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Abstract 
The digital signature scheme, which underpins most of the existing distributed ledgers, is generally based on non-
quantum-resilient algorithms (e.g. elliptic curve digital signature algorithm). This highlights the need for quantum-
secure signature schemes in future distributed ledgers (and other products). Therefore, in this paper, we propose a 
novel quantum-secure digital signature scheme designed specifically for cryptocurrencies. Our proposed scheme is a 
hash-based signature scheme, which is a variant of Winternitz-one-time signature scheme. A comparison of the 
proposed scheme and two other competing quantum-secure cryptocurrencies (IoTA and QRL) reveals that our 
scheme respectively achieves 59% and 24% reductions in signature lengths without compromising the level of 
security. A salient feature of the proposed approach is that, unlike the previously proposed variants of Winternitz 
scheme, we avoid the need for any expensive computation. In addition, we formally model the classical 
cryptocurrency and the proposed quantum-secure cryptocurrency using high-level Petri-nets, which allows the 
implementer to understand their workings in the presence of a quantum attacker. Furthermore, we also provide 
formal security proof in the random oracle model. 
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1. Introduction 

Digital currencies at their core are about creating, representing, storing, and exchanging coins digitally 

rather physically [1]. The roots of digital currencies can be traced back to 80’s in the work of Chaum, 

which was later followed by a series of innovations and improvements [2, 3]. However, none of the 

digital currencies proposed before Bitcoin have been successful in practice [4]. Bitcoin is the first widely 

used cryptocurrency. Despite the many concerns raised by governmental financial institutions and some 

economists, Bitcoin has captured a significant market and has started to compete against real-world 

currencies like Dollars and Euros. 
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 Due to its increasing popularity, governmental revenue institutions have started planning to tax financial 

activities involving the use of Bitcoins. Decentralization is a distinguishing feature, which plays an 

important role in the popularity of Bitcoin. Specifically, the role of a central controlling authority (such as 

a bank) is eliminated from such a system. Users can create and maintain their accounts at their computers, 

the balance information of a user is stored in a distributed public ledger called as the blockchain, and 

transactions are verified and accepted by the mutual consensus of the community. Bitcoin network is a 

peer-to-peer network, in which every peer can access complete history of the transactions which prevents 

users from double spending attacks. The distributed ledgers are publicly available and tamper-free 

databases of the financial transactions ever made by the system. The sizes of the distributed ledgers of the 

popular cryptocurrencies are usually extremely large, for example Bitcoin is reportedly approaching 

several hundred GBs. Because of the rapidly increasing and ever-growing size of the distributed ledger, 

the cryptocurrencies are concerned with the size of their financial transactions. The major data elements 

of a transaction are ID, time, inputs, and outputs. An output binds some coin(s) to a user’s public key, 

whereas, an input redeems an output with the help of digital signatures. The size of transaction mainly 

depends on the size of public key and the size of signatures. Currently, the digital signature scheme used 

by most of the distributed ledgers is Elliptic Curve Digital Signature Algorithm (ECDSA), which is not 

quantum-safe [5]. ECDSA is based on the hard mathematical problem Elliptic Curve Discrete Logarithm 

Problem (ECDLP), which is breakable using a sufficiently powerful quantum computer as demonstrated 

by Shor [6]. Therefore, the present signature scheme of the distributed ledgers must be replaced by a 

quantum-secure signature scheme to assure survival of this technology in the quantum era. A number of 

quantum-secure signature schemes have been proposed including, hash-based schemes, lattice-based 

schemes, code-based schemes, isogeny-based schemes, and multi-variate based schemes [7]. However, 

existing quantum-secure signature schemes may not be practical for deployment in distributed ledgers 

because of certain limitations such as execution times, security level provided, and/or key and signature 

sizes [8]. The isogeny-based schemes and multi-variate based schemes, for example, both have extremely 

large key/signature sizes or execution times. The code-based schemes provide just marginal level of post-

quantum security. The hash-based schemes and lattice-based schemes offer appropriate security with an 

acceptable key and signature size and therefore may be considered as suitable alternates of ECDSA in 

distributed ledgers [9, 10]. A number of recent post quantum cryptographic schemes leverage the 

hardness of hash functions or lattice based hard problems (e.g. learning with error - LWE). The latest post 

quantum cryptographic schemes proposed using lattice-based or hash-based assumptions include, proxy 

oriented identity based encryption with keyword search (PO-IBEKS) [11], forward secure public key 
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encryption keywords search (FS-PEKS) [12], identity based key exposure resilient auditing (IB-KERA) 

scheme [13], and PQ-Chain [9].  

Hash-based schemes are quite efficient and offer an appropriate level of security. However, a common 

problem of hash based digital signature schemes is larger key and signature sizes [14], which must be 

addressed very carefully before adapting these schemes for distributed ledgers. A hash-based scheme is 

constructed using a one-time signature (OTS) scheme, which determines key and signature sizes of the 

corresponding hash based scheme. The key size in a hash-based scheme can be compressed to an 

acceptable level with the help of hash tress (like XMSS L-tree); however, compressing the signature size 

remains an open challenge. The current signature sizes of the popular post-quantum cryptocurrencies 

which use hash based schemes are 3.9 KB (for IoTA [15]) and 2.1 KB (for QRL [16]) respectively, which 

are significantly larger than Bitcoin (which is just about 1 KB). The increment in signature size is justified 

as being a trade-off for post-quantum security. Both IoTA and QRL, for example, offer 128-bit post-

quantum security. IoTA uses the Winternitz-one time signatures (WOTS) [17], whereas QRL uses a 

variant of WOTS (i.e. WOTS+) [18]. In order to reduce signature size, WOTS+ replaces a collision 

resistant (CR) hash function with a simple undetectable one-way function. For this purpose, WOTS+ 

involves bitmasks and randomizations. However, research shows that CR is actually cheaper to achieve 

on quantum processors as compared to bitmasks [19].  

Therefore, in this paper we propose a new variant of WOTS, which achieves a reduction in the signature 

size without involving bitmasks or randomizations. Our proposed variant is based on CR hash functions, 

which avoid any type of quantum-expensive processing. The proposed variant is hereafter referred to as 

WOTS-S, where S stands for short signatures. 

Problem statement: The signature scheme used by most of the distributed ledgers is ECDSA, which is 

not quantum-safe [5]; therefore the cryptocurrencies would be at significant risk once quantum computers 

are available at large scale. Existing quantum-secure cryptocurrencies [15, 16], which are using quantum-

secure signature schemes, suffer from larger signature sizes. The signature sizes of the two state of the art 

quantum-secure cryptocurrencies IoTA and QRL are 3.9 KB and 2.1 KB respectively, which are 

significantly greater than non-quantum-resilient cryptocurrencies e.g. Bitcoin. The signature size of the 

QRL is relatively smaller, however, it uses bitmasks and randomizations, which are expensive for 

quantum processors [19].   

Our contributions in this paper can be summarized as follows: 

1. We propose a new quantum-secure digital signature scheme (WOTS-S), which is a variant of the 

well-known hash-based OTS scheme WOTS. The salient features of WOTS-S are as follows: 
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 WOTS-S reduces length of signatures by 59% and 24% in comparison to IoTA (WOTS) and 

QRL (WOTS+), respectively.  

 WOTS-S is based on CR hash functions. Therefore, unlike WOTS+ [18] the design of WOTS-

S does not involve any expensive computations in order to reduce the signature size. The 

existing compact variants of WOTS replace a collision resistant (CR) hash function with a 

simple undetectable one-way function in order to reduce the signature size. Thus, the existing 

variants of WOTS, like WOTS+, use bitmasks and randomization operations, which are more 

expensive for quantum processors than CR hash functions. On the other hand, WOTS-S just 

uses CR hash functions and adopts inexpensive approaches to achieve a reduction in the 

signature size. 

2. We formally model the classical cryptocurrency and the proposed quantum-secure cryptocurrency 

using high-level Petri-nets. This helps us understand their workings in the presence of a quantum 

attacker. 

The next two sections briefly review the related literature and the attacker model used in this paper. In 

Section 4, we describe the proposed scheme and the algorithms. In Section 5, we introduce a new 

cryptocurrency created using our proposed signature scheme, with the help of High Level Petri-Nets 

(HLPNs). Finally, in Section 6, we provide security and performance analysis. In the last section, we 

conclude this paper. 

2. Related Work 

Chaum proposed the very first digital currency, namely, blind signatures for untraceable transactions 

[20]. Later schemes include universal electronic cash (UEC) [21], revocable versatile electronic money 

(RVEM) [22], auditable anonymous electronic cash (AAEC) [23], and recoverable untraceable electronic 

cash (RUEC) [2], etc. The centralized structure of these digital currencies was a major barrier in their 

adoption, since users rely on a central authority to generate and even facilitate the exchange of the coins. 

In other words, users are not able to conduct financial transaction (e.g. paying for a cup of coffee) without 

involving the central authority. The first truly successful digital currency is Bitcoin, which is fully 

decentralized and is maintained as a public distributed ledger (also known as Blockchain) [4]. The 

popular decentralized digital currencies proposed after Bitcoin include, Litecoin [24], Ethereum [25], 

Zerocash [26], and Ripple [27]. These digital currencies are commonly referred to as altcoins. Bitcoin and 

many of the altcoins use the signature scheme “ECDSA”. The existing digital currencies can be classified 

into three categories i.e. centralized, decentralized, and post-quantum, as shown in Table-1. 

2.1. Post-quantum (PQ) cryptocurrencies 
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The quantum threats to ECDSA invited researchers to replace ECDSA by a quantum-secure signature 

scheme. Such cryptocurrencies are commonly known as PQ cryptocurrencies. Some of the popular PQ 

cryptocurrencies include, IoTA [15], QRL [16], Quantum-secured (QS) blockchain [28], qBitcoin [29], 

PQ-blockchain [10], and Quantum-Bitcoin [30]. Quantum secured blockchain and Quantum-Bitcoin, both 

are based on quantum technologies and therefore, can be implemented only when quantum computers are 

available at a large scale. IoTA and QRL are the most popular PQ cryptocurrencies, which are being used 

at a large scale. Both IoTA and QRL use hash-based signature schemes. PQ-blockchain [10] uses a Short 

Integer Solution (SIS)-based signature scheme. IoTA uses Tangle to maintain history of the transactions. 

Tangle is a prune-able ledger which offers a mechanism for removal of the un-necessary transactions. 

Furthermore, Tangle avoids classifying the users into two types, simple users and miners. Every user is 

equal in status and simple users are not dependent on miners for posting of their transactions into the 

ledger. PQChain [9] is a post quantum blockchain which building blocks include an HBS scheme, hash 

combiners, and a public key infrastructure (PKI). The overall security of the PQChain depends upon the 

underlying hash functions, which must be pre-image resistant, pseudorandom, and collision resistant hash 

functions. Hash combiners allow PQChain to combine two hash functions in a way such that the security 

is preserved even if one of the two hash functions is compromised. Quantum Bitcoin [30] is a 

cryptocurrency which uses no-cloning theorem as its foundation. The no-cloning quantum mechanics 

allows to generate a non-forgeable non-copy-able item. A Quantum-Bitcoin is basically a quantum state. 

During transaction, payer transfers a quantum state to the payee over a quantum channel. The payee can 

receive a Quantum-Bitcoin without a fear of double-spending from payer side. Quantum-Blockchain is 

not supposed to store financial transactions, however, just descriptors of the Quantum-Bitcoins are stored 

in the Quantum-Blockchain.  

Table-2 provides a comparative analysis of the existing post-quantum cryptocurrencies.  

Table 1: Overview of the existing digital currencies 

Reference Characteristics Strengths Weaknesses 

Centralized digital currencies 

[20] Digital coins Fully anonymous No transaction without central 
authority 

No coin-divide-ability 

No coin-recoverability 

No coin-transferability between 
accounts 

[21] Un-traceability, Off-line 
payments, Transferability, and 

Fully anonymous Transactions must finally be verified 
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Divide-ability A coin can be spent in 
parts 

Coins can be transferred 
between accounts 

by the central authority 

No coin-recoverability 

No blockage of the fake money 

[22] Revocable anonymity Lost or theft coins can be 
recovered 

Transactions must finally be verified 
by the central authority 

Two central authorities (bank and an 
ombudsman) 

Partial anonymity 

[23] Auditability, Non-rigidness Bank is auditable for the 
generated coins 

Fake money can be 
invalidated 

No anonymity at all 

Decentralized digital currencies  (Cryptocurrencies) 

[4] Distributed ledger (blockchain), 
Signature scheme (ECDSA), Hash 
algorithm (SHA256) 

No central authority at all 

Full user’s anonymity 

Signature scheme is not quantum-
secure 

Ever-growing size of the blockchain 

Unusual computational efforts for 
mining of the new blocks 

Transaction confirmation delay (10 
minutes on average) 

[24] Distributed ledger (blockchain), 
Signature scheme (ECDSA), Hash 
algorithm (script) 

No central authority 

Full user’s anonymity 

Faster transaction 
confirmation (2.5 minutes 
average) 

Signature scheme is not quantum-
secure 

Ever-growing size of the blockchain 

Memory-intensive hash function 
used 

[25] Distributed ledger (blockchain), 
Signature scheme (ECDSA), Hash 
algorithm (ETHash) 

Transaction verification 
delay reduced to few 
seconds 

Limited scope (not developed 
primarily as a cryptocurrency but as 
a distributed applications platform) 

[26] Blockchain-based, ECDSA, 
SHA256, RSA, and ZKP 

Eliminated the known 
attacks on user’s 
anonymity in the Bitcoin 

Increased computational cost due to 
involvement of additional security 
algorithms 

Post-quantum Cryptocurrencies 

[15] Distributed ledger (Tangle), 
Signature scheme (WOTS), Hash 
algorithm (keccak-384) 

Quantum-secure 
signature scheme 

No expensive mining 
computation 

Ledger scalability 

Involves role of a central coordinator 
to resist ledger tampering and allow 
for its pruning 

No key-reusability 

Increased signature length 

[16] Blockchain-based, Signature 
scheme (WOTS+ with XMSS), 
PRF 

Quantum-secure 
signature scheme 

Relatively shorter 

Ever-growing size of the distributed 
ledger 

Heavy mining cost 
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signature size 

Key-reusability for a 
limited no. of times 

[28] Blockchain-based, QKD Quantum-secure 

No expensive mining 

Can not be implemented without a 
quantum computer 

Every peer must store and maintain 
its own copy of the ledger 

[30] No-cloning quantum phenomenon Quantum-secure 

No public ledger, no 
mining at all 

Can not be implemented without a 
quantum computer 

[10] Blockchain-based, Signature 
scheme (Lattice SIS-based) 

Quantum-secure Extremely large public key length 

Have never been practically used 

 

 

Table 2: PQ Cryptocurrencies 

Cryptocurrency Signature Scheme Ledger Type Characteristics 

   LP1 RCC2 IQT3 RM4 

IoTA [15] W-OTS Tangle     

QRL [16] “W-OTS +” with XMSS Blockchain     

QS-blockchain 

[28] 

QKD with Symmetric Key 

Encryption 

Blockchain     

qBitcoin [29] Quantum digital signature Nil N/A    

PQ-blockchain 

[10] 

Lattice SIS-based scheme Blockchain     

 

2.2. Hash-based digital signature schemes 

Hash based digital signature (HBS) schemes are computationally-efficient and provably secure, however, 

suffer from larger key and signature sizes [8, 31].The major building block of a HBS scheme is a one-

time signature (OTS) or a few-time signature (FTS) scheme. The signature size of a HBS scheme depends 

on its underlying OTS/FTS scheme(s). An OTS/FTS scheme is not necessarily to always be a part of a 
 

1 Ledger pruning (LP): Removing un-necessary transactions from the distributed ledger 
2 Requires central coordinator (RCC): Involvement of a central controlling authority for ledger pruning etc.  
3 Involves quantum technologies (IQT): Involvement of the quantum technologies for implementation of the currency 
4 Requires miners (RM): Involvement of the extra-ordinary powerful peers to mine transactions into the ledger 
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HBS scheme, rather, an OTS scheme can exist independently. IoTA adopted a popular OTS scheme 

“WOTS”, which is an example of the independent existence of WOTS scheme. The popular OTS/FTS 

schemes proposed to-date include, Lamport-Diffie OTS [32], WOTS [17], WOTS-Buchmann [33], 

WOTS+ [18], HORS FTS [34], HORS-T FTS [35], and PORS FTS [14] schemes. Table-3 provides a 

comparison of key and signature sizes of popular OTS/FTS schemes. The popular HBS schemes proposed 

to-date include, MSS [17], XMSS [36], XMSSMT [37], SPHINCS [35], Gravity-SPHINCS [14], 

SPHINCS-Simpira [38], and blockchained PQ signatures [39]. MSS and XMSS both allow reusing a 

single public key for just a specific number of times. XMSSMT, SPHINCS and variants of SHPINCS, all 

allow reusing a single public key for virtually an unlimited number of times. XMSSMT is a state-based 

HBS scheme, whereas, SPHINCS and its variants are stateless HBS schemes. Gravity-SPHINCS is a 

compact, whereas, SPHINCS-Simpira is an efficient variant of SHPINCS. SPHINCS-Simpira replaces 

the simple hash functions by AES-based hash permutations. Blaauwendraad [40] proposed a compact 

stateful hash based signature scheme. The proposed scheme allows verification of signatures in a 

chorological order. In order to verify signatures corresponding to a given public key, the verifier needs all 

of the preceding signatures corresponding to the same public key. 

2.3. Blockchain beyond cryptocurrencies: 

Although blockchain technology was born with cryptocurrencies, however, recently it is accepted as an 

independent technology, with a wide range of applications. Beyond cryptocurrencies, the blockchain 

technology has been used in the construction of smart contracts [24], smart grids [41] and other diverse-

natured applications. Very recently, use of blockchain in IoT is very popular [42]. Merging of two 

technologies is believed to solve security and privacy issues of the cloud-based IoT. 

Table 3: Hash-based OTS/FTS schemes 

Scheme Sizes Security level Key usage Parameters 
used 

 Key size Sig. size Classical Quantum   

Lamport [32] 16 KB 8 KB 128-bit 85-bit One time SHA-256 hash 

W-OTS [17] 2 KB 2 KB 128-bit 85-bit One time SHA-256 hash 

W = 4-bit 

W-OTS Buchmann [33] 2.2 KB 2.1 KB 256-bit 128-bit One time Salsa-20 PRF 

M = 256-bit 

W = 4-bit 

W-OTS+ (Hulsing) [18] 2.7 KB 2.1 KB 256-bit 128-bit One time Salsa-20 PRF 
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M = 256-bit 

W = 4-bit 

HORS [34] 20.5 KB 0.3 KB 80-bit 53-bit Few time RIPEMD-160 

M = 160-bit 

K = 16 

HORS-T [35] 0.3 KB 6.3 KB 128-bit 85-bit Few time SHA-256 hash 

M = 256-bit 

K = 32 

X = 6 

 

3. Attacker Model 

The user account in the cryptocurrency is just a private-public key pair, where, funds are received in the 

public key and spent through the private key. More accurately, funds are transferred to the hash of the 

public key, not the plain public key, therefore, the plain public key is not revealed to the transferor during 

transfer of the funds. In order to spend the funds, the owner digitally signs his transaction, which reveals 

his plain public key to the other users. In a decentralized environment, a new transaction is not submitted 

to a central authority, rather transactions are verified and accepted by the mutual consensus of the peers. 

Once a peer initiates a new transaction, the other honest peers verify that transaction and add it to the pool 

of unconfirmed transactions, which, after consensus of the sufficient number of peers, is posted into the 

blockchain. The time between transaction initiation and its posting into the blockchain is referred to as 

transaction processing delay, which can invite a quantum adversary to steal the funds. Upon receiving a 

newly initiated transaction, a quantum adversary would be able to compute the private key of the 

corresponding owner and to initiate another fraudulent transaction to steal his assets. In that case, it will 

be equally likely that the attacker successfully tricks the peers to accept his fraudulent transaction as 

genuine, and reject the genuine transaction submitted by the real owner. The attacker can further mine 

into the blockchain to search for more funds allocated to the same public key and finally to steal all those 

coins by initiating more fake transactions. We make the following assumptions about the capabilities 

possessed by an attacker: 

1. An attacker may possess a quantum computer, which is sufficiently powerful enough to break the 

signature scheme “ECDSA”. Furthermore, the attacker has the knowledge of Shor’s algorithm 

that can be used to break ECDSA and compromise the whole blockchain. 
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2. The attacker has access to the blockchain with enough expertise to mine useful information such 

as, list down the unspent transaction outputs (UTXO) for a specific address (scriptpubkey) and 

initiate new fraudulent transactions. 

3. The attacker has access to a Bitcoin client. Furthermore, he can perform account creation and 

initiate new transactions for an arbitrary number of users. This means that the attacker has the 

knowledge of the hash functions (SHA-256 and RIPEMD-160), number systems, and the error 

correcting codes (like checksums). 

4. The attacker may try to steal the funds of others in order to gain financial benefit at the cost of 
innocent users. That’s why an attacker is always motivated to steal funds of others. 
 

4. Proposed Quantum-secure Signature Scheme 

This section covers WOTS-S, our proposed variant of the WOTS scheme. WOTS-S offers the minimum 

signature size as compared to WOTS and existing compact variants of WOTS, including WOTS-

Buchmann and WOTS+. 

4.1. WOTS-S 

WOTS-S, the proposed variant of WOTS, reduces signature size without compromising security of the 

original scheme. To achieve an appropriate post-quantum security, we use the hash function “SHA384” 

(details are given in the security analysis section). We use two sets of values as private key, namely 

forward private key and backward private key. While computing public key, we use a substring operation 

with each hash-iteration.. First we give an overview of WOTS-S, then we will provide complete 

pseudocodes for key-generation and signature creation/verification processes. 

4.2. Overview of WOTS-S 

WOTS-S and other variants of WOTS including WOTS-Buchmann and WOTS+, sign each of the 

individual hexadecimal character in the message-hash separately. Finally, the concatenations of all those 

individual signatures represent the overall signatures on the corresponding message. In order to sign an 

individual hexadecimal character (m) in the message-hash, WOTS computes iterative hash of the 

corresponding private key (sk) item for m number of times. It is important to note that the number of key-

items are exactly equal to the number of hexadecimal characters in the message-hash. The mth hash of the 

corresponding sk-item represents signature on m. WOTS+ follows the same approach with just one 

notable difference, i.e. WOTS+ randomizes each of the hash output before using it as an input for the next 

hash iteration. The randomization operation exempts WOTS+ from using a collision resistant (CR) hash 

function. Due to randomization operation, it is safe to instantiate WOTS+ with a simple second pre-image 

resistant, undetectable one-way function. Because a second pre-image resistant, undetectable one-way 
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function offers n/2-bit post-quantum security, whereas, a CR hash function offers just n/3-bit post-

quantum security [39], therefore, the size (n) of an individual signature item decreases; and as a result, the 

overall signature size decreases. 

WOTS-S also generates hash-chains just like WOTS; however, it decreases size of the hash output with 

each hash iteration in the hash-chain. Therefore, the hash outputs of the later hash iterations in a hash-

chain are smaller in sizes as compared to the former hash outputs. The gradually decreasing size of the 

hash outputs helps WOTS-S in reducing the signature size. Because of the gradually decreasing size of 

the hash output, the signature size for an individual hexadecimal character (m) depends on the number of 

hash iterations followed to sign the corresponding m. And because, the number of hash iterations used to 

sign an m is roughly equal to m, therefore, the signature size will be inversely proportional to the 

corresponding m. The size of the corresponding signature-item will be largest if m is “zero” and smallest 

if m is “f”. WOTS-S adopts a second approach to allow generating large sized hash-chains even for 

smaller values of m. For this purpose, WOTS-S alters the number of hash iterations required to sign the 

smaller hexadecimal characters (i.e. zero to seven). For example, WOTS-S uses maximum number of 

hash iterations to sign a “zero” character (while in WOTS and WOTS+, the zero character needs minimum 

number of hash iterations). WOTS-S uses minimum nine (and maximum sixteen) hash iterations while 

signing an individual m. WOTS-S binds duplicate values of m with a same size of the hash-chain, e.g. in 

order to sign both of the characters “zero” and “f”, WOTS-S builds a hash-chain of sixteen length. This 

would be a security compromise, however, in order to preserve security, WOTS-S uses two different key 

chains forward key and backward key. While signing a “zero” character, WOTS-S uses forward private 

key (fsk), whereas, while signing an “f” character, WOTS-S uses backward private key (bsk). WOTS-S 

uses fsk to sign an m in the range zero to seven; and bsk to sign an m in the range eight to f. Finally, while 

signing an m in the range zero to seven, WOTS-S simply appends the 16th hash of the corresponding bsk 

to the signatures; whereas, while signing an m in the range eight to f, WOTS-S simply appends the 16th 

hash of the corresponding fsk to the signatures. Table-4 differentiates WOTS-S from WOTS and WOTS+. 

Table 4: Signature creation: WOTS-S vs. WOTS and WOTS+ 
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4.2.1. Key Generation 

The private key consists of two sets forward private key and backward private key, each containing 99 

values (i.e. 198 values in total). All these values are generated from a seed, which is randomly selected. 

The size of seed should be 48-bytes (384-bits). The public key is generated by Computing SHA384 hash 

of each of the elements in the private key for 17 times. The hash output in each step is truncated in a way 

such that the size of output gradually decreases in each of the iteration (details are given in Algorithm-1). 

However, we exempt the last hash output from truncation. This way, we get the public key consisting of 

198 values in total, each value being 48-bytes long. Finally, these values are cryptographically 

compressed to get a single 48-bytes long value, which is treated as the ledger address of the user.  

4.2.2. Signature creation 

To start with, we will compute SHA384 hash of the transaction to be signed and just like WOTS scheme, 

append a checksum into it. We process hash of the transaction in its hexadecimal form. SHA384 generates 

the transaction-hash consisting of 96 hexadecimal symbols in total, whereas, checksum further appends 

three more hexadecimal symbols into it. In this way, we get 99 hexadecimal symbols in total. We already 

have two sets fsk and bsk each containing 99 values in it. We sign each of the hexadecimal symbols in 

hash of the transaction using the corresponding element of fsk and the corresponding element of bsk. Let 

xi be the ith hexadecimal symbol in hash of the transaction; If xi is less than 8 then, we will compute hash 

of fski for (16-xi) number of times, and, we will compute hash of bski for 16 times. However, if xi is not 

less than 8 then, the criteria will be different. In that case, we will compute hash of bski for (xi + 1) 

number of times, and, we will compute hash of fski for 16 times. While computing hashes of the sk 

elements, the hash-output will be truncated each time, following the same pattern given in Algorithm 1. 

Thus, at the end, we will get two signature-values against each of the hexadecimal symbols in the hash of 

transaction, i.e. we get 198 signature-values altogether. We denote these two sets of values as forward 
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signatures (fσ) and backward signatures (bσ). All these values jointly represent signatures on the given 

transaction. 

4.2.3. Signature verification 

To begin with, the verifier computes SHA384 hash of the transaction and appends checksum to it. This 

way, verifier gets 99 hexadecimal symbols. Verifier already knows signatures, which consists of 198 

values in total classified into two sets fσ and bσ. Each of the hexadecimal symbol in the transaction-hash 

has two signature values associated to it. Verifier computes a verification key vk, which, once again, 

consists of 198 values in total classified into two sets fvk and bvk. Each of the hexadecimal symbol in the 

transaction-hash allows verifier to compute the corresponding fvk and bvk values. Let xi be the ith 

hexadecimal symbol in hash of the transaction; If xi is less than 8 then, verifier will compute hash of fσi 

for (xi + 1) number of times, and, he will compute hash of bσi for just one time. However, if xi is not less 

than 8 then, the criteria will be different. In that case, verifier will compute hash of bσi for (16-xi) number 

of times, and, he will compute hash of fσi for just one time. While hashing the σ elements, the hash-output 

will be truncated each time, following the same pattern given in Algorithm 1. However, the very last 

hash-output will be exempted from truncation. Therefore, each of the vk-value will be 384-bit long in 

size. Now, both the sets, i.e. fvk and bvk, will be cryptographically compressed to finally generate a single 

48-byte value. This value must be already stored in the ledger (with sufficient funds allocated to it), 

otherwise the transaction will be rejected. 

4.3. Incorporating WOTS-S into distributed ledger 

This sub-section provides rules and pseudocodes for incorporating WOTS-S into a distributed ledger. 

Figure-1 explains structure of the transaction. Algorithms 4 - 6 provide pseudocodes for creating, 

crediting and debiting a wallet account, respectively. Algorithms 7 – 9 provide pseudocodes for 

transaction initiation, transaction verification, and updating wallet once transaction is accepted for 

mining. Figure-2 explains life-cycle of a transaction from initiation to its mining into the ledger. In the 

proposed distributed ledger, a new transaction will be processed in seven different steps. Here is a brief 

explanation of each of the phases (marked in Figure-2): 

1. Owner generates a new transaction (to spend his coins) and transmits to the network. 

2. Another peer (acting as verifier) compute hash of the transaction and append checksum into it. 

3. The hash of the transaction is manipulated as an array of hexadecimal symbols. 

4. Verifier computes verification-key (following Algorithm-3) using hash of the transaction and 

signatures of the transaction (submitted by the owner as a part of the transaction). Verifier also 

cryptographically compress the verification-key to get a 48-byte long value. 
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5. Verifier accesses the blockchain to read the corresponding unspent transaction outputs (XTXO) and 

compares the compressed verification key with the public-key already stored in the blockchain. 

Furthermore, the corresponding public-key must be having sufficient funds allocated to it. 

6. On a successful verification, the verifier stores the transaction into the pool of unconfirmed 

transactions. 

7. Finally, miner mines the unconfirmed transaction into the blockchain. 

 

Trx[0]: ID

Trx[1]: Time

Trx[2][1]: PrevBlockID

Trx[3][1]: PrevTrxID

Trx[4][1]: PrevIndex

Trx[5][1]: pk-Credit

Trx[6][1]: Amount-Credit

Trx[7][1]: Signatures

Trx[2][m]: PrevBlockID

Trx[3][m]: PrevTrxID

Trx[4][m]: PrevIndex

Trx[5][n]: pk-Credit

Trx[6][n]: Amount-Credit

Trx[7][m]: Signatures

Transaction ID Transaction Time Inputs Outputs Signatures

…

…

…

…

…

…

 

Figure-1: Structure of transaction in Proposed DL 
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Figure 2: Transaction processing using WOTS-S 
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Algorithm 1 Key Generation 
Input: Security Parameter (1384) 
Output: Private_Key, Public_Key 
1: Seed  {0,1}384 
2: X  Seed 
3: for a = 1  99 do 
4: X  SHA384(X) 
5: Forward_Private_Key[a] X 
6: X  X 
7: end for 
8: for a = 1  99 do 
9: X  SHA384(X) 
10: Backward_Private_Key[a] X 
11: X  X 
12: end for 
13: for a = 1  99 do 
14: X  SHA384(Forward_Private_Key[a]) 
15: j  1 
16: for b = 1  15 do 
17: X  SHA384(X) 
18: X  X.substring(1, X.length – j*24) 
19: X  X 
20: j  j + 1 
21: end for 
22: Forward_Public_Key[a] SHA384(X) 
23: end for 
24: for a = 1  99 do 
25: X  SHA384(Backward_Private_Key[a]) 
26: j  1 
27: for b = 1  15 do 
28: X  SHA384(X) 
29: X  X.substring(1, X.length – j*24) 
30: X  X 
31: j  j + 1 
32: end for 
33: Backward_Public_Key[a] SHA384(X) 
34: end for 
35: for a = 1  99 do 
36: All_Public_Key[a]  SHA384(Forward_Public_Key[a] + Backward_Public_Key[a]) 
37: end for 
38: for a = 1  99 do 
39: PK  PK + All_Public_Key[a]) 
40: end for 
41: Public_Key  SHA384(PK) 
42: Private_Key  Seed 
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Algorithm 2 Signature Creation 
Input: Transaction, Forward_Private_Key[1..96], Backward_Private_Key[1..96] 
Output: Sig_Part_One, Sig_Part_Two 
1: Trx_Hash[48]  SHA384(Transaction) 
2: Trx_Hex_Hash[96]  Trx_Hash[48] 
3: Trx_Hex_Hash[99]  Trx_Hex_Hash[96] + checksum 
4: for a = 1  99 do 
5: m  Trx_Hex_Hash[a] 
6: if 0  m  7 then 
7: X  Forward_Private_Key[a] 
8: Y  Backward_Private_Key[a] 
9: j  0 
10: for b = 1  (16 – m) do 
11: X  SHA384(X) 
12: X  X.substring(1, X.length – j*24) 
13: X  X 
14: j  j + 1 
15: end for 
16: else 
17: X  Backward_Private_Key[a] 
18: Y  Forward_Private_Key[a] 
19: j  0 
20: for b = 1  (m + 1) do 
21: X  SHA384(X) 
22: X  X.substring(1, X.length – j*24) 
23: X  X 
24: j  j + 1 
25: end for 
26: end if 
27: Sig_Part_One  Sig_Part_One + X 
28: j  0 
29: for b = 1  16 do 
30: Y  SHA384(Y) 
31: Y  Y.substring(1, Y.length – j*24) 
32: Y  Y 
33: j  j + 1 
34: end for 
35: Sig_Part_Two  Sig_Part_Two + Y 
36: end for 
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Algorithm 3 Signature Verification 
Input: Transaction, Sig_Part_One, Sig_Part_Two, Public_Key 
Output: Verified/Failed 
1: Trx_Hash[48]  SHA384(Transaction) 
2: Trx_Hex_Hash[96]  Trx_Hash[48] 
3: Trx_Hex_Hash[99]  Trx_Hex_Hash[96] + checksum 
4: pointer1 pointer2  1 
5: for a = 1  99 do 
6: m  Trx_Hex_Hash[a] 
7: if 0  m  7 then 
8: S  Sig_Part_One.substring(pointer1, (m + 1) * 24) 
9: j  0 
10: for b = 1  m do 
11: S  SHA384(S) 
12: S  S.substring(1, S.length – (16 – m + j) * 24) 
13: S  S 
14: j  j + 1 
15: end for 
16: Forward_Public_Key[a]   SHA384(S) 
17: S   Sig_Part_Two.substring(pointer2, 24) 
18: Backward_Public_Key[a]   SHA384(S) 
19: pointer1  pointer1 + (m + 1) * 24 
20: pointer2  pointer2 + 24 
21: else 
22: S  Sig_Part_One.substring(pointer1, (16 - m) * 24) 
23: j  0 
24: for b = 1  15 - m do 
25: S  SHA384(S) 
26: S  S.substring(1, S.length – (m + 1 + j) * 24) 
27: S  S 
28: j  j + 1 
29: end for 
30: Backward_Public_Key[a]   SHA384(S) 
31: S   Sig_Part_Two.substring(pointer2, 24) 
32: Forward_Public_Key[a]   SHA384(S) 
33: pointer1  pointer1 + (16 - m) * 24 
34: pointer2  pointer2 + 24 
35: end if 
36: end for 
36: for a = 1  99 do 
37: All_Public_Key[a]  SHA384(Forward_Public_Key[a] + Backward_Public_Key[a]) 
38: end for 
39: for a = 1  99 do 
40: PK  PK + All_Public_Key[a]) 
41: end for 
42: if SHA384(PK) == Public_Key then output: Verified else output: Failed 
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Algorithm 4 Create-wallet-account 
Inputs: Current-wallet 
Outputs: Updated-wallet 
1: (sk, pk)  WOTS-S.keyGeneration ( ) 
2: balance  0 
3: Create new entry into wallet with (sk, pk, balance) 
4: Print (pk) 
5: Output (“Account created”) and return 
6: Show-Error (“Account creation failed”) 

 

Algorithm 5 Credit-account 
Inputs: Credit-sk, Amount 
Outputs: Updated-Wallet 
1: If Credit-sk ϵ Wallet then 
2: balance = balance + Amount where sk = Credit-sk 
3: Else  
4: Show-Error (“Account not found”) 
5: End if 

 

Algorithm 6 Debit-account 
Inputs: sk, Amount 
Outputs: Updated-Wallet 
1: If sk ϵ Wallet then 
2: sk.balance = sk.balance - Amount 
3: Else  
4: Show-Error (“Account not found”) 
5: End if 

 

Algorithm 7 Initiate-transaction 
Inputs: Input-information, Output-information, Private-key (sk) 
Outputs: New-transaction 
1: Trx[1]← Current-time 
2: For i = 1 → number-of-inputs do: 
3: Trx[2][i].← previous-blockID 
4: Trx[3][i].← previous-trxID 
5: Trx[4][i].← previous-index 
6: End For 
7: For i = 1 → number-of-outputs do: 
8: Trx[5][i].← pk-to-be-credited 
9: Trx[6][i].← Amount 
10: End For 
11: For i = 1 → number-of-inputs do: 
12: Trx[7][i].← WOTS-S.sign(Trx, sk) 
13: End For 
14: Trx[0] ← SHA384 (Trx) 
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Algorithm 8 Verify-transaction 
Inputs: Transaction-to-be-verified (Trx) 
Outputs: Valid/Invalid 
1: Trx[1]=Current-time 
2: available-amount ← 0 
3: For i = 1 → number-of-inputs do: 
4: Read amount from ledger where: 
5: blockID == Trx[2][i] and trxID == Trx[3][i] and index == Trx[4][i] 
6: available-amount ← available-amount + amount 
7: End For 
8: amount-to-spend ← 0 
9: For i = 1 → number-of-outputs do: 
10: amount-to-spend ← amount-to-spend + Trx[6][i]. 
11: End For 
12: If amount-to-spend < available-amount then: 
13: Print (“In-sufficient funds”) and return 
14: End If 
15: For i = 1 → number-of-inputs do: 
16: If WOTS-S.verify(Trx, Trx[7]) == “Failed” then: 
17: Print (“Invalid”) and return 
18: End If 
19: End For 
20: Print (“Valid”) 

 

Algorithm 9 Update-wallet 
Inputs: Confirmed-transaction (Trx) 
Outputs: Updated-wallet 
1: For i = 1 → number-of-inputs do: 
2: Read pk into ledger-pk from ledger where: 
3: blockID == Trx[2][i] and trxID == Trx[3][i] and index == Trx[4][i] 
4: If ledger-pk ϵ wallet then: 
5: balance = 0 where pk = ledger-pk 
6: End If 
7: End For 
8: For i = 1 → number-of-outputs do: 
9: If Trx[5][i] ϵ wallet then: 
10: Set balance = balance + Trx[6][i] where pk = Trx[5][i] 
11: End If 
12: End For 

 

5. Formal definition of WOTS-S based Cryptocurrency 

This section formally defines a new cryptocurrency, created using our proposed signature scheme 

(WOTS-S). Two different HLPNs have been created, one for Bitcoin (Figure 3), and second for the 

proposed cryptocurrency (Figure 4). Both of the HLPNs formally define the rules of transaction 
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processing into the corresponding cryptocurrency. The HLPNs also differentiate role of a quantum 

adversary in Bitcoin and the proposed cryptocurrency. In case of Bitcoin, the adversary can successfully 

sign his tampered transaction and therefore, can steal coins of others. However, WOTS-S based 

cryptocurrency prevents adversary from signing the tampered transaction.  

5.1. Transaction processing and possible quantum-attack in Bitcoin 

In decentralized cryptocurrencies, the peers verify a new transaction and after sufficient number of 

verifications, the transaction is posted into the ledger by the miners. The HLPN in Figure-3 explains 

different steps involved in the verification of a new transaction. First, each new transaction must be 

referred by an old unspent transaction. The place 𝑅𝑒𝑓𝑉𝑒𝑟𝑇𝑟𝑥 contains transactions, which are referred 

by a valid past transaction; and token T1 denotes these transactions. The rules for both successful and 

unsuccessful reference verification are given in Eq. (1) and (2), respectively. 

Transaction 
Initiation

New Trx 
(T0)

Ref Trx Ver Succ

Blockchain
(BC)

O/P Amt Ver Succ

Fair Peers Area

Malicious Peer Area

Public Key 
Extraction

PK (Elliptic 
Curve Point)

Client Area

Ref Ver Trx
(T1)

Ref_O/P Ver 
Trx (T2)

ScriptSig ExecStack
(ST)

ScriptPub Exec Succ

BC Accepted 
Trx (AccTr)

Ref Trx Ver Fail

Ignored Trx
(IgnTr)

O/P Amt Ver Fail

BC

BC

ScriptPub Exec Fail

Sig

T0

Inverse(ECP)Secret Key
(SecKey)

Fake Trx Init

 
Figure 3: HLPN for classical cryptocurrencies (Bitcoin) 

 

Table 5: Data-types mapping to places for Bitcoin’s HLPN 

Place Description 

∅(𝑁𝑒𝑤𝑇𝑟𝑥) {𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝑆𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝑂𝑢𝑡𝐴𝑑𝑟𝑒𝑠𝑠} 

∅(𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛) ℙ{𝑇𝑟𝑥𝐼𝐷, 𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑈𝑛𝑠𝑝𝑒𝑛𝑡𝐴𝑚𝑡, 𝑆𝑐𝑟𝑖𝑝𝑡𝑃𝑢𝑏𝐾𝑒𝑦, 𝑆𝑡𝑎𝑡𝑢𝑠} 
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∅(𝑅𝑒𝑓𝑉𝑒𝑟𝑇𝑟𝑥) {𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝑆𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝑂𝑢𝑡𝐴𝑑𝑟𝑒𝑠𝑠} 

∅(𝑅𝑒𝑓𝑂𝑃𝑉𝑒𝑟𝑇𝑟𝑥) {𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝑆𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝑂𝑢𝑡𝐴𝑑𝑟𝑒𝑠𝑠} 

∅(𝐼𝑔𝑛𝑜𝑟𝑒𝑑𝑇𝑟𝑥) ℙ{𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝑆𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝑂𝑢𝑡𝐴𝑑𝑟𝑒𝑠𝑠} 

∅(𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑𝑇𝑟𝑥) ℙ{𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝑆𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝑂𝑢𝑡𝐴𝑑𝑟𝑒𝑠𝑠} 

∅(𝑆𝑡𝑎𝑐𝑘) (𝑆𝑇𝐴𝐶𝐾) 

∅(𝑃𝐾_𝐸𝐶𝑃) (𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐 𝐶𝑢𝑟𝑣𝑒 𝑃𝑜𝑖𝑛𝑡) 

∅(𝑆𝑒𝑐𝑟𝑒𝑡𝐾𝑒𝑦) (𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐 𝐶𝑢𝑟𝑣𝑒 𝑃𝑜𝑖𝑛𝑡) 

 
𝑹 (𝑹𝒆𝒇𝑻𝒓𝒙𝑽𝒆𝒓𝑺𝒖𝒄𝒄)  =  (∃ 𝑏 ∈  𝐵𝐶 ⦁ (𝑏[1]  =  𝑇0 [2]  ∧  𝑏 [5]  =  ‘𝑈𝑛𝑠𝑝𝑒𝑛𝑡’))  ∧ 

(𝑇1′ =  𝑇1 ∪  {𝑇0[1], 𝑇0[2], 𝑇0[3], 𝑇0[4], 𝑇0[5]}) 

(1) 

𝑹(𝑹𝒆𝒇𝑻𝒓𝒙𝑽𝒆𝒓𝑭𝒂𝒊𝒍)  =  (∀ 𝑏 ∉  𝐵𝐶 ⦁ (𝑏[1]  =  𝑇0 [2])  ∨   (∃ 𝑏 ∈  𝐵𝐶 ⦁ (𝑏[1]  =  𝑇0 [2]  ∧  

𝑏[5]  ≠  ‘𝑈𝑛𝑠𝑝𝑒𝑛𝑡’))  ∧  (𝐼𝑔𝑛𝑇𝑟′ =  𝐼𝑔𝑛𝑇𝑟 ∪  {𝑇0[1], 𝑇0[2], 𝑇0[3], 𝑇0[4], 𝑇0[5]}) 

(2) 

 

Secondly, the total amount to be spent must not exceed the available amount. The place 𝑅𝑒𝑓_𝑂𝑃𝑉𝑒𝑟𝑇𝑟𝑥 

stores the transactions which qualify both of the checks, valid reference and sufficient available funds and 

token T2 denotes such transactions. Eq. 3 and 4 define rules for availability of the funds. 

𝑹(𝑶𝒖𝒕𝑨𝒎𝒕𝑽𝒆𝒓𝑺𝒖𝒄𝒄)  =  (∃ 𝑏 ∈  𝐵𝐶 ⦁ (𝑏[1]  =  𝑇1 [2]  ∧  𝑏[3]  >=  𝑇1[4])  ∧  

(𝑇2′ =  𝑇2 ∪  {𝑇1[1], 𝑇1[2], 𝑇1[3], 𝑇1[4], 𝑇1[5]}) 

(3) 

𝑹(𝑶𝒖𝒕𝑨𝒎𝒕𝑽𝒆𝒓𝑭𝒂𝒊𝒍)  =  (∃ 𝑏 ∈  𝐵𝐶 ⦁ (𝑏[1]  =  𝑇1 [2]  ∧  𝑏 [3]  <  𝑇1[4]))  ∧  

(𝐼𝑔𝑛𝑇𝑟′ =  𝐼𝑔𝑛𝑇𝑟 ∪  {𝑇1[1], 𝑇1[2], 𝑇1[3], 𝑇1[4], 𝑇1[5]}) 

(4) 

 

The owner proves his ownership over the coins with the help of a script known as ‘scriptsig’. Another 

script namely, ‘scriptpubkey’ is already stored in the blockchain. During verification process, the verifier 

executes both of the scripts. First, verifier executes scriptsig and stores results into a stack (Eq. 5). The 

second script (i.e. scriptpubkey) uses output of scriptsig as input. The output of the second script must be 

equal to one, otherwise transaction verification will be failed. (See Eq. 6 and 7).  

𝑹(𝑺𝒄𝒓𝒊𝒑𝒕𝑺𝒊𝒈𝑬𝒙𝒆𝒄)  =  (𝑆𝑇′ =  𝑆𝑇 ∪  𝐸𝑥𝑒𝑐𝑢𝑡𝑒(𝑇2[3])) (5) 

𝑹(𝑺𝒄𝒓𝒊𝒑𝒕𝑷𝒖𝒃𝑬𝒙𝒆𝒄𝑺𝒖𝒄𝒄)  =  (∃ 𝑏 ∈  𝐵𝐶 ⦁ (𝑏[1]  =  𝑇2[2]  ∧  𝐸𝑥𝑒𝑐𝑢𝑡𝑒(𝑏[4], 𝑆𝑇) = 1)  ∧  

(𝐴𝑐𝑐𝑇𝑟′ = 𝐴𝑐𝑐𝑇𝑟𝑥 ∪  {𝑇2[1], 𝑇2[2], 𝑇2[3], 𝑇2[4], 𝑇2[5]})  

(6) 

𝑹(𝑺𝒄𝒓𝒊𝒑𝒕𝑷𝒖𝒃𝑬𝒙𝒆𝒄𝑭𝒂𝒊𝒍)  =  (∃ 𝑏 ∈  𝐵𝐶 ⦁ (𝑏[1]  =  𝑇2[2]  ∧  𝐸𝑥𝑒𝑐𝑢𝑡𝑒(𝑏[4], 𝑆𝑇) ≠ 1))  ∧  

(𝐼𝑔𝑛𝑇𝑟′ = 𝐼𝑔𝑛𝑇𝑟 ∪  {𝑇2[1], 𝑇2[2], 𝑇2[3], 𝑇2[4], 𝑇2[5]}) 

(7) 
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The HLPN also highlights the quantum-attack scenario on Bitcoin. A quantum adversary being able to 

deduce private key of the owner can initiate a fraudulent transaction. The adversary exploits scriptsig to 

deduce the private key (Eq. 8 – 9). The fraudulent transaction can deprive the real owner from his/her 

legitimate assets (Eq. 10)  

𝑹(𝑷𝒖𝒃𝒍𝒊𝒄𝑲𝒆𝒚𝑬𝒙𝒕𝒓𝒂𝒄𝒕𝒊𝒐𝒏)  =  (𝐸𝐶𝑃′ =  𝐸𝐶𝑃 ∪  𝑃𝐾𝐸𝑥𝑡𝑟𝑎𝑐𝑡(𝑇0[3])) (8) 

𝑹(𝑰𝒏𝒗𝒆𝒓𝒔𝒆𝑬𝑪𝑷)  =  (𝑆𝑒𝑐𝐾𝑒𝑦′ =  𝑆𝑒𝑐𝐾𝑒𝑦 ∪  𝑆ℎ𝑜𝑟𝐴𝑙𝑔𝑜(𝐸𝐶𝑃)) (9) 

𝑹(𝑭𝒂𝒌𝒆𝑻𝒓𝒙𝑰𝒏𝒊𝒕)  =  (𝑇0′ =  𝑇0 ∪  { 𝑇0[1], 𝑇0[2], 𝑆𝑐𝑟𝑖𝑝𝑡𝑆𝑖𝑔𝐺𝑒𝑛(𝑆𝑒𝑐𝐾𝑒𝑦), 𝑇0[4], 𝑇0[5]′ }) (10) 

 

5.2. Transaction processing in the proposed cryptocurrency 

The proposed WOTS-S based ledger adopts hash-based rules for signature verification. Verifier computes 

hash of the transaction (Eq. 11), and follows the signatures (provided by the owner) to generate the 

corresponding public key (Eq. 12). Then verifier compresses the public key to generate a verification key 

(Eq. 13) The verification key must already be stored in the ledger, otherwise transaction verification will 

be failed (Eq. 14 – 15). 

𝑹(𝑻𝒓𝒙𝑯𝒂𝒔𝒉𝒊𝒏𝒈)  =  (𝑇𝑟𝐻𝑎𝑠ℎ′ =  𝑇𝑟𝐻𝑎𝑠ℎ ∪  𝑆𝐻𝐴384(𝑇2[1], 𝑇2[2], 𝑇2[3], 𝑇2[4], 𝑇2[5])) (11) 

𝑹(𝑷𝒖𝒃𝒍𝒊𝒄𝑲𝒆𝒚𝑮𝒆𝒏)  =  (𝑃𝐾_𝑆𝑒𝑡′ =  𝑃𝐾_𝑆𝑒𝑡 ∪  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑃𝑢𝑏𝑙𝑖𝑐𝐾𝑒𝑦(𝑇2[6])) (12) 

𝑹(𝑽𝒇_𝑷𝑲_𝑮𝒆𝒏)  =  (𝑃𝐾_𝑉𝑓′ =  𝑃𝐾_𝑉𝑓′ ∪  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑉𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑃𝐾(𝑃𝐾_𝑆𝑒𝑡)) (13) 

𝑹(𝑺𝒊𝒈𝑽𝒆𝒓𝑺𝒖𝒄𝒄)  =  (𝑃𝐾_𝑉𝑓 = 𝑇2[3])  ∧  𝐴𝑐𝑐𝑇𝑟𝑥′

= 𝐴𝑐𝑐𝑇𝑟𝑥 ∪  {𝑇2[1], 𝑇2[2], 𝑇2[3], 𝑇2[4], 𝑇2[5], 𝑇2[6]} 
(14) 

𝑹(𝑺𝒊𝒈𝑽𝒆𝒓𝑭𝒂𝒊𝒍)  =  (𝑃𝐾_𝑉𝑓 ≠ 𝑇2[3])  ∧  𝐼𝑔𝑛𝑇𝑟𝑥′
= 𝐼𝑔𝑛𝑇𝑟𝑥 ∪  {𝑇2[1], 𝑇2[2], 𝑇2[3], 𝑇2[4], 𝑇2[5], 𝑇2[6]} 

(15) 
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Figure 4: HLPN for our proposed cryptocurrency (with attack scenario) 

 

Table 6: Data-types mapping to places for our proposed scheme’s HLPN 

Place Description 

∅(𝑁𝑒𝑤𝑇𝑟𝑥) {𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝐷𝑏𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝐶𝑟𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑇𝑟𝑥𝑆𝑖𝑔} 

∅(𝐵𝑙𝑜𝑐𝑘𝑐ℎ𝑎𝑖𝑛) ℙ{𝑇𝑟𝑥𝐼𝐷, 𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑈𝑛𝑠𝑝𝑒𝑛𝑡𝐴𝑚𝑡, 𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑆𝑡𝑎𝑡𝑢𝑠} 

∅(𝑅𝑒𝑓𝑉𝑒𝑟𝑇𝑟𝑥) {𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝐷𝑏𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝐶𝑟𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑇𝑟𝑥𝑆𝑖𝑔} 

∅(𝑅𝑒𝑓𝑂𝑃𝑉𝑒𝑟𝑇𝑟𝑥) {𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝐷𝑏𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝐶𝑟𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑇𝑟𝑥𝑆𝑖𝑔} 

∅(𝐼𝑔𝑛𝑜𝑟𝑒𝑑𝑇𝑟𝑥) ℙ{𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝐷𝑏𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝐶𝑟𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑇𝑟𝑥𝑆𝑖𝑔} 

∅(𝐴𝑐𝑐𝑒𝑝𝑡𝑒𝑑𝑇𝑟𝑥) ℙ{𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝐷𝑏𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝐶𝑟𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑇𝑟𝑥𝑆𝑖𝑔} 

∅(𝑆𝐻𝐴384) (384 − 𝑏𝑖𝑡 𝑙𝑒𝑛𝑔𝑡ℎ 𝑠𝑡𝑟𝑖𝑛𝑔) 

∅(𝑃𝐾_𝑆𝑒𝑡) (48𝑥64𝑥2 𝑏𝑦𝑡𝑒 𝑠𝑡𝑟𝑖𝑛𝑔) 

∅(𝑃𝐾_𝑉𝑓) (48 𝑏𝑦𝑡𝑒 𝑠𝑡𝑟𝑖𝑛𝑔) 

∅(𝑇𝑎𝑚𝑝𝑒𝑟𝑒𝑑𝑇𝑟𝑥) {𝑇𝑟𝑥𝑇𝑖𝑚𝑒, 𝑅𝑒𝑓𝑇𝑟𝑥𝐼𝐷, 𝐷𝑏𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦, 𝑂𝑢𝑡𝐴𝑚𝑡, 𝐶𝑟𝐴𝑐𝑐𝑃𝑢𝑏𝐾𝑒𝑦} 

∅(𝑆𝑒𝑐𝐾𝑒𝑦𝑆𝑢𝑏𝑠𝑒𝑡) (𝐴 𝑝𝑟𝑜𝑝𝑒𝑟 𝑠𝑢𝑏𝑠𝑒𝑡 𝑜𝑓 48𝑥64𝑥2 𝑏𝑦𝑡𝑒 𝑠𝑡𝑟𝑖𝑛𝑔) 
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If adversary tampers the transaction, the hash of the transaction will change and therefore, signature will 

sustain no more to be valid (Eq. 16, 17). WOTS-S based signatures do not allow adversary to deduce 

enough knowledge about the private key, required to sign the tampered transaction (Eqs. 18, 19). 

𝑹(𝑻𝒓𝒙𝑻𝒂𝒎𝒑𝒆𝒓𝒊𝒏𝒈)  =  (𝑇𝑇𝑟′ =  𝑇𝑇𝑟 ∪  {𝑇0[1], 𝑇0[2], 𝑇0[3], 𝑇0[4], 𝑇0[5]′, 𝑇0[6]}) (16) 

𝑹(𝑻𝑻𝒓𝑯𝒂𝒔𝒉𝒊𝒏𝒈)  =  (𝑇𝑇𝑟𝐻𝑎𝑠ℎ′ 

=  𝑇𝑇𝑟𝐻𝑎𝑠ℎ ∪  𝑆𝐻𝐴384(𝑇𝑇𝑟[1], 𝑇𝑇𝑟[2], 𝑇𝑇𝑟[3], 𝑇𝑇𝑟[4], 𝑇𝑇𝑟[5])) 
(17) 

𝑹(𝑺𝒆𝒄𝑲𝒆𝒚𝑬𝒙𝒕)  =  (𝑆𝑆𝐾′ =  𝑆𝑆𝐾 ∪  𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑆𝑒𝑐𝐾𝑒𝑦(𝑇0[6]))  (18) 

𝑹(𝑻𝑻𝒓𝑺𝒊𝒈𝑮𝒆𝒏)  =  (𝑇𝑇𝑟[6]′ =  𝑇𝑇𝑟[6]  ∪  𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑆𝑖𝑔(𝑇𝑇𝑟𝐻𝑎𝑠ℎ, 𝑆𝐾)) // SK is not available (19) 

 

6. Security and performance analysis 

This section compares WOTS-S with existing state of the art distributed ledgers IoTA and QRL. 

Subsection 6.1 provides a formal security proof of WOTS-S. Subsection 6.2 compares signature size of 

WOTS-S with IoTA and QRL. Finally, Subsection 6.3 compares computational efficiency of WOTS-S 

with WOTS (IoTA) and existing variants of WOTS, like WOTS+ (QRL).  

6.1. Security analysis of WOTS-S 

First we define security preliminaries, and then we will evaluate and prove security of WOTS-S. 

6.1.1. Preliminaries: 

WOTS-S is a hash-based scheme, which uses a hash function as its building block. The underlying hash 

function of WOTS-S must be committing an appropriate level of security. The three fundamental 

characteristics of a secure hash function include, preimage resistance, second pre-image resistance, and 

collision resistance. Equations 20 – 22 explains the three characteristics, respectively. A pre-image 

resistant hash function does not allow an adversary (A) to deduce an input ‘x’ which corresponding output 

‘y’ is known to him. A second pre-image resistant hash function does not allow the adversary to deduce 

an input x′ corresponding to an output ‘y’ when adversary already knows another input ‘x’ corresponding 

to the same output i.e. ‘y’. A collision-resistant hash function does not allow the adversary to find any 

two inputs ‘x’ and x′ which are not equal but their corresponding output is equal.  

𝑃𝑟 [𝑦 ←  ℎ (𝑥), 𝑥ᇱ ←  𝐴 (𝑦): 𝑥 =  𝑥ᇱ] <∈     (20) 

𝑃𝑟 [𝑦 ←  ℎ (𝑥), 𝑥′ ←  𝐴 (𝑥, 𝑦): 𝑥 ≠  𝑥′ ᴧ 𝑦 =  ℎ (𝑥′)]  <∈   (21) 

𝑃𝑟 [𝑥, 𝑥′ ←  𝐴: 𝑥 ≠  𝑥′ ᴧ ℎ (𝑥)  =  ℎ (𝑥′)]  <∈    (22) 

The classical and quantum security levels offered by a hash function depend upon output length (n) of 

that function [31].  The quantum-based Grover’s search algorithm [43] reduces post-quantum security 
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level of the hash functions. An n-sized hash function is capable of providing n-bit classical and n/2-bit 

post- quantum security against pre-image and second pre-image based attacks. However, collision 

resistant is relatively a complex security requirement and hence, relatively harder to achieve. Therefore, 

an n-sized hash function provides n/2-bit classical and n/3-bit post-quantum security against collision-

based attacks [39]. Table-7 lists down the classical and post-quantum security levels of the common hash 

functions. 

Table7: Hash functions security levels [31, 39] 

Output length Classical security level (bit) Quantum security level (bit) 

 Pre-image/ 2nd Pre-image Collision Pre-image/2nd Pre-image Collision 

160-bit 160 80 80 53 

256-bit 256 128 128 85 

384-bit 384 192 192 128 

512-bit 512 256 256 171 

 

6.1.2. Security properties of WOTS-S 

WOTS-S is a quantum-secure one time signature scheme, which achieves integrity, authentication, and 

non-repudiation. The public key is a set of post-images, which corresponding pre-images are known 

solely to the owner of the public key. Any assets allocated to a public key are owned by the person 

possessing knowledge of the corresponding private key. An effort to spend the assets without the 

appropriate private key, will be noticeable and rejected by the peers (integrity and authentication). 

Similarly, the assets once spent with the help of the appropriate private key will no more be claimable by 

the spender (non-repudiation). 

We will prove that WOTS-S is an existentially unforgeable digital signature scheme under adaptive 

chosen plaintext attack (CPA) model. Our proof reduces security of WOTS-S to the onewayness of its 

underlying hash function.  

6.1.3. Formal security proof of WOTS-S 

This section formally proves that WOTS-S is existentially unforgeable under CPA) model as long as the 

underlying hash function is a one-way hash function. WOTS-S is a triple (KEYGEN, SIGN, VERIFY); 

KEYGEN is a key generation algorithm which takes a security parameter (n) as input and outputs a key 

pair (SK, PK), where, both SK and PK are sets with |SK| = |PK| = (n/4)*2. KEYGEN generates a hash-

chain consisting of seventeen hash iterations in order to transform an sk-value into the corresponding pk-
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value. SIGN takes a message (M) and a private key SK = {(sk1 
f, sk1

b), (sk2 f, sk2
b) … (sk n/4 f, sk n/4

b)} as 

input and outputs signatures of M, i.e. σM = {(σ1 f, σ1
b), (σ2 f, σ2

b) … (σ n/4 f, σ n/4
b)}. SIGN distributes M as 

(m1, m2, m3 … mn/4) and signs each mi individually. Each of the σi is some of the middle value of the 

corresponding hash-chain such that: 

σi 
f = H16-mi (ski 

f); σi 
b = H16 (ski 

b) for 0  mi  7, and 

σi 
f = H16 (ski 

f); σi 
b = Hm+1 (ski 

b) for 8  mi  15 

VERIFY takes M, σM, and PK as input and outputs either TRUE or FALSE. VERIFY uses (mi, i) pairs to 

complete each of the corresponding hash-chain. VERIFY compares final value of each of the hash-chain 

to the corresponding pki and outputs TRUE if and only if each of the final hash-chain result matches the 

corresponding pk-value. 

Existential unforgeability of WOTS-S: 

KEYGEN generates a new key pair (SK, PK). A signing oracle O having knowledge of the private key 

(SK), responds the forger’s queries. Forger FOR can submit at most one query to O. FOR has knowledge 

of PK. Upon receiving a query from FOR, O must return valid signatures of the queried message Mq (i.e. 

Mq). The challenge for the FOR is to return a message/signature pair (Mo, Mo) such that Mo are valid 

signatures of Mo whereas, Mo  Mq. WOTS-S is existentially unforgeable under CPA model if the 

probability that the FOR wins the above game in a time t, is at most . We formally write it as, WOTS-S 

is a (t, , 1)-existentially unforgeable signature scheme. 

The security proof: 

This section formally proves that the security of WOTS-S is a security reduction of its underlying hash 

function. Let H = {h: (0,1)*  (0,1 )n} be a family of secure hash functions, and ADV be an adversary that 

breaks onewayness of the functions in H. The ADV takes an image y as input such that, y = h(x) and x = 

(0, 1)n. The challenge for ADV is to return a pre-image xADV such that, xADV = x. Algorithm-10 explains 

that how ADVonewayness can exploit FORWOTS-S to win the game. ADVonewayness calls the KEYGEN algorithm 

to generate a key pair (SK, PK). The PK is of the form PK = {(pk1 
f, pk1

b), (pk2 f, pk2
b) … (pk n/4 f, pk n/4

b)}. 

ADVonewayness alters a randomly chosen element (pkf
) of the public key (Lines 2, 3). Then ADVonewayness 

runs the forger FORWOTS-S. When FORWOTS-S queries a message M then, ADVonewayness either returns valid 

signature () of M or aborts the algorithm (Line 5). When FORWOTS-S returns a message/signature pair 

(M, M) to the ADVonewayness then, depending upon the value of m, either ADVonewayness returns the 

challenged pre-image or aborts the algorithm (Line 6). 
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Algorithm 10: ADVonewayness 

Input: Security parameter n, a one-way hash-function h, a post-image y such that y=h(?), an adversary 

ADV  to break onewayness of h, a forger FOR to break WOTS-S   

Output: an x such that h(x) = y 

1. Generate a new WOTS-S key pair (SK, PK) 

2. Randomly choose a   {1,…,n/4} 

3. Generate a random x and alter pk 
f as h(x[0,n/128)) 

4. Run forger FOR 

5. When FOR asks for a signature-query on a message M i.e. (m1,…,mn/4) then: 

a. If 1  m  7 then return fail  

b. Generate  on M and respond to FOR as (M,M) 

6. When FOR return an (M,M) pair then 

a. If M is a valid signature of M then 

i. If m = 0 or 8  m  15 then return fail 

ii. Return SIGNWOTS-S
(m  - 1) (M

 ) 

7. In any other cases return fail 

 

For the adversary to be successful, he must 1) be able to respond forger’s query [step 5b], 2) receive a 

valid message/signature pair from the forger, and 3) be able to generate the challenged pre-image from 

message-signature pair retuned by the forger [step 6a]. Because the success probabilities of both the steps 

(5b and 6a) are non-zero, therefore, the success probability of the forger must be negligible. A non-

negligible success probability of forger means a non-negligible success probability of adversary, which is 

impossible because ‘h’ is a one-way hash function. 

6.2. Signature size in WOTS-S 

The signature size in WOTS-S, may be as less as 0.58 KB or as greater as 2.6 KB. Thus the average 

signature size in WOTS-S is 1.6 KB, which is less than both IoTA and the QRL. IoTA uses the signature 

scheme “WOTS”, which signature size (for 128-bit post-quantum security), is 4.6 KB. However, because 

IoTA has a tryte-based implementation, therefore IoTA’s signature size is 3.9 KB, which is somehow less 

than the normal WOTS size. QRL uses WOTS+, which signature size is 2.1 KB. Thus WOTS-S achieves 

59% and 24% reductions in signature sizes than IoTA and QRL respectively. Figure-5 provides a 

comparison of signature sizes of WOTS (IoTA) and its popular variants including WOTS+ (QRL). 
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Figure 5: Signature sizes for 128-bit post-quantum security 

6.3. Executional efficiency evaluation of WOTS-S 

WOTS-S in not only a compact but also an efficient variant of WOTS scheme. The implementation 

results reveal that WOTS-S offers 70% and 51% reductions in key-generation time as compared to 

WOTS+ and WOTS_Buchmann, respectively. Furthermore, WOTS-S offers 63% and 29% reduction in 

signature creation time as compared to WOTS+ and WOTS_Buchmann, respectively. For our 

experiments, we used a test bed consisting of an Intel core i5 CPU (2.4 GHz) with 4GB RAM, running 

Windows 8.1 32-bit release. We used Python language with PyCharm IDE for implementing WOTS-S 

and the benchmarked schemes. Figure-6 provides a comparison of execution times for key generation, 

signature creation, and signature verification algorithms. Figures 7 – 9 reveal execution times for the three 

algorithms for a number of function calls (up to 500).   
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Figure 6: Time for key generation, signature creation and verification (single function call) 
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Figure 7: Key generation time (multiple function calls) 
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Figure 8: Signature creation time (multiple function calls) 
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Figure 9: Signature verification time (multiple function calls) 

 

7. Conclusions and Future Work 

In this paper, we have proposed WOTS-S, which is a new variant of the popular hash-based OTS 

scheme WOTS. The proposed signature scheme is customized particularly for post-quantum 

cryptocurrencies. Since almost all existing cryptocurrencies use ECDSA, which will no longer be 

secure once quantum computers are available at large scale. Therefore, it is imperative to design 

quantum resistant ledger, which can resist attacks from a quantum computer. Hence, the very recently 

proposed popular cryptocurrencies, IoTA and QRL, have switched from ECDSA to WOTS or some 

of its variants. Although hash based signature schemes are a good alternate of ECDSA, a key 

limitation is the relatively larger signature sizes. WOTS-S offers reduced signature sizes as compared 

to WOTS and its previously proposed variant, including WOTS (Buchmann) and WOTS+. Our 

implementation reveals that WOTS-S is also computationally-efficient than both variants of WOTS. 

Furthermore, the previously proposed variants of WOTS reduce signature sizes with the help of 
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randomizations and bitmasks, which are expensive. On the other hand, WOTS-S is based on collision 

resistance hash functions and avoids bitmasks. In future, we will use our proposed compact signature 

scheme into the blockchain technology beyond cryptocurrencies. Internet of Energy (IoE) is one of 

the potential research areas for year 2020 and onwards. We will use WOTS-S to design blockchain-

based solutions for IoE scenarios. WOTS-S being an efficient OTS scheme, is suitable for the 

distributed ledgers deployed into IoE environments. 
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