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Abstract

Here we propose and investigate the use of visibility graphs to model the feature

map of a neural network. The model, initially devised for studies on complex

networks, is employed here for the classification of texture images. The work is

motivated by an alternative viewpoint provided by these graphs over the original

data. The performance of the proposed method is verified in the classification of

four benchmark databases, namely, KTHTIPS-2b, FMD, UIUC, and UMD and

in a practical problem, which is the identification of plant species using scanned

images of their leaves. Our method was competitive with other state-of-the-

art approaches, confirming the potential of techniques used for data analysis in

different contexts to give more meaningful interpretation to the use of neural

networks in texture classification.
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1. Introduction

With a well established theoretical background in physics (statistical physics),

mathematics and theoretical computer science (graph theory), complex net-

works have gathered significant attention from the scientific community since a

few seminal works on this topic. Examples of these initial works are [16, 32, 13].

Especially after the studies of Watts and Strogatz on small-world networks [37],

Barabási and Albert on scale-free networks [4] and Girvan and Newman on com-

munity structures [17], this model gained more and more attention from applied

areas and the complex networks became a widely used technique for the analysis

of real world data in several research fields such as in physics [29], medicine [39],

meteorology [14], agriculture [40], sociology [6], and others.

More recently, complex networks have also been proposed as a promising tool

for the analysis of texture images, more specifically, for the purpose of texture

recognition/classification [3]. In the most popular approach for image analysis,

the pixels have been interpreted as vertexes of a large-scale graph and measures

of similarity among those pixels (difference of gray levels and spatial separation

in the image domain, for instance) are modeled as edge weights. Statistical

measures like, for example, those associated with the degree distribution, are

computed and compose a vector of “hand-crafted” descriptors employed as the

input of an image recognition system.

Based on this previous success in providing meaningful image descriptors,

here we propose the introduction of the complex network modeling in a learning-

based framework. More specifically, we propose the use of techniques from

the analysis of complex networks to provide a new strategy for pooling im-

age features learned by a neural network composed by convolutional and fully-

connected layers. The importance of investigating new strategies for pooling

feature maps in neural networks and how this can improve the performance in

image recognition tasks has been evidenced by works like [11, 12]. In this way,

we propose the modeling of the fully-connected feature map immediately before

the classification outcome as a visibility graph (VG) [24]. This is a technique

2



initially proposed for the analysis of time series and converts the feature map

into a complex network. From that network, we obtain the image descriptors

by computing the degree of each node at different distances.

The classification accuracy was verified in the recognition of well-established

benchmark databases of texture images, namely, KTHTIPS-2b [20], FMD [33],

UIUC [25], and UMD [38], as well as in an application to the automatic iden-

tification of species of Brazilian plants. In all cases, the proposed approach

presented promising results and a performance competitive with state-of-the-

art methods recently proposed for texture/material recognition.

2. Related works

During the last decades a large number of studies have been presented in

the literature using convolutional neural networks (CNN) for image recognition,

especially after the impacting work of Krizhevsky et al. in 2012 [22]. That work,

in many senses, established baselines for the application of neural networks with

a large number of hidden layers (“deep learning” approach) to the classification

of real-world images, achieving performance significantly better than the state-

of-the-art at that point in the ILSVCR/ImageNet challenge.

A particular type of image that also benefited from CNN frameworks were

texture/material images. Texture recognition tasks can be divided essentially

into two types: instance-based and material-based recognition. In instance-

based problems we have samples from similar materials varying parameters like

viewpoint, illumination, etc. Two typical example of databases in this category

are UIUC [25] and UMD [38]. On the other hand, in material-based categoriza-

tion, the aim is to discriminate among different materials, possibly presenting

significant variance within samples. KTHTIPS-2b [20] and FMD [33] databases

illustrate this type of problem.

In instance-based recognition, local “hand-crafted” descriptors and “bag-

of-visual-words” (BoVW) have provided robust results. Local Binary Patterns

(LBP) [30] (and its numerous variations), VZ-Joint and MRS4 [36] are examples
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of such success. More recently an evolution of the BoVW strategy was the

Fisher vectors [31], improving the classification accuracy in texture databases

and establishing new state-of-the-art records.

For material-based classification, more elaborated techniques were necessary

to obtain satisfactory performance. An important “hand-crafted” descriptor

proposed for this purpose was the dense-SIFT, an adaptation for texture im-

ages of the classical Scale-Invariant Feature Transform (SIFT) [27], originally

developed for object recognition.

Nevertheless, since the initial tests with “hand-crafted” descriptors, their

limitations in material classification became clear. Together with the success of

deep learning in general purpose image recognition, those were the main mo-

tivation for the investigation of CNN-based approaches in texture recognition.

However, it was also rapidly verified that the pipeline employed in [21] was not

the most suitable for texture images. In this case, the use of CNNs as a feature

extractor like in DeCAF method [10] was more promising. Even more accu-

rate result was achieved by advanced combinations of local descriptors derived

from the CNN feature maps with pooling techniques. Examples are the several

variations of the combination Fisher vector + CNN (FV-CNN) in [11]. Finally,

we should also mention the CNN architectures adapted for texture images, like

T-CNN [2], where another element typically used in hand-crafted descriptors

(filter banks) is associated with the CNN framework.

3. Background

3.1. Convolutional neural networks

Fully connected networks [5] can be applied to model the task of image clas-

sification if we consider each pixel as a neuron in the input layer. However, such

a high number of neurons and connections, imply a huge amount of parame-

ters to be optimized, which is computationally costly. Furthermore, the more

complex the model (more parameters), the more data we need to reduce the

variance of the training set and prevent over-fitting. Moreover, those networks

4



have one dimensional layer, which do not explore local properties of images

and the characteristics of each color channel. Convolutional Neural Networks

(CNN) are models designed to appropriately deal with images and attenuate all

these problems. CNNs allow the network to have neurons organized in higher

dimensional layers (3D volumes), exploring the way that pixels are distributed

on the image. Some neurons are also allowed to be not connected with others.

After the input data is processed through all the network, the output should

be as close as possible to our target outcome. The discrepancy between the

expected output and the target is measured by loss functions. The backpropa-

gation algorithm is employed to find the weights that minimize such loss function

Y (x,W ), which depends both on the input data x and parameters (weights) W .

This is an iterative process where at each iteration t the weights wij are updated

according to

wij(t) = wij(t− 1)− η ∂Y
∂wij

, (1)

where η is a predefined hyperparameter called learning rate.

3.2. Visibility graph

Visibility graph (VG) was a tool developed in [24] with the original purpose of

analyzing time series using techniques from graph theory and complex networks.

Generally speaking it maps a sequence of real values to a graph.

Figure 1 illustrates the process. Each value is represented by a vertical bar

whose height is proportional to the respective value. In terms of the graph, each

such bar is associated with a node and two nodes are connected if there is a

straight line connecting each vertical bar without intersecting any intermediate

bar.

More formally, if we have the value y1 at the position x1 and y2 at x2, we

have the corresponding nodes connected if

y3 < y2 + (y1 − y2)
x2 − x3
x2 − x1

, (2)

for any x3 between x1 and x2.
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Figure 1: Natural and horizontal visibility graphs. Weighted graphs have the same structure

of natural ones, except for having weights associated with each edge.

This original version is also known nowadays as Natural Visibility Graphs

(NVG). There are two other important variations of VGs: Horizontal Visibility

Graphs (HVG) [28] and Weighted Visibility Graphs (WVG) [34].

In an HVG, we have the points (x1, y1) and (x2, y2) connected simply if

y3 < y1 and y3 < y2, (3)

for any x3 between x1 and x2. Visually, that means that a horizontal line can

connect (x1, y1) and (x2, y2) without intercepting any other bar.

Finally, a WVG is pretty similar to an NVG, except that the connection

is not expressed by a binary value (“yes” or “not”). Instead, it is represented

by a real value (weight) that measures the angle of the connecting line. More

precisely, the weight w associated to the connection between (x1, y1) and (x2, y2)

is given by

w12 = arctan
y2 − y1
x2 − x1

. (4)

4. Proposed method

Visibility graphs are known to satisfy several properties that are paramount

for pattern recognition tasks. It can be easily demonstrated, for example, that

they are invariant under affine transformations, such as horizontal/vertical scal-

ing and translation, rotation, etc.
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There is also a well established relation between the structure of the original

data and the topology of the visibility graph. As investigated in [24], periodic

data, for example, correspond to regular visibility graphs whose distributions

present a finite number of peaks representing the series period.

On the other hand, a random sequence with values obtained from a uni-

form distribution results in a random graph, but with an exponential degree

distribution (instead of the Poison distribution commonly arising in random

graphs).

Another interesting case is that of fractal-like data, as they often appear in

nature modeling. It can be shown (even theoretically in some specific cases)

that the degree distribution of the resulting NVG is a power law. The authors

in [24] illustrate this property with a perfectly self-similar structure.

This can be demonstrated by constructing a time series starting with the

pairs (x, y) = (0, 1), (x, y) =
(
1, 13
)

and (x, y) =
(
2, 13
)
. In the next steps they

add new pairs placed at random positions but in such a way that, in the step

p, we have 2p+1 new pairs, all of them with y = 3−(p+1) and with the x values

separated by 3−p.

For the visibility graph, each pair corresponds to a vertex and for this specific

series, the degree can be uniquely identified by the right and left degree of the

vertex corresponding to
(
2, 13
)
. For the right degree at step n, here denoted

Kr(n), we can use tools from arithmetic functions. The degree function deg

satisfies ∑
d|n

deg(d) = 2n, (5)

where d|n denotes the integer divisors of n. In this way, Möbius inversion

formula ensures that at the step n

deg(n) =
∑
d|n

µ(d)2n/d. (6)

Finally, for the total right degree we should average out over all steps:

Kr(n) =

n∑
k=1

1

n

∑
d|n

µ(d)2n/d. (7)
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For the left degree, the following recursion can be demonstrated by induction:

Kl(n) = 2Kl(n− 1) + 1. (8)

Both expressions (7) and (8) can be summarized into their leading terms,

that are exponential relations (power laws):

Kr(n) ≈ 24n/5, Kl(n) ≈ 2n. (9)

Power laws are well known in scale-free networks, which also commonly appear

in the modeling of real-world problems.

Another important property of visibility graphs in this case is that the pa-

rameter (exponent) of the power law varies according to the Hurst parameter

and this is known to be a fundamental feature for distinguishing between differ-

ent levels of “fractality”. In this sense, we can say that VGs are also a suggestive

tool to infer the fractality of experimental data.

In summary, VGs are capable of preserving some essential information of the

original data (like periodicity, randomness or fractality) at the same time that it

offers a new viewpoint such that one can, for example, distinguish data showing

simple scale invariance from those presenting small-world characteristics.

Indeed, properties classically associated to dynamical chaotic systems, like

fractal dimension, are well known to provide good description of real-world

images [38]. Figure 2 illustrates how fractal distribution naturally arises in

real-world textures such as those in UIUC for example. That figure shows the

connectivity degree d(r) of a particular node when values at different distances

r in the original data (features extracted by a CNN in this case) are considered.

Even though the textures have rather different appearances, in a log− log plot

the curves in all cases are quite similar to a straight line, confirming the ex-

ponential law associated to the degree distribution and attesting its fractality.

Nevertheless, while fractal dimension only accounts for the growing rate of a

measure along a range of scales, VG graphs are capable of conveying a more

complete description of the original data, by including relevant information con-
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Figure 2: Degree d at different distances r from a particular node in the visibility graph

modeling texture features extracted by a convolutional network. The quasi-linear form in

log-log scale illustrates the fractality of the images.

cerning other possible properties of the features, like randomness, chaoticity and

periodicity.

This is the motivation for the methodology proposed here, where NVGs,

HVGs and WVGs are employed to model the feature map of a neural network

at the last fully connected layer. That feature map is used as a descriptor vector

for posterior classification with support vector machines in [11] and provided

excellent results. Here the descriptors correspond to the node degrees of the

visibility graph. We also consider the degree at different distances, i.e, when

rather than counting edges we count paths connecting two vertexes at that

particular distance. For weighted VG the meaning of “degree” at a particular

distance is slightly different, as in this case the product of weights along all paths

whose length correspond to that distance are summed up. Figure 3 summarizes

the procedure.

For the network architecture we used VGG-VD as that achieved the best per-

formance in most experiments of texture classification in [11]. We also adopted

the transfer learning framework and the network weights were pre-trained on

Imagenet database.

For the classification of the proposed descriptors we tested two possibilities:

support vector machines (SVM) with a configuration similar to what is employed

9



0 50 100 150 200

0

0.02

0.04

0.06

Image CNN features

0 20 40 60 80 100

1000

2000

3000

4000

5000

VG adjacency Node degree

Figure 3: VG graph for pooling neural network features from texture images.

in [11], i.e, linear kernel, C = 1 and L2 normalization, and linear discriminant

analysis (LDA) [23].

5. Experiments

The performance of the proposed descriptors was evaluated on four bench-

mark databases widely used in the recent literature of texture/material clas-

sification methods. We also applied the same method to a practical problem,

namely, the identification of species of Brazilian plants using scanned images of

leaves.

The first benchmark data set is KTHTIPS-2b [20], a database comprising

4752 images equally divided into 11 material categories. An important charac-

teristic of this data is its focus on the material represented in the image rather

than on the instance of the photographed object. In each material class the

images can still be divided into 4 samples. Each sample follows a particular

scheme of scale, pose and illumination. The validation protocol is the most

typically employed in the literature, where 1 sample is used for training and the
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remaining 3 samples are used for testing. The accuracy (percentage of images

correctly classified) is obtained by averaging out the results for the 4 possible

combinations of training/testing.

The second database is Flickr Material Database (FMD) [33]. These images

were manually collected from flickr.com aiming at representing materials more

commonly found in our daily lives and at the same time capturing variance

in illumination, color, composition, etc. The database contains 1000 images

equally divided into 10 categories. Again we use the protocol typically followed

in the literature, with 14 random training/testing splits. Each split contains 50

images per class for training and the remaining 50 images for testing.

The third database is UIUC [25], containing 1000 images evenly divided

into 25 texture categories. The images were collected under non-controlled

conditions and contain variation in albedo, perspective, illumination and scale.

For the validation split we randomly select 20 images of each texture class for

training and the remaining 20 images for testing. This is repeated 10 times to

provide the average accuracy.

The fourth data set is UMD [38]. This is in many respects similar to UIUC,

containing the same number of classes and images per class, and similar chal-

lenges like uncontrolled conditions of acquisition and variation in viewpoint and

scale. The most significant difference is that in this case the images have higher

resolutions, with 1280× 960 pixels.

6. Results and Discussion

As a first test we compared the performance of two well known classifiers,

i.e., LDA and SVM, on the proposed descriptors. The features employed in

this case are given by the degree values of natural VG at distance 1. The

descriptors are also normalized to fit within 0 and 1. Table 1 lists the average

accuracy (percentage of images correctly classified) among the training/testing

splits achieved in each case. LDA performed better in all databases and as a

consequence it was the classifier employed for the remaining tests.
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Table 1: Classification accuracy (%) for the proposed descriptors using SVM and LDA clas-

sifiers.

Database SVM LDA

KTHTIPS-2b 71.1 75.7

FMD 73.5 77.3

UIUC 97.2 97.6

UMD 97.8 98.1

1200Tex 84.5 87.4

Table 2 shows the percentage of images correctly classified when using the

three types of visibility graphs investigated here and at distances 1, 2 and 3.

A few points should be highlighted here. The fist one is that in most cases

horizontal graphs provided higher accuracies than natural and weighted VGs.

This is justified by the simplification accomplished by HVG in comparison with

NVG or WVG, as a few edges are removed. As a consequence, the resulting

descriptors correspond to a more global perspective of the original data, being

thus less prone to over-fitting. The results for weighted graphs demonstrated

that the angle of the visibility connection is not sufficiently relevant as a repre-

sentation of the CNN codes. This is potentially explained by the introduction

of an artificial periodic behavior by the angle measure, which is not present in

the original data. Other types of weights for the visibility connection might

be investigated in the future to circumvent this issue. It is also interesting to

observe that there is no performance gain with the addition of larger distances,

in fact, the larger the distance the lower was the accuracy. This was also the

rationale for discarding tests with even larger distances, as they imply more

computation burden associated with no improvement in the accuracy.

Given that lower distances yielded better results, Table 3 shows the clas-

sification accuracies when distances 1 and 2 are combined for each VG type.

Horizontal graph repeated the great performance in Table 2, however now we

also have good results achieved by weighted VGs. This can be explained by

the fact that the distance degree in this case conveys more information than a
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Table 2: Classification accuracy (%) for the VisGraphNet descriptors, type ’natural’ (N),

’horizontal’ (H) and ’weighted’ (W) at distances 1 (D1), 2 (D2) and 3 (D3).

Database ND1 ND2 ND3 HD1 HD2 HD3 WD1 WD2 WD3

KTHTIPS-2b 75.7 75.3 74.7 77.0 76.6 76.8 75.2 72.3 70.6

FMD 77.3 76.3 75.0 77.5 77.5 76.8 77.2±1.8 71.4 67.1

UIUC 97.6 97.2 96.2 97.8 97.7 97.7 97.7 95.9 93.4

UMD 98.1 97.9 98.0 98.5 98.3 98.1 98.0 97.5 96.5

1200Tex 87.4 86.0 85.0 87.3 86.9 86.1 87.0 86.7 85.3

binary adjacency matrix. Now the weights along any path with that particular

length are accounted and the way how information for D1 and D2 complement

each other is more evident.

Table 3: Classification accuracy (%) for the VisGraphNet descriptors combined at distances

1 and 2.

Database ND1+ND2 HD1+HD2 WD1+WD2

KTHTIPS-2b 75.8 77.2 75.3

FMD 75.9 77.5 77.4

UIUC 96.9 97.8 97.9

UMD 97.9 98.4 98.3

1200Tex 85.9 86.9 86.9

Table 4 shows two other combination of VG descriptors: all graphs at dis-

tance 1 and horizontal VG at distance 1 combined with degree sequence (DS),

i.e., the list of degree values sorted in increasing order. The combination with

DS gave some boost to the horizontal descriptors. Such extra discrimination can

be explained by an intrinsic property of degree sequences according to which two

graphs with different DS cannot be isomorphic, i.e., they possess real differences

in their topologies.

Figure 4 shows the confusion matrices for the proposed method on the bench-

mark data sets. The combination H1+DS was chosen for this analysis as ac-

cording to the previous tests it presented the best performance in most cases.
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Table 4: Classification accuracy (%) for the VisGraphNet descriptors combining types N, H

and W at distance 1 and combining H at distance 1 with degree sequence (DS).

Database N1+H1+W1 H1+DS

KTHTIPS-2b 75.7 77.5

FMD 77.3 77.3

UIUC 97.5 98.0

UMD 98.1 98.4

1200Tex 87.8 87.3

Figure 4 (c) and (d) correspond to a nearly ideal classification result, confirming

the excellent performance on UIUC and UMD attested in Table 5. Figure 4 (a)

and (b), on the other hand, express a much more challenging scenario, where

the number of misclassified samples (gray squares outside the diagonal) is signif-

icantly larger. This also confirms the lower accuracy achieved for KTHTIPS-2b

and FMD. In FMD the misclassification occurrences are more evenly distributed

along the different categories of materials, whereas in KTHTIPS-2b we have

materials sensibly more challenging than others. Examples are classes 5 and 10

(respectively, “cotton” and “wool”), which are often confused. Those materials

share remarkable similarities especially in their microtextures. Both contain

periodic patterns that are hardly distinguished sometimes even by visual in-

spection.

Table 5 lists the accuracy performance of the VisGraphNet descriptors (H1

+ DS) in KTHTIPS-2b, FMD, UIUC, and UMD, compared with other results

published in the literature. In general, the proposed method demonstrates com-

petitiveness with the state-of-the art, presenting overall better performance than

the other ones in this comparison. Even in cases when VisGraphNet is outper-

formed in UIUC and UMD, it is by a marginal difference and the competitor

approach involves complex combinations at the level of CNN architecture, which

are pretty expensive in computational terms. In particular, the noticeable accu-

racy in KTHTIPS-2b and FMD is particularly relevant as those are databases
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Figure 4: Confusion matrices for the proposed VisGraphNet descriptors (H1+DS). (a)

KTHTIPS-2b. (b) FMD. (c) UIUC. (d) UMD.
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well known for the challenge imposed to any recognition algorithm.

Table 5: Accuracy of the proposed descriptors (H1+DS) compared with other texture descrip-

tors in the literature. All the results except for the proposed VisGraphNet were obtained from

the literature. A ‘-’ indicates that no result was published for that method on that database.

A superscript 1 in KTH-TIPS2b represents a slightly different training/testing split where 3

samples are used for training and the remaining one for testing.

Method KTH-TIPS2b FMD UIUC UMD

VZ-MR8 [35] 46.3 22.1 92.9 -

LBP [30] 50.5 - 88.4 96.1

VZ-Joint [36] 53.3 23.8 78.4 -

LBP-FH [1] 54.6 - - -

CLBP [19] 57.3 43.6 95.7 98.6

SIFT+LLC [11] 57.6 50.4 96.3 98.4

ELBP [26] 58.1 58.1 - -

SIFT + KCB [10] 58.3 45.1 91.4 98.0

SIFT + BoVW [10] 58.4 49.5 96.1 98.1

SIFT + VLAD [10] 63.1 52.6 96.5 99.3

RandNet (NNC) [9] 60.71 - 56.6 90.9

PCANet (NNC) [9] 59.41 - 57.7 90.5

BSIF [21] 54.3 - 73.4 96.1

LBPriu2/VAR [30] 58.51 - 84.4 95.9

SIFT+IFV [10] 58.2 69.3 97.0 99.2

ScatNet (NNC) [7] 63.71 - 88.6 93.4

FC-CNN AlexNet [11] 71.5 64.8 91.1 95.9

MFS [38] - - 92.7 93.9

DeCAF [10] 70.7 70.7 94.2 96.4

FC-CNN VGGM [11] 71.0 70.3 94.5 97.2

(H+L)(S+R) [25] - - 97.0 97.0

FC-CNN + FV-CNN AlexNet [11] 72.1 71.4 99.3 99.7

FC-CNN VGGVD [11] 75.4 75.0 99.9 97.7

VisGraphNet (Proposed) 77.5 77.3 98.0 98.4
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6.1. Identification of Plant Species

Table 6 shows the performance of the proposed descriptors in 1200Tex database

[8], compared with other state-of-the-art results in the literature on these tex-

tures. This is a set of images of plant leaves from 20 Brazilian species collected

in vivo. For each species 20 samples were collected, cleaned, aligned with the

vertical axis and photographed by a commercial scanner. The image of each

sample was divided into 3 non-overlapping windows with size 128× 128. Those

windows were extracted from regions of the leaf presenting less texture vari-

ance and were converted into gray scale images, resulting in a total of 1200

images equally distributed among 20 plant species. The training/testing split

was similar to that used for UMD and UIUC, i.e., for each species 30 images

were randomly selected for training and the remaining images for testing. Such

random division was repeated 10 times to provide average accuracy and devia-

tion.

Some performance gain is observed over the original FC-CNN VGGVD de-

scriptors when the visibility graph modeling is employed. While the classical

deep learning approach achieved an accuracy of 84.2%, the VG model (H1+DS)

provided 87.3%.

Table 6: Accuracy of the VisGraphNet descriptors over 1200Tex database, compared with

other results in the literature.

Method Accuracy (%)

LBPV [19] 70.8

Network diffusion [18] 75.8

FC-CNN VGGM [11] 78.0

Gabor [18] 84.0

FC-CNN VGGVD [11] 84.2

Schroedinger [15] 85.3

SIFT + BoVW [10] 86.0

FV-CNN VGGVD [11] 87.1

Proposed 87.3
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Figure 5 gives more information about the classification outcomes by means

of the correspondent confusion matrix. Generally speaking, such map illustrates

the high accuracy obtained in this task. In most classes the ratio of species cor-

rectly identified is close to 100%. The most complicated cases in the matrix are

between the pairs of classes 6/8 and 5/9. The respective leaves are characterized

by similar patterns in nervure distribution, which are known to be fundamental

source of information for species discrimination, such that lower accuracy were

already expected in such situation.
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Figure 5: Confusion matrix for the plant database.

Both in the benchmark and in the practical experiment we observed that

VG modeling contributed with the classification process, improving the accu-

racy achieved by the original features (here, the CNN descriptors). Such gain

was theoretically expected considering the ability of visibility graphs in identi-

fying patterns of randomness, periodicity, fractality, chaoticity, etc. These are

attributes whose importance in recognition tasks are known for a long time in

the literature. The results confirm such positive expectations and points in the

direction of more in-depth investigation on how tools from complex networks

combined with neural networks could be useful for feature representation and

classification in general.
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7. Conclusions

We proposed and investigated a combination of feature map codes provided

by a neural network as in [11] with the modeling by visibility graphs (VG).

VGs are capable of providing a new perspective over the original data, in

this way hopefully enriching the analysis and impacting the accuracy of the

classification process.

The performance of our method was evaluated in benchmark databases as

well as in a practical problem with biological importance, namely, the identifi-

cation of species of Brazilian plants. In both situations the proposed method

achieved promising results, being competitive when compared to state-of-the-art

techniques recently published.

Such results suggest more in-depth investigation on how techniques from

different contexts in data analysis (complex networks in our case) can be useful

to explore the information conveyed by the highly non-linear features provided

by a multilayer neural network. Our results confirm that the classification per-

formance can be significantly improved in this way, especially in those more

challenging applications.
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ant image description with local binary pattern histogram fourier features,

19



in: Salberg, A.B., Hardeberg, J.Y., Jenssen, R. (Eds.), Image Analysis,

Springer Berlin Heidelberg, Berlin, Heidelberg. pp. 61–70.

[2] Andrearczyk, V., Whelan, P.F., 2016. Using filter banks in convolutional

neural networks for texture classification. Pattern Recognition Letters 84,

63–69.

[3] Backes, A.R., Casanova, D., Bruno, O.M., 2013. Texture analysis and

classification: A complex network-based approach. Information Sciences

219, 168 – 180.

[4] Barabási, A.L., Albert, R., 1999. Emergence of scaling in random networks.

Science 286, 509–512.

[5] Bishop, C.M., 1995. Neural Networks for Pattern Recognition. Oxford

University Press, Inc., New York, NY, USA.

[6] Borgatti, S.P., Mehra, A., Brass, D.J., Labianca, G.J., 2009. Network

analysis in the social sciences. Science 323 5916, 892–5.

[7] Bruna, J., Mallat, S., 2013. Invariant scattering convolution networks.

IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 1872–

1886.
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