysis. In the last section, we

conclude this paper.

2. Related Work

Chaum proposed the very first digital currency, namely, blind signatures for untraceable transactions

[20]. Later schemes include universal electronic cash (UEC) [21], revocable versatile electronic money

(RVEM) [22], auditable anonymous electronic cash (AAEC) [23], and recoverable untraceable electronic

cash (RUEC) [2], etc. The centralized structure of these digital currencies was a major barrier in their

adoption, since users rely on a central authority to generate and even facilitate the exchange of the coins.

In other words, users are not able to conduct financial transaction (e.g. paying for a cup of coffee) without

involving the central authority. The first truly successful digital currency is Bitcoin, which is fully

decentralized and is maintained as a public distributed ledger (also known as Blockchain) [4]. The

popular decentralized digital currencies proposed after Bitcoin include, Litecoin [24], Ethereum [25],

Zerocash [26], and Ripple [27]. These digital currencies are commonly referred to as altcoins. Bitcoin and

many of the altcoins use the signature scheme “ECDSA”. The existing digital currencies can be classified

into three categories i.e. centralized, decentralized, and post-quantum, as shown in Table-1.

2.1. Post-quantum (PQ) cryptocurrencies

 5

The quantum threats to ECDSA invited researchers to replace ECDSA by a quantum-secure signature

scheme. Such cryptocurrencies are commonly known as PQ cryptocurrencies. Some of the popular PQ

cryptocurrencies include, IoTA [15], QRL [16], Quantum-secured (QS) blockchain [28], qBitcoin [29],

PQ-blockchain [10], and Quantum-Bitcoin [30]. Quantum secured blockchain and Quantum-Bitcoin, both

are based on quantum technologies and therefore, can be implemented only when quantum computers are

available at a large scale. IoTA and QRL are the most popular PQ cryptocurrencies, which are being used

at a large scale. Both IoTA and QRL use hash-based signature schemes. PQ-blockchain [10] uses a Short

Integer Solution (SIS)-based signature scheme. IoTA uses Tangle to maintain history of the transactions.

Tangle is a prune-able ledger which offers a mechanism for removal of the un-necessary transactions.

Furthermore, Tangle avoids classifying the users into two types, simple users and miners. Every user is

equal in status and simple users are not dependent on miners for posting of their transactions into the

ledger. PQChain [9] is a post quantum blockchain which building blocks include an HBS scheme, hash

combiners, and a public key infrastructure (PKI). The overall security of the PQChain depends upon the

underlying hash functions, which must be pre-image resistant, pseudorandom, and collision resistant hash

functions. Hash combiners allow PQChain to combine two hash functions in a way such that the security

is preserved even if one of the two hash functions is compromised. Quantum Bitcoin [30] is a

cryptocurrency which uses no-cloning theorem as its foundation. The no-cloning quantum mechanics

allows to generate a non-forgeable non-copy-able item. A Quantum-Bitcoin is basically a quantum state.

During transaction, payer transfers a quantum state to the payee over a quantum channel. The payee can

receive a Quantum-Bitcoin without a fear of double-spending from payer side. Quantum-Blockchain is

not supposed to store financial transactions, however, just descriptors of the Quantum-Bitcoins are stored

in the Quantum-Blockchain.

Table-2 provides a comparative analysis of the existing post-quantum cryptocurrencies.

Table 1: Overview of the existing digital currencies

Reference Characteristics Strengths Weaknesses

Centralized digital currencies

[20] Digital coins Fully anonymous No transaction without central
authority

No coin-divide-ability

No coin-recoverability

No coin-transferability between
accounts

[21] Un-traceability, Off-line
payments, Transferability, and

Fully anonymous Transactions must finally be verified

 6

Divide-ability A coin can be spent in
parts

Coins can be transferred
between accounts

by the central authority

No coin-recoverability

No blockage of the fake money

[22] Revocable anonymity Lost or theft coins can be
recovered

Transactions must finally be verified
by the central authority

Two central authorities (bank and an
ombudsman)

Partial anonymity

[23] Auditability, Non-rigidness Bank is auditable for the
generated coins

Fake money can be
invalidated

No anonymity at all

Decentralized digital currencies (Cryptocurrencies)

[4] Distributed ledger (blockchain),
Signature scheme (ECDSA), Hash
algorithm (SHA256)

No central authority at all

Full user’s anonymity

Signature scheme is not quantum-
secure

Ever-growing size of the blockchain

Unusual computational efforts for
mining of the new blocks

Transaction confirmation delay (10
minutes on average)

[24] Distributed ledger (blockchain),
Signature scheme (ECDSA), Hash
algorithm (script)

No central authority

Full user’s anonymity

Faster transaction
confirmation (2.5 minutes
average)

Signature scheme is not quantum-
secure

Ever-growing size of the blockchain

Memory-intensive hash function
used

[25] Distributed ledger (blockchain),
Signature scheme (ECDSA), Hash
algorithm (ETHash)

Transaction verification
delay reduced to few
seconds

Limited scope (not developed
primarily as a cryptocurrency but as
a distributed applications platform)

[26] Blockchain-based, ECDSA,
SHA256, RSA, and ZKP

Eliminated the known
attacks on user’s
anonymity in the Bitcoin

Increased computational cost due to
involvement of additional security
algorithms

Post-quantum Cryptocurrencies

[15] Distributed ledger (Tangle),
Signature scheme (WOTS), Hash
algorithm (keccak-384)

Quantum-secure
signature scheme

No expensive mining
computation

Ledger scalability

Involves role of a central coordinator
to resist ledger tampering and allow
for its pruning

No key-reusability

Increased signature length

[16] Blockchain-based, Signature
scheme (WOTS+ with XMSS),
PRF

Quantum-secure
signature scheme

Relatively shorter

Ever-growing size of the distributed
ledger

Heavy mining cost

 7

signature size

Key-reusability for a
limited no. of times

[28] Blockchain-based, QKD Quantum-secure

No expensive mining

Can not be implemented without a
quantum computer

Every peer must store and maintain
its own copy of the ledger

[30] No-cloning quantum phenomenon Quantum-secure

No public ledger, no
mining at all

Can not be implemented without a
quantum computer

[10] Blockchain-based, Signature
scheme (Lattice SIS-based)

Quantum-secure Extremely large public key length

Have never been practically used

Table 2: PQ Cryptocurrencies

Cryptocurrency Signature Scheme Ledger Type Characteristics

 LP1 RCC2 IQT3 RM4

IoTA [15] W-OTS Tangle

QRL [16] “W-OTS +” with XMSS Blockchain

QS-blockchain

[28]

QKD with Symmetric Key

Encryption

Blockchain

qBitcoin [29] Quantum digital signature Nil N/A

PQ-blockchain

[10]

Lattice SIS-based scheme Blockchain

2.2. Hash-based digital signature schemes

Hash based digital signature (HBS) schemes are computationally-efficient and provably secure, however,

suffer from larger key and signature sizes [8, 31].The major building block of a HBS scheme is a one-

time signature (OTS) or a few-time signature (FTS) scheme. The signature size of a HBS scheme depends

on its underlying OTS/FTS scheme(s). An OTS/FTS scheme is not necessarily to always be a part of a

1 Ledger pruning (LP): Removing un-necessary transactions from the distributed ledger
2 Requires central coordinator (RCC): Involvement of a central controlling authority for ledger pruning etc.
3 Involves quantum technologies (IQT): Involvement of the quantum technologies for implementation of the currency
4 Requires miners (RM): Involvement of the extra-ordinary powerful peers to mine transactions into the ledger

 8

HBS scheme, rather, an OTS scheme can exist independently. IoTA adopted a popular OTS scheme

“WOTS”, which is an example of the independent existence of WOTS scheme. The popular OTS/FTS

schemes proposed to-date include, Lamport-Diffie OTS [32], WOTS [17], WOTS-Buchmann [33],

WOTS+ [18], HORS FTS [34], HORS-T FTS [35], and PORS FTS [14] schemes. Table-3 provides a

comparison of key and signature sizes of popular OTS/FTS schemes. The popular HBS schemes proposed

to-date include, MSS [17], XMSS [36], XMSSMT [37], SPHINCS [35], Gravity-SPHINCS [14],

SPHINCS-Simpira [38], and blockchained PQ signatures [39]. MSS and XMSS both allow reusing a

single public key for just a specific number of times. XMSSMT, SPHINCS and variants of SHPINCS, all

allow reusing a single public key for virtually an unlimited number of times. XMSSMT is a state-based

HBS scheme, whereas, SPHINCS and its variants are stateless HBS schemes. Gravity-SPHINCS is a

compact, whereas, SPHINCS-Simpira is an efficient variant of SHPINCS. SPHINCS-Simpira replaces

the simple hash functions by AES-based hash permutations. Blaauwendraad [40] proposed a compact

stateful hash based signature scheme. The proposed scheme allows verification of signatures in a

chorological order. In order to verify signatures corresponding to a given public key, the verifier needs all

of the preceding signatures corresponding to the same public key.

2.3. Blockchain beyond cryptocurrencies:

Although blockchain technology was born with cryptocurrencies, however, recently it is accepted as an

independent technology, with a wide range of applications. Beyond cryptocurrencies, the blockchain

technology has been used in the construction of smart contracts [24], smart grids [41] and other diverse-

natured applications. Very recently, use of blockchain in IoT is very popular [42]. Merging of two

technologies is believed to solve security and privacy issues of the cloud-based IoT.

Table 3: Hash-based OTS/FTS schemes

Scheme Sizes Security level Key usage Parameters
used

 Key size Sig. size Classical Quantum

Lamport [32] 16 KB 8 KB 128-bit 85-bit One time SHA-256 hash

W-OTS [17] 2 KB 2 KB 128-bit 85-bit One time SHA-256 hash

W = 4-bit

W-OTS Buchmann [33] 2.2 KB 2.1 KB 256-bit 128-bit One time Salsa-20 PRF

M = 256-bit

W = 4-bit

W-OTS+ (Hulsing) [18] 2.7 KB 2.1 KB 256-bit 128-bit One time Salsa-20 PRF

 9

M = 256-bit

W = 4-bit

HORS [34] 20.5 KB 0.3 KB 80-bit 53-bit Few time RIPEMD-160

M = 160-bit

K = 16

HORS-T [35] 0.3 KB 6.3 KB 128-bit 85-bit Few time SHA-256 hash

M = 256-bit

K = 32

X = 6

3. Attacker Model

The user account in the cryptocurrency is just a private-public key pair, where, funds are received in the

public key and spent through the private key. More accurately, funds are transferred to the hash of the

public key, not the plain public key, therefore, the plain public key is not revealed to the transferor during

transfer of the funds. In order to spend the funds, the owner digitally signs his transaction, which reveals

his plain public key to the other users. In a decentralized environment, a new transaction is not submitted

to a central authority, rather transactions are verified and accepted by the mutual consensus of the peers.

Once a peer initiates a new transaction, the other honest peers verify that transaction and add it to the pool

of unconfirmed transactions, which, after consensus of the sufficient number of peers, is posted into the

blockchain. The time between transaction initiation and its posting into the blockchain is referred to as

transaction processing delay, which can invite a quantum adversary to steal the funds. Upon receiving a

newly initiated transaction, a quantum adversary would be able to compute the private key of the

corresponding owner and to initiate another fraudulent transaction to steal his assets. In that case, it will

be equally likely that the attacker successfully tricks the peers to accept his fraudulent transaction as

genuine, and reject the genuine transaction submitted by the real owner. The attacker can further mine

into the blockchain to search for more funds allocated to the same public key and finally to steal all those

coins by initiating more fake transactions. We make the following assumptions about the capabilities

possessed by an attacker:

1. An attacker may possess a quantum computer, which is sufficiently powerful enough to break the

signature scheme “ECDSA”. Furthermore, the attacker has the knowledge of Shor’s algorithm

that can be used to break ECDSA and compromise the whole blockchain.

 10

2. The attacker has access to the blockchain with enough expertise to mine useful information such

as, list down the unspent transaction outputs (UTXO) for a specific address (scriptpubkey) and

initiate new fraudulent transactions.

3. The attacker has access to a Bitcoin client. Furthermore, he can perform account creation and

initiate new transactions for an arbitrary number of users. This means that the attacker has the

knowledge of the hash functions (SHA-256 and RIPEMD-160), number systems, and the error

correcting codes (like checksums).

4. The attacker may try to steal the funds of others in order to gain financial benefit at the cost of
innocent users. That’s why an attacker is always motivated to steal funds of others.

4. Proposed Quantum-secure Signature Scheme

This section covers WOTS-S, our proposed variant of the WOTS scheme. WOTS-S offers the minimum

signature size as compared to WOTS and existing compact variants of WOTS, including WOTS-

Buchmann and WOTS+.

4.1. WOTS-S

WOTS-S, the proposed variant of WOTS, reduces signature size without compromising security of the

original scheme. To achieve an appropriate post-quantum security, we use the hash function “SHA384”

(details are given in the security analysis section). We use two sets of values as private key, namely

forward private key and backward private key. While computing public key, we use a substring operation

with each hash-iteration.. First we give an overview of WOTS-S, then we will provide complete

pseudocodes for key-generation and signature creation/verification processes.

4.2. Overview of WOTS-S

WOTS-S and other variants of WOTS including WOTS-Buchmann and WOTS+, sign each of the

individual hexadecimal character in the message-hash separately. Finally, the concatenations of all those

individual signatures represent the overall signatures on the corresponding message. In order to sign an

individual hexadecimal character (m) in the message-hash, WOTS computes iterative hash of the

corresponding private key (sk) item for m number of times. It is important to note that the number of key-

items are exactly equal to the number of hexadecimal characters in the message-hash. The mth hash of the

corresponding sk-item represents signature on m. WOTS+ follows the same approach with just one

notable difference, i.e. WOTS+ randomizes each of the hash output before using it as an input for the next

hash iteration. The randomization operation exempts WOTS+ from using a collision resistant (CR) hash

function. Due to randomization operation, it is safe to instantiate WOTS+ with a simple second pre-image

resistant, undetectable one-way function. Because a second pre-image resistant, undetectable one-way

 11

function offers n/2-bit post-quantum security, whereas, a CR hash function offers just n/3-bit post-

quantum security [39], therefore, the size (n) of an individual signature item decreases; and as a result, the

overall signature size decreases.

WOTS-S also generates hash-chains just like WOTS; however, it decreases size of the hash output with

each hash iteration in the hash-chain. Therefore, the hash outputs of the later hash iterations in a hash-

chain are smaller in sizes as compared to the former hash outputs. The gradually decreasing size of the

hash outputs helps WOTS-S in reducing the signature size. Because of the gradually decreasing size of

the hash output, the signature size for an individual hexadecimal character (m) depends on the number of

hash iterations followed to sign the corresponding m. And because, the number of hash iterations used to

sign an m is roughly equal to m, therefore, the signature size will be inversely proportional to the

corresponding m. The size of the corresponding signature-item will be largest if m is “zero” and smallest

if m is “f”. WOTS-S adopts a second approach to allow generating large sized hash-chains even for

smaller values of m. For this purpose, WOTS-S alters the number of hash iterations required to sign the

smaller hexadecimal characters (i.e. zero to seven). For example, WOTS-S uses maximum number of

hash iterations to sign a “zero” character (while in WOTS and WOTS+, the zero character needs minimum

number of hash iterations). WOTS-S uses minimum nine (and maximum sixteen) hash iterations while

signing an individual m. WOTS-S binds duplicate values of m with a same size of the hash-chain, e.g. in

order to sign both of the characters “zero” and “f”, WOTS-S builds a hash-chain of sixteen length. This

would be a security compromise, however, in order to preserve security, WOTS-S uses two different key

chains forward key and backward key. While signing a “zero” character, WOTS-S uses forward private

key (fsk), whereas, while signing an “f” character, WOTS-S uses backward private key (bsk). WOTS-S

uses fsk to sign an m in the range zero to seven; and bsk to sign an m in the range eight to f. Finally, while

signing an m in the range zero to seven, WOTS-S simply appends the 16th hash of the corresponding bsk

to the signatures; whereas, while signing an m in the range eight to f, WOTS-S simply appends the 16th

hash of the corresponding fsk to the signatures. Table-4 differentiates WOTS-S from WOTS and WOTS+.

Table 4: Signature creation: WOTS-S vs. WOTS and WOTS+

 12

4.2.1. Key Generation

The private key consists of two sets forward private key and backward private key, each containing 99

values (i.e. 198 values in total). All these values are generated from a seed, which is randomly selected.

The size of seed should be 48-bytes (384-bits). The public key is generated by Computing SHA384 hash

of each of the elements in the private key for 17 times. The hash output in each step is truncated in a way

such that the size of output gradually decreases in each of the iteration (details are given in Algorithm-1).

However, we exempt the last hash output from truncation. This way, we get the public key consisting of

198 values in total, each value being 48-bytes long. Finally, these values are cryptographically

compressed to get a single 48-bytes long value, which is treated as the ledger address of the user.

4.2.2. Signature creation

To start with, we will compute SHA384 hash of the transaction to be signed and just like WOTS scheme,

append a checksum into it. We process hash of the transaction in its hexadecimal form. SHA384 generates

the transaction-hash consisting of 96 hexadecimal symbols in total, whereas, checksum further appends

three more hexadecimal symbols into it. In this way, we get 99 hexadecimal symbols in total. We already

have two sets fsk and bsk each containing 99 values in it. We sign each of the hexadecimal symbols in

hash of the transaction using the corresponding element of fsk and the corresponding element of bsk. Let

xi be the ith hexadecimal symbol in hash of the transaction; If xi is less than 8 then, we will compute hash

of fski for (16-xi) number of times, and, we will compute hash of bski for 16 times. However, if xi is not

less than 8 then, the criteria will be different. In that case, we will compute hash of bski for (xi + 1)

number of times, and, we will compute hash of fski for 16 times. While computing hashes of the sk

elements, the hash-output will be truncated each time, following the same pattern given in Algorithm 1.

Thus, at the end, we will get two signature-values against each of the hexadecimal symbols in the hash of

transaction, i.e. we get 198 signature-values altogether. We denote these two sets of values as forward

 13

signatures (fσ) and backward signatures (bσ). All these values jointly represent signatures on the given

transaction.

4.2.3. Signature verification

To begin with, the verifier computes SHA384 hash of the transaction and appends checksum to it. This

way, verifier gets 99 hexadecimal symbols. Verifier already knows signatures, which consists of 198

values in total classified into two sets fσ and bσ. Each of the hexadecimal symbol in the transaction-hash

has two signature values associated to it. Verifier computes a verification key vk, which, once again,

consists of 198 values in total classified into two sets fvk and bvk. Each of the hexadecimal symbol in the

transaction-hash allows verifier to compute the corresponding fvk and bvk values. Let xi be the ith

hexadecimal symbol in hash of the transaction; If xi is less than 8 then, verifier will compute hash of fσi

for (xi + 1) number of times, and, he will compute hash of bσi for just one time. However, if xi is not less

than 8 then, the criteria will be different. In that case, verifier will compute hash of bσi for (16-xi) number

of times, and, he will compute hash of fσi for just one time. While hashing the σ elements, the hash-output

will be truncated each time, following the same pattern given in Algorithm 1. However, the very last

hash-output will be exempted from truncation. Therefore, each of the vk-value will be 384-bit long in

size. Now, both the sets, i.e. fvk and bvk, will be cryptographically compressed to finally generate a single

48-byte value. This value must be already stored in the ledger (with sufficient funds allocated to it),

otherwise the transaction will be rejected.

4.3. Incorporating WOTS-S into distributed ledger

This sub-section provides rules and pseudocodes for incorporating WOTS-S into a distributed ledger.

Figure-1 explains structure of the transaction. Algorithms 4 - 6 provide pseudocodes for creating,

crediting and debiting a wallet account, respectively. Algorithms 7 – 9 provide pseudocodes for

transaction initiation, transaction verification, and updating wallet once transaction is accepted for

mining. Figure-2 explains life-cycle of a transaction from initiation to its mining into the ledger. In the

proposed distributed ledger, a new transaction will be processed in seven different steps. Here is a brief

explanation of each of the phases (marked in Figure-2):

1. Owner generates a new transaction (to spend his coins) and transmits to the network.

2. Another peer (acting as verifier) compute hash of the transaction and append checksum into it.

3. The hash of the transaction is manipulated as an array of hexadecimal symbols.

4. Verifier computes verification-key (following Algorithm-3) using hash of the transaction and

signatures of the transaction (submitted by the owner as a part of the transaction). Verifier also

cryptographically compress the verification-key to get a 48-byte long value.

 14

5. Verifier accesses the blockchain to read the corresponding unspent transaction outputs (XTXO) and

compares the compressed verification key with the public-key already stored in the blockchain.

Furthermore, the corresponding public-key must be having sufficient funds allocated to it.

6. On a successful verification, the verifier stores the transaction into the pool of unconfirmed

transactions.

7. Finally, miner mines the unconfirmed transaction into the blockchain.

Trx[0]: ID

Trx[1]: Time

Trx[2][1]: PrevBlockID

Trx[3][1]: PrevTrxID

Trx[4][1]: PrevIndex

Trx[5][1]: pk-Credit

Trx[6][1]: Amount-Credit

Trx[7][1]: Signatures

Trx[2][m]: PrevBlockID

Trx[3][m]: PrevTrxID

Trx[4][m]: PrevIndex

Trx[5][n]: pk-Credit

Trx[6][n]: Amount-Credit

Trx[7][m]: Signatures

Transaction ID Transaction Time Inputs Outputs Signatures

…

…

…

…

…

…

Figure-1: Structure of transaction in Proposed DL

 15

Hash-
Transaction

Hexadecimal
Manipulation

Verification-
Key

Generation

Transaction
Verification

Transaction
Acceptance

Wallet

User

Miner

New Transaction

Blockchain

Assets
Information

New Block

1

2 3 4 5 6

7

Figure 2: Transaction processing using WOTS-S

 16

Algorithm 1 Key Generation
Input: Security Parameter (1384)
Output: Private_Key, Public_Key
1: Seed {0,1}384
2: X Seed
3: for a = 1 99 do
4: X SHA384(X)
5: Forward_Private_Key[a] X
6: X X
7: end for
8: for a = 1 99 do
9: X SHA384(X)
10: Backward_Private_Key[a] X
11: X X
12: end for
13: for a = 1 99 do
14: X SHA384(Forward_Private_Key[a])
15: j 1
16: for b = 1 15 do
17: X SHA384(X)
18: X X.substring(1, X.length – j*24)
19: X X
20: j j + 1
21: end for
22: Forward_Public_Key[a] SHA384(X)
23: end for
24: for a = 1 99 do
25: X SHA384(Backward_Private_Key[a])
26: j 1
27: for b = 1 15 do
28: X SHA384(X)
29: X X.substring(1, X.length – j*24)
30: X X
31: j j + 1
32: end for
33: Backward_Public_Key[a] SHA384(X)
34: end for
35: for a = 1 99 do
36: All_Public_Key[a] SHA384(Forward_Public_Key[a] + Backward_Public_Key[a])
37: end for
38: for a = 1 99 do
39: PK PK + All_Public_Key[a])
40: end for
41: Public_Key SHA384(PK)
42: Private_Key Seed

 17

Algorithm 2 Signature Creation
Input: Transaction, Forward_Private_Key[1..96], Backward_Private_Key[1..96]
Output: Sig_Part_One, Sig_Part_Two
1: Trx_Hash[48] SHA384(Transaction)
2: Trx_Hex_Hash[96] Trx_Hash[48]
3: Trx_Hex_Hash[99] Trx_Hex_Hash[96] + checksum
4: for a = 1 99 do
5: m Trx_Hex_Hash[a]
6: if 0 m 7 then
7: X Forward_Private_Key[a]
8: Y Backward_Private_Key[a]
9: j 0
10: for b = 1 (16 – m) do
11: X SHA384(X)
12: X X.substring(1, X.length – j*24)
13: X X
14: j j + 1
15: end for
16: else
17: X Backward_Private_Key[a]
18: Y Forward_Private_Key[a]
19: j 0
20: for b = 1 (m + 1) do
21: X SHA384(X)
22: X X.substring(1, X.length – j*24)
23: X X
24: j j + 1
25: end for
26: end if
27: Sig_Part_One Sig_Part_One + X
28: j 0
29: for b = 1 16 do
30: Y SHA384(Y)
31: Y Y.substring(1, Y.length – j*24)
32: Y Y
33: j j + 1
34: end for
35: Sig_Part_Two Sig_Part_Two + Y
36: end for

 18

Algorithm 3 Signature Verification
Input: Transaction, Sig_Part_One, Sig_Part_Two, Public_Key
Output: Verified/Failed
1: Trx_Hash[48] SHA384(Transaction)
2: Trx_Hex_Hash[96] Trx_Hash[48]
3: Trx_Hex_Hash[99] Trx_Hex_Hash[96] + checksum
4: pointer1 pointer2 1
5: for a = 1 99 do
6: m Trx_Hex_Hash[a]
7: if 0 m 7 then
8: S Sig_Part_One.substring(pointer1, (m + 1) * 24)
9: j 0
10: for b = 1 m do
11: S SHA384(S)
12: S S.substring(1, S.length – (16 – m + j) * 24)
13: S S
14: j j + 1
15: end for
16: Forward_Public_Key[a] SHA384(S)
17: S Sig_Part_Two.substring(pointer2, 24)
18: Backward_Public_Key[a] SHA384(S)
19: pointer1 pointer1 + (m + 1) * 24
20: pointer2 pointer2 + 24
21: else
22: S Sig_Part_One.substring(pointer1, (16 - m) * 24)
23: j 0
24: for b = 1 15 - m do
25: S SHA384(S)
26: S S.substring(1, S.length – (m + 1 + j) * 24)
27: S S
28: j j + 1
29: end for
30: Backward_Public_Key[a] SHA384(S)
31: S Sig_Part_Two.substring(pointer2, 24)
32: Forward_Public_Key[a] SHA384(S)
33: pointer1 pointer1 + (16 - m) * 24
34: pointer2 pointer2 + 24
35: end if
36: end for
36: for a = 1 99 do
37: All_Public_Key[a] SHA384(Forward_Public_Key[a] + Backward_Public_Key[a])
38: end for
39: for a = 1 99 do
40: PK PK + All_Public_Key[a])
41: end for
42: if SHA384(PK) == Public_Key then output: Verified else output: Failed

 19

Algorithm 4 Create-wallet-account
Inputs: Current-wallet
Outputs: Updated-wallet
1: (sk, pk) WOTS-S.keyGeneration ()
2: balance 0
3: Create new entry into wallet with (sk, pk, balance)
4: Print (pk)
5: Output (“Account created”) and return
6: Show-Error (“Account creation failed”)

Algorithm 5 Credit-account
Inputs: Credit-sk, Amount
Outputs: Updated-Wallet
1: If Credit-sk ϵ Wallet then
2: balance = balance + Amount where sk = Credit-sk
3: Else
4: Show-Error (“Account not found”)
5: End if

Algorithm 6 Debit-account
Inputs: sk, Amount
Outputs: Updated-Wallet
1: If sk ϵ Wallet then
2: sk.balance = sk.balance - Amount
3: Else
4: Show-Error (“Account not found”)
5: End if

Algorithm 7 Initiate-transaction
Inputs: Input-information, Output-information, Private-key (sk)
Outputs: New-transaction
1: Trx[1]← Current-time
2: For i = 1 → number-of-inputs do:
3: Trx[2][i].← previous-blockID
4: Trx[3][i].← previous-trxID
5: Trx[4][i].← previous-index
6: End For
7: For i = 1 → number-of-outputs do:
8: Trx[5][i].← pk-to-be-credited
9: Trx[6][i].← Amount
10: End For
11: For i = 1 → number-of-inputs do:
12: Trx[7][i].← WOTS-S.sign(Trx, sk)
13: End For
14: Trx[0] ← SHA384 (Trx)

 20

Algorithm 8 Verify-transaction
Inputs: Transaction-to-be-verified (Trx)
Outputs: Valid/Invalid
1: Trx[1]=Current-time
2: available-amount ← 0
3: For i = 1 → number-of-inputs do:
4: Read amount from ledger where:
5: blockID == Trx[2][i] and trxID == Trx[3][i] and index == Trx[4][i]
6: available-amount ← available-amount + amount
7: End For
8: amount-to-spend ← 0
9: For i = 1 → number-of-outputs do:
10: amount-to-spend ← amount-to-spend + Trx[6][i].
11: End For
12: If amount-to-spend < available-amount then:
13: Print (“In-sufficient funds”) and return
14: End If
15: For i = 1 → number-of-inputs do:
16: If WOTS-S.verify(Trx, Trx[7]) == “Failed” then:
17: Print (“Invalid”) and return
18: End If
19: End For
20: Print (“Valid”)

Algorithm 9 Update-wallet
Inputs: Confirmed-transaction (Trx)
Outputs: Updated-wallet
1: For i = 1 → number-of-inputs do:
2: Read pk into ledger-pk from ledger where:
3: blockID == Trx[2][i] and trxID == Trx[3][i] and index == Trx[4][i]
4: If ledger-pk ϵ wallet then:
5: balance = 0 where pk = ledger-pk
6: End If
7: End For
8: For i = 1 → number-of-outputs do:
9: If Trx[5][i] ϵ wallet then:
10: Set balance = balance + Trx[6][i] where pk = Trx[5][i]
11: End If
12: End For

5. Formal definition of WOTS-S based Cryptocurrency

This section formally defines a new cryptocurrency, created using our proposed signature scheme

(WOTS-S). Two different HLPNs have been created, one for Bitcoin (Figure 3), and second for the

proposed cryptocurrency (Figure 4). Both of the HLPNs formally define the rules of transaction

 21

processing into the corresponding cryptocurrency. The HLPNs also differentiate role of a quantum

adversary in Bitcoin and the proposed cryptocurrency. In case of Bitcoin, the adversary can successfully

sign his tampered transaction and therefore, can steal coins of others. However, WOTS-S based

cryptocurrency prevents adversary from signing the tampered transaction.

5.1. Transaction processing and possible quantum-attack in Bitcoin

In decentralized cryptocurrencies, the peers verify a new transaction and after sufficient number of

verifications, the transaction is posted into the ledger by the miners. The HLPN in Figure-3 explains

different steps involved in the verification of a new transaction. First, each new transaction must be

referred by an old unspent transaction. The place 𝑅𝑒𝑓𝑉𝑒𝑟𝑇𝑟𝑥 contains transactions, which are referred

by a valid past transaction; and token T1 denotes these transactions. The rules for both successful and

unsuccessful reference verification are given in Eq. (1) and (2), respectively.

Transaction
Initiation

New Trx
(T0)

Ref Trx Ver Succ

Blockchain
(BC)

O/P Amt Ver Succ

Fair Peers Area

Malicious Peer Area

Public Key
Extraction

PK (Elliptic
Curve Point)

Client Area

Ref Ver Trx
(T1)

Ref_O/P Ver
Trx (T2)

ScriptSig ExecStack
(ST)

ScriptPub Exec Succ

BC Accepted
Trx (AccTr)

Ref Trx Ver Fail

Ignored Trx
(IgnTr)

O/P Amt Ver Fail

BC

BC

ScriptPub Exec Fail

Sig

T0

Inverse(ECP)Secret Key
(SecKey)

Fake Trx Init

Figure 3: HLPN for classical cryptocurrencies (Bitcoin)

Table 5: Data-types mapping to places for Bitcoin’s HLPN

Place Description

∅(𝑁𝑒𝑤𝑇𝑟𝑥) {𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝑆𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝑂𝑢𝑡𝐴𝑑𝑟𝑒𝑠𝑠}

∅(𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛) ℙ{𝑇𝑟𝑥𝐼𝐷, 𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑈𝑛𝑠𝑝𝑒𝑛𝑡𝐴𝑚𝑡, 𝑆𝑐𝑟𝑖𝑝𝑡𝑃𝑢𝑏𝐾𝑒𝑦, 𝑆𝑡𝑎𝑡𝑢𝑠}

 22

∅(𝑅𝑒𝑓𝑉𝑒𝑟𝑇𝑟𝑥) {𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝑆𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝑂𝑢𝑡𝐴𝑑𝑟𝑒𝑠𝑠}

∅(𝑅𝑒𝑓𝑂𝑃𝑉𝑒𝑟𝑇𝑟𝑥) {𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝑆𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝑂𝑢𝑡𝐴𝑑𝑟𝑒𝑠𝑠}

∅(𝐼𝑔𝑛𝑜𝑟𝑒𝑑𝑇𝑟𝑥) ℙ{𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝑆𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝑂𝑢𝑡𝐴𝑑𝑟𝑒𝑠𝑠}

∅(𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑𝑇𝑟𝑥) ℙ{𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝑆𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝑂𝑢𝑡𝐴𝑑𝑟𝑒𝑠𝑠}

∅(𝑆𝑡𝑎𝑐𝑘) (𝑆𝑇𝐴𝐶𝐾)

∅(𝑃𝐾_𝐸𝐶𝑃) (𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐 𝐶𝑢𝑟𝑣𝑒 𝑃𝑜𝑖𝑛𝑡)

∅(𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦) (𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐 𝐶𝑢𝑟𝑣𝑒 𝑃𝑜𝑖𝑛𝑡)

𝑹 (𝑹𝒆𝒇𝑻𝒓𝒙𝑽𝒆𝒓𝑺𝒖𝒄𝒄) = (∃ 𝑏 ∈ 𝐵𝐶 ⦁ (𝑏[1] = 𝑇0 [2] ∧ 𝑏 [5] = ‘𝑈𝑛𝑠𝑝𝑒𝑛𝑡’)) ∧

(𝑇1′ = 𝑇1 ∪ {𝑇0[1], 𝑇0[2], 𝑇0[3], 𝑇0[4], 𝑇0[5]})

(1)

𝑹(𝑹𝒆𝒇𝑻𝒓𝒙𝑽𝒆𝒓𝑭𝒂𝒊𝒍) = (∀ 𝑏 ∉ 𝐵𝐶 ⦁ (𝑏[1] = 𝑇0 [2]) ∨ (∃ 𝑏 ∈ 𝐵𝐶 ⦁ (𝑏[1] = 𝑇0 [2] ∧

𝑏[5] ≠ ‘𝑈𝑛𝑠𝑝𝑒𝑛𝑡’)) ∧ (𝐼𝑔𝑛𝑇𝑟′ = 𝐼𝑔𝑛𝑇𝑟 ∪ {𝑇0[1], 𝑇0[2], 𝑇0[3], 𝑇0[4], 𝑇0[5]})

(2)

Secondly, the total amount to be spent must not exceed the available amount. The place 𝑅𝑒𝑓_𝑂𝑃𝑉𝑒𝑟𝑇𝑟𝑥

stores the transactions which qualify both of the checks, valid reference and sufficient available funds and

token T2 denotes such transactions. Eq. 3 and 4 define rules for availability of the funds.

𝑹(𝑶𝒖𝒕𝑨𝒎𝒕𝑽𝒆𝒓𝑺𝒖𝒄𝒄) = (∃ 𝑏 ∈ 𝐵𝐶 ⦁ (𝑏[1] = 𝑇1 [2] ∧ 𝑏[3] >= 𝑇1[4]) ∧

(𝑇2′ = 𝑇2 ∪ {𝑇1[1], 𝑇1[2], 𝑇1[3], 𝑇1[4], 𝑇1[5]})

(3)

𝑹(𝑶𝒖𝒕𝑨𝒎𝒕𝑽𝒆𝒓𝑭𝒂𝒊𝒍) = (∃ 𝑏 ∈ 𝐵𝐶 ⦁ (𝑏[1] = 𝑇1 [2] ∧ 𝑏 [3] < 𝑇1[4])) ∧

(𝐼𝑔𝑛𝑇𝑟′ = 𝐼𝑔𝑛𝑇𝑟 ∪ {𝑇1[1], 𝑇1[2], 𝑇1[3], 𝑇1[4], 𝑇1[5]})

(4)

The owner proves his ownership over the coins with the help of a script known as ‘scriptsig’. Another

script namely, ‘scriptpubkey’ is already stored in the blockchain. During verification process, the verifier

executes both of the scripts. First, verifier executes scriptsig and stores results into a stack (Eq. 5). The

second script (i.e. scriptpubkey) uses output of scriptsig as input. The output of the second script must be

equal to one, otherwise transaction verification will be failed. (See Eq. 6 and 7).

𝑹(𝑺𝒄𝒓𝒊𝒑𝒕𝑺𝒊𝒈𝑬𝒙𝒆𝒄) = (𝑆𝑇′ = 𝑆𝑇 ∪ 𝐸𝑥𝑒𝑐𝑢𝑡𝑒(𝑇2[3])) (5)

𝑹(𝑺𝒄𝒓𝒊𝒑𝒕𝑷𝒖𝒃𝑬𝒙𝒆𝒄𝑺𝒖𝒄𝒄) = (∃ 𝑏 ∈ 𝐵𝐶 ⦁ (𝑏[1] = 𝑇2[2] ∧ 𝐸𝑥𝑒𝑐𝑢𝑡𝑒(𝑏[4], 𝑆𝑇) = 1) ∧

(𝐴𝑐𝑐𝑇𝑟′ = 𝐴𝑐𝑐𝑇𝑟𝑥 ∪ {𝑇2[1], 𝑇2[2], 𝑇2[3], 𝑇2[4], 𝑇2[5]})

(6)

𝑹(𝑺𝒄𝒓𝒊𝒑𝒕𝑷𝒖𝒃𝑬𝒙𝒆𝒄𝑭𝒂𝒊𝒍) = (∃ 𝑏 ∈ 𝐵𝐶 ⦁ (𝑏[1] = 𝑇2[2] ∧ 𝐸𝑥𝑒𝑐𝑢𝑡𝑒(𝑏[4], 𝑆𝑇) ≠ 1)) ∧

(𝐼𝑔𝑛𝑇𝑟′ = 𝐼𝑔𝑛𝑇𝑟 ∪ {𝑇2[1], 𝑇2[2], 𝑇2[3], 𝑇2[4], 𝑇2[5]})

(7)

 23

The HLPN also highlights the quantum-attack scenario on Bitcoin. A quantum adversary being able to

deduce private key of the owner can initiate a fraudulent transaction. The adversary exploits scriptsig to

deduce the private key (Eq. 8 – 9). The fraudulent transaction can deprive the real owner from his/her

legitimate assets (Eq. 10)

𝑹(𝑷𝒖𝒃𝒍𝒊𝒄𝑲𝒆𝒚𝑬𝒙𝒕𝒓𝒂𝒄𝒕𝒊𝒐𝒏) = (𝐸𝐶𝑃′ = 𝐸𝐶𝑃 ∪ 𝑃𝐾𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑇0[3])) (8)

𝑹(𝑰𝒏𝒗𝒆𝒓𝒔𝒆𝑬𝑪𝑷) = (𝑆𝑒𝑐𝐾𝑒𝑦′ = 𝑆𝑒𝑐𝐾𝑒𝑦 ∪ 𝑆ℎ𝑜𝑟𝐴𝑙𝑔𝑜(𝐸𝐶𝑃)) (9)

𝑹(𝑭𝒂𝒌𝒆𝑻𝒓𝒙𝑰𝒏𝒊𝒕) = (𝑇0′ = 𝑇0 ∪ { 𝑇0[1], 𝑇0[2], 𝑆𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔𝐺𝑒𝑛(𝑆𝑒𝑐𝐾𝑒𝑦), 𝑇0[4], 𝑇0[5]′ }) (10)

5.2. Transaction processing in the proposed cryptocurrency

The proposed WOTS-S based ledger adopts hash-based rules for signature verification. Verifier computes

hash of the transaction (Eq. 11), and follows the signatures (provided by the owner) to generate the

corresponding public key (Eq. 12). Then verifier compresses the public key to generate a verification key

(Eq. 13) The verification key must already be stored in the ledger, otherwise transaction verification will

be failed (Eq. 14 – 15).

𝑹(𝑻𝒓𝒙𝑯𝒂𝒔𝒉𝒊𝒏𝒈) = (𝑇𝑟𝐻𝑎𝑠ℎ′ = 𝑇𝑟𝐻𝑎𝑠ℎ ∪ 𝑆𝐻𝐴384(𝑇2[1], 𝑇2[2], 𝑇2[3], 𝑇2[4], 𝑇2[5])) (11)

𝑹(𝑷𝒖𝒃𝒍𝒊𝒄𝑲𝒆𝒚𝑮𝒆𝒏) = (𝑃𝐾_𝑆𝑒𝑡′ = 𝑃𝐾_𝑆𝑒𝑡 ∪ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦(𝑇2[6])) (12)

𝑹(𝑽𝒇_𝑷𝑲_𝑮𝒆𝒏) = (𝑃𝐾_𝑉𝑓′ = 𝑃𝐾_𝑉𝑓′ ∪ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑉𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑃𝐾(𝑃𝐾_𝑆𝑒𝑡)) (13)

𝑹(𝑺𝒊𝒈𝑽𝒆𝒓𝑺𝒖𝒄𝒄) = (𝑃𝐾_𝑉𝑓 = 𝑇2[3]) ∧ 𝐴𝑐𝑐𝑇𝑟𝑥′

= 𝐴𝑐𝑐𝑇𝑟𝑥 ∪ {𝑇2[1], 𝑇2[2], 𝑇2[3], 𝑇2[4], 𝑇2[5], 𝑇2[6]}
(14)

𝑹(𝑺𝒊𝒈𝑽𝒆𝒓𝑭𝒂𝒊𝒍) = (𝑃𝐾_𝑉𝑓 ≠ 𝑇2[3]) ∧ 𝐼𝑔𝑛𝑇𝑟𝑥′
= 𝐼𝑔𝑛𝑇𝑟𝑥 ∪ {𝑇2[1], 𝑇2[2], 𝑇2[3], 𝑇2[4], 𝑇2[5], 𝑇2[6]}

(15)

 24

Transaction
Initiation

New Trx
(T0)

Ref Acc Ver Succ

Blockchain
(BC)

O/P Amt Ver Succ

Fair Peers Area

Malicious Peer Area

Client Area

Ref Ver Trx
(T1)

Ref_O/P Ver
Trx (T2)

Trx HashingSHA384
(T2)

Public Key Gen

Accepted
Trx (AccTrx)

Ref Acc Ver Fail

Ignored Trx
(IgnTr)

O/P Amt Ver Fail

BC

BC

PK SetPK Set

 Vf PK Gen

PK_Vf

Sig Ver SuccSig Ver Fail

T2

T2

PK_Vf

T2

Priv Key Ext

T0

Priv Key
Subset
(SPK)

Trx Tampering

T0

Tamper
ed Trx
(TTr)

TTr Hashing

SHA384
(TTr)

TTr Sig Gen

Insufficient
Tokens

PK_Vf

Figure 4: HLPN for our proposed cryptocurrency (with attack scenario)

Table 6: Data-types mapping to places for our proposed scheme’s HLPN

Place Description

∅(𝑁𝑒𝑤𝑇𝑟𝑥) {𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝐷𝑏𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝐶𝑟𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑇𝑟𝑥𝑆𝑖𝑔}

∅(𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛) ℙ{𝑇𝑟𝑥𝐼𝐷, 𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑈𝑛𝑠𝑝𝑒𝑛𝑡𝐴𝑚𝑡, 𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑆𝑡𝑎𝑡𝑢𝑠}

∅(𝑅𝑒𝑓𝑉𝑒𝑟𝑇𝑟𝑥) {𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝐷𝑏𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝐶𝑟𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑇𝑟𝑥𝑆𝑖𝑔}

∅(𝑅𝑒𝑓𝑂𝑃𝑉𝑒𝑟𝑇𝑟𝑥) {𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝐷𝑏𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝐶𝑟𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑇𝑟𝑥𝑆𝑖𝑔}

∅(𝐼𝑔𝑛𝑜𝑟𝑒𝑑𝑇𝑟𝑥) ℙ{𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝐷𝑏𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝐶𝑟𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑇𝑟𝑥𝑆𝑖𝑔}

∅(𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑𝑇𝑟𝑥) ℙ{𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝐷𝑏𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝐶𝑟𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑇𝑟𝑥𝑆𝑖𝑔}

∅(𝑆𝐻𝐴384) (384 − 𝑏𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑡𝑟𝑖𝑛𝑔)

∅(𝑃𝐾_𝑆𝑒𝑡) (48𝑥64𝑥2 𝑏𝑦𝑡𝑒 𝑠𝑡𝑟𝑖𝑛𝑔)

∅(𝑃𝐾_𝑉𝑓) (48 𝑏𝑦𝑡𝑒 𝑠𝑡𝑟𝑖𝑛𝑔)

∅(𝑇𝑎𝑚𝑝𝑒𝑟𝑒𝑑𝑇𝑟𝑥) {𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝐷𝑏𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝐶𝑟𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦}

∅(𝑆𝑒𝑐𝐾𝑒𝑦𝑆𝑢𝑏𝑠𝑒𝑡) (𝐴 𝑝𝑟𝑜𝑝𝑒𝑟 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 48𝑥64𝑥2 𝑏𝑦𝑡𝑒 𝑠𝑡𝑟𝑖𝑛𝑔)

 25

If adversary tampers the transaction, the hash of the transaction will change and therefore, signature will

sustain no more to be valid (Eq. 16, 17). WOTS-S based signatures do not allow adversary to deduce

enough knowledge about the private key, required to sign the tampered transaction (Eqs. 18, 19).

𝑹(𝑻𝒓𝒙𝑻𝒂𝒎𝒑𝒆𝒓𝒊𝒏𝒈) = (𝑇𝑇𝑟′ = 𝑇𝑇𝑟 ∪ {𝑇0[1], 𝑇0[2], 𝑇0[3], 𝑇0[4], 𝑇0[5]′, 𝑇0[6]}) (16)

𝑹(𝑻𝑻𝒓𝑯𝒂𝒔𝒉𝒊𝒏𝒈) = (𝑇𝑇𝑟𝐻𝑎𝑠ℎ′

= 𝑇𝑇𝑟𝐻𝑎𝑠ℎ ∪ 𝑆𝐻𝐴384(𝑇𝑇𝑟[1], 𝑇𝑇𝑟[2], 𝑇𝑇𝑟[3], 𝑇𝑇𝑟[4], 𝑇𝑇𝑟[5]))
(17)

𝑹(𝑺𝒆𝒄𝑲𝒆𝒚𝑬𝒙𝒕) = (𝑆𝑆𝐾′ = 𝑆𝑆𝐾 ∪ 𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑆𝑒𝑐𝐾𝑒𝑦(𝑇0[6])) (18)

𝑹(𝑻𝑻𝒓𝑺𝒊𝒈𝑮𝒆𝒏) = (𝑇𝑇𝑟[6]′ = 𝑇𝑇𝑟[6] ∪ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑖𝑔(𝑇𝑇𝑟𝐻𝑎𝑠ℎ, 𝑆𝐾)) // SK is not available (19)

6. Security and performance analysis

This section compares WOTS-S with existing state of the art distributed ledgers IoTA and QRL.

Subsection 6.1 provides a formal security proof of WOTS-S. Subsection 6.2 compares signature size of

WOTS-S with IoTA and QRL. Finally, Subsection 6.3 compares computational efficiency of WOTS-S

with WOTS (IoTA) and existing variants of WOTS, like WOTS+ (QRL).

6.1. Security analysis of WOTS-S

First we define security preliminaries, and then we will evaluate and prove security of WOTS-S.

6.1.1. Preliminaries:

WOTS-S is a hash-based scheme, which uses a hash function as its building block. The underlying hash

function of WOTS-S must be committing an appropriate level of security. The three fundamental

characteristics of a secure hash function include, preimage resistance, second pre-image resistance, and

collision resistance. Equations 20 – 22 explains the three characteristics, respectively. A pre-image

resistant hash function does not allow an adversary (A) to deduce an input ‘x’ which corresponding output

‘y’ is known to him. A second pre-image resistant hash function does not allow the adversary to deduce

an input x′ corresponding to an output ‘y’ when adversary already knows another input ‘x’ corresponding

to the same output i.e. ‘y’. A collision-resistant hash function does not allow the adversary to find any

two inputs ‘x’ and x′ which are not equal but their corresponding output is equal.

𝑃𝑟 [𝑦 ← ℎ (𝑥), 𝑥 ← 𝐴 (𝑦): 𝑥 = 𝑥] <∈ (20)

𝑃𝑟 [𝑦 ← ℎ (𝑥), 𝑥′ ← 𝐴 (𝑥, 𝑦): 𝑥 ≠ 𝑥′ ᴧ 𝑦 = ℎ (𝑥′)] <∈ (21)

𝑃𝑟 [𝑥, 𝑥′ ← 𝐴: 𝑥 ≠ 𝑥′ ᴧ ℎ (𝑥) = ℎ (𝑥′)] <∈ (22)

The classical and quantum security levels offered by a hash function depend upon output length (n) of

that function [31]. The quantum-based Grover’s search algorithm [43] reduces post-quantum security

 26

level of the hash functions. An n-sized hash function is capable of providing n-bit classical and n/2-bit

post- quantum security against pre-image and second pre-image based attacks. However, collision

resistant is relatively a complex security requirement and hence, relatively harder to achieve. Therefore,

an n-sized hash function provides n/2-bit classical and n/3-bit post-quantum security against collision-

based attacks [39]. Table-7 lists down the classical and post-quantum security levels of the common hash

functions.

Table7: Hash functions security levels [31, 39]

Output length Classical security level (bit) Quantum security level (bit)

 Pre-image/ 2nd Pre-image Collision Pre-image/2nd Pre-image Collision

160-bit 160 80 80 53

256-bit 256 128 128 85

384-bit 384 192 192 128

512-bit 512 256 256 171

6.1.2. Security properties of WOTS-S

WOTS-S is a quantum-secure one time signature scheme, which achieves integrity, authentication, and

non-repudiation. The public key is a set of post-images, which corresponding pre-images are known

solely to the owner of the public key. Any assets allocated to a public key are owned by the person

possessing knowledge of the corresponding private key. An effort to spend the assets without the

appropriate private key, will be noticeable and rejected by the peers (integrity and authentication).

Similarly, the assets once spent with the help of the appropriate private key will no more be claimable by

the spender (non-repudiation).

We will prove that WOTS-S is an existentially unforgeable digital signature scheme under adaptive

chosen plaintext attack (CPA) model. Our proof reduces security of WOTS-S to the onewayness of its

underlying hash function.

6.1.3. Formal security proof of WOTS-S

This section formally proves that WOTS-S is existentially unforgeable under CPA) model as long as the

underlying hash function is a one-way hash function. WOTS-S is a triple (KEYGEN, SIGN, VERIFY);

KEYGEN is a key generation algorithm which takes a security parameter (n) as input and outputs a key

pair (SK, PK), where, both SK and PK are sets with |SK| = |PK| = (n/4)*2. KEYGEN generates a hash-

chain consisting of seventeen hash iterations in order to transform an sk-value into the corresponding pk-

 27

value. SIGN takes a message (M) and a private key SK = {(sk1
f, sk1

b), (sk2 f, sk2
b) … (sk n/4 f, sk n/4

b)} as

input and outputs signatures of M, i.e. σM = {(σ1 f, σ1
b), (σ2 f, σ2

b) … (σ n/4 f, σ n/4
b)}. SIGN distributes M as

(m1, m2, m3 … mn/4) and signs each mi individually. Each of the σi is some of the middle value of the

corresponding hash-chain such that:

σi
f = H16-mi (ski

f); σi
b = H16 (ski

b) for 0 mi 7, and

σi
f = H16 (ski

f); σi
b = Hm+1 (ski

b) for 8 mi 15

VERIFY takes M, σM, and PK as input and outputs either TRUE or FALSE. VERIFY uses (mi, i) pairs to

complete each of the corresponding hash-chain. VERIFY compares final value of each of the hash-chain

to the corresponding pki and outputs TRUE if and only if each of the final hash-chain result matches the

corresponding pk-value.

Existential unforgeability of WOTS-S:

KEYGEN generates a new key pair (SK, PK). A signing oracle O having knowledge of the private key

(SK), responds the forger’s queries. Forger FOR can submit at most one query to O. FOR has knowledge

of PK. Upon receiving a query from FOR, O must return valid signatures of the queried message Mq (i.e.

Mq). The challenge for the FOR is to return a message/signature pair (Mo, Mo) such that Mo are valid

signatures of Mo whereas, Mo Mq. WOTS-S is existentially unforgeable under CPA model if the

probability that the FOR wins the above game in a time t, is at most . We formally write it as, WOTS-S

is a (t, , 1)-existentially unforgeable signature scheme.

The security proof:

This section formally proves that the security of WOTS-S is a security reduction of its underlying hash

function. Let H = {h: (0,1)* (0,1)n} be a family of secure hash functions, and ADV be an adversary that

breaks onewayness of the functions in H. The ADV takes an image y as input such that, y = h(x) and x =

(0, 1)n. The challenge for ADV is to return a pre-image xADV such that, xADV = x. Algorithm-10 explains

that how ADVonewayness can exploit FORWOTS-S to win the game. ADVonewayness calls the KEYGEN algorithm

to generate a key pair (SK, PK). The PK is of the form PK = {(pk1
f, pk1

b), (pk2 f, pk2
b) … (pk n/4 f, pk n/4

b)}.

ADVonewayness alters a randomly chosen element (pkf
) of the public key (Lines 2, 3). Then ADVonewayness

runs the forger FORWOTS-S. When FORWOTS-S queries a message M then, ADVonewayness either returns valid

signature () of M or aborts the algorithm (Line 5). When FORWOTS-S returns a message/signature pair

(M, M) to the ADVonewayness then, depending upon the value of m, either ADVonewayness returns the

challenged pre-image or aborts the algorithm (Line 6).

 28

Algorithm 10: ADVonewayness

Input: Security parameter n, a one-way hash-function h, a post-image y such that y=h(?), an adversary

ADV to break onewayness of h, a forger FOR to break WOTS-S

Output: an x such that h(x) = y

1. Generate a new WOTS-S key pair (SK, PK)

2. Randomly choose a {1,…,n/4}

3. Generate a random x and alter pk
f as h(x[0,n/128))

4. Run forger FOR

5. When FOR asks for a signature-query on a message M i.e. (m1,…,mn/4) then:

a. If 1 m 7 then return fail

b. Generate on M and respond to FOR as (M,M)

6. When FOR return an (M,M) pair then

a. If M is a valid signature of M then

i. If m = 0 or 8 m 15 then return fail

ii. Return SIGNWOTS-S
(m - 1) (M

)

7. In any other cases return fail

For the adversary to be successful, he must 1) be able to respond forger’s query [step 5b], 2) receive a

valid message/signature pair from the forger, and 3) be able to generate the challenged pre-image from

message-signature pair retuned by the forger [step 6a]. Because the success probabilities of both the steps

(5b and 6a) are non-zero, therefore, the success probability of the forger must be negligible. A non-

negligible success probability of forger means a non-negligible success probability of adversary, which is

impossible because ‘h’ is a one-way hash function.

6.2. Signature size in WOTS-S

The signature size in WOTS-S, may be as less as 0.58 KB or as greater as 2.6 KB. Thus the average

signature size in WOTS-S is 1.6 KB, which is less than both IoTA and the QRL. IoTA uses the signature

scheme “WOTS”, which signature size (for 128-bit post-quantum security), is 4.6 KB. However, because

IoTA has a tryte-based implementation, therefore IoTA’s signature size is 3.9 KB, which is somehow less

than the normal WOTS size. QRL uses WOTS+, which signature size is 2.1 KB. Thus WOTS-S achieves

59% and 24% reductions in signature sizes than IoTA and QRL respectively. Figure-5 provides a

comparison of signature sizes of WOTS (IoTA) and its popular variants including WOTS+ (QRL).

 29

Figure 5: Signature sizes for 128-bit post-quantum security

6.3. Executional efficiency evaluation of WOTS-S

WOTS-S in not only a compact but also an efficient variant of WOTS scheme. The implementation

results reveal that WOTS-S offers 70% and 51% reductions in key-generation time as compared to

WOTS+ and WOTS_Buchmann, respectively. Furthermore, WOTS-S offers 63% and 29% reduction in

signature creation time as compared to WOTS+ and WOTS_Buchmann, respectively. For our

experiments, we used a test bed consisting of an Intel core i5 CPU (2.4 GHz) with 4GB RAM, running

Windows 8.1 32-bit release. We used Python language with PyCharm IDE for implementing WOTS-S

and the benchmarked schemes. Figure-6 provides a comparison of execution times for key generation,

signature creation, and signature verification algorithms. Figures 7 – 9 reveal execution times for the three

algorithms for a number of function calls (up to 500).

 30

Figure 6: Time for key generation, signature creation and verification (single function call)

 31

Figure 7: Key generation time (multiple function calls)

 32

Figure 8: Signature creation time (multiple function calls)

 33

Figure 9: Signature verification time (multiple function calls)

7. Conclusions and Future Work

In this paper, we have proposed WOTS-S, which is a new variant of the popular hash-based OTS

scheme WOTS. The proposed signature scheme is customized particularly for post-quantum

cryptocurrencies. Since almost all existing cryptocurrencies use ECDSA, which will no longer be

secure once quantum computers are available at large scale. Therefore, it is imperative to design

quantum resistant ledger, which can resist attacks from a quantum computer. Hence, the very recently

proposed popular cryptocurrencies, IoTA and QRL, have switched from ECDSA to WOTS or some

of its variants. Although hash based signature schemes are a good alternate of ECDSA, a key

limitation is the relatively larger signature sizes. WOTS-S offers reduced signature sizes as compared

to WOTS and its previously proposed variant, including WOTS (Buchmann) and WOTS+. Our

implementation reveals that WOTS-S is also computationally-efficient than both variants of WOTS.

Furthermore, the previously proposed variants of WOTS reduce signature sizes with the help of

 34

randomizations and bitmasks, which are expensive. On the other hand, WOTS-S is based on collision

resistance hash functions and avoids bitmasks. In future, we will use our proposed compact signature

scheme into the blockchain technology beyond cryptocurrencies. Internet of Energy (IoE) is one of

the potential research areas for year 2020 and onwards. We will use WOTS-S to design blockchain-

based solutions for IoE scenarios. WOTS-S being an efficient OTS scheme, is suitable for the

distributed ledgers deployed into IoE environments.

Acknowledgement:

The authors would like to thank the anonymous reviewers for their comments and suggestions.

REFERENCES:

[1]. Wu, Y., Fan, H., Wang, X. et al. A regulated digital currency. Sci. China Inf. Sci. 62, 32109

(2019). https://doi.org/10.1007/s11432-018-9611-3

[2]. Liu J.K., Tsang P.P., Wong D.S. (2005) Recoverable and Untraceable E-Cash. In: Chadwick D.,

Zhao G. (eds) Public Key Infrastructure. EuroPKI 2005. Lecture Notes in Computer Science, vol

3545. Springer, Berlin, Heidelberg (DOI: 10.1007/11533733_14)

[3]. Camenisch J., Hohenberger S., Lysyanskaya A. (2005) Compact E-Cash. In: Cramer R. (eds)

Advances in Cryptology – EUROCRYPT 2005. EUROCRYPT 2005. Lecture Notes in Computer

Science, vol 3494. Springer, Berlin, Heidelberg (DOI: 10.1007/11426639_18)

[4]. Nakamoto, S., Bitcoin: A Peer-to-Peer Electronic Cash System. http://bitcoin.org/bitcoin.pdf, 2009

[5]. Aggarwal, D.; Brennen, G.; Lee, T.; Santha, M. & Tomamichel, M., Quantum Attacks on Bitcoin,

and How to Protect Against Them, Ledger, 2017 (DOI: 10.5195/LEDGER.2018.127)

[6]. Shor, P.W. Polynomial-time algorithms for prime factorization and discrete logarithms on a

quantum computer, SIAM J. Comput. 26, 1484–1509, 1997 (DOI: 10.1137/S0097539795293172).

[7]. Buchanan, W. & Woodward, A., Will quantum computers be the end of public key encryption?

Journal of Cyber Security Technology, 2016, 1 – 22, (DOI: 10.1080/23742917.2016.1226650)

[8]. C. Dods, N. P. Smart, M. Stam, Hash based digital signature schemes, in: N. P. Smart (Ed.),

Cryptography and Coding, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005, pp. 96-115.

doi:10.1007/11586821_8.

[9]. R. El Bansarkhani, M. Geihs, J. Buchmann, Pqchain: Strategic design decisions for distributed

ledger technologies against future threats, IEEE Security & Privacy 16 (2018) 57-65.

doi:10.1109/MSP.2018.3111246

[10]. Gao, Y.; Chen, X.; Chen, Y.; Sun, Y.; Niu, X. & Yang, Y., A Secure Cryptocurrency Scheme

Based on Post-Quantum Blockchain, IEEE Access, 2018 (DOI: 10.1109/ACCESS.2018.2827203)

 35

[11]. X. Zhang, Y. Tang, H. Wang, C. Xu, Y. Miao, H. Cheng, Lattice based proxy-oriented identity-

based encryption with keyword search for cloud storage, Information Sciences 494 (2019) 193-

207. doi:https://doi.org/10.1016/j.ins.2019.04.051.

URL:http://www.sciencedirect.com/science/article/pii/S0020025519303706

[12]. X. Zhang, C. Xu, H. Wang, Y. Zhang, S. Wang, Fs-peks: Lattice-based forward secure public-key

encryption with keyword search for cloud assisted industrial internet of things, IEEE Transactions

on Dependable and Secure Computing (2019) 1-1 doi:10.1109/TDSC.2019.2914117.

[13]. X. Zhang, H. Wang, C. Xu, Identity-based key-exposure resilient cloud storage public auditing

scheme from lattices, Information Sciences 472 (2019) 223-234.

doi:https://doi.org/10.1016/j.ins.2018.09.013.

URL:http://www.sciencedirect.com/science/article/pii/S0020025518307138

[14]. J.-P. Aumasson, G. Endignoux, Improving stateless hash-based signatures, in: N. P. Smart (Ed.),

Topics in Cryptology - CT-RSA 2018, Springer International Publishing, Cham, 2018, pp. 219-

242. doi:10.1007/978-3-319-76953-0_12.

[15]. S. Popov, Academic papers IoTA, The Tangle, Version 1.4.3, 2018, Online Available:

https://www.iota.org/research/academic-papers

[16]. theQRL, The quantum resistant ledger, in: QRL white paper, 2019. URL

https://github.com/theQRL/Whitepaper/blob/master/QRL_whitepaper.pdf

[17]. Merkle, R. C., “A certified digital signature,” in Proceedings on Advances in Cryptology, ser.

CRYPTO ’89. Springer-Verlag New York, Inc., 1989 (DOI: 10.1007/0-387-34805-0_21)

[18]. Hülsing, A. Youssef, A.; Nitaj, A. & Hassanien, A. E. (Eds.) W-OTS+ -- Shorter Signatures for

Hash-Based Signature Schemes Progress in Cryptology - Africacrypt 2013, Springer Berlin

Heidelberg, 2013, 173-188 (DOI: 10.1007/978-3-642-38553-7_10)

[19]. D. J. Bernstein, “Cost analysis of hash collisions: Will quantum computers make SHARCS

obsolete?”, SHARCS 2009, 2009.

[20]. Chaum D. (1983) Blind Signatures for Untraceable Payments. In: Chaum D., Rivest R.L.,

Sherman A.T. (eds) Advances in Cryptology. Springer, Boston, MA (DOI: 10.1007/978-1-4757-

0602-4_18)

[21]. Okamoto T., Ohta K. (1992) Universal Electronic Cash. In: Feigenbaum J. (eds) Advances in

Cryptology — CRYPTO ’91. CRYPTO 1991. Lecture Notes in Computer Science, vol 576.

Springer, Berlin, Heidelberg (DOI: 10.1007/3-540-46766-1_27)

[22]. Jakobsson, M. & Yung, M., Revokable and Versatile Electronic Money (Extended Abstract),

Proceedings of the 3rd ACM Conference on Computer and Communications Security, ACM,

1996, 76-87 (DOI: 10.1145/238168.238191)

 36

[23]. Sander T., Ta-Shma A. (1999) Auditable, Anonymous Electronic Cash. In: Wiener M. (eds)

Advances in Cryptology — CRYPTO’ 99. CRYPTO 1999. Lecture Notes in Computer Science,

vol 1666. Springer, Berlin, Heidelberg (DOI: 10.1007/3-540-48405-1_35)

[24]. Litecoin – open source P2P didgital currency, https://litecoin.org/, accessed 03 October, 2017

[25]. V. Buterin, A next generation smart contract & decentralized application platform,

ethereum White Paper (2014).

URL https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.p

[26]. Ben-Sasson, E. Chiesa, A. Garman, C. Green, M. Miers, I. Tromer, E. and Virza, M., Zerocash:

Decentralized anonymous payments from Bitcoin. In IEEE Symposium on Security and Privacy,

2014 (DOI: 10.1109/SP.2014.36)

[27]. Ripple – One frictionless experience to send money globally, https://ripple.com/, accessed 03

October, 2017

[28]. Kiktenko, E.O. Pozhar, N.O. Anufriev, M.N. Trushechkin, A.S. Yunusov, R.R. Kurochkin, Y.V.

Lvovsky, A.I. and Fedorov, A.K., Quantum-secured blockchain, Quantum Science and

Technology, 2017 (DOI: 10.1088/2058-9565/aabc6b)

[29]. Ikeda K. (2019) qBitcoin: A Peer-to-Peer Quantum Cash System. In: Arai K., Kapoor S., Bhatia R.

(eds) Intelligent Computing. SAI 2018. Advances in Intelligent Systems and Computing, vol 858.

Springer, Cham (DOI: 10.1007/978-3-030-01174-1_58)

[30]. Jogenfors, J. (2019, May). Quantum Bitcoin: An Anonymous, Distributed, and Secure Currency

Secured by the No-Cloning Theorem of Quantum Mechanics. In 2019 IEEE International

Conference on Blockchain and Cryptocurrency (ICBC) (pp. 245-252). IEEE. (DOI:

10.1109/BLOC.2019.8751473)

[31]. E. Dahmen, K. Okeya, T. Takagi, C. Vuillaume, Digital signatures out of second-preimage

resistant hash functions, in: J. Buchmann, J. Ding (Eds.), Post-Quantum Cryptography, Springer

Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 109-123. Doi:10.1007/978-3-540-88403-3_8.

[32]. Lamport, L., “Constructing digital signatures from a one-way function,” Tech. Rep., 1979.

[33]. Buchmann, J.; Dahmen, E.; Ereth, S.; Hülsing, A. Rückert, M. (Eds.) On the Security of the

Winternitz One-Time Signature Scheme, Progress in Cryptology -- AFRICACRYPT 2011,

Springer Berlin Heidelberg, 2011, 363-378 (DOI: 10.1007/978-3-642-21969-6_23)

[34]. Reyzin L., Reyzin N. (2002) Better than BiBa: Short One-Time Signatures with Fast Signing and

Verifying. In: Batten L., Seberry J. (eds) Information Security and Privacy. ACISP 2002. Lecture

Notes in Computer Science, vol 2384. Springer, Berlin, Heidelberg (DOI: 10.1007/3-540-45450-

0_11)

 37

[35]. Bernstein D.J. et al. (2015) SPHINCS: Practical Stateless Hash-Based Signatures. In: Oswald E.,

Fischlin M. (eds) Advances in Cryptology -- EUROCRYPT 2015. EUROCRYPT 2015. Lecture

Notes in Computer Science, vol 9056. Springer, Berlin, Heidelberg (DOI: 10.1007/978-3-662-

46800-5_15)

[36]. Buchmann J., Dahmen E., Hülsing A. (2011) XMSS - A Practical Forward Secure Signature

Scheme Based on Minimal Security Assumptions. In: Yang BY. (eds) Post-Quantum

Cryptography. PQCrypto 2011. Lecture Notes in Computer Science, vol 7071. Springer, Berlin,

Heidelberg (DOI: 10.1007/978-3-642-25405-5_8)

[37]. A. Hulsing, L. Rausch, J. Buchmann, Optimal parameters for xmssmt, in: A. Cuzzocrea, C. Kittl,

D. E. Simos, E. Weippl, L. Xu (Eds.), Security Engineering and Intelligence Informatics, Springer

Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 194-208. doi:10.1007/978-3-642-40588-4_14.

[38]. S. Gueron, N. Mouha, Sphincs-simpira: Fast stateless hash-based signatures with post-quantum

security, IACR Cryptology ePrint Archive 2017 (2017) 645.

[39]. K. Chalkias, J. Brown, M. Hearn, T. Lillehagen, I. Nitto, T. Schroeter, Blockchained post-quantum

signatures, 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green

Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing

(CPSCom) and IEEE Smart Data (SmartData) (2018) 1196–1203 doi:

10.1109/Cybermatics_2018.2018.00213.

[40]. Blaauwendraad, Breus, Zekeriya Erkin, Peter Schwabe, Oguzhan Ersoy, and Bart de Jong. "Post-

quantum Hash-based Signatures for Multi-chain Blockchain Technologies." Master Thesis (2019)

[41]. Suciu, George, Mari-Anais Sachian, Marius Dobrea, Cristiana-Ioana Istrate, Ana Lavinia

Petrache, Alexandru Vulpe, and Marius Vochin. "Securing the Smart Grid: A Blockchain-based

Secure Smart Energy System." In 2019 54th International Universities Power Engineering

Conference (UPEC), pp. 1-5. IEEE, 2019. (DOI: 10.1109/UPEC.2019.8893484)

[42]. Zhu, Qingyi, Seng W. Loke, Rolando Trujillo-Rasua, Frank Jiang, and Yong Xiang.

"Applications of Distributed Ledger Technologies to the Internet of Things: A Survey." ACM

Computing Surveys (CSUR) 52, no. 6 (2019): 120. (DOI: 10.1145/3359982)

[43]. Grover, L. K., A Fast Quantum Mechanical Algorithm for Database Search, Proceedings of

the Twenty-eighth Annual ACM Symposium on Theory of Computing, ACM, 1996, 212-

219 (DOI: 10.1145/237814.237866)

 38

Furqan Shahid is pursuing his Ph.D. degree in Computer Science at COMSATS University Islamabad,

Pakistan under supervision of Dr. Abid Khan. Previously, he completed his Masters from the

International Islamic University, Islamabad in 2012. His research interests include Blockchain and post-

quantum cryptography.

Abid Khan is with the department of computer science, Aberystwyth University, United Kingdom.

Previously, he was with the department of computer science, COMSATS University Islamabad (CUI),

Pakistan. His research interests include applied cryptography, security/privacy issues in distributed

systems (including blockchain, IoT, smart grids and cloud computing) and quantum cryptography. He

was awarded the prestigious “Fellowship for Young Researcher” by Politecnico De Torino for his

postdoctoral research (2009-2011). Abid did his PhD from Harbin Institute of Technology, P.R.China.

Before, that he did his MSC in computer science from Quaid I Azam University, Islamabad, Pakistan.

Saif Ur Rehman Malik did his Ph.D. in 2014 from Department of Electrical and Computer Engineering,

North Dakota State University, USA. Currently, he is a Senior Researcher at Cybernetica, AS Estonia.

 39

His areas of expertise include the application of Formal Methods in Large Scale Computing Systems,

Distributed Computing, Data Centers, Security and Routing Protocols, and IOT. His research work

appears in several reputable journals and transactions. He is also serving as a reviewer and TPC of many

well reputed Journals and transactions.

Kim-Kwang Raymond Choo received the Ph.D. degree in information security from the Queensland

University of Technology, Australia, in 2006. He currently holds the Cloud Technology Endowed

professorship with The University of Texas. In 2016, he was named the Cybersecurity Educator of the

Year - APAC (Cybersecurity Excellence Awards are produced in cooperation with the Information

Security Community on LinkedIn), and in 2015 he and his team won the Digital Forensics Research

Challenge organized by Germany's University of Erlangen-Nuremberg. He is the recipient of the 2019

IEEE Technical Committee on Scalable Computing (TCSC) Award for Excellence in Scalable Computing

(Middle Career Researcher), 2018 UTSA College of Business Col. Jean Piccione and Lt. Col. Philip

Piccione Endowed Research Award for Tenured Faculty, Outstanding Associate Editor of 2018 for IEEE

Access, British Computer Society's 2019 Wilkes Award Runner-up, 2019 EURASIP Journal on Wireless

Communications and Networking (JWCN) Best Paper Award, Korea Information Processing Society's

Journal of Information Processing Systems (JIPS) Survey Paper Award (Gold) 2019, IEEE Blockchain

2019 Outstanding Paper Award, IEEE TrustCom 2018 Best Paper Award, ESORICS 2015 Best Research

Paper Award, 2014 Highly Commended Award by the Australia New Zealand Policing Advisory Agency,

Fulbright Scholarship in 2009, 2008 Australia Day Achievement Medallion, and British Computer

Society's Wilkes Award in 2008. He is also a Fellow of the Australian Computer Society, an IEEE Senior

Member, and Co-Chair of IEEE Multimedia Communications Technical Committee's Digital Rights

Management for Multimedia Interest Group.

