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Abstract—Multi-label classification has attracted increasing attention for use in various application scenarios, such as medical diagnosis and 

semantic annotation. A large number of algorithms have been proposed for multi-label classification where many are ensemble-based. However, 
these ensemble-based methods usually employ bagging schemes for ensemble construction, with comparatively few stacked ensembles for multi-
label classification. Existing research on stacked ensemble schemes remains active, but several issues remain such as (1) little has been done to 
learn the weights of classifiers for combined classifier selection; (2) pairwise label correlations is not investigated sufficiently to improve 
classification performance. To address these issues, we propose a novel approach that simultaneously exploits label correlations and the process 
of learning classifier weights to improve the existing stacked ensemble schemes. First, we introduce a weighted stacked ensemble for multi-label 
classification and use sparsity for regularization to facilitate classifier selection and ensemble construction. Second, we consider pairwise label 
correlations for assigning high similar weights to improve the classification performance. Finally, we develop an optimization algorithm based 

on the accelerated proximal gradient and the block coordinate descent techniques to find the optimal solution efficiently. Extensive experiments 
on publicly available datasets and real Cardiovascular and Cerebrovascular Disease datasets demonstrate that our proposed algorithm outperforms 
related state-of-the-art methods. 

 
Keywords—multi-label classification, stacked ensemble, label correlation, base classifier selection, regularization via sparsity 

1. Introduction 

Multi-label learning has been widely applied in various research areas, such as text categorization [1], semantic annotation [2] 

and medical diagnosis [3], where each example can be associated with multiple class labels simultaneously. Different from single-

label learners, multi-label methods can be affected by intrinsic latent label correlations. For example, a patient with high blood 

pressure is more likely to develop a heart disease than one with normal blood pressure but is less likely to develop a neuromuscular 

disease [4]. 

A significant number of algorithms have been proposed to solve multi-label classification problems [5,6]. These algorithms can 

be divided into two categories [7], namely problem transformation methods and algorithm adaptation methods. The first category 

transforms a multi-label classification problem into either several independent binary classification problems or one multi-class 

classification problem. Typical algorithms in this category include Binary Relevance (BR) [8], Classifier Chains [9] and Label 

Powerset (LP) [10,11]. The second category extends a specific learning algorithm to process multi-label data where MLKNN [12], 

ML-DT [13], and Rank-SVM [14] are well known algorithms in this category. Despite the success, the aforementioned algorithms 
are still subject to limitations such as correlations among labels, class imbalance, and high dimensionality. As a result, these 

algorithms may exhibit poor classification performance in real-world tasks. 

Ensemble-based methods have drawn considerable attention by combining individual learners from heterogeneous or 

homogeneous models to obtain a joint learner that improves the performance and reduces overfitting problems [15,16]. Some of 

the benchmark work about ensemble multi-label classification was published in recent years [16,17,18,19,20]. In general, these 

methods usually employ bagging schemes for ensemble construction, where some of them utilize bagging to generate a diversity 

of classifiers and then combine the predictions of the base classifiers by majority voting. This ensemble construction predicts a 

new instance by averaging the confidence values of all the classifiers for each label, rather than capturing the optimal weights to 

different labels, and it neglects the effect of local pairwise label correlation.  

To the best of our knowledge, few stacked ensembles for multi-label classification have been proposed to overcome the 

limitation in bagging-based ensembles. Multi-label Stacking (MLS) [21] can be viewed as a representative of the stacked ensemble 
technique, where it first trains independent binary classifiers for each label and uses these predictions as input into a meta-level 

learning model. Then, stacked combination schemes are generated by a function (a meta-level classifier) which outputs the final 

prediction of the ensemble. Although MLS considers the global correlations among labels at the meta-level, it neglects the effect 

of local pairwise label correlation. Moreover, existing stacked ensemble methods do not take into account classifier weights for 

combined classifier selection. 

To alleviate the aforementioned problems, we simultaneously exploit and utilize the advantage of a weighted stacked ensemble 

and pairwise label correlations to overcome the limitations of existing stacked ensemble schemes, which leads to a novel algorithm 

named Multi-Label classification with Weighted classifier selection and Stacked Ensemble (MLWSE). In the MLWSE, different 
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weights are assigned to base classifiers for different class labels, and any two strongly correlated class labels can share high similar 

weights than two uncorrelated or weakly correlated ones. Unlike the existing stacked ensemble schemes, the MLWSE not only 

applies sparsity as regularization for classifier selection and ensemble construction, but also learns label meta-level specific features 

to address those well-known issues in multi-label classification. 

In summary, our contributions are highlighted as follows: 
1) We propose a novel weighted stacked ensemble scheme named MLWSE for multi-label classification via the sparsity 

regularization to facilitate classifier selection and ensemble construction, which can use any multi-label classifier as its base 

classifiers. 

2) We simultaneously exploit the classifier weights and pairwise label correlations to select label meta-level specific features in 

MLWSE, which can be considered a label meta-level specific features selection method. 

3) The proposed approach was applied to a real-world Cardiovascular and Cerebrovascular Disease dataset, and we 

demonstrated that our approach would be able to effectively assist clinicians with disease diagnosis.  

The remainder of the paper is organized as follows. Section 2 reviews related work about ensembles of multi-label classification. 

Section 3 presents our MLWSE approach. Section 4 reports the experimental results and analysis. Section 5 discusses the issues 

related to our approach. Finally, the conclusions are drawn in Section 6.  

2. Related Work 

In this section, we review state-of-the -art ensemble methods for multi-label classification, and provide an overview of weighted 

ensembles of multi-label classification. 

2.1 Ensemble of Multi-label Classification 

Ensembles of multi-label classification are developed on top of the problem transformation or algorithm adaptation methods [5]. 

The method aims to overcome the drawbacks of single multi-label classifiers by constructing performance and diverse base 

classifiers. In this section, we mainly focus on ensemble construction in multi-label classification in conjunction with classifier 

combination strategies. 

2.1.1  Bagging Combination Scheme 

Ensemble of Binary Relevance classifiers (EBR) [22] and Ensemble of Label Powerset classifiers (ELP) [23] are two 

representative algorithms under the bagging framework.  

In EBR, each BR classifier is obtained from a random sub-sample of the training dataset, and can effectively improve the 

performance of BR owing to the diversity among these classifiers. However, EBR does not consider the correlation information 

among the different labels, which is critical for many applications in which the semantics conveyed by different labels are 

correlated. For mining label correlation, Read et al. proposed in [22] the Ensemble of Classifier Chains (ECC) by using multiple 

CC as base classifier, where each CC is learned using a random subset of the training instances. ECC takes into account correlations 

among labels by augmenting the feature space of each classifier with the label predictions of previous classifiers. Although the 

diversity in ECC is generated by using different chains and by selecting random subsets of instances, it risks selecting sub-optimal 

chain ordering, which could adversely affect the prediction performance.  

Similar to the EBR models, ELP is proposed by combining several LP classifiers, which uses bagging to generate diverse 

classifiers and then combines the predictions of the base classifiers by majority voting. Because the LP method generates a single-

label dataset with a different class for each different combination of labels, this means that ELP label sets are usually associated 

with only a few examples, which may lead to an imbalanced dataset and complicate the learning process. Other approaches to 

address the class-imbalance problem involved ensemble methods based on LP; for example, the Ensemble of Pruned Sets (EPS) 

method [23] was proposed to overcome class-imbalance problems by pruning infrequently occurring label sets. The RAndom k-

labEL (RAkEL) method [24] selects 𝑛 random k-labels and learns 𝑛 LP classifiers to reduce the sensitivity of the model to class-

imbalance, where the base classifiers include a much more balanced distribution of classes. The Chi-Dep Ensemble (CDE) method 

[25] addresses the class-imbalance problem by selecting the 𝑛 distinct top-scored partitions, in which each partition is computed 

based on the 𝜒2score for all label pairs. 

Another multi-label ensemble method, Random Forest of Predictive Clustering Trees (RF-PCT) [26], is also based on a bagging 

combination scheme. This scheme predicts a new instance by averaging the confidence values of all the classifiers for each label, 

rather than capturing the optimal weights to different labels. At the same time, it only partially considers global label correlations, 

rather than exploiting local pairwise label correlations.  

2.1.2  Stacked Combination Scheme 

Stacked ensemble techniques have become a well-established means for improving prediction accuracy. Model stacking [27] is 

an efficient ensemble method in which the predictions that are generated by using multiple base classifiers are used as inputs in a 

meta-level classifier. Similar to classical stacking, Multi-label stacking (MLS) [21] involves applying BR twice, and takes the 

predictions of several BR classifiers for each label that was trained in the first step to obtain a new meta-level BR classifier to 

make predictions for the corresponding label, thus considering the correlations among labels in the meta-level. Several MLS 

methods exist that depend on different meta-level data types, which are either discrete values (0/1) or continuous values (the 

confidence scores). In this study, we used the confidence scores to train the meta-level classifier. 
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To train the meta-level classifier, we need the confidence scores (meta-level data) of the training data; however, combining the 

training with the same data instances that are used to train the base classifiers would lead to overfitting. Inspired by cross validation, 

we partition the data into F disjoint parts, generating each base classifier F times, each using F-1 partitions for training and the 

remaining for gathering the predictions. In this way, the stacked ensemble is diversified by using a different feature space in each 

classifier. 

However, MLS may introduce irrelevant information into the meta-level data. If a label is completely uncorrelated with a 

predicted value generated by the base classifiers, the meta-level classifier introduces uninteresting information and noise, which 

would cause the performance to deteriorate. In this regard, it is important to take into account the weights of the confidence scores 

of different base classifiers for different labels. At the same time, MLS only considers the global label correlations, rather than 

exploiting local pairwise label correlations. 

2.2 Weighted Ensemble of Multi-label Classification 

How to optimally combine the contributions of each classifier is still a question in multi-label classification. In [28], a weighted 

classifier ensemble is proposed, which is designed for MLKNN with a weight adjustment strategy that employs a confidence 

coefficient obtained by utilizing the distance in MLKNN. Improved BR (IBR) [29] employs the weighted majority voting strategy 

to achieve the classification of multi-label data streams. However, it is difficult to extend these methods to any other base classifier 

because these models involve algorithm-specific properties.  

The AdaBoost.MH method [30,31] was extensively studied and used in multi-label classification, which not only maintains a 

set of weights over the instances, but also over the labels. Its weight adjustment strategy is the following: if training instances and 

the corresponding labels are difficult to predict, then incrementally increase the weights in the following classifiers, whereas if 

instances and labels are easy to classify then lower the weights. The AdaBoost.MH is based on BR and it is the same as applying 

AdaBoost to multiple binary classifiers, thus it does not consider correlations among labels.  

 
Fig. 1. Geometric explanation of a weighted stacked ensemble. Prediction scores of the combination: 1

s and 2s  (green). The optimal vector y  (red), 

generated from the ground truth. Weighted prediction of the stacked ensemble: Sw  (purple). The distance between y and Sw  is minimized. 

An intuitive geometric explanation is shown in Fig. 1 for a three-dimensional weighted stacked ensemble. Tai and Lin [32] 

utilized a similar geometrical setting, which they named Principal Label-Space Transformation, to reduce the high dimensionality 

of the multi-label data. Spyromitros-Xioufis et al. [33] proposed a multi-target regression method based on weighted stacking, 

which does not consider classifier selection. Sen and Erdogan [34] used the weighted sum rule (WS) and class-dependent weighted 

sum rule (CWS) for multi-class classification. Gunes et al. [35] proposed model selection methods based on the Lasso penalized 

for a stacking ensemble. However, these methods do not consider local pairwise label correlations.  

As shown in Fig. 1, the weighted stacked ensemble minimizes the Euclidean distance between the combined prediction scores 

vector S  and the target vector that represents the ground truth y  in the label space, which can be seen as the following linear 

least-squares problem. 

 
2

2
min -
w

y Sw  () 

where S  is the prediction scores matrix, w  is the weight vector to be determined, and y  is the vector representing the ground 

truth for a given data point.  

Notations For an n d matrix 
,=[ ]i jAA , where {1, 2,..., }i n , {1, 2,..., }j d . 

T
A  denotes its transpose, 

,1
tr( )

n

i ii
A

=
= A  is the trace of A , and 2

,1 1

n d

i jF i= j
A

=
=  A  is its Frobenius norm. For any vector 

1=[ , ]2 na a ,...a T
a , its 

L3

L1 11

1

1

0

y=[1,1,1]
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2 -norml is defined as 2

2 1

n

ii
a

=
= a  and its 1-norml  is 

1 1

n

ii
a

=
= a . 

3. Proposed Approach 

In this section, we present our proposed approach, including the model, algorithm, and optimization method. 

3.1 Preliminary 

Suppose = d  denotes the d -dimensional input space, and  = ,1 2 ly , y ,... y denotes the label space with l  possible class 

labels. ( )={ , |1 }i i i n x y  is the training dataset with n  instances. For each multi-label example ( ),i ix y , i x  is a d

-dimensional feature vector  1 2= , ,...,i i i idx x xx  and  =i i1 i2 idy , y ,..., yy  is the ground truth label of ix . Each element 1ijy =  if 

the label 
jy  is associated with ix , otherwise 0ijy = . The task of multi-label learning is to learn a function h : 2→  from 

training set . For any unseen example x , the multi-label classifier h  predicts ( )h x  as the set of labels appropriate 

for x . In this paper, we denote the input data as a matrix  1 2, ,..., n d

n

= 
T

X x x x , and denote the output label matrix as 

 1 2, ,..., n l

n

= 
T

Y y y y . 

3.2 Generating the Confidence Score Matrix 

In the classifier combination problem with confidence score outputs, the combining process accepts as its input the prediction 

scores belonging to the different labels obtained from the base classifiers. Let k

js  be the prediction score of label j  obtained from 

classifier k  for any data instances. Let 
1 2, ,...,k k k k

ls s s =  
T

s  be the prediction score of all labels obtained from classifier k , then 

the input to the combiner is 1 2| |...| m =  s s s s , where m  is the number of classifiers. Let is  contain the scores for training data 

point i  obtained from the base classifiers, then the final confidence score matrix is =[ ]k

ijsS  indicated as 

1

1 1 1

11 12 1 11 12 1

1 1 1

21 22 2 21 22 2

1 1 1

1 2 1 2

=

k

k k k

l l

k k k

l l

k k k

n n nl n n nl

s s s s s s

s s s s s s

s s s s s s

 
 
 
 
 
 
 
 
 

s s

S  

3.3 Weighted Classifier Selection and Stacked Ensemble  

In the stacked ensemble framework, the combiner is defined as a function g : m l l → , hence our aim is to learn the g

function using data ( )  
1

1

,
n

l

i ij
j

i

y
=

=

s . With the loss function given in (1), our objective function to be minimized is the following: 

 

2

1 2

1 1 1

g( , ,..., ) ( )
n l m

m k k

ij j ij

i j k

s w y
= = =

 
= − 

 
 w w w  () 

where k

jw denotes the weight of classifier k  for label j , and 
1 2, ,...,k k k k

lw w w =  w  is the weight vector of classifier k .  

Let 1 2| |...| m

j j j j
 =  

T

W w w w  represent the combined weight vector of all classifiers for the -thj  label, and 

1 2, ,...,j j j njy y y =  
T

Y  represent the -thj column of Y , 1 j l  . Based on generating the confidence score matrix, the 

objective function given in (2) can be further derived as  

 
2

2

1
min

2j
j j−

W
SW Y  () 
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3.3.1  Sparsity Regularization for Classifier Selection 

As mentioned above, generating the confidence score matrix might contain irrelevant information that is not helpful for label 

prediction. To combine the selection of classifiers, we add a regularization term to ensure that the weights are sparse to prevent the 

stacked ensemble from combining all the base classifiers. One main advantage of using sparsity regularization for classifier 

selection is that classifiers are selected automatically, and the number of selected classifiers is not specified beforehand. In this 

regard, 1-l norm regularization (Lasso) [36,37] can be considered the most successful method for inducing sparsity. We introduce 

the 1-l norm regularization to the model for each weight vector 
jW . Combined with the least-squares loss given in (3), the 

objective function for classifier selection is  

 
2

2 1

1
min +

2j
j j j−

W
SW Y W  () 

where   is a regularized parameter shared by all labels for balancing the loss and regularization term, and which can be adjusted 

to determine the number of selected classifiers. The details are discussed in the experimental section (Section 4).  

Considering all the binary classifiers simultaneously, equation (4) can be rewritten as  

 
2

1

1
min +

2 F
−

W
SW Y W  () 

If =0k

jw , it indicates that the -thk classifier will be eliminated and will have no effect on the prediction of the -thj label, 

thereby accelerating the testing instance. However, the problem with 1-l norm regularization for MLWSE is that not all k

jw  are 

zero, which means that all information from a selected classifier would not be used effectively. Motivated by group sparsity 

regularization [38], we propose to use Group Sparsity Lasso to solve this problem. The difference between Lasso and Group 

Sparsity Lasso is illustrated by the example in Fig. 2.  

 

 
Fig. 2. Illustrative comparison of Lasso, Group Lasso, and Group Sparsity Lasso. The confidence score matrix can be divided into four groups by using the four 

base classifiers, 1G , 2G , 3G , 4G . The solid circles denote selected prediction scores whereas the open circles denote unselected prediction scores.  

As shown in Fig. 2, Lasso forces many confidence scores to become useless, and the corresponding classifier weight is zero. 

Group Lasso only selects two groups 2G  and 4G , whereas the other two groups 1G  and 3G  are not selected. However, in many 

cases, not all information in the selected group would be useful. Group Sparsity Lasso takes advantage of both Lasso and Group 

Lasso in that it first selects groups, before making another selection from the selected group; i.e., it simultaneously considers intra-

classifier and inter-classifier sparsity. We obtain the MLWSE of Group Sparsity Lasso in combination with the regularization term 

of Lasso and Group Lasso: 

 ( )
2

1 2
1

1
min + + 1

2 k

m

k GF
k

c  
=

− − 
W

SW Y W W  () 

where [0,1]   is a convex combination of the Lasso and Group Lasso penalties, and the sparsity is determined by the magnitude 

of the tuning parameter  . Further, kc  is a weight for the -thk  group 
kGW , which can be formulated as a prior to generating the 

contribution of the -thk  group in the classifier selection process. In our experiments, we set =kc l .  

3.3.2  Modeling Label Correlations 

Exploiting label correlations generally plays a key role in multi-label classification. This is motivated by work on multi-task 

learning [39,40,41], which shares correlated information between tasks or modalities by considering their correlation. We assume 

    

G1 G2 G3 G4

Lasso

Group Lasso

Group Sparsity 
Lasso
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that if label 
jy  and label ky  are strong correlated the classifier discriminative to 

jy  may also be discriminative to ky  with a 

higher probability. In other words, if two labels 
jy  and ky  are strongly correlated, the weight vector pair ( ),j kW W  should have 

a high similarity; otherwise, they would have low similarity. We construct a graph ,V E   in the label space, where V  denotes 

the vertex/label set, and E  is the set of edges containing the edges between each label pair. Given the label correlation matrix R  

on E , the target can be formulated as minimizing the following equation  

 ( ) ( )
2

1 1

1
tr( - )=tr

2

l l

j k jk

j k

R
= =

− = T T
W W W D R W WHW  () 

where = −H D R  is the graph Laplacian matrix and D  is a diagonal matrix with 

1

n

ii ij

j

D R
=

=  . 
jkR  denotes the similarity between 

label 
jy  and label ky . In this study, we take the cosine similarity to calculate the label correlation matrix.  

Combining equations (5) and (7), we obtain the final objective function based on Lasso, MLWSE-L1: 

 
2

1

1
min + + tr( )

2 2F


− T

W
SW Y W WHW  () 

Combining equations (6) and (7), we obtain the final objective function based on Group Sparsity Lasso, MLWSE-L21: 

 ( )
2

1 2
1

1
min + + 1 + tr( )

2 2k

m

k GF
k

c


  
=

− −  T

W
SW Y W W WHW  () 

In MLWSE-L1 and MLWSE-L21,   and   are tradeoff parameters with non-negative values. In MLWSE-L1, parameter   

controls the sparsity of the model while parameter   balances the contribution of label correlations and weight learning. In 

MLWSE-L21, parameter   is the tradeoff parameter with the Lasso and Group Lasso, and parameter   controls the sparsity of 

the model whereas parameter   balances the contribution of label correlations and weight learning. 

3.3.3  Multi-label Prediction 

After training MLWSE-L1 and MLWSE-L21, we obtain the classifier weight matrix *
W . Given test data represented by matrix 

*
X , we first generate the confidence score matrix *

S  by the different base classifiers, after which we determine the predict labels 

by a thresholding function sign : →  

 ( )
*

* 1,if 
sign ,

0,otherwise




 
= 



*

* S W
S W  () 

where   is a threshold, and in our experiments,  is set to 0.5. 

3.4 Optimization Method 

Although the minimization of (8) and (9) are two convex optimization problems, the objective functions are non-smooth due to 

the non-smoothness of the 1-l norm regularization terms. In this section, we use the accelerated proximal gradient and block 

coordinate descent to optimize MLWSE-L1 and MLWSE-L21, respectively.  

3.4.1  Optimization of MLWSE-L1 

A general accelerated proximal gradient method can be formulated as the following convex optimization problem [42,43]: 

 ( ) min F = ( ) ( )f g


+
W

W W W  () 

where  is a real Hilbert space, ( )f W  is convex and smooth, ( )g W  is convex and can be non-smooth. If ( )f W  has a 

Lipschitz continuous gradient with Lipschitz constant L , i.e., ( ) ( )2 2f f L −   −
1 1

W W W W , instead of directly 

minimizing F( )W , the proximal gradient algorithms can minimize its composite quadratic approximation 
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2

( ) ( ) ( ) ( ) ( )( , ) ( ) ( ), ( )
2

t t t t t

L F

L
Q f f g= +  − + − +W W W W W W W W W  () 

According to (8) and (11), ( )f W  and ( )g W  can be defined as follows 

 
21

( ) + tr( )
2 2F

f


= − T
W SW Y WHW  () 

 
1

( )g =W W  () 

According to (13), we can calculate ( )f W  as  

 ( ) ( )f  = − +T
W S SW Y WH  () 

 

Inspired by the work of [44] and [45], for MLWSE-L1, given 
1W  and 

2W , we obtain the Lipschitz constant as  

 
2 2

22
= 2 2L +T

S S H  () 

According to (12), (14), and (16), the weight matrix W  can be optimized by  

 

2
* ( ) ( )

2
( )

1

1
= arg min ( , ) arg min ( )

2

1
arg min

2

t t

L F

t

F

Q g

L



= − +

= − +

W W

W

W W W W Z W

W Z W

 () 

where ( ) ( ) ( )1
( )t t tf

L
= − Z W W . 

The accelerated proximal gradient has shown that ( ) 1
t 1

1
( )t t

t t

t

b

b

−
−

−
= + −W W W W  for a sequence 

tb  satisfying 
2 2

-1t t tb b b−   

can improve the convergence rate to 2(1 )O t , where 
tW  is the result of W  at the -tht  iteration [43]. The proximal operator 

associated with the ( )g W  of (17) is the soft-thresholding operator; then, in each iterative step, *
W  can be obtained by the 

following optimization problem: 

 
2

( 1) ( ) ( )

1

1
= [ ]= arg min

2

t t t

F
prox + − +

W
W Z W Z W  () 

where [ ]prox
 is a soft-thresholding operation is defined as  

 

, if >   

[ ] , if 

0,otherwise

ij ij

ij ij ij

w w

prox w w w

 

 

−


= + 



 () 

According to (17) and (19), W  can be obtained by the following soft-thresholding operation, 
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( 1) ( )= [ ]t t

L

prox

+
W Z  

() 

The details of the accelerate proximal gradient for MLWSE-L1 are summarized in Algorithm 1. In our experiments, we employ 

APG [43] to learn the weight matrix *
W . 

3.4.2  Optimization of MLWSE-L21 

Following the spirit of the work reported by [47] and [48], we use block coordinate descent to optimize MLWSE-L21. It 

essentially has two components: the outer loop over the different feature groups and the inner loop that solves each of the block 

subproblems. The confidence score matrix S  given in (9) can be broken down into m  groups, 1 2, ,..., m
S S S , with each k n lS . 

Let k−
S  denote the remaining groups when S  is associated to group k , and k−

W  is the components of W  over the other groups.  

When a group k  is selected (cyclically or otherwise), the other groups of the current W  are fixed and the objective function is 

minimized only over k
W . Then at each block we have to minimize  

 
2

( ) ( ) ( ) ( ) ( ) ( )

2 2 1

1
(1 ) ( )

2 2

k k k k k k

k kr c


  − − + − + + T
S W W W tr W HW  () 

where 
kr−

 the partial residual of Y , subtracting all group fits other than group k  

 ( ) ( )= j j

k

j k

r−



−Y S W  () 

Let 
2

( ) ( ) ( )

2

1
( , )

2

k k k

k kr r− −= −W S W  denote the least-squares loss function, and let 
( )( , )k

kr− W  denote its gradient, then 

our goal is to find 
( )

*

k
W  to minimize (21). Minimizing (21) is equivalent to minimizing the following equation, centered at a point 

( )

0

k
W  by  

 

2
( ) ( ) ( ) ( )

0 0 2 2

( ) ( ) ( )

1

1
( ( , )) (1 )

2

( )
2

k k k k

k k

k k k

t r c
t

 




−− −  + −

+ + T

W W W W

W tr W HW

 () 

where t  denotes our usual gradient step.  

It was previously shown [47] that 
( )

* =0k
W  if  

 
( ) ( )

0 0 2
( ( , ), ) (1 )k k

k kt r t t c   −−   −W W  () 

and otherwise 
( )

*

k
W  satisfies 

 ( ) ( )

0 0( ) ( )

0 0 2

(1 )
1 ( ( , ), )

( ( , ), )

k kk
kk k

k

t c
t r t

t r t

 
 

 
−

−
+

 −
 − − 
 − 
 

W W
W W

 () 

where ( )  denotes the soft-thresholding operator 

 ( ( , )) ( )( )i i iz t sign z z t   += −  () 
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Catalina et al. [48] showed that the inner loop can be accelerated by using proximal gradient, thus we set 
1

=t
L

 with the Lipschitz 

constant L  given in (16). The details of the block coordinate descent for MLWSE-L21 are summarized in Algorithm 2.  

 

Algorithm 1: Optimization of MLWSE-L1 

Input: Training data matrix 
n dX , label matrix 

n lY , 

base classifier  
1

m

i i
C

=
 and parameter  ,  ,  .  

Output: The weight matrix 
* ml lW .  

1 Generate the confidence score matrix 
n mlS  by the base 

classifier  
1

m

i i
C

=
 

2 Initialization: 

   
0 1, 1b b  ; 1t  ; 

1

0 1, ( ) − +T T
W W S S I S Y  

3 Compute the graph Laplacian matrix H  on Y  

4 Compute L  according to Eq. (16) 
5 While not converged do 

           ( ) 1
t 1

1
( )t t

t t

t

b

b

−
−

−
 + −W W W W ; 

           Compute ( )( )tf W  according to Eq. (15); 

( ) ( ) ( )1
( )t t tf

L
 − Z W W ; 

( 1) ( )[ ]t t

L

prox

+ W Z ; 

2

1

1 4 1

2

t

t

b
b +

+ +
 ; 

1t t + ; 

Output: 
* ( +1)tW W  

 

Algorithm 2: Optimization of MLWSE-L21 

Input: Training data matrix 
n dX , label matrix n lY , 

base classifier  
1

m

i i
C

=
 and parameter  ,  ,  ,  .  

Output: The weight matrix 
* ml lW .  

1 Generate the confidence score matrix 
n mlS  by the base 

classifier  
1

m

i i
C

=
 

2 Compute the graph Laplacian matrix H  on Y  

3 Compute L  according to Eq. (16) 

4 Compute 
kr−

 according to Eq. (22) 

5 Cyclically iterate through the groups; at each group ( )k  execute 

step 6 

6 Initialization: 1t L , ( ) 1( )k  − +T T
W S S I S Y  

7 Check if 
( ) =0k

W  according to Eq. (24), otherwise, within the 

group apply step 8 
8 While not converged do 

            Update gradient 
( )( , )k

kr− W  

            Update 
( +1)k

W  according to Eq. (25) 

Output: 
* ( +1)kW W  

 

4. Experiments 

In this section, we conducted our experiments on three types of datasets, including 2-D synthetic datasets, multi-label benchmark 
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datasets, and a real-world application dataset to evaluate the effectiveness of our proposed approach from different perspectives. 

Section 4.1 describes the experimental settings and datasets. Section 4.2 presents experimental results and analysis. Section 4.3 

reports Friedman statistics analysis. Section 4.4 discusses parameter sensitively analysis, and finally, the convergence analysis is 

drawn in Section 4.5. 

4.1 Experimental Settings and Datasets 

Experiments are carried out on three types of datasets, including 2-D synthetic datasets, multi-label benchmark datasets, and the 

real-world dataset. To evaluate the performance of different algorithms for multi-label classification, we use six common 

evaluation metrics to verify the performance. 

4.1.1  Datasets 

The first dataset of our experiments is the 2-D synthetic datasets, which consists of four different distribution scenarios. The 

results of the four different simulations are presented in Fig. 3. All four simulations involve a univariate X  drawn from a uniform 

distribution in [-4, +4]. The outcome follows the function described below: 

Scenario1: = 2 I( 3) 2.55 I( 2) 2 I( 0) 4 I( 2) 1 I( 3) (0,1)Y X X X X X N−   − +   − −   +   −   +  

Scenario2: 2 3=5+0.4 0.36 0.005 (0,1)Y X X X N− + +  

Scenario3: =2.85 sin( ) (0,1)
2

Y X N


  +  

Scenario4: =3.85 sin(3 ) I( 0) (0,1)Y X X N    +  

where I( )  is the usual indicator function and (0,1)N  is an independent standard normal distribution for each scenario. These 

scenarios were chosen because they represent a diverse set of true models. Fig. 3 contains a scatterplot of the 300 samples from 

each of the four simulations and the true curve for each scenario is represented by the red line.  

In particular, a multi-label classification problem can be transformed into several independent single-label classification 

problems [7]. For simple understanding, we consider only the case of the single-label classification. With these four synthetic 

datasets, we can evaluate the weighted classifier selection ability of our approach.  

Further, we examine our approach for multi-label classification tasks by using a collection of 13 multi-label benchmark datasets, 

the details of which are summarized in Table 1. 
1

1 N

ii
LC Y

N =
=   denotes the label cardinality, which is the average number of 

 
                                                          (a) Scenario1                                                                                                          (b) Scenario2 

 
                                                            (c) Scenario3                                                                                                           (d) Scenario4 

Fig. 3. Scatterplots of the four scenarios. The red line represents the true relationship. The number of simulation samples is 300.  
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labels associated with each instance. All datasets can be downloaded from the websites of Mulan1, KDIS2, and Meka3. With these 

benchmarking multi-label datasets, we initially compare our approach with seven state-of-the-art ensemble multi-label 

classification methods including EBR [22], ECC [22], EPS [23], RAkEL [24], CDE [25], AdaBoost.MH [30] and MLS [21]. All 

of these seven methods were implemented using the Mulan [49] and Meka [50] frameworks, which provide an API to use their 

functionalities in Java code4. These methods used 10n =  classifiers in the ensemble, a threshold value of  =0.5 and the C4.5 

decision tree as a single-label base classifier.  
Table 1. Description of benchmark datasets 

Dataset Domain Instance Features Labels LC 

Emotions Music 593 72 6 1.868 

Flags Image 194 19 7 3.392 

Scene Image 2407 294 6 1.074 

Yeast Biology 2417 103 14 4.237 

Birds Audio 645 260 19 1.014 

GpositiveGO Biology 519 912 4 1.008 

CHD-49 Medicine 555 49 6 2.580 

Enron Text 1702 1001 53 3.378 

Langlog Text 1460 1004 75 1.180 

Medical Text 978 1449 45 1.245 

VirusGo Biology 207 749 6 1.217 

Water-qy Chemistry 1060 16 14 5.073 

3s-bbc1000 Text 352 1000 6 1.125 

 

To explore the potential application of our proposed method, finally, we apply our approach to a real Cardiovascular and 

Cerebrovascular Disease (CCD) dataset [54,55] to demonstrate its potential for practical applications in medical diagnosis, and we 

take CCD dataset as another benchmarking dataset to run the experiments. The dataset is collected from cardiovascular and 

cerebrovascular patients in a hospital in Yunnan Province, China. It contains 3,823 samples, 59 features, and 9 labels, where the 

nine labels are cerebral ischemic stroke (CIS), cerebral hemorrhage (CH), subarachnoid hemorrhage (SAH), cerebral venous 

thrombosis (CVT), intracranial aneurysm (IA), cerebrovascular malformation (CVM), heart disease (HD), diabetes mellitus 

(DM), and hypertension (HT). The number of examples corresponding to each label is listed in Table 2. In addition, we discuss 

the effectiveness of label correlations on our algorithms.  
Table 2. Correspondence of the example size to different labels of the CCD dataset 

Label Examples Label Frequency 

CIS 3380 0.884 

CH 140 0.036 

SAH 134 0.035 

CVT 8 0.002 

IA 23 0.006 

CVM 20 0.005 

HD 1133 0.296 

DM 920 0.240 

HT 2513 0.657 

In our experiments, the confidence score matrix S  is generated by using BR, CC, and LP, where SVM is used as the single-

label base classifier, and the other parameters are set as default parameters in the scikit-multilearn5 library [51]. Hence, the number 

of groups m  is set to 3. For MLWSE-L1, parameters  ,   are searched in {
-5 -4 3 4

10 ,10 ,...,10 ,10 }, and   is searched in {0.1, 1}. 

For MLWSE-L21, parameter   is searched in {0.01, 0.05, 0.1, 0.15, 0.2},   is searched in {
-4 -3 1 2

10 ,10 10 10,...， ， },   is searched 

in {
-5 -4 1 2

10 ,10 10 10,...， ， }, and   is searched in {0.1, 1}. The software implementation of the proposed algorithms has been 

available at https://github.com/AiXia520/MLWSE.  

4.1.2  Evaluation Metrics 

To evaluate the performance of different algorithms for multi-label classification, we use six common evaluation metrics to 

 
1 http://mulan.sourceforge.net/ 
2 http://www.uco.es/kdis/mllresources/ 
3 http://waikato.github.io/meka/datasets/ 
4 Code of Mulan is available at: https://github.com/kdis-lab/ExecuteMulan 
5 http://scikit.ml/api/skmultilearn.html 

https://github.com/AiXia520
http://mulan.sourceforge.net/
http://www.uco.es/kdis/mllresources/
http://waikato.github.io/meka/datasets/
https://github.com/kdis-lab/ExecuteMulan
http://scikit.ml/api/skmultilearn.html
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verify the performance. In general terms, they can be categorized into two groups [5], i.e., example-based metrics (Hamming loss, 

Accuracy, Ranking loss and F1) and label-based metrics (Macro B(h) and Micro B(h)). For each evaluation metric, the testing 

dataset is defined as ( )={ , |1 }t i i i n x y , where {0,1}l

i y  is the ground truth labels of the -thi  test example, and ˆ =h( )
i i

y x  

is its predicted labels.  

1) Hamming loss: it evaluates the fraction of misclassified example-label pairs. The smaller the Hamming loss, the more accurate 

the performance of the classifier is.  

1 1

1 1
ˆHamming loss= ( )

n l

ij ij

i j

I y y
n l= =

   

where ( )I  is an indication function that returns 1 if ( )I  holds and 0, otherwise.  

2) Accuracy: it evaluates the Jaccard similarity between the ground truth labels and predicted labels. 

1

ˆ1
Accuracy=

ˆ

n

in =






i i

i i

y y

y y
 

3) Ranking loss: it evaluates the fraction of reversely ordered label pairs, i.e., when an irrelevant label is ranked higher than a 

relevant label.  

' '' ' '' ' ''

1

1 1
Ranking loss= |{( , ) | ( , ) ( , ), ( , ) }

n

i i

i

y y f x y f x y y y
n =

   i i

i i

y y
y y

 

where ( , )f x y  can be regarded as the confidence score of y Y  being the proper label of x .  

4) F1: it is the harmonic mean of recall and precision, where 
ip  and 

iq  are the recall and precision for the -thi  example.  

1

21
F1=

n
i i

i i i

p q

n p q= +
  

5) Label-based classification metrics can be obtained in either of the following modes [49]: 

=1

1
Macro B(h)= ( , , , )

l

j j j j

j

B TP FP TN FN
l
  

1 1 1 1

Micro B(h)= ( , , , )
l l l l

j j j j

j j j j

B TP FP TN FN
= = = =

     

where jTP , jFP , jTN , and jFN  represent the number of true positive, false positive, true negative, and false negative test 

examples with respect to label jy . ( , , , )j j j jB TP FP TN FN  indicate some specific binary classification metric (e.g., F1). Macro B(h) 

and Micro B(h) assume “equal weights” for labels and examples, respectively.  

4.2 Experimental Results and Analysis 

In this section, we present experimental results on three type of datasets and give a detailed experimental analysis for each 

dataset.  

4.2.1  2-D Synthetic Datasets Analysis 

With 2-D synthetic datasets, we evaluate the weighted classifier selection ability of our approach by gradually adding different 

technical components, including the weighted setting given in equation (3) as baseline, the Lasso selection given in equation (4), 

and the Group Sparsity Lasso selection given in equation (6). We randomly divided each dataset into a training set (35%), a 

validation set (35%), and a testing set (30%). The experimental results for all four scenarios are presented in Table 3.  

In the first scenario, all three base classifiers presented in our experiment perform well, but the SVM-based poly kernel performs 

Table 3. Experimental results on the synthetic datasets 

Algorithm 

Scenario1 Scenario2 Scenario3 Scenario4 

Accuracy 
Weight 

Vector 
Accuracy 

Weight 

Vector 
Accuracy 

Weight 

Vector 
Accuracy 

Weight 

Vector 

Base classifier 

SVM (linear kernel) 0.5222 - 0.4444 - 0.5333 - 0.7667 - 
SVM (poly kernel) 0.5333 - 0.4667 - 0.5333 - 0.7667 - 

Random Forest 0.5222 - 0.4667 - 0.8333 - 0.7111 - 

Baseline 

SVM (linear kernel) 

0.4889 

-0.6785 

0.5000 

-0.9274 

0.8000 

-59.1183 

0.7667 

-30.1166 

SVM (poly kernel) 1.6200 2.1858 56.9153 30.0606 

Random Forest 0.0364 -0.1974 0.9372 0.1643 

Lasso  

selection 

SVM (linear kernel) 

0.5222 

0.3391 

0.5000 

-0.8521 

0.8333 

-0.0184 

0.7667 

0.0715 

SVM (poly kernel) 0.5894 2.1046 0.1053 0.6603 

Random Forest 0.0521 -0.1970 0.9197 0.2771 

Group 

sparsity lasso 

selection 

SVM (linear kernel) 

0.5333 

0 

0.51111 

0 

0.8333 

0 

0.7667 

0 

SVM (poly kernel) 0.9326 1.1716 0.0797 0.7317 

Random Forest 0.0445 -0.1811 0.9226 0.2737 
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the best. The accuracy of the Lasso selection and Group Sparsity Lasso selection methods is 0.5222 and 0.5333, respectively, and 

the corresponding weight vectors are 0.3391,0.5894,0.0521   and 0,0.9326 0.0445 ， , which are higher than the baseline method. The 

results show that Lasso selection and Group Sparsity Lasso selection learn optimal weights compared to the baseline method, 

which assigns a higher weight to a more effective base classifier. In the second scenario, the SVM-based poly kernel is a more 

optimal base classifier. Similarly, Lasso selection and Group Sparsity Lasso selection are able to adapt to the underlying structure 

to achieve superior accuracy. The same trend is exhibited in scenarios 3 and 4, in which the weighted classifier selection methods 

do nearly as well as the individual best algorithm, and even outperform the individual best algorithm. The individual best algorithm 

is not known, especially in a multi-label setting in which the performance of the base classifier might improve on some labels and 

decline on others. However, our algorithms can adaptively learn the optimal weights to select the base classifier and adapt to real 

changeable scenarios. Here, we verify the ability of our approach to select a weighted classifier, and the label correlations are 

discussed in Section 4.2.3.  

4.2.2  Benchmark Datasets Analysis 

Table 4 and Table 5 compare the analysis of the results of the proposed method MLWSE-L1 and MLWSE-L21 against state-

of-the-art algorithms on 13 datasets. For each dataset, the parameters  ,  , and   of MLWSE-L1 are set to 
-4

10 , 
-3

10 , and 0.1, 

respectively, and the parameters  ,  ,  , and   of MLWSE-L21 are set to 0.05, -3
10 , -2

10 , and 0.1, respectively. We conducted 

a five-fold validation and recorded the mean and standard deviation for each evaluation metric. In the largest datasets, some 

algorithms cannot complete corresponding to the available resources, and these cases are marked as “DNF” in the result tables. 

The best results among all the algorithms being compared are highlighted in boldface. According to these results, we have the 

following points. 

1) Comparing with bagging combination scheme (i.e., EBR, ECC, EPS, RAkEL and CDE), in more cases, MLWSE outperforms 

bagging combination methods. The reason is that MLWSE can comprehensively capture the optimal weights to different labels 

and take local pairwise label correlations into account.  

2) Comparing with stacked combination scheme (i.e., MLS), in most cases, MLWSE significantly improves the performance 

(i.e., Accuracy and F1). This is because our approaches can exploit the weights of the confidence scores of different base classifiers 

for different labels and consider local pairwise label correlations.  

3) Comparing with weighted ensemble method (i.e., AdaBoost.MH), in most cases, MLWSE outperforms AdaBoost.MH. The 

reason is that we simultaneously exploit the classifier weights and pairwise label to address those well-known issues in multi-label 

classification. 

4.2.3  Real-world Application Analysis 

Table 6 reports the experimental results that obtained from the different multi-label ensemble algorithms. The results 

demonstrate that our approach achieves statistically superior performance compared to the other approaches.  

To verify that if any two labels are strongly correlated, the pairs of classifier weight vectors should have high similarity. Fig. 4 

shows the affinity matrices of the label matrix and the learned weight matrix for CCD, where a stronger greyscale represents 

stronger label correlations. The results in Fig. 8 indicate that the affinity matrix of the label matrix and the affinity of the learned 

weight matrix are surprisingly consistent, which means that, if two labels jy  and ky  are strongly correlated, the weight vector 

pair ( ),j kW W  should be highly similar. This experimental result verifies the correctness of our proposed hypothesis.  

 

 
(a) Affinity matrix of the label matrix                                                                   (b) Affinity matrix of the learned weight matrix 

 

Fig. 4. Label and weight affinity matrices of the CCD dataset 
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Table 4. Comparison of the experimental results obtained with each algorithm (mean  std) in terms of Accuracy, Hamming loss, and Ranking loss 

Dataset 
Accuracy   

EBR ECC EPS RAkEL CDE AdaBoost.MH MLS MLWSE-L1 MLWSE-L21 

Emotions 0.517±0.034 0.532±0.039 0.533±0.021 0.422±0.028 0.524±0.035 0.028±0.016 0.422±0.028 0.806±0.007 0.807±0.007 

Flags 0.598±0.067 0.630±0.067 0.590±0.063 0.607±0.051 0.609±0.077 0.514±0.064 0.607±0.051 0.727±0.014 0.743±0.014 

Scene 0.605±0.008 0.659±0.013 0.642±0.007 0.534±0.017 0.538±0.004 0.000±0.000 0.534±0.017 0.917±0.001 0.915±0.003 

Yeast 0.489±0.014 0.505±0.008 0.491±0.015 0.434±0.012 0.478±0.008 0.335±0.015 0.434±0.012 0.804±0.002 0.801±0.002 

Birds 0.593±0.021 0.602±0.018 0.589±0.015 0.568±0.036 0.588±0.039 0.456±0.015 0.568±0.036 0.949±0.003 0.955±0.002 

GpositiveGO 0.933±0.011 0.929±0.016 0.937±0.008 0.930±0.017 0.928±0.018 0.000±0.000 0.930±0.017 0.971±0.003 0.971±0.005 

CHD-49 0.515±0.02 0.533±0.025 0.531±0.022 0.470±0.018 0.490±0.031 0.464±0.008 0.470±0.018 0.706±0.011 0.703±0.013 

Enron 0.425±0.015 0.467±0.019 0.376±0.020 0.414±0.012 0.411±0.013 0.151±0.009 0.414±0.012 0.953±0.001 0.954±0.000 

Langlog 0.232±0.027 0.237±0.023 0.231±0.024 0.250±0.026 DNF 0.142±0.022 0.084±0.019 0.820±0.003 0.830±0.001 

Medical 0.755±0.024 0.767±0.025 0.754±0.024 0.752±0.033 0.718±0.040 0.000±0.000 0.752±0.033 0.986±0.001 0.987±0.000 

VirusGo 0.861±0.058 0.859±0.056 0.872±0.043 0.861±0.058 0.872±0.058 0.000±0.000 0.861±0.058 0.956±0.003 0.956±0.005 

Water-qy 0.393±0.007 0.414±0.010 0.204±0.019 0.318±0.010 0.402±0.006 0.157±0.03 0.374±0.007 0.715±0.004 0.707±0.007 

3s-bbc1000 0.044±0.01 0.123±0.027 0.195±0.027 0.144±0.027 0.144±0.019 0.000±0.000 0.144±0.027 0.805±0.006 0.810±0.005 

Dataset 
Hamming loss  

EBR ECC EPS RAkEL CDE AdaBoost.MH MLS MLWSE-L1 MLWSE-L21 

Emotions 0.197±0.015 0.205±0.016 0.211±0.015 0.264±0.018 0.212±0.019 0.306±0.010 0.264±0.018 0.194±0.007 0.193±0.007 

Flags 0.249±0.044 0.243±0.045 0.258±0.041 0.253±0.036 0.258±0.052 0.278±0.026 0.253±0.036 0.273±0.014 0.257±0.014 

Scene 0.093±0.003 0.094±0.004 0.099±0.003 0.135±0.007 0.136±0.003 0.179±0.002 0.135±0.007 0.083±0.001 0.085±0.003 

Yeast 0.205±0.006 0.210±0.004 0.212±0.007 0.248±0.008 0.228±0.006 0.232±0.007 0.249±0.008 0.197±0.002 0.199±0.002 

Birds 0.042±0.003 0.043±0.004 0.046±0.002 0.051±0.006 0.047±0.006 0.053±0.002 0.051±0.006 0.051±0.003 0.045±0.001 

GpositiveGO 0.027±0.004 0.030±0.009 0.031±0.005 0.027±0.006 0.031±0.009 0.255±0.007 0.027±0.006 0.029±0.003 0.029±0.005 

CHD-49 0.299±0.013 0.304±0.020 0.307±0.016 0.325±0.013 0.323±0.022 0.307±0.004 0.325±0.013 0.294±0.011 0.297±0.013 

Enron 0.048±0.001 0.048±0.002 0.052±0.002 0.051±0.001 0.051±0.001 0.062±0.001 0.051±0.001 0.047±0.001 0.046±0.000 

Langlog 0.016±0.001 0.016±0.001 0.016±0.001 0.020±0.002 DNF 0.016±0.001 0.037±0.002 0.180±0.003 0.170±0.001 

Medical 0.010±0.001 0.010±0.001 0.012±0.001 0.010±0.001 0.012±0.001 0.028±0.001 0.010±0.001 0.014±0.001 0.013±0.000 

VirusGo 0.045±0.012 0.045±0.014 0.047±0.019 0.042±0.017 0.042±0.019 0.203±0.013 0.042±0.017 0.044±0.003 0.044±0.005 

Water-qy 0.293±0.009 0.295±0.009 0.323±0.002 0.329±0.004 0.303±0.010 0.338±0.008 0.311±0.005 0.286±0.004 0.293±0.007 

3s-bbc1000 0.209±0.011 0.223±0.012 0.206±0.010 0.251±0.029 0.250±0.013 0.188±0.008 0.251±0.029 0.195±0.006 0.190±0.005 

Dataset 
Ranking loss  

EBR ECC EPS RAkEL CDE AdaBoost.MH MLS MLWSE-L1 MLWSE-L21 

Emotions 0.171±0.019 0.171±0.013 0.196±0.015 0.316±0.031 0.176±0.019 0.427±0.029 0.326±0.036 0.159±0.013 0.149±0.011 

Flags 0.201±0.032 0.217±0.041 0.220±0.051 0.318±0.042 0.256±0.060 0.238±0.034 0.272±0.035 0.233±0.021 0.200±0.011 

Scene 0.079±0.009 0.092±0.009 0.101±0.008 0.195±0.015 0.138±0.010 0.472±0.013 0.227±0.021 0.068±0.003 0.069±0.003 

Yeast 0.185±0.010 0.191±0.010 0.202±0.008 0.336±0.015 0.219±0.009 0.363±0.029 0.316±0.012 0.171±0.001 0.168±0.001 

Birds 0.098±0.012 0.111±0.013 0.140±0.014 0.199±0.026 0.134±0.015 0.229±0.037 0.168±0.012 0.120±0.008 0.110±0.003 

GpositiveGO 0.025±0.005 0.027±0.008 0.031±0.011 0.034±0.012 0.029±0.012 0.301±0.019 0.025±0.006 0.026±0.005 0.024±0.004 

CHD-49 0.222±0.015 0.230±0.020 0.226±0.021 0.313±0.014 0.255±0.027 0.222±0.011 0.313±0.020 0.215±0.006 0.210±0.007 

Enron 0.085±0.008 0.150±0.014 0.161±0.011 0.302±0.011 0.198±0.001 0.240±0.011 0.175±0.005 0.105±0.003 0.092±0.007 

Langlog 0.121±0.005 0.273±0.017 0.291±0.013 0.413±0.011 DNF 0.470±0.015 0.166±0.039 0.248±0.005 0.230±0.004 

Medical 0.031±0.003 0.042±0.011 0.057±0.011 0.097±0.016 0.074±0.005 0.285±0.010 0.070±0.016 0.033±0.009 0.025±0.004 

VirusGo 0.030±0.015 0.033±0.015 0.030±0.017 0.067±0.055 0.043±0.018 0.264±0.045 0.042±0.025 0.031±0.004 0.032±0.005 

Water-qy 0.253±0.006 0.256±0.006 0.347±0.007 0.368±0.007 0.275±0.005 0.374±0.011 0.325±0.006 0.247±0.008 0.262±0.006 

3s-bbc1000 0.404±0.034 0.417±0.031 0.383±0.037 0.497±0.035 0.434±0.003 0.422±0.027 0.497±0.058 0.381±0.020 0.389±0.025 
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Table 5. Comparison of the experimental results obtained for each algorithm (mean  std) in terms of F1, Macro-F1, and Micro-F1 

Dataset 
F1   

EBR ECC EPS RAkEL CDE AdaBoost.MH MLS MLWSE-L1 MLWSE-L21 

Emotions 0.597±0.037 0.612±0.037 0.615±0.018 0.509±0.036 0.608±0.031 0.037±0.02 0.509±0.036 0.639±0.024 0.614±0.014 

Flags 0.711±0.057 0.735±0.050 0.699±0.049 0.721±0.043 0.721±0.065 0.631±0.063 0.721±0.043 0.700±0.020 0.721±0.025 

Scene 0.620±0.007 0.675±0.014 0.655±0.006 0.573±0.016 0.573±0.009 0.000±0.000 0.573±0.016 0.708±0.005 0.672±0.010 

Yeast 0.599±0.014 0.611±0.007 0.599±0.013 0.556±0.012 0.595±0.007 0.456±0.019 0.556±0.012 0.647±0.006 0.625±0.004 

Birds 0.618±0.022 0.631±0.016 0.616±0.019 0.603±0.037 0.621±0.04 0.456±0.015 0.603±0.037 0.152±0.024 0.140±0.009 

GpositiveGO 0.938±0.012 0.931±0.017 0.940±0.008 0.934±0.018 0.933±0.018 0.000±0.000 0.934±0.018 0.945±0.009 0.941±0.008 

CHD-49 0.628±0.022 0.643±0.024 0.643±0.016 0.587±0.016 0.610±0.032 0.580±0.007 0.587±0.016 0.659±0.008 0.654±0.016 

Enron 0.537±0.015 0.579±0.017 0.472±0.020 0.525±0.012 0.523±0.012 0.231±0.013 0.525±0.012 0.578±0.011 0.576±0.006 

Langlog 0.239±0.026 0.246±0.020 0.236±0.024 0.267±0.025 DNF 0.142±0.022 0.115±0.026 0.487±0.004 0.496±0.002 

Medical 0.785±0.025 0.795±0.026 0.779±0.024 0.783±0.031 0.751±0.043 0.000±0.000 0.783±0.031 0.773±0.015 0.770±0.011 

VirusGo 0.883±0.057 0.879±0.055 0.893±0.037 0.880±0.056 0.893±0.047 0.000±0.000 0.880±0.056 0.913±0.008 0.905±0.013 

Water-qy 0.532±0.007 0.556±0.011 0.299±0.022 0.452±0.011 0.543±0.006 0.244±0.043 0.513±0.006 0.550±0.009 0.557±0.011 

3s-bbc1000 0.047±0.012 0.128±0.027 0.207±0.028 0.162±0.029 0.159±0.019 0.000±0.000 0.162±0.029 0.051±0.022 0.043±0.021 

Dataset 
Macro-F1   

EBR ECC EPS RAkEL CDE AdaBoost.MH MLS MLWSE-L1 MLWSE-L21 

Emotions 0.639±0.029 0.641±0.027 0.631±0.022 0.551±0.039 0.635±0.037 0.038±0.018 0.551±0.039 0.608±0.023 0.584±0.013 

Flags 0.657±0.063 0.671±0.086 0.587±0.065 0.658±0.077 0.668±0.077 0.560±0.129 0.658±0.077 0.687±0.024 0.711±0.025 

Scene 0.709±0.009 0.728±0.013 0.707±0.003 0.634±0.015 0.629±0.002 0.000±0.000 0.634±0.015 0.700±0.005 0.665±0.010 

Yeast 0.385±0.009 0.398±0.006 0.374±0.005 0.383±0.010 0.405±0.011 0.122±0.003 0.384±0.009 0.619±0.006 0.593±0.004 

Birds 0.321±0.055 0.291±0.012 0.265±0.052 0.349±0.048 0.336±0.057 0.053±0.033 0.349±0.048 0.141±0.022 0.133±0.010 

GpositiveGO 0.871±0.045 0.854±0.062 0.901±0.047 0.859±0.054 0.845±0.056 0.000±0.000 0.859±0.054 0.943±0.008 0.940±0.007 

CHD-49 0.498±0.015 0.512±0.026 0.510±0.017 0.470±0.022 0.490±0.030 0.270±0.002 0.470±0.022 0.629±0.007 0.624±0.017 

Enron 0.219±0.015 0.225±0.016 0.182±0.010 0.214±0.021 0.157±0.000 0.085±0.014 0.214±0.021 0.548±0.009 0.547±0.005 

Langlog 0.270±0.047 0.273±0.048 0.264±0.043 0.284±0.048 DNF 0.237±0.047 0.051±0.001 0.474±0.006 0.478±0.003 

Medical 0.653±0.029 0.630±0.031 0.616±0.058 0.669±0.037 0.468±0.002 0.324±0.036 0.669±0.037 0.758±0.015 0.755±0.011 

VirusGo 0.796±0.078 0.833±0.072 0.844±0.090 0.803±0.069 0.858±0.089 0.067±0.082 0.803±0.069 0.902±0.009 0.894±0.011 

Water-qy 0.502±0.005 0.523±0.011 0.177±0.019 0.413±0.012 0.503±0.004 0.091±0.020 0.466±0.011 0.518±0.011 0.526±0.010 

3s-bbc1000 0.062±0.032 0.115±0.027 0.246±0.028 0.189±0.051 0.180±0.002 0.000±0.000 0.189±0.051 0.049±0.021 0.036±0.023 

Dataset 
Micro-F1   

EBR ECC EPS RAkEL CDE AdaBoost.MH MLS MLWSE-L1 MLWSE-L21 

Emotions 0.662±0.028 0.663±0.025 0.654±0.023 0.564±0.038 0.654±0.034 0.063±0.032 0.564±0.038 0.664±0.013 0.658±0.013 

Flags 0.746±0.051 0.760±0.051 0.725±0.05 0.745±0.046 0.741±0.063 0.693±0.064 0.745±0.046 0.719±0.017 0.737±0.017 

Scene 0.705±0.007 0.718±0.012 0.700±0.006 0.624±0.015 0.617±0.003 0.000±0.000 0.624±0.015 0.750±0.004 0.733±0.009 

Yeast 0.628±0.011 0.636±0.006 0.625±0.012 0.581±0.012 0.617±0.006 0.480±0.016 0.581±0.011 0.644±0.006 0.621±0.004 

Birds 0.431±0.054 0.450±0.031 0.402±0.034 0.444±0.048 0.456±0.055 0.000±0.000 0.444±0.048 0.365±0.031 0.359±0.027 

GpositiveGO 0.947±0.008 0.939±0.018 0.939±0.009 0.946±0.013 0.938±0.018 0.000±0.000 0.946±0.013 0.942±0.005 0.942±0.009 

CHD-49 0.655±0.017 0.667±0.025 0.663±0.018 0.619±0.019 0.638±0.028 0.598±0.004 0.619±0.019 0.658±0.006 0.653±0.017 

Enron 0.562±0.004 0.583±0.013 0.481±0.016 0.550±0.009 0.544±0.002 0.245±0.014 0.550±0.009 0.565±0.007 0.566±0.004 

Langlog 0.159±0.022 0.174±0.012 0.156±0.027 0.191±0.014 DNF 0.000±0.000 0.192±0.029 0.532±0.006 0.544±0.003 

Medical 0.810±0.016 0.815±0.024 0.780±0.028 0.813±0.026 0.781±0.027 0.000±0.000 0.813±0.026 0.754±0.013 0.759±0.007 

VirusGo 0.890±0.033 0.890±0.036 0.881±0.047 0.897±0.042 0.898±0.046 0.000±0.000 0.897±0.042 0.894±0.008 0.894±0.011 

Water-qy 0.563±0.006 0.585±0.011 0.304±0.024 0.480±0.010 0.570±0.008 0.259±0.045 0.544±0.008 0.559±0.007 0.557±0.009 

3s-bbc1000 0.079±0.023 0.173±0.034 0.277±0.033 0.215±0.036 0.208±0.030 0.000±0.000 0.215±0.036 0.086±0.033 0.084±0.042 
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4.3 Friedman Statistics Analysis 

We employed the Friedman test [52,53] to statistically analyze the performance of the different algorithms systematically. 

Table 7 provides the Friedman statistics 
F

F  and the corresponding critical value in terms of each evaluation metric. As shown in 

Table 7, at the significance level =0.05 , the null hypothesis of “equal” performance is rejected for each evaluation metric. 

Hence, we can use the post-hoc test [53] for relative performance comparisons. We employed the Nemenyi test [53] to analyze 

the performance of our proposed method MLWSE-L1 and MLWSE-L21 against that of the other algorithms. The performance of 

two classifiers is significantly different if the corresponding average ranks differ by at least the critical difference 

( 1)
=

6
a

k k
CD q

N

+
. At the significance level =0.05 , the value of =3.102aq  [53], for the Nemenyi test with 9k = , 14N =  

(including 13 benchmark datasets and a real-world dataset), and thus =3.211CD . Fig. 5 shows the CD diagrams for each 

evaluation metric, where the average rank of each algorithm is marked along the axis (lower ranks to the left). In each subfigure, 

any algorithm connected with MLWSE is considered to have significantly different performance between them.  

Table 7. Summary of the Friedman statistics ( 9, 14)
F

F k N= =  and the Critical Value in term of each evaluation Metric 

Metric F
F  Critical Value ( =0.05 ) 

Accuracy 35.075 

3.211 

Hamming loss 6.348 

Ranking loss 37.824 

F1 9.261 

Macro-F1 10.243 

Micro-F1 8.312 

 
(a) Accuracy                                                           (b) Hamming loss                                                      (c) Ranking loss 

 

 
(d) F1                                                                     (e) Macro-F1                                                               (f) Micro-F1 

 

Fig. 5. CD diagrams of the algorithms that were compared under each evaluation criterion.  

Table 6. Experimental results for each of the algorithms (mean  std) on the CCD dataset 

Algorithm Accuracy   Hamming loss  Ranking loss  F1   Macro-F1   Micro-F1   

EBR 0.6923±0.0118 0.0910±0.0050 0.0395±0.0040 0.7694±0.0102 0.4038±0.0464 0.8079±0.0100 

ECC 0.7041±0.0082 0.0896±0.0041 0.0472±0.0045 0.7800±0.0064 0.4196±0.0495 0.8156±0.0074 

EPS 0.6904±0.0069 0.0935±0.0034 0.0492±0.0057 0.7673±0.0060 0.4045±0.0508 0.8063±0.0069 

RAkEL 0.6797±0.0047 0.0957±0.0028 0.0853±0.0046 0.7597±0.0040 0.3985±0.0477 0.7982±0.0058 

CDE 0.6953±0.0060 0.0913±0.0034 0.0579±0.0053 0.7718±0.0049 0.4096±0.0458 0.8094±0.0066 

AdaBoost.MH 0.6178±0.0126 0.1201±0.0045 0.0536±0.0044 0.7213±0.0110 0.2146±0.0442 0.7405±0.0094 

MLS 0.6797±0.0047 0.0957±0.0028 0.0814±0.0030 0.7597±0.0040 0.3985±0.0477 0.7982±0.0058 

MLWSE-L1 0.9090±0.0015 0.0910±0.0015 0.0388±0.0016 0.7979±0.0035 0.7686±0.0027 0.8102±0.0038 

MLWSE-L21 0.9101±0.0009 0.0899±0.0009 0.0384±0.0078 0.7968±0.0035 0.7681±0.0033 0. 8116±0.0023 
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The Friedman statistics results indicate that: 1) EBR outperforms the other approaches on Hamming Loss. This is because EBR 

is a first-order approach (which does not consider label correlations) that tries to optimize the Hamming Loss. But the proposed 

MLWSE-L21 outperforms MLWSE-L1 and the other approaches in terms of Hamming Loss. 2) ECC outperforms the other 

approaches on Micro-F1, because ECC is a high-order approach (which considers global label correlations) that tries to model 

global label correlations. But the proposed MLWSE-L1 outperforms MLWSE-L21 and the other approaches in terms of Micro-

F1. 3) MLWSE outperforms the other approaches in terms of the other four evaluation metrics. The superior performance of 

MLWSE against these approaches indicates the effectiveness of learning label correlations and the classifier weight.  

To summarize, MLWSE achieves competitive performance against other well-established multi-label ensemble approaches.  

4.4 Parameter Sensitivity Analysis 

We analyzed the parameter sensitivity of MLWSE-L1 and MLWSE-L21 by conducting experiments on the Emotions and 

GpositiveGO datasets. We performed a five-fold cross validation on each dataset and analyzed the relative parameter.  

 

In MLWSE-L1, the regularization parameters   and   were searched in {
-5 -4 3 4

10 ,10 ,...,10 ,10 }, and   was set to 0.1. For each 

( , )  -pair, we recorded the mean value of F1. Fig. 6a and Fig. 6b report the influence of parameters   and   on the Emotions 

and GpositiveGO datasets, respectively. It can be seen from Fig. 5 that in most cases: (1) The performance of MLWSE-L1 is worse 

when the value of   is large, especially, 10   is often harmful; (2) The performance of MLWSE-L1 initially improves and then 

degrades with the increasing of  . Therefore, we fixed the regularization parameters   and   to 
-4

10  and 
-3

10 , respectively.  

 
(a) Emotions dataset                                                                                              (b) GpositiveGO dataset 

 

Fig. 6. Parameter sensitivity analysis of MLWSE-L1 

 
(a)                                                                 (b)                                                           (c)                                                             (d) 

 
(e)                                                                 (f)                                                           (g)                                                             (h) 

 
(i)                                                                 (j)                                                           (k)                                                             (l) 

 

Fig. 7. Parameter sensitivity analysis of MLWSE-L21. (a)-(d): the parameter analysis of MLWSE-L21 with fixed  ; (e)-(h): the parameter analysis of MLWSE-

L21 with fixed  ; (i)-(l): the parameter analysis of MLWSE-L21 with fixed  . 
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MLWSE-L21 searches for the regularization parameters   in {0.01, 0. 05, 0.1, 0.15, 0.2},   in {
-5 -4 1 2

10 ,10 10 10,...， ， },   in 

{
-4 -3 1 2

10 ,10 10 10,...， ， }, and   is set to 0.1. We first find the group of best configurations for the parameters by using five-fold 

cross validation on the training data of the Emotions dataset, and then keep the value of one parameter constant and vary the values 

of the other two parameters. The average results of MLWSE-L21 with different values of   ,  , and   are depicted in Fig. 7(a)-

(l). The figure shows that, in most cases, (1) With a fixed setting of  , the candidate sets for   and   can be employed in 

{
-4 -3 -2

10 ,10 10, } to obtain satisfactory performance. (2) With a fixed setting of  , the performance of MLWSE-L21 is stable with 

different values of each ( , )  -pair. (3) With a fixed setting of  , the candidate sets for   and   can be employed by searching 

  in { -5 -4 -3 -2
10 10 ,10 10, , } to obtain satisfactory performance.  

4.5 Convergence Analysis 

We analysis convergence of MLWSE-L1 and MLWSE-L21 by conducting experiments on the Emotions, Scene, Yeast and 

VirusGO datasets. In this work, our approach is solved by using accelerated proximal gradient and block coordinate descent, which 

can be seen as iterative shrinkage-thresholding algorithms. Accelerated proximal gradient was proven to converge in function 

values as 
2

( )1O t with a backtracking step size rule [43]. Block coordinate descent is proven to converge in function values as 

2
(( ) )logO t t [43,44,45]. Fig. 8 shows the value of the loss function of MLWSE-L1 (8) and MLWSE-L21 (9) with the number of 

iterative cycles, respectively. For MLWSE-L1, the loss value tends to stabilize after 300 iterative cycles. Fig. 8(a) shows that when 

the number of iterative cycles exceeds 200, the loss value (which is less than 0.008) has little effect on the performance; hence, the 

number of cycles in the experiment was specified to be 200. For MLWSE-L21, the loss value tends to stabilize after 200 cycles. 

Here, the number of iterative cycles refers to the outer loop, whereas the number of cycles of the inner loop in the experiment was 

set to 100. The experimental results show that the proposed methods are more efficient than most of the multi-label ensemble 

methods.  

5. Discussion 

We conducted a comprehensive investigation based on a series of simulations. As demonstrated by our experiments, our 

approach is able to achieve high-quality generalization performance by implementing a simple iterative shrinkage-thresholding 

algorithm. Thus, a promising yet easy-to-use technique for multi-label ensemble classification is introduced. We summarize the 

advantages of our approach as follows. 

First, we proposed a novel weighted stacked ensemble approach for multi-label classification and used sparsity for regularization 

to facilitate classifier selection and ensemble construction with the ultimate goal of developing a simple and efficient method to 

select multi-label base classifiers. Our approach is geometrically explained in Section 2.2, and the results of the weighted classifier 

selection ability are presented in Table 3. Further, the proposed approach was tested on datasets from a variety of domains such as 

Text, Imaging, Biology, and Medicine. The experimental results in Table 4 and Table 5 indicate that our approach outperforms 

state-of-the-art multi-label ensemble algorithms. In addition, our model can be used as base classifier with any existing multi-label 

classification algorithm such as MLKNN [12] and ML-DT [13]. As illustrated in Fig. 8, the proposed approach only needs a small 

number of iterative steps to reach convergence, thereby confirming that our technique is easy to use for multi-label classification 

tasks and applications.  

Second, our approach can be seen as label meta-specific-feature selection methods because of their exploitation of label 

correlations. Here, generating the confidence score matrix S  can be seen as a meta feature. Because we simultaneously exploit 

classifier weights and label correlation, the weight matrix W  can be regarded as selecting a label meta-specific-feature. We made 

 
(a) MLWSE-L1                                                                                                (b) MLWSE-L21 

Fig. 8. Loss of MLWSE-L1 and MLWSE-L21 with the number of iterative cycles. 
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the assumption that the classifier weight vector pair would be highly similar if a strong correlation between any two labels existed. 

In other words, any two strongly correlated class labels would share more meta features with each other than two uncorrelated or 

weakly correlated ones. Fig. 4 shows the correctness of our proposed hypothesis. Similar approaches to learning label specific 

features have been proposed, such as MLSF [56] and LLSF [57]. In our methods, parameter   can be used to adjust feature 

sparsity, and parameter   balances the contribution of label correlations and weight learning. The results in Fig. 6 and Fig. 7 

demonstrate the effect of parameter adjustments, and show that the proposed MLWSE-L21 method is more stable than the 

MLWSE-L1 method. Finally, the results in Fig. 5 and Table 6 indicate that our approach is much more robust to the different 

evaluation metrics than the other algorithms used in the comparison.  

A subsequent literature survey revealed that Zhou and Tao [58] proposed a multi-label subspace ensemble method based on the 

group sparsity Lasso, which does not consider the stacked ensemble. Büyükçakır et al. [59] also proposed a weighted stacked 

ensemble method for multi-label classification, named GOOWE-ML. In their approach, the weights are obtained by utilizing 

component classifiers. Although this algorithm uses a principle similar to that of a weighted stacked ensemble, it was mainly 

developed for multi-label stream classification, and their approach neither considered a classifier selection ensemble nor pairwise 

label correlation. In contrast, our approach adopts sparsity for regularization of the classifier selection ensemble and uses the cosine 

similarity to calculate the label correlation matrix. Therefore, our approach not only improves the interaction between base 

classifiers but also the computing efficiency.  

Although the experimental results demonstrate that our proposed approach achieves competitive performance on a variety of 

datasets, it still causes a few problems that could directly affect its practical application. Similar to other multi-label stacking 

algorithms, our approach also needs to generate meta-level features, which adds to the computational cost. Therefore, our approach 

could be problematic for extreme multi-label classification [60]. Reaching a compromise between computational efficiency and 

classification accuracy for extreme multi-label ensemble classification would be an interesting and challenging research topic.  

6. Conclusion 

In this paper, we proposed a novel weighted classifier selection and stacked ensemble for multi-label classification, MLWSE, 

which uses sparsity for regularization to facilitate classifier selection and ensemble construction, and simultaneously exploits the 

classifier weights and label correlation to improve the classification performance. On the other hand, our model can be seen as a 

label meta-specific-feature selection method, and it can be used with any existing multi-label classification algorithm as its base 

classifier. We compared our method MLWSE-L1 and MLWSE-L21 with several well-established multi-label ensemble 

classification algorithms on 13 multi-label benchmark datasets and real Cardiovascular and Cerebrovascular Disease datasets. The 

results of the comparison confirmed the competitive performance of our proposed method, and verified the effectiveness of the 

weighted stacked ensemble.  
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