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Abstract

The ability to find short representations, i.e. to compress data, is crucial for many intelligent systems. We present
a theory of incremental compression showing that arbitrary data strings, that can be described by a set of features,
can be compressed by searching for those features incrementally, which results in a partition of the information
content of the string into a complete set of pairwise independent pieces. The description length of this partition
turns out to be close to optimal in terms of the Kolmogorov complexity of the string. Exploiting this decomposition,
we introduce ALICE – a computable ALgorithm for Incremental ComprEssion – and derive an expression for its
time complexity. Finally, we show that our concept of a feature is closely related to Martin-Löf randomness tests,
thereby formalizing the meaning of “property” for computable objects.
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1. Introduction

In the machine learning community it has long been known that short representations of data lead to high
generalization abilities [4, 22]. If the model is larger than necessary the less it is able to generalize, hence to
predict.1

Similar ideas have been expressed in cognitive neuroscience, psychology and linguistics. In neuroscience, the
efficient coding hypothesis [2] states that the spikes in the sensory system form a neural code minimizing the number
of spikes needed to transmit a given signal. Sparse coding [20] is the representation of items by the strong activation
of a relatively small set of neurons. In psychology, it is not a recent idea to regard perception from the perspective of
Bayesian inference [14], which is known to entail Occam’s razor [19, Chapter 28].2 In linguistics, various principles
of information maximization and communication cost minimization have been proposed (see [13] for a review). In
the philosophy of science, Occam’s razor suggests that scientists should strive for explanations / theories that are
as simple as possible while capturing and explaining as much data as possible [12].

Kolmogorov, Solomonoff and Chaitin went further and formalized those ideas, which has led to the development
of the algorithmic information theory [15, 27, 28]. The amount of information contained in an object x is defined as
the lengthK(x) of its shortest possible description, which has become known as the (prefix) Kolmogorov complexity.
K(x) is the length of the shortest program that prints x when executed on a universal (prefix) Turing machine U ,
i.e. a computer. For example, if x is a string of one million zeros, we can write a short program q that can print it
while being much shorter than the data, l(q)� l(x).

Finding short descriptions for data is what data compression is all about, since the original data can be unpacked
again from its short description. Furthermore, compression is closely tied to prediction. For example, a short
program implementing a zero printing loop could just as well continue printing more than a million of them, which
would constitute a prediction of the continuation of the sequence. Indeed, Solomonoff’s theory of universal induction
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proves formally that compressing data leads to the best possible predictor with respect to various optimality criteria
(see [11, Chapter 3.6]) in the set of lower semicomputable semimeasures [29]. In order to do so, the so-called universal
prior of a data string x is defined:

M(x) =
∑

q:U(q)=x

2−l(q) (1)

where x, q ∈ B∗ are finite strings defined on a finite alphabet B, U is a universal Turing machine that executes
program q and prints x and l(q) is the length of program q. Given already seen history x<k ≡ x1 · · ·xk−1 the
predictor’s task is to compute a probability distribution over xk, which is given by the conditional distribution
M (xk | x<k) = M (x≤k) /M (x<k). The Solomonoff predictor has been shown to converge quickly [29] to the true
data generating distribution, allowing it to predict future data with the least possible loss in the limit. Note
that eq. (1) weighs each “explanation” q for the data with 2−l(q), which directly expresses Occam’s razor (i.e.
compression): even though we should consider all explanations, the shorter/simpler ones should receive the highest
weight. Remarkably, optimal induction and prediction requires halving the prior probability of an explanation for
every additional bit in the explanation length.

In the context of artificial intelligence, Hutter went further and attached the Solomonoff predictor to a rein-
forcement learning agent [11]. If general intelligence is defined as the ability to achieve goals in a wide range of
environments [16], the resulting AIXI agent has been shown to exhibit maximal general intelligence according to
various optimality criteria [11, Theorems 5.23 and 5.24]. This result formally ties the conceptual problem of artificial
general intelligence to efficient data compression, making the search for its solution even more urgent.

Even though Kolmogorov complexity solves the task of optimal compression from a theoretical point of view, its
fundamental incomputability as well as the impossibility of computing even approximate estimates [18, Theorem
2.3.2] hinders its practical usefulness. Nevertheless, there is a modified computable measure – Levin complexity
Kt(x), which also takes into account the running time for a program generating the string x. The well-known Levin
Search [17] algorithm computably finds a description with the lowest Levin complexity and thereby constitutes in
some sense a practical analogue of Kolmogorov complexity. We should however note, that Levin complexity can
in some cases differ dramatically from the Kolmogorov complexity which is an insurmountable consequence of the
incomputability of the latter. There is a number of algorithms trying to optimize Levin Search, like Hutter Search,
Adaptive Levin Search, the Optimal Ordered Problem Solver and others [10, 23, 24]. The problem is however, that
the cited algorithms try to find the entire description of the string x at once, leading to very large multiplicative
or additive constants arising from the exhaustive search through a large number of programs. This is naturally
related to the fact that in the definition of the Kolmogorov complexity K(x) it is required to find a single program
describing the string. The search for such a program can take a lot of time even if it runs quickly. The main idea
of the present paper is to express the complexity of the string as a decomposition into several programs, which can
be obtained incrementally one after the other.

The main contributions of this paper are summarized as follows:

• The theory of (lossless) incremental compression is presented in full scale here. We show that the information
content (Kolmogorov complexity) of an arbitrary incrementally compressible string – the golden standard of
compression – can be broken down into several mutually independent pieces: the features of the string and
a residual part. Some theorems on this idea have already been published in a short conference paper [5]. In
this paper, we extend those ideas substantially.3 We also treat the important question about the number of
compression steps (Chapter 3.3), discuss of the relationship to machine learning and the application of the
theory in practice.

• The understanding of a feature is expanded by two degenerate notions: the singleton and the universal feature.
The former helps understand that any compressible string possesses a feature – the singleton feature, making
the existence of feature a ubiquitous property of compressible strings. The latter leads to a constant bound
on the length of the shortest feature and descriptive map in the important special case of well-compressible
strings. This helps understand that features can be very short, in particular much shorter than K(x) which
is crucial for the practical search for features.

• Our understanding of features is further deepened by Theorems 3.2 and 3.3. Theorem 3.2 expands our
knowledge about the number of shortest features, which turns out to grow at most polynomially with the

3The conference paper unfortunately contains several mistakes even though the core ideas are still valid. We have corrected them
here.
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length of the to-be-compressed string. Theorem 3.3 informs us about the penalty to be paid (in bits of
superfluous description length) if the chosen feature is not the shortest, which is crucial if, for example,
incremental compression is implemented by a layered neural network in which many bits are wasted in the
weights between the layers.

• The introduction of well-compressible strings leads to different compression schemes discussed and compared
in Chapter 3.4, leading to the introduction of ALICE in Chapter 4 – a computable ALgorithm for Incremental
ComprEssion. We derive an expression for its time complexity.

• Finally, we consolidate the notion of a feature by mapping it to Martin-Löf randomness tests and at the same
time establish a richer concept than those tests, since features not only reflect the amount of randomness
deficiency (as randomness tests do) but also the content of randomness deficiency. This finally justifies that
features indeed appear to formalize an algorithmic notion of a “property” of a string.

We proceed as follows. In Chapter 2 we introduce the main idea and examine the basic properties of the notion
of a feature of a data string. We explore the properties of a single compression step in Chapter 3.1. Iterating this
step many times leads to the formulation of our compression scheme in Chapters 3.2–3.6. We discuss computable
incremental compression in Chapter 4. Finally, we set up a bridge to Martin-Löf’s theory of randomness in Chapter
5, grounding the notion that a feature materializes a certain non-random property.

2. Main idea, definitions and basic properties

2.1. Main idea
In practice, describing an object often comes down to identifying particular properties or features of the object,

such as color, shape, size, location etc. Intuitively, a description appears most accomplished if those features are
independent, i.e. do not contain information about each other. For example, knowing the color of an object does
not contain information about its shape and vice versa. This independence appears to allow us to find the features
one by one, incrementally, without having to find the full description at once.

In order to formalize this idea, we represent any data string x by a composition of functions, x = (f1 ◦ · · · ◦ fs) (rs),
by looking for stacked autoencoders [8]. The idea of an autoencoder is to use a descriptive map f ′ to project input
data x on a shorter residual description r, from which a feature map f can reconstruct it, see Fig. 1. The idea was
inspired by SS’-Search [21].

feature

residual description

string to be compressed

descriptive
map

Figure 1: An autoencoder.

Examples. Consider a string of the form x = 1n0y (where 1n :=

n times︷ ︸︸ ︷
1 . . . 1). Then, a descriptive map could be a

function computing the number n of initial ones and copying y to the residual description, f ′1(x) = 〈n, y〉 =: r. A
feature could be a function taking the residual r = 〈n, y〉 which is a combination of number of ones n and the rest
of string y and mapping it back to x, f1(r) = x. Clearly, the residual description is much shorter than x for large
enough n, meaning that some data compression has been achieved (encoding a number n as a binary string takes
only logarithmic size of n which is much less than n bits).
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This example demonstrates the existence of some fixed feature of an infinite number of binary strings. If the
string y has a similar form as x, say y = 1m0z, then for a sufficiently large m the function f2 (〈n,m, z〉) = 〈n, y〉
will be a feature of the residual r = 〈n, y〉, where 〈n,m, z〉 denotes some fixed encoding of the triple n,m, z. In this
way, x = 1n01m0z = f1 (f2 (〈n,m, z〉)) where the residual description 〈n,m, z〉 is much shorter than x.

Consider a string of the form w = 1n01n+101n+20 . . . 1n+m0 for sufficiently large n and m. On the one hand,
the above reasoning can be continued leading to the composition w = (f1 ◦ · · · ◦ fm+1) (〈n, n+ 1, . . . , n+m, ε〉),
where fi (〈a1, a2, . . . , ai−1, ai, z〉) = 〈a1, a2, . . . , ai−1, 1ai0z〉 and ε is the empty string. On the other hand, we can
consider a combined feature like f (〈k, 〈a1, a2, . . . , ak〉〉) = 1a101a20 . . . 1ak0. The corresponding descriptive map
f ′ (w) counts the numbers a1, a2, . . . , ak of consecutive ones in w as well as the number of such groups k. The
residual description 〈k, 〈a1, a2, . . . , ak〉〉 will be substantially shorter than w for large a1, a2, . . . , ak, i.e. when the
number of ones is much larger than the number of zeros. Then, r = f ′(w) = f ′

(
1n01n+101n+20 . . . 1n+m0

)
=

〈m+ 1, 〈n, n+ 1, . . . , n+m〉〉. Moreover, defining a feature according to g (〈n,m〉) = 〈m+ 1, 〈n, n+ 1, . . . , n+m〉〉
leads to the concise representation w = f (g (〈n,m〉)).

The key advantage of using an autoencoder is that a shorter representation r of the data x can be arbitrarily
computed from x instead of restricting the forms of computation to exhaustive search for r. This allows for the
possibility that r can be found much faster than by search. In the just discussed example, the residual is found
by counting the numbers of ones in the string instead of trying to guess them. At the same time, information in r
about x is preserved by requiring the ability to reconstruct it back from r. Instead of searching for a potentially long
description r, the search is focused on finding a pair of hopefully simple functions (f, f ′) that manage to compress x
at least a little bit, which we call the compression condition. A little compression shall be enough, since this process
is repeated for the residual description r in the role of input data for the next autoencoder required to compress r
a little further. The process iterates until step s where no compression is possible, as depicted in Fig. 2.

Figure 2: A string x is incrementally compressed, i.e. its description length decreases every step until the shortest description K(x)
is approximated by

∑s
i=1 l (fi) + K (rs), see Theorem 3.6 below. The compression condition l (fi) + l (ri) < l (ri−1) ensures that the

description length of each residual ri decreases.

2.2. Preliminaries
Consider strings made up of elements of the set B = {0, 1} with ε denoting the empty string. B∗ denotes the

set of finite strings over B. Denote the length of a string x by l(x). Since there is a bijective map B → N of finite
strings onto natural numbers, strings and natural numbers are used interchangeably. We define the prefix-codes
E1 (x) = x = 1l(x)0x and E2(x) = l(x)x.

The universal, prefix Turing machine U is defined by

U (〈y, 〈i, q〉〉) = Ti (〈y, q〉) , (2)

where Ti is i-th machine in some enumeration of all prefix Turing machines and 〈., .〉 is an one-to-one mapping
N ×N → N , defined by 〈x, y〉 ≡ xy. This means that f = 〈i, q〉 describes some program on a prefix Turing
machine and consists of the number i of the machine, its input q and some additional parameter y. We will use the
shortcut f(y) := U (〈y, f〉) defining how strings, interpreted as Turing machines (partial recursive functions), can
execute other strings. The conditional (prefix Kolmogorov) complexity is given by

K(x | r) := minf {l(f) : U (〈r, f〉) ≡ f(r) = x} (3)
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This means that K(x | r) is the length of the shortest function f able to compute x from r on a universal prefix
Turing machine. The unconditional (prefix Kolmogorov) complexity is defined by K(x) ≡ K(x | ε). We define the
information in x about y as I(x : y) := K(y)−K(y | x). Up to this point, we have followed the standard definitions
as given in [18].

2.3. Definitions
Definition 2.1. Let f and x be finite strings and Df (x) the set of descriptive maps of x given f :

Df (x) = {f ′ : f (f ′ (x)) = x, l (f) + l (f ′ (x)) < l (x)} (4)

If Df (x) 6= ∅ then f is called a feature of x. The strings r ≡ f ′(x) are called residual descriptions of the feature
f . f∗ is called shortest feature of x if it is one of the strings fulfilling

l (f∗) = min {l(f) : Df (x) 6= ∅} (5)

and f ′∗ is called shortest descriptive map of x given f∗ if

l (f ′∗) = min {l(g) : g ∈ Df∗(x)} (6)

The so-called compression condition
l (f) + l (r) < l (x) (7)

is required to avoid the case of f and f ′ being the identity functions in eq. (4), leading to the useless transformation
r = id(x) = x.

Note that in eq. (7) f has to be part of the description of x, since otherwise r can be made arbitrarily small by
inserting all the information into f .

2.4. Basic properties
Our first result shows that features of compressible strings always exist, since the shortest description of x could

be coded into a single function f using an empty residual r = ε. We shall call this a singleton feature of the
string:

Lemma 2.1. If x is compressible, that is K (x) < l (x), then there exists a singleton feature f , and its residual
r = ε such that f(r) = x, l (f) + l (r) = K (x) < l (x). The length of the shortest feature is l (f∗) ≤ K (x).

Proof. Let K (x) = K (x | ε) < l (x), then there exists a string f such that U (〈ε, f〉) = f (ε) = x, l (f) = K (x).
Clearly, f is a feature, since with r = ε the compression condition l (f) + l (r) = K (x) + 0 < l (x) is fulfilled. Thus
for the shortest feature f∗ we obtain l (f∗) ≤ l (f) = K (x). �

On the other extreme, the universal Turing machine U itself could function as a feature function, since nothing
prevents a universal machine to simulate another universal machine. Such features shall be called universal, since
they are able to compute any computable x. However, x has to be compressible enough to accommodate the length
of U in order to fulfill the compression condition.

Definition 2.2. A string f0 shall be called universal feature, if there is a constant C, such that f0 is a feature
of any string compressible by more than C bits.

Lemma 2.2. There exists a constant C and a universal feature f0 with length l (f0) = C such that f0 is a feature
of any string x compressible by more than C bits: K (x) < l (x) − C. The residual description r is a shortest
description of x, l (r) = K (x).

Proof. Consider some finite string x and its shortest description 〈i, t〉. Then U (〈ε, 〈i, t〉〉) = Ti (〈ε, t〉) = x and
l (〈i, t〉) = K (x). Define h (〈〈i, t〉 , ε〉) = Ti (〈ε, t〉), which is a kind of universal Turing machine. Let its number be
j in the enumeration of Turing machines, h = Tj . We obtain

U (〈〈i, t〉 , 〈j, ε〉〉) = Tj (〈〈i, t〉 , ε〉) = Ti (〈ε, t〉) = x. (8)

Denote f0 = 〈j, ε〉, r = 〈i, t〉, C = l (f0). Then, f0 (r) = x, l (r) = K (x), and l (f0) + l (r) = C +K (x) < l (x), since
x is compressible by more than C bits by assumption. Therefore, f0 is a feature of x. �
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iterate

(Theorem 3.6)

(Theorem 3.4)

     and     do not 
contain superfluous
information beyond

(Theorem 3.1)

incompressibility
of shortest feature

    and     do 
not contain
mutual information

a) b)

c)
d)

e)

(Corollary 3.1)

Figure 3: The proof strategy. a) Since x is computed from shortest feature f∗ and residual r, f∗(r) = x, all its information is
contained in the union of f∗ and r. b) Theorem 3.3 and Corollary 3.1 show that f∗ and r do not contain mutual information and
therefore do not overlap. c) Theorem 3.4 shows that f∗ and r do not contain information beyond what is necessary to compute x. It
follows that the information in x is partitioned into the information in f∗ and in r. d) Theorem 3.1 shows that the shortest feature
is incompressible, hence its length l(f∗) coincides with the amount of information it contains. e) Finally, repeating the process on r
partitions the information inside x into many mutually independent and incompressible pieces (Theorem 3.6).

Remark 2.1. Lemma 2.2 shows that the length l (f∗) of the shortest feature is not just bounded by the complexity
K (x) but can be substantially shorter. In the case of strings satisfying Lemma 2.2 it is bounded by a constant
l (f0) = C whereas the complexity K(x) can be arbitrary large. Note that l (f0) = C depends on the choice of
the universal Turing machine U . If we choose such a machine that makes that constant small, by taking j = 0
for example, then for a large number of strings x compressible by more than C bits the universal feature f0 will
be the shortest one. Nevertheless, by some natural choice of U we can expect that the universal feature f0 will be
sufficiently long to allow features shorter than l (f0) for many strings.

3. Incremental compression

3.1. Properties of a single compression step
In the following, we will show that the information K(x) inside x is partitioned by the shortest features f∗1 , . . . f∗s

and the last residual rs by the process of incremental compression. The main proof strategy is illustrated in Fig. 3.
What is the consequence of picking the shortest possible feature? It turns out that similarly to shortest descrip-

tions per se, the shortest features are themselves incompressible. After all, if the shortest feature was compressible,
there would be a shorter program q to compute it. But then, q can just as well take r and go on computing x while
becoming a feature itself, shorter than the shortest feature, l(q) < l(f∗), which is a contradiction. Theorem 3.1
formalizes this reasoning. In order to prove it, we will need the following lemma:

Lemma 3.1. Let f∗ and f ′∗ be the shortest feature and shortest descriptive map of a finite string x, respectively.
Further, let r ≡ f ′∗ (x). Then l (f∗) = K (x | r) and l (f ′∗) = K (r | x).

6



Proof. First, we prove l(f∗) = K(x | r). Suppose the opposite K (x | r) = min {l (z) : z (r) = x} 6= l (f∗). This
means that there exists a shorter program g with l (g) < l (f∗) such that g (r) = f∗ (r) = x. We have to check
whether Dg (x) 6= ∅ holds. First, we take a descriptive map g′ := f ′∗ and prove that g′ ∈ Dg (x): We have
g (g′ (x)) = g (f ′∗ (x)) = g (r) = x and l (x) > l (f∗) + l (f ′∗ (x)) > l (g) + l (g′ (x)). Therefore, g′ ∈ Dg (x) and
Dg (x) 6= ∅ implying that g is a feature of x. However, since f∗ is defined as the shortest feature, the assumption
l (g) < l (f∗) constitutes a contradiction.

Second, we prove l (f ′∗) = K(r | x). Suppose the opposite K (r | x) = min {l (z) : z (x) = r} 6= l (f ′∗). This
means that there exists a shorter program g′ with l (g′) < l (f ′∗) such that g′ (x) = f ′∗ (x) = r. Then g′ ∈ Df∗ (x)
since f∗ (g′ (x)) = f∗ (r) = x and l (f∗) + l (g′ (x)) = l (f∗) + l (f ′∗ (x)) < l (x), which contradicts the assumption
that f ′∗ is the shortest program in Df∗ (x). �

Theorem 3.1 (Feature incompressibility). The shortest feature f∗ of a finite string x is incompressible:

l (f∗)−O (1) ≤ K (f∗) ≤ l (f∗) +K (l (f∗)) +O (1) ≤ l (f∗) +O (log l(f∗)) . (9)

Proof. Since x can be obtained from f∗ and r, we get

l(f∗) = K(x | r) ≤ K(f∗ | r) +O (1) ≤ K(f∗) +O (1) (10)

Moreover, the general property of prefix Kolmogorov complexity, K(f∗) ≤ l(f∗) +K (l (f∗)) + O (1) ≤ l(f∗) +
O (log l(f∗)), holds. �

The next theorem shows that the number of shortest features is actually quite small. Intuitively, this is due to
the fact that the compression condition requires the features to do some actual compression work, which is a rare
capacity.

Lemma 3.2. Let f be a feature of a finite string x and r its residual description. Then,

K(x | f) ≤ l(r) +O (log l(r)) < l(x)− l(f) +O (log l(x)) . (11)

Proof. If f is a feature then by definition there exists a residual r such that f(r) = x and l(f) + l(r) < l(x).
Consider K(x | f) which is somewhat analogous to K(x | r) in Lemma 3.1. We can exchange f and r by running
U (〈f, 〈i, E2(r)〉〉) = Ti (〈f,E2(r)〉) = U (〈r, f〉) = x, where Ti swaps f and r. In order to be able to do so, r
has to be encoded in a self-delimiting way with E2(r) for example. Using the invariance theorem, we find that
K(x | f) ≤ l (E2(r)) +O(1) = l(r) + 2l (l(r)) +O(1) leading to

K(x | f) ≤ l(r) +O (log l(r)) < l(x)− l(f) +O (log l(x)) . (12)

�

Lemma 3.3. Let f be a feature of a finite string x and r its residual description. If I(f : x) := K(x)−K(x | f) ≥
l(f)−O (log l(x)) then

K(f | x) ≤ O (log l(x)) . (13)

Proof. Using the symmetry of algorithmic information [18, Lemma 3.9.2]

|I(f : x)− I(x : f)| ≤ logK(f) + logK(x) + 2 log logK(f) + 2 log logK(x) +O(1) (14)

and inequalities K(x) ≤ O(l(x)) and K(f) ≤ O(l(f)) ≤ O(l(x)) we obtain

|I(f : x)− I(x : f)| ≤ O (log l(x)) . (15)

It follows that K(f) −K(f | x) = I(x : f) ≥ I(f : x) − O (log l(x)) ≥ l(f) − O (log l(x)). Therefore, K(f | x) ≤
K(f)−l(f)+O (log l(x)) ≤ O (log l(f))+O (log l(x)) ≤ O (log l(x)), since K(f) ≤ l(f)+O (log l(f)) and l(f) < l(x).
�

Theorem 3.2 (The number of shortest features). The number of shortest features of a binary string x grows
at most polynomially with l(x). Moreover, K(f∗ | x) ≤ O (log l(x)) for any shortest feature f∗ of x.
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Proof. If f is a feature then by Lemma 3.2 we have K(x | f) ≤ l(x) − l(f) + O (log l(x)). Let us consider two
cases: if l(x)−K(x) > C for some constant C = l (f0) then a universal feature f0 of string x appears (see Definition
2.2 and Lemma 2.2), which limits number of shortest features by some constant (at most 2C+1 − 1) since their
length is not greater than l (f0) = C. In this case, K(f∗ | x) ≤ K(f∗) + O (1) ≤ l(f∗) + 2 log l(f∗) + O(1) ≤
C + 2 logC +O(1) = O(1).

Otherwise, if l(x) −K(x) ≤ C for some constant C, then K(x | f) ≤ l(x) − l(f) + O (log l(x)) ≤ K(x) + C −
l(f) + O (log l(x)) = K(x) − l(f) + O (log l(x)) since the constant C can be subsumed into O (log l(x)). Thus,
I(f : x) := K(x) −K(x | f) ≥ l(f) − O (log l(x)) and by Lemma 3.3 K(f | x) ≤ O (log l(x)). We know that the
number of strings z fulfilling K(z | x) ≤ a can not exceed the number of descriptions of maximal length a, which is
2a+1 − 1. Therefore, for number of all features is not greater than 2O(log l(x))+1 = 2O(log l(x)), which implies at most
polynomial growth of the number of all features O (l(x)α) for some constant α. �

Now we move to a central result that a shortest feature does not contain information about the residual and vice
versa. This is important, since otherwise, there would be an informational overlap between them, indicating that we
would be wasting description length on the overlap. Figuratively speaking, if some “bits” inside f∗ describe the same
information as some “bits” in r, we could choose f∗ to be even shorter and avoid this redundancy. Interestingly,
the number of wasted bits is simply bounded by the difference in lengths, l(f)− l(f∗), between the chosen feature
and the shortest one:

Theorem 3.3 (Independence of features and residuals, general case). Let f be a feature of a finite string
x and r its residual description. Further, let f∗ be a shortest feature and d := l(f)− l(f∗). Then,

I(r : f) := K(f)−K(f | r) ≤ d+K (l (f)) +O(1) ≤ d+O(log l(f)), (16)
K (r) +K (f)−K (f, r) ≤ d+K (l (f)) +K (K (r) | r) +O (1)

≤ d+O(log l(f)) +O(log l(r)) (17)

Proof. First, we prove eq. (16). We know that f (r) = x. Consider the shortest string f̂ with f̂ (r) = x and
l
(
f̂
)

= K(x | r). Then, l
(
f̂
)
≤ l (f) and the compression condition l

(
f̂
)

+ l (r) ≤ l (f) + l (r) ≤ l (x) holds, since

f is a feature. Therefore, f̂ is also a feature. But since f∗ is a shortest feature we know l(f∗) ≤ l
(
f̂
)
≤ l (f) and

l(f)− l(f̂) ≤ l(f)− l(f∗) =: d. Further, observe that

K(f) ≤ l(f) +K (l (f)) +O(1) ≤d+ l(f̂) +K (l (f)) +O(1) = (18)
d+K(x | r) +K (l (f)) +O(1) ≤d+K(f | r) +K (l (f)) +O(1) (19)

Here, the first and last inequalities are direct consequences of general properties of the prefix Kolmogorov complexity
and of the equation f (r) = x. Thus, I(r : f) := K(f)−K(f | r) ≤ d+K (l (f)) +O(1) ≤ d+O(log l(f)).

Second, we prove eq. (17). Using the general expansion K (f | r) ≤ K (f | r,K (r)) +K (K (r) | r) + O (1) and
(16) we have

K(f, r) = K(r) +K (f | r,K (r)) +O (1) ≥K(r) +K (f | r)−K (K (r) | r)−O (1) ≥ (20)
K (r) +K (f)− d−K (l (f))−K (K (r) | r)−O (1) ≥K (r) +K (f)− d−O(log l(f))−O(log l(r)) (21)

�

This theorem is valid for features in general. In particular, we obtain for shortest features the following rela-
tionships:

Corollary 3.1 (Independence of features and residuals). Let f∗ be the shortest feature a finite string x and
r its residual description. Then,

K(f∗ | r) = K(f∗) +O(log l(f∗)), (22)
K(r | f∗) = K(r) +O(log l(f∗)) +O(log l(r)), (23)
K(f∗, r) = K(f∗) +K(r) +O(log l(f∗)) +O(log l(r)) (24)

Proof. First, we prove eq. (22). We have K(f∗) 6 K(f∗ | r) + O(log l(f∗))6 K(f∗) + O(log l(f∗)). The first
inequality follows from Theorem 3.3 in the case f = f∗, thus d = 0. The second inequality is a general property of
Kolmogorov complexity.
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As for eq. (23), consider the Kolmogorov-Levin theorem to logarithmic precision (see, e.g. [26, Theorem 21] and
note that the prefix and plain complexities coincide at logarithmic precision):

K(f∗, r) = K(f∗) +K (r | f∗) +O(log l(f∗)) = K(r) +K (f∗ | r) +O(log l(r)) (25)

Using the just proven equality we obtain: K(r | f∗) = K(r) + K(f∗ | r) − K(f∗) + O(log l(r)) + O(log l(f∗)) =
K(r) +O(log l(r)) +O(log l(f∗))

Finally, we turn to eq. (24) and insert the just obtained result into eq. (25):

K(r, f∗) = K(f∗) +K(r | f∗) +O(log l(f∗)) = K(f∗) +K(r) +O(log l(r)) +O(log l(f∗))

�

We conclude that features and residuals do not share information about each other, therefore the description
of the (f∗, r)-pair breaks down into the simpler task of describing f∗ and r separately. Since Theorem 3.1 implies
the incompressibility of f∗ and U (〈r, f∗〉) = x, the task of compressing x is reduced to the mere compression of r.
Hence, we can sloppily write K(f∗, r) ≈ l(f∗)+K(r), where the “≈” sign denotes equality up to additive logarithmic
terms.

However, there is still a possibility that the (f∗, r)-pair contains more information than necessary to compute
x. As we shall see this is not the case: no description length is wasted. Intuitively, since the shortest feature f∗
neither overlaps with r, nor contains redundant bits due to its incompressibility, the only way for f∗ to contain
superfluous information is to contain totally unrelated noise with respect to r and x. But that also does not make
sense if the shortest feature is picked.

Apart from that we also show that the shortest descriptive map l (f ′∗) is very short. This is due to the fact that
given l (f∗) we can pick an algorithm f ′ of constant size that loops through all possible pairs (f, r) with l(f) = l (f∗)
checking whether f(r) = x and that comply with the compression condition. The following theorem substantiates
these contemplations:

Theorem 3.4 (No superfluous information). The shortest feature f∗ of string x and its residual r do not
contain much superfluous information

K (f∗, r | x) = O(log l (x)) (26)

the shortest descriptive map generally does not contain much information

l (f ′∗) = O(log l (x)) (27)

and the description of x is partitioned into f∗ and r:

K(x) = K(f∗) +K(r) +O(log l(x)) (28)

Proof. If x and l(f∗) is given, then consider all combinations of strings g with fixed length l(g) = l(f∗) and strings
q with l(q) < l(x) − l(f∗) of which there are finitely many. Execute every (g, q)-pair as g(q) in parallel, until one
of them prints x. We know that some pair will halt and print x at some point, since by assumption we know that
there exists a r such that f∗(r) = x halts and that pair is part of the executed set. Let (f̃ , r̃) be the first halting
pair. Then the described algorithm implies

K
(
f̃ , r̃ | x, l (f∗)

)
= O(1) (29)

while the compression condition l(f̃) + l(r̃) < l(x) holds by construction. Therefore, K
(
f̃ , r̃ | x

)
≤ K (l (f∗)) +

O(1) = O(log l (f∗)) = O(log l (x)). The boundedness by O (log l(x)) is guaranteed, since l(f∗) < l(x) by the
compression condition.

Now, we exploit Theorem 3.2 that entails that the number of shortest features d(F ) is bounded by 2O(log l(x)).
In particular, any shortest feature f∗ can be encoded by an index if∗ bounded by if∗ = O(log d(F )). Therefore,
K (f∗, r | x, l (f∗) , if∗) = O(1) which entails the first result (eq. (26)):

K(f∗, r | x) ≤ K (f∗, r | x, l (f∗) , if∗) +K (l (f∗)) +K (if∗) +O(1) = O (log l(x)) (30)

by a similar line of reasoning. Let f ′∗ be shortest descriptive map corresponding to f∗. Using Lemma 3.1 we observe

l (f ′∗) = K (r | x) ≤ K (f∗, r | x) +O(1) = O(log l (x)) (31)
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yielding the second result (eq. (27)). This result can be interpreted intuitively since we can take f ′ as the algorithm
described above, with index if∗ decoded inside it, except that it just outputs r instead of (f, r).

Finally, since f∗(r) = x, on the one hand, K (x) ≤ K(f∗, r) + O (1) ≤ K(f∗) + K(r) + O (1). On the other
hand, using Corollary 3.1, we obtain

K(f∗) +K(r)−O(log l(f∗))−O(log l(r)) = K (f∗, r) +O(1) ≤

K (f∗, r | x) +K(x) +O(1) = K (x) +O (log l(x)) (32)

Since O(log l(f∗)) +O(log l(r)) = O(log l(x)) due to the compression condition, the third result (eq. (28)) follows.
�

We can summarize the results by stating:

1. f∗ and r do not contain superfluous information: K (f∗, r | x) ≈ 0

2. The shortest descriptive map is very short: l (f ′∗) ≈ 0

3. The description of x breaks down into the separate description of f∗ and r: K(x) ≈ K(f∗) +K(r)

Finally, Theorem 3.1 leads to the main result of a single compression step: K(x) ≈ l(f∗)+K(r). A compression step
consists of taking the shortest feature f∗ and descriptive map f ′∗ of x according to Definition 2.1 and computing
the residual r. The string x is described by the pair (f∗, r) which has to be compressed further. However, in
this subsection we have derived that f∗ is both incompressible and independent of r. Thus, we do not have to
bother about the feature, we can greedily continue to compress the residual only. It this is done well, x will also be
compressed well. The following sections explore this compression scheme.

3.2. Incremental compression scheme
The iterative application of the just described compression step is called incremental compression. Denote r0 ≡ x

and let f∗i be a shortest feature of ri−1, f ′∗i a shortest (corresponding) descriptive map with ri = f ′∗i (ri−1). The
iteration i = 1, 2, . . . continues until some rs is not compressible (for example, rs = ε) any more. This leaves us
with the composition of functions x = f∗1 (f∗2 (· · · f∗s (rs))).

A consequence of such a compression procedure is the pairwise orthogonality of features obtained this way.
After all, if f∗i doesn’t know much about ri, and f∗i+1 is part of ri, then f∗i doesn’t know much about f∗i+1 either.
Formally, we define the information in x about y as I(x : y) := K(y)−K(y | x), and obtain:

Lemma 3.4. Let x, y, z be arbitrary finite strings. Then I(x : z) 6 I(x : y) +K(z | y) +O (log l (z)).

Proof. Using general properties of the prefix complexity, we expand up to additive constants

K(z) +K(y | z,K(z)) = K(z, y) = K(z | y,K(y)) +K(y) 6 K(y) +K(z | y) (33)

and also look at the conditional version [18, eq. (3.22)]:

K(z | x) +K(y | z,K(z | x), x) = K(z, y | x) = K(z | y,K(y | x), x) +K(y | x) > K(y | x) (34)

We subtract the inequalities and obtain:

I(x : z) 6 I(x : y) +K(y | z,K(z | x), x)−K(y | z,K(z)) +K(z | y) (35)

Observe that K(y | z,K(z | x), x) 6 K(y | z) 6 K(y | z,K(z)) +K(K(z) | z) (up to additive constants) leading to:

I(x : z) 6 I(x : y) +K(z | y) +K(K(z) | z) 6 I(x : y) +K(z | y) +O (log l (z)) . (36)

�

This result can be applied to all features during incremental compression:

Theorem 3.5 (Orthogonality of features). Let x be a finite string that is incrementally compressed by a se-
quence of shortest features f∗1 , . . . , f∗s that is x = f∗1 (f∗2 (· · · f∗s (rs))). Then, the features are pairwise orthogonal
in terms of the algorithmic information:

I(f∗i : f∗j ) = O (|i− j| log l(x)) (37)

for all i 6= j.
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Proof. First, we prove orthogonality for the case j > i. We denote ri = (f∗i+1 ◦ f∗i+2 ◦ . . . ◦ f∗j )(rj), where
x = (f∗1 ◦ f∗2 ◦. . . ◦ f∗i )(ri). Using the core idea of Theorem 3.4 we can prove that not much information is required
to encode the shortest features f∗i+1, f

∗
i+2, . . . , f

∗
j given ri. f∗j can be found by iteratively exploiting the algorithm

described in above-mentioned theorem, substituting rm for x and f∗m+1 for the n-th shortest feature f∗, where m
takes values from i to j − 1. Formally:

K(f∗j | ri) 6 K
(
f∗j | ri, l(f∗i+1), . . . , l(f∗j ), ni+1, . . . , nj

)
+

+

j∑
m=i+1

K (l(f∗m)) +O ((j − i) log l(x)) 6 O ((j − i) log l(x)) (38)

From Corollary 3.1, we know that I(f∗i : ri) = O(log l(f∗i )) + O(log l(ri)) = O(log l(x)) due to the compression
condition. We insert this into Lemma 3.4 (replacing x → f∗i , y → ri and z → f∗j ) to get an upper bound on
I(f∗i : f∗j ):

I(f∗i : f∗j ) 5 I(f∗i : ri) +K(f∗j | ri) +O
(
log l(f∗j )

)
≤ O ((j − i) log l(x)) (39)

For the case j < i we first rename i↔ j: I(f∗j : f∗i ) = O((i− j) log l(x)). We exploit the symmetry of information
[18, Lemma 3.9.2] and obtain:

I(f∗i : f∗j ) 6 logK(f∗i ) + logK(f∗j ) + 2 log logK(f∗i )+ (40)

2 log logK(f∗j ) +O ((i− j) log l(x)) = O ((i− j) log l(x)) (41)

�

Finally, we can turn to the interesting question on the optimality of our compression scheme. One of our
main theoretical results shows that incremental compression finds a description whose length coincides with the
Kolmogorov complexity up to logarithmic terms, i.e. achieves near optimal compression:

Theorem 3.6 (Optimality of incremental compression). Let x be a finite string. Define r0 ≡ x and let f∗i
be a shortest feature of ri−1 and ri its corresponding residual description. The compression scheme described above
leads to the description x = f∗1 (f∗2 (· · · f∗s (rs))), encoded as Ds := 〈s, rs, f∗s · · · f∗1 〉, for which the following expression
holds:

K (x) =

s∑
i=1

l (f∗i ) +K (rs) +O (s · log l(x)) (42)

Proof. Iterating the relationship K(x) = l(f∗)+K(r)+O (log l(x)) from Theorem 3.4 gives us the required result,
since l(ri) < l(x) for all i = 1, . . . , s due to the iterated compression condition.

We show that Ds := 〈s, rs, f∗s · · · f∗1 〉 is a description of x. A program of constant length can take the number
of features s, the last residual rs and execute U (r̄sf

∗
s · · · f∗1 ). By construction, U (r̄sf

∗
s ) ≡ U (〈rs, f∗s 〉) will halt

printing rs−1 with the input head at the start of the remainder f∗s−1 · · · f∗1 . Thus, no self-delimiting code of the
features is necessary. The remainder can be concatenated to rs−1 and executed on U again: U

(
r̄s−1f

∗
s−1 · · · f∗1

)
.

This procedure is iterated s times until x is printed. �

3.3. On the number of compression steps
The number of compression steps in eq. (42) is in general difficult to estimate. In the worst case, we could be

compressing merely 1 bit at every step. Then, s = O (l (x)) and l(Ds) = K (x) + O (l (x) · log l (x)) which is not
satisfactory. Here is an example of a bad case, where the number of features grows almost linearly:

Remark 3.1. Consider a machine I1 (〈〈a, b, y〉 , ε〉) = y1y2 . . . ya−11byaya+1 . . . yn, where n = l (y). It inserts b ones
into string y before the symbol at index a. Let Tj be the number of this machine, i.e. U (〈·, 〈j, ε〉〉) = Tj (〈·, ε〉) =
I1 (〈·, ε〉). Define the universal Turing machine U such, that I1 is the first one in the enumeration of all machines:
j = 0. Then 〈j, ε〉 will in general be the shortest possible feature. In particular, the number j = 0 will be encoded by
the empty string, l (〈j, ε〉) = l (ε̄ε) = l

(
100
)

= l (0) = 1. The compression condition amounts to

l (〈j, ε〉) + l (〈a, b, y〉) =1 + 2l (a) + 1 + 2l (b) + 1 + l (y) ≤
l (y) + 2 log2 l (y) + 2 log2 b+ 3 <

l
(
y1y2 . . . ya−11byaya+1 . . . yn

)
= l (y) + b

(43)
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This condition is fulfilled, if b ≥ c · log2 l (y) for some constant c. Thus, if a string of length n contains at least
c log2 n ones, 〈j, ε〉 will be the shortest feature.

Consider now a string z of the type z = 1a101a20 . . . 1as0 with ai ≥ c log2 l (z) for all i. Then z will have
at least s consecutive shortest features 〈j, ε〉, since z = 〈j, ε〉 (〈a, b, y〉), where y looks like z except for having one
block of ones less. Thus, we can apply similar arguments to the residual r1 = 〈a, b, y〉 and obtain r1 = 〈j, ε〉 (r2)
and so on. Ultimately, the number of features 〈j, ε〉 can be bounded from below by an expression proportional to
l (z) / log l(z). Interestingly, the overhead produced by various block coding methods could be reduced in [3] by a
sophisticated technique called layered Kraft-Chaitin coding. Its adaptation to incremental compression is however
not straightforward.

In order to bound the overhead O (s · log l (x)) we impose an additional condition on the number of iterations
s: we demand that apart from the compression condition, the residual shall be at least b times smaller than l(x),
where b ≥ 1:

Definition 3.1. Let f and x be finite strings. Denote Df,b (x) as the set of b-descriptive maps of x given
f , the b-feature f , b-residuals r and b-descriptive map f ′ similarly to Definition 2.1 adding the condition
l (f ′ (x)) ≤ l(x)

b to the compression condition:

Df,b (x) =

{
f ′ : f (f ′ (x)) = x, l (f) + l (f ′ (x)) < l (x) , l (f ′ (x)) ≤ l (x)

b

}
(44)

As can be verified by going through the proofs, the most results about shortest features remain valid for the
shortest b−features:

Lemma 3.5. Lemma 2.1, Lemma 3.1, Theorem 3.1, Lemma 3.2, Lemma 3.3, Theorem 3.2, Theorem 3.3, Corollary
3.1, Theorem 3.4, Theorem 3.5, Theorem 3.6 hold for the shortest b-feature and shortest b-descriptive map of a
finite string x, respectively.

Proof. In the following, we will not repeat all the proofs for b-features, but only highlight the parts in which
special care has to be taken.

Lemma 2.1. The singleton feature f is always a b-feature, since its residual r = ε, and thus 0 = l (r) ≤ l(x)
b holds

trivially for any b.

Lemma 3.1. To prove the equality l(f∗) = K(x | r) for the shortest b-feature we need to check whether Dg,b (x) 6= ∅
holds. But g′ = f ′∗ ∈ Dg,b (x) since g′ ∈ Dg (x) by the proof of Lemma 3.1 and l (g′ (x)) = l (f ′∗ (x)) = l (r) ≤
l (x) /b since f∗ is a b-feature by assumption of modified Lemma 3.1. Using similar arguments in the proof of
l (f ′∗) = K(r | x), we show g′ ∈ Df∗,b (x).

Theorem 3.1. Theorem 3.1 is direct consequence of Lemma 3.1 and general properties of Kolmogorov complexity.

Lemmas 3.2 and 3.3. Lemmas 3.2 and 3.3 hold for any features, and hence hold for b-features as well.

Theorem 3.2. Let us consider the analogue of Theorem 3.2 with shortest b-features instead of shortest features. If
l(x) − K(x) ≤ C for some constant C we know from Theorem 3.2 that the number of all features is not greater
than O (l(x)α) for some constant α and K(f | x) ≤ O (log l(x)) for any feature, so this holds for b-features as well.
If l(x)−K(x) > C = l (f0) and K(x) ≤ l(x)/b then the universal feature f0 is also a b-feature (since for its residual
l(r) = K(x) ≤ l(x)/b). Thus, similarly to Theorem 3.2, the number of shortest features is limited by a constant
2C+1 − 1 and for them K(f∗ | x) = O (1).

Consider the remaining case K(x) > l(x)/b and denote d = K(x)− bl(x)/bc, where bzc is the maximal integer
not greater than the real number z. Divide shortest description g of x in two parts g = g′g′′ where l (g′) = bl(x)/bc
and l (g′′) = d. Define some function h (〈y, q〉) := U (〈ε, yq〉). Let j be the number of h in the standard enumeration
of Turing machines, h = Tj . Thus,

U (〈g′, 〈j, g′′〉〉) = Tj (〈g′, g′′〉) = h (〈g′, g′′〉) = U (〈ε, g′g′′〉) = U (〈ε, g〉) = x, (45)

since g is a description of x. Therefore, f̂ := 〈j, g′′〉 is a b-feature with its residual r̂ = g′ if the compression
condition holds: l

(
f̂
)

+ l (r̂) < l (x), since the other condition l (r̂) ≤ l (x) /b holds by construction of g′. Let
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us calculate l
(
f̂
)

= 2l (j) + 1 + l (g′′) and define a constant Ĉ = 2l (j) + 1, so that l
(
f̂
)

= Ĉ + d. Therefore,

l
(
f̂
)

+ l (r̂) = Ĉ + d + l (g′) = Ĉ + K (x) − bl(x)/bc + bl(x)/bc = K (x) + Ĉ. The case l(x) − K(x) ≤ Ĉ

is similar to the already reviewed case l(x) − K(x) ≤ C. Thus, consider the case l(x) − K(x) > Ĉ. Then
l
(
f̂
)

+ l (r̂) = K (x) + Ĉ < l(x)− Ĉ + Ĉ = l(x) and f̂ is indeed a b-feature of length l
(
f̂
)

= Ĉ + d.
For any shortest b-feature f∗ we have K(x | f∗) ≤ l (r) +O (log l (r)) ≤ bl (x) /bc+O (log l (x)) by Lemma 3.2.

Then

I(f∗ : x) := K(x)−K(x | f∗) ≥ K (x)− bl (x) /bc −O (log l (x)) =

d−O (log l (x)) = l
(
f̂
)
− Ĉ −O (log l (x)) ≥ l(f∗)−O (log l (x)) , (46)

since l(f∗) ≤ l
(
f̂
)
and the constant Ĉ can be subsumed into O (log l(x)). By Lemma 3.3 we conclude K(f∗ | x) ≤

O (log l(x)) for all shortest b-features f of x. Similarly to the proof of Theorem 3.2 the number of shortest b-features
is not greater than O (l(x)α) for some constant α.

Theorem 3.3 and Corollary 3.1. In the modified Theorem 3.3 f̂ is a b-feature since l (r) ≤ l(x)/b because f is a
b-feature by assumption of modified Theorem 3.3. The remainder of the proof is analogous. Therefore, Corollary
3.1 is also true for shortest b-features.

Theorem 3.4. We need to consider all combinations of strings g with fixed length l(g) = l(f∗) and strings q with
l(q) < l(x)− l(f∗) and l(q) < l(x)/b of which there are finitely many. The remainder of the proof is similar to the
original.

Theorem 3.5 and Theorem 3.6. Since Theorem 3.5 follows from Theorem 3.4, Corollary 3.1 and Lemma 3.4 it is
also true for shortest b-features. The same arguments are valid for Theorem 3.6 which follows from Theorem 3.4.�

Let us fix some factor b > 1 and search for shortest b-features instead of the shortest features in the compression
scheme of Theorem 3.6. Applying the compressibility by factor b to each residual, l(ri) ≤ l(ri−1)/b, leads to l(rs−1) ≤
l(x)/bs−1. We might continue this process until rs is not compressible. Since rs−1 is compressible it cannot be the
empty string ε, hence l(rs−1) ≥ 1 and we obtain the bound s ≤ logb (l(x)/l(rs−1)) + 1 ≤ logb l(x) + 1 = O (log l (x)).
In this way, the estimation error O (s · log l (x)) in Theorem 3.6 becomes O

(
(log l (x))2

)
, which is quite small. Note,

that there is no problem with the asymptotics since b is strictly larger than 1 and is fixed. Further, this processes
is always possible since the singleton feature always exists for compressible strings and it is a b-feature at the same
time.

3.4. A special case: well-compressible strings
If we are aiming for a practical compression algorithm, it is reasonable to assume that the strings actually are

compressible. In this section, we would like to take a look at this special case. As we shall see, the results of the
theory can be substantially strengthened this way. In particular, the bounds on the lengths of the shortest feature
and descriptive maps will turn out to be constant.

Let x be compressible by a factor b: K(x) ≤ l(x)/b, b > 1. Clearly, by Lemma 2.2 a universal feature exists if x
is long enough. Then the shortest feature is bounded by the length of the universal feature: a constant. Conversely,
if x is not long enough, say l(x) < a, then the length of the shortest features is also bounded by a constant, since
l(f) < l(x) < a by the compression condition. This is substantiated by

Theorem 3.7. Let x be a b-compressible string for some fixed factor b > 1. Then the length of any shortest feature
f∗ of x is bounded, l (f∗) = O (1). More precisely, l (f∗) ≤ max

{
C, C

b−1

}
=: C0, where C := l (f0) is the length of

the universal feature f0. The same statement holds for the shortest b-feature. Moreover, if additionally l (x) > Cb
b−1

then f0 is both a feature and a b-feature of x, and l (f∗) ≤ C.

Proof. After Lemma 2.2, the residual r of the universal feature f0 is the shortest description: l(r) = K(x). f0
becomes a feature of x if the compression condition l(f0) + l(r) = C +K(x) < l(x) is fulfilled, which is the case if
x is long enough: l (x) > Cb

b−1 . After all, since x is b-compressible,

l(f0) + l(r) = C +K(x) ≤ C +
l (x)

b
< l(x)

b− 1

b
+ l(x)

1

b
= l(x) (47)

13



Note that f0 is also a b-feature, since l(r) = K(x) ≤ l(x)/b. Let f∗ be a shortest feature x. Then, l (f∗) ≤ l (f0) = C.
Since f0 is a b-feature, the length of a shortest b-feature is also bounded by C. Conversely, if l(x) is not long enough,
using Lemma 2.1 l (f∗) ≤ K (x) ≤ l (x) /b ≤ C

b−1 . In both cases, l(f∗) is bounded by a constant for both shortest
feature and shortest b-feature. �

Note that if b ≥ 2 then C
b−1 ≤ C, so the length of shortest feature of a b-compressible string is always limited

by C = l (f0). This theorem implies that if the b-compressibility assumption holds, we do not require x to be
sufficiently long. The existence of a short feature, i.e. l(f) ≤ C0, is guaranteed. Therefore, many of the above
theorems simplify considerably. We obtain not just K(f∗ | x) ≈ 0 (Theorem 3.4), but a much stronger proposition
K(f∗) = O (1) and l(f∗) = O (1) in case of b-compressible x. This circumstance demonstrates that features can
be very short. Incompressibility of f∗ (Theorem 3.1) and independence between f∗ and r (Corollary 3.1) follow
trivially. The number of shortest features (Theorem 3.2) is also bounded by a constant 2C0 . It turns out that the
shortest descriptive map is also short:

Theorem 3.8 (Short descriptive maps, no superfluous information in short features). Let f be a short
feature of a compressible x, hence f (r) = x, l (f) + l (r) < l (x), l(f) = O (1). Then there exists a residual q
such that f (q) = x, l (f) + l (q) < l (x) and K (q | x) = O (1). If f ′∗ is a shortest descriptive map given f , then
K(f ′∗(x) | x) = l (f ′∗) = O (1).

Proof. Since f is a feature, there is a residual r fulfilling f(r) = x and l(r) < l(x) − l(f). Consider all strings
shorter than l(x) − l(f) and execute them in parallel on f . Denote the algorithm performing this with S(f, x).
This algorithm will halt at some point, since r is among the executed strings. Let q be the first string that prints
x. Then S(f, x) = q and K(q | f, x) = O(1) since S is an algorithm of constant length. Encode both S and f into
a descriptive map g′ operating like g′(x) := S(f, x) = q. Since l(f) = O(1), we conclude l(g′) = O(1) as well and
K (q | x) ≤ l (g′) = O (1). Now define f ′∗ as a shortest descriptive map, that is f ′∗ ∈ Df and l (f ′∗) is minimal.
Then l (f ′∗) ≤ l (g′) = O (1) and K(f ′∗(x) | x) = l (f ′∗) = O (1). �

3.5. Incremental compression scheme for b-compressible strings
What are the implications for the whole compression scheme? Suppose x is a b-compressible string and l (x) >

Cb
b−1 . Denote r0 ≡ x and start an iterative process of compression: let f∗i+1 be a shortest b-feature of ri, f ′∗i+1 a
shortest corresponding descriptive map and ri+1 = f ′∗i+1 (ri). We continue this process until either l (ri) ≤ Cb

b−1 or
ri is not b-compressible for some i. Denote this i by s. Just like in Sect. 3.2 we obtain x = f∗1 (f∗2 (· · · f∗s (rs))) and
Ds := 〈s, rs, f∗s · · · f∗1 〉 is a description of x.

Theorem 3.9. Given the compression scheme above the following relationships hold:

K (x)−O (1) ≤ l (Ds) ≤ K (x) b+O (log l (rs)) +O (s) ≤ K (x) b+O (log l(x)) (48)
l (f∗i ) ≤ C = l(f0) for i = 1, . . . , s (49)

s = O (log l(x)) (50)

Proof. Since Ds := 〈s, rs, f∗s · · · f∗1 〉 is a description of x, we get l (Ds) ≥ K (x) − O (1). Since l (f∗i ) ≤ C by
Theorem 3.7, we have

l(Ds) = l (〈s, rs, f∗s · · · f∗1 〉) = l (rs) +O (log l (rs)) +O (s) (51)

In the first case, l (rs) ≤ Cb
b−1 . Then l (Ds) = O (s), since Cb

b−1 is a constant independent of x. In the second case,
rs is not b-compressible, ergo l (rs) ≤ K (rs) b ≤ (K (x) +O (s)) b = K (x) b+O (s), since rs can be computed from
x by a sequence of descriptive maps, each of which is bounded by a constant (so K (ri+1) ≤ K (ri) + O (1) and
K (rs) = K (x) +O (s)). It follows: l (Ds) ≤ K (x) b+O (log l (rs)) +O (s) ≤ K (x) b+O (log l (x)) +O (s).

The bound on s is derived from the application of the factor b to each residual, l(ri) ≤ l(ri−1)/b, leading to
l(rs−1) ≤ l(x)/bs−1. Since rs−1 is compressible it cannot be the empty string ε, hence l(rs−1) ≥ 1 and we obtain
the bound s ≤ logb (l(x)/l(rs−1)) + 1 ≤ logb l(x) + 1 = O (log l(x)). �

Note that the constant in the O-notation here depends on b but not on x. If b is close to 1 then l (Ds) will be
close to K (x), making Ds a quite short description of x.
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Plain incremental
compression Using b-features Using b-features,

early termination

Compression condition l
(
f∗i+1

)
+ l (ri+1) < l (ri)

l
(
f∗i+1

)
+ l (ri+1) < l (ri)

and l (ri+1) ≤ l (ri) /b
l
(
f∗i+1

)
+ l (ri+1) < l (ri)

and l (ri+1) ≤ l (ri) /b

Halting condition incompressibility:
K (ri) ≥ l (ri)

incompressibility:
K (ri) ≥ l (ri)

l (ri) ≤ Cb
b−1 or

K (ri) > l (ri) /b
Number of steps (worst

case) O (l (x)) O (log l(x)) O (log l(x))

Overhead on each step
l
(
f∗i+1

)
+K (ri+1)−
K (ri)

O (log l(ri))
≤ O (log l(x))

O (log l(ri))
≤ O (log l(x))

O (1)

Length of description
Ds := 〈s, rs, f∗s · · · f∗1 〉

K (x) +O (l(x) log l(x)) K (x) +O
(

(log l(x))
2
)

≤ K (x) b+O (log l(x))

Table 1: Comparison of compression schemes

3.6. Comparison of compression schemes
We present three incremental compression schemes, summarized in Table 1. All three are based on a greedy

selection of the shortest feature or b-feature, which leads to a decomposition of information into an incompressible
feature and a residual information that is to be compressed further. The first scheme does not possess any free
parameters and the absolutely shortest feature is searched for. The applicability condition of this scheme is the
existence of a feature per se, i.e. the compressibility of initial data r0 ≡ x or the current residual ri. As long as
the current residual ri fulfills the inequality l(ri) − K(ri) > C = l(f0), all shortest features f∗i+1 will be short:
l
(
f∗i+1

)
≤ C and the overhead description at this step will be small: l

(
f∗i+1

)
+K (ri+1)−K (ri) = O(1). In the end,

however, when the condition l(ri)−K(ri) > C is violated, the boundedness of feature lengths is not guaranteed any
more, and the overhead costs become logarithmic l

(
f∗i+1

)
+ K (ri+1) − K (ri) = O (log l(ri)) ≤ O (log l(x)). The

main problem of this scheme is the lack of an estimate of the number of compression steps s. In the worse case,
each subsequent ri is compressed by merely O(1) bit, which leads to s = O (l (x)) compression steps making the
estimate in eq. (42) unsatisfactory.

In order to limit the number of steps we have introduced a second scheme in which it is necessary to fix a
number b > 1 that determines the minimal compression of the residual on each step. The applicability condition of
this scheme is the existence of a b-feature of the current residual ri, i.e. the just mentioned compression condition
l(ri+1) ≤ l(ri)/b on the current residual. As long as the conditions l (ri) > Cb

b−1 and K (ri) ≤ l (ri) /b are fulfilled
all shortest b−features f∗i+1 will be short: l

(
f∗i+1

)
≤ C0 (Theorem 3.7) and the overhead at this step will be small:

l
(
f∗i+1

)
+K (ri+1)−K (ri) = O(1). Ultimately, however, this bound on the length can not be guaranteed any more,

and the overhead bounds become logarithmic. The main difference to the first scheme is that now the number
of steps is bounded by logb (l(x)) + 1, allowing us to regulate the maximum number of steps by changing b. It
is due to this bound that the discrepancy between our final description and K(x) does not differ by more than
O
(

(log l(x))
2
)
.

The third scheme is analogous to the second, but we stop at an earlier step as soon as there is no short b−feature
any more. Since up to this point the overhead is constant, the overall estimation error is merely O (log l(x)).
However, the last residual rs may remain compressible, albeit not by more than factor b.

4. Computable incremental compression

The schemes presented in the previous subsection would be viable compression algorithms if they were actually
computable. Unfortunately, they inherit the incomputability of the Kolmogorov complexity, which boils down to the
halting problem. It is well-known that the Kolmogorov complexity is not only incomputable, but it can not even be
approximated to any precision [follows from 18, Theorem 2.3.2]. The reason why we have found an approximation
to K(x) is that our own algorithm is incomputable, due to the incomputability of the shortest features and the
impossibility to effectively check for the incompressibility of the residual.

In this section we present a computable version of incremental compression. The main motivation of our approach
is to be able to compress data faster than non-incremental methods, since even by exhaustive search a set of short
pieces can be expected to be easier to find than the full description at once. Indeed, if we neglect execution time,
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an exhaustive search for a program of length K(x) takes about Tnon-incremental := 2K(x) time steps. Inserting
our result from eq. (42) leads to

Tnon-incremental ≈ 2K(rs)
s∏
i=1

2l(f
∗
i ) (52)

In contrast to that, searching the shortest features incrementally can be done in a greedy fashion: at every com-
pression step we look for the shortest feature and can be certain to approximate the Kolmogorov complexity of the
string well, without the necessity of backtracking. Since according to eq. (27) the length of the shortest descriptive
map is small, incremental search is expected to take merely

Tincremental ≈ 2K(rs) +

s∑
i=1

2l(f
∗
i ) � Tnon-incremental (53)

time steps. This chain of reasoning is the basis why we can expect incremental compression to be faster. Neverthe-
less, we can not really neglect the execution time and take it into account in the following.

In this section, we introduce two versions of computable incremental compression algorithms, Greedy-ALICE
and ALICE. The latter is the general version for which we derive the time complexity.

4.1. The algorithms Greedy-ALICE and ALICE
We define a new universal Turing machine W , which takes inputs of the following form: W (〈2, x, a〉), where

x is the string to be compressed, a = f ′f is an autoencoder consisting of a descriptive map and a feature. Let
W ’s outputs be of the form 〈y, r, f〉 with r := f ′(x) and y := f(r). Such strange output is needed in order to
check whether f(f ′(x)) = x, compute r and extract f from a in algorithms 1 and 2 without wasting any time.
The time of execution W (〈2, x, a〉) is equal to t = t1 + t′1 + O (l (x)) + O (l (r)), where t1 is the time of execution
of f(r) and t′1 is the time of execution of f ′(x), and additional terms include time of comparing f(f ′(x)) and x,
passing result of f ′(x) to f , etc. Since f(r) and f ′(x) have to output x and r, respectively, and print it somewhere,
l (r) = O (t1) , l (x) = O (t′1). Thus, t = O (t1 + t′1).

If we eventually find some description x = (f1 ◦ f2 . . . ◦ fs) (rs), it is strictly a description of x on another
machine V whose input has the form Ds := 〈s, rs, fsfs−1 · · · f1〉 and which outputs x. Since V runs on a prefix
code, it can read s and rs and then run the initial universal Turing machine U on the remaining string. After it reads
exactly fs, U halts because fi(ri) = ri−1 by construction (see also proof of Theorem 3.6). In order to search for
autoencoders in parallel, the algorithms 1 and 2 below dovetail the computation. All self-delimiting autoencoders
a of length less than i are run as part of W ’s input for 2i−l(a) steps in phase i, i = 1, 2, . . . ,∞, until some program
prints x and halts (compare with algorithm SEARCH [18, Theorem 7.5.1]).

Algorithm 1: Greedy ALgorithm for Incremental ComprEssion (Greedy-ALICE)
Data: x - finite string, W - universal Turing machine, F - list of features as a global variable, TI - runtime,

r - last residual as a global variable
Function GreedyALICE(x)

run GreedySearch(x) for TI steps (in terms of the execution of W )
return F , r (global variables)

Function GreedySearch(x)
F ← ∅
r ← x
while True do

r, f = SearchAutoencoder(x)
Append f to F
x← r

Function SearchAutoencoder(x)
for i = 1, 2, . . . ,∞ do

for a in B∗, l(a) < i do
for 2i−l(a) steps do

run W (〈2, x, a〉) for 1 step returning y, r, f if halts
if W halts and y = x and l(f) + l(r) < l(x) then

return r, f

ALICE (Alg. 2) generalizes Greedy-ALICE by search for all possible compositions of functions. The search can
be visualized as a tree, which root node is (f = ∅, f ′ = ∅, x) and all other nodes have form (f, f ′, r) such that
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rparent = f
(
rchild

)
, rchild = f ′

(
rparent

)
. With time, the tree grows in width and in depth as each completed

and successful computation of f (f ′(r)) = r starts a self-similar computation of descriptions of f ′(r). In the first
level of this search tree all possible autoencoders a1 = f ′1f1 are considered such that the fraction 2−l(a1) of the total
computation time is allocated at autoencoder a1. In the beginning this time fraction is spent on the execution of
W (〈2, x, a1〉). If a1 indeed reconstructs x and fulfills the compression condition l (f1) + l (r1) ≤ l (x) we obtain a
residual r1. The remaining time of that fraction is spent searching for a description of r1. This is the way the search
time branches and the time given for this branch is again distributed among the various autoencoders a2 = f ′2f2 on
the second level and so on.
Algorithm 2: ALgorithm for Incremental ComprEssion (ALICE)
Data: x - finite string, W - universal Turing machine, D = ∅ - list of descriptions of x as a global variable,

TI - runtime
Function ALICE(x)

run SearchAutoencoderRecursively(〈x,∅〉) for TI steps (in terms of the execution of W )
Function SearchAutoencoderRecursively(〈x,F〉)

status← dictionary, valued UNHALTED by default, for keeping track of the status of program a
for i = 1, 2, . . . ,∞ do

for a in B∗, l(a) < i do
for 2i−l(a) steps do

if status[a] = UNHALTED then
run W (〈2, x, a〉) for 1 step returning y, r, f if halts
if W halts then

status[a]← HALTED
if y = x and l(f) + l(r) < l(x) then
F̃ ← f prepend to F
append 〈|F̃ |, r, F̃〉 to D
status[a]← 〈r, F̃〉
continue

if status[a] 6= UNHALTED and status[a] 6= HALTED then
run SearchAutoencoderRecursively(status[a]) for 1 step

4.2. Bounds on running time
We now derive an expression for the total computation time needed to compute a description of the form

〈s, rs, fsfs−1 . . . f1〉. First, we derive the general time allocation in ALICE. In order to do so, we introduce some
abstract process X, which runs on node assigned to autoencoder a (informally speaking, it can be anything which
happens under “for 2i−l(a) steps do” in Algorithm 2). X can be, for instance, the computation of W (〈2, x, a〉), the
storage of a generated description in D and then search of some depth-1 description of a newly generated residual
r = f ′(x).

Lemma 4.1. If ALICE computes τ steps on a node assigned to autoencoder a, the total computation time of ALICE
is between 2l(a)−l(amin)−1τ and 2l(a)+1τ steps, where amin is the shortest codeword in the prefix code.

Proof. According to the algorithm, on each iteration i ≥ l(a) precisely 2i−l(a) steps are allotted for the computation

of node a. Let t(n) :=
n∑

i=l(a)

2i−l(a) = 2n−l(a)+1 − 1 be total time allocated for node a until the n-th iteration. On

some value of n we will obtain t(n − 1) < τ ≤ t(n) and we obtain 2n−l(a) − 1 < τ ≤ 2n−l(a)+1 − 1 and thus
n− l(a) ≤ log τ < n− l(a) + 1 which can be turned around as

l(a) + log τ − 1 < n ≤ l(a) + log τ (54)

If for some other string b 6= a the computation of W (〈2, x, b〉) halts earlier, ALICE continues with the next
incremental step and node, assigned to b, keeps being occupied indefinitely. Thus, the total computation time of
ALICE until this moment is strictly T =

∑n
i=1 2iθi with θi :=

∑
a′:l(a′)≤i

2−l(a
′). This complies with the bounds

2nθn ≤ T ≤ 2n+1 (55)
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where the upper bound is proven in [18, Theorem 7.5.1]. Using the ineq. (54) on n, we obtain n > l(a) + log τ −1 ≥
l(a)−1 ≥ l (amin)−1. In particular, l (amin) ≤ n and therefore amin participates in θn no matter what a we consider,
leading to 2−l(amin) ≤ θn. Inserting it into ineqs. (55) and (54) we obtain

2l(a)−l(amin)−1τ < 2n−l(amin) ≤ T ≤ 2n+1 ≤ 2l(a)+1τ.

�

Since l (amin) does not depend on compressed string we shall consider it as a constant. Then lower and upper
bounds are equal up to multiplicative constant and the total computing time is O

(
τ2l(a)

)
. Now we extend this

reasoning from a single autoencoder to the search for all compositions of functions in ALICE.

Theorem 4.1. ALICE finds the autoencoders (f ′1, f1) , . . . , (f ′s, fs) and a description 〈s, rs, fsfs−1 . . . f1〉 of x in
time

TI = O

 s∑
i=1

(ti + t′i) 2
O(i)+

i∑
k=1

l(fk)+l(f
′
k)


where ti and t′i is time to compute fi (ri) and f ′i (ri−1), respectively.

Proof. Consider the base case s = 1 of induction. The computing branch labed by autoencoder a1 can be doing
the following: “compute W (〈2, x, a〉), check y = x and the compression condition” for time t = O (t1 + t′1). Using
Lemma 4.1 the total search time for a depth-1 description of x is O

(
t2l(a1)

)
. Therefore, TI = t2l(a1)+O(1) =

O
(

(t1 + t′1) 2l(f1)+l(f
′
1)+O(1)

)
and the base case is fulfilled.

Computing the depth-(s+ 1) description of the form x = (f1 ◦ · · · ◦ fs+1) (rs+1) can be regarded as computing
a depth-1 description of x 〈1, r1, f1〉 and then computing a depth-s description of r1 on the same branch, assigned
to a1 = f ′1f1. The computation process could then be described as “compute W (〈2, x, a1〉) and then find a depth-s
description of r1”. Since x = f1 (r1) and r1 = (f2 ◦ · · · ◦ fs+1) (rs+1), assuming the induction hypothesis for s, the
computation time becomes

τ = O (t1 + t′1) +O

 s∑
i=1

(
ti+1 + t′i+1

)
2
O(i)+

i∑
k=1

l(fk+1)+l(f ′k+1)


Deploying Lemma 4.1, we obtain the total computation time TI as

TI =τ2l(a1)+O(1) = O

2l(f1)+l(f
′
1)+O(1)

t1 + t′1+

s∑
i=1

(
ti+1 + t′i+1

)
2
O(i)+

i∑
k=1

l(fk+1)+l(f ′k+1)
 =

O

2l(f1)+l(f
′
1)+O(1)

t1 + t′1+

s+1∑
i=2

(ti + t′i) 2
O(i−1)+

i∑
k=2

l(fk)+l(f ′k)
 =

O

s+1∑
i=1

(ti + t′i) 2
O(i)+

i∑
k=1

l(fk)+l(f
′
k)


(56)

We see that error term O(i) is expained by accumulation of O(1) error term from Lemma 4.1. We get exactly the
same formula of TI for the depth-(s+ 1) description and the theorem is proven by induction. �

4.3. Computable incremental compression in practice
Given such promising theoretical prospects, one might wonder how ALICE might work in pratice. Indeed,

some practical success can be claimed by WILLIAM – our Python-based implementation of incremental compres-
sion [6, 7]. In a nutshell, using an algorithm similar to ALICE, WILLIAM enumerates all autoencoders (f, f ′)
expressed as Python abstract syntax trees sorted by the sum of their description lengths l(f) + l(f ′) until it finds
an autoencoder complying with the compression condition. WILLIAM demonstrates that much deeper trees can
be found efficiently than we could hope to find in a non-incremental fashion. It is able to solve a diverse set of tasks
including the compression and prediction of simple sequences, recognition of geometric shapes, write simple code
based on test cases, self-improve by solving some of its own problems and play tic-tac-toe when attached to a the
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universally intelligent agent AIXI [11] without being specifically programmed for that game. Recent results include
the emergence of simple versions of various machine learning methods, such as linear regression and classification,
data centralization and decision trees, as special cases of incremental compression performed by WILLIAM (yet
unpublished).

This concludes our presentation of incremental compression schemes and their time complexities. We turn to
an attempt to deepen our understanding of what a feature is. Since features describe general non-random aspects
of a string, it turns out, there is a close relationship to the celebrated Martin-Löf theory of randomness.

5. Relationship to Martin-Löf randomness

Recalling the definition of a feature, it comes to mind that it could serve as a general algorithmic definition of
an object’s properties. The expression U (〈r, f〉) = x means that the feature is part of the description of object x.
Properties could be viewed as partial descriptions. The compression condition demands that the property is not
trivial in some sense. For example, the partial description “begins with 011010100” would violate the compression
condition, but it is not particularly interesting and begs the question whether this partial description should be
called a property at all. After all, a property should be something that demarcates a particular class of objects
from all other objects in a non-trivial way. In other words, an object possessing a property should be rare in some
sense and therefore compressible.

This idea is closely tied to the idea of Martin-Löf randomness. A string is called Martin-Löf random, if it passes
all randomness tests. Recall the definition of a uniform test for randomness [18, Definition 2.4.1] (d(·) measures the
cardinality of a set):

Definition 5.1 (Randomness test). A total function δ : N → N is a uniform Martin-Löf test for random-
ness if δ is lower semicomputable and d ({x : l(x) = n, δ(x) ≥ m}) ≤ 2n−m, for all n.

If δ measures some non-random aspect of x, for example the number of initial zeros, then the fraction of random
strings with high values of δ(x) should be low. Otherwise, the string is unlikely to be random. In the present paper,
the task of a feature is to map out some non-random aspect of x. Therefore, there should be some relationship
between features and randomness tests, substantiated by the following theorems:

Theorem 5.1 (From features to randomness tests). For each feature f of some finite string, the function

δ(x) :=

{
max {l(x)− l(r)− 1 : f(r) = x, l(f) + l(r) < l(x)} if such an r exists
0 otherwise

(57)

is a uniform Martin-Löf test for randomness.

Proof. Fix f . We define φ(t, x) as follows: For each x, run feature f for t steps on each residual r of length less than
l(x)− l(f). If for any such input r the computation halts with output x, then define φ(t, x) := l(x)− l(r)− 1 using
the shortest such r, otherwise set φ(t, x) := 0. Clearly, φ(t, x) is recursive, total, and monotonically nondecreasing
with t (for all x, φ(t′, x) ≥ φ(t, x) if t′ > t). The limit exists, since for each x either no such r is found, making
φ(t, x) = 0 for all t, or a shortest r is found eventually. Therefore, limt→∞ φ(t, x) = δ(x) and we have shown that δ
is lower semicomputable.

Consider all x with length n. The case m = 0 is trivial, so consider the case m ≥ 1. For each x that meets
condition δ(x) ≥ m there has to exist some r with f(r) = x, l(f) + l(r) < l(x), and n − l(r) − 1 ≥ m. Therefore,
l(r) ≤ n − m − 1 and the number of such r is bounded by

∑n−m−1
i=0 2i = 2n−m − 1. Since different x’s require

different r’s (they are executed on the same f), the number of such x is bounded by the same expression. �

Example 1. Let x = 0aw. Clearly, there is a feature f that takes residual r = āw and computes x, if a is big enough
to fulfill the compression condition. Since l(r) = 2l(a)+1+ l(w) and l(x) = a+ l(w), we obtain δ(x) ≥ a−2l(a)−2.
For example, we can simply set δ(x) = a, which is clearly a randomness test that counts the number of leading
zeros of x [18, Example 2.4.1].

Example 2. Consider a string that has a 1’s at odd positions, x = 1x21x41x61x8 . . . z and continues with some
arbitrary string z eventually. There is a feature f that takes residual r = āx2x4 · · ·x2az and computes x, if a is
big enough to fulfill the compression condition. Since l(r) = 2l(a) + 1 + a + l(z) and l(x) = 2a + l(z) we obtain
δ(x) ≥ a− 2l(a)− 2 again. We can choose

δ(x) := a = max {i : x1 = x3 = · · · = x2i−1 = 1} (58)
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which is a randomness test [18, Example 2.4.3].
Conversely, there is also a map in the reverse direction, from randomness tests to features:

Theorem 5.2 (From randomness tests to features). For each uniform and unbounded Martin-Löf test for
randomness δ, there is a feature f such that it is a feature of all x fulfilling δ(x) > l(f).

Proof. Let the set V nm be defined as

V nm := {x : δ(x) ≥ m, l(x) = n} (59)

The lower semicomputability of δ implies that V nm is recursively enumerable. We have defined V nm such that for
any x fulfilling condition δ(x) ≥ m we have x ∈ V l(x)m and d

(
V
l(x)
m

)
≤ 2l(x)−m with m to be fixed later. If V l(x)m is

not empty then l(x)−m ≥ 0. Let δ = δy in the standard enumeration δ1, δ2, . . . of tests. Given y, m and l(x), we
have an algorithm to enumerate all elements of V l(x)m . Together with the index j of x in the enumeration order of
V
l(x)
m , this suffices to find x. We pad the standard binary representation of j with nonsignificant zeros to a string
r = 00 . . . 0j of length l(x) −m. This is possible since d

(
V
l(x)
m

)
≤ 2l(x)−m, thus any index of the element can be

encoded by l(r) = l(x)−m bits. The purpose of changing j to r is that now the length l(x) can be deduced from
l(r) and m. In particular, we can encode y and m into a string f corresponding to a Turing machine that computes
x from input r. This shows the existence of a string r with f(r) = x for any x with δ(x) ≥ m (for fixed m).

The compression condition becomes l(x) > l(f) + l(r) = l(f) + l(x) −m, hence we require l(f) < m. Since it
takes at most 2 logm bits to encode m into f this inequality can always be fulfilled for large enough m. Moreover,
it is possible to fulfill l(f) = m − 1 by adding some unnecessary bits to f . Let us fix some appropriate m and f
such that l(f) = m− 1. Therefore, f is indeed a feature of all x with δ(x) ≥ m, which is equivalent to δ(x) > l (f).

�

Intuitively, all strings x of fixed length that fulfill δ(x) ≥ m for some test δ possess some non-random aspect,
and there are few of them by definition of δ. Therefore, a feature can be constructed to enumerate them.

Example 3. Consider again Example 2, now departing from the particular test in eq. (58) encoded by number y
in the standard enumeration of tests. There are 2l(x)−a strings of length l(x) with 1’s at the first a odd positions.
Clearly, if we encode y and a into a function f , it can print x given the index j of x in that set.

This map to Martin-Löf randomness tests establishes an important point. While both features and randomness
tests are able to measure the amount of randomness deficiency, features also describe the content of randomness
deficiency, i.e. of a regularity. In this sense, features appear more informative than randomness tests and may
deserve the status of the algorithmic formalization of the meaning of “property” of computable objects.

6. Discussion

We have presented a theory of incremental compression of arbitrary finite data. It applies to any compressible
data x and suggests to decompose the compression endeavor into small independent pieces: the features. The
main result, illustrated in Fig. 3e), shows that ultimately the length of the obtained description of x by features
f1, . . . , fs and last residual rs reaches the optimal Kolmogorov complexity K(x) to logarithmic precision, if the
shortest possible features fi are selected at each incremental compression step. Additionally, we have introduced a
computable version of the theory – the ALgorithm for Incremental ComprEssion (ALICE).

6.1. Relationship to file and image compression algorithms
Each compression algorithm can be viewed as a descriptive map f ′ of constant O(1) length, which compresses

x and outputs a compressed string – a residual description r. Then the initial string x can be restored by de-
compressing the residual, x = f(r). In most cases, algorithms are one-sided and perform one technique: Huffman
coding, arithmetic coding, delta encoding, Lempel-Ziv compression. There are also algorithms like bzip2 and DE-
FLATE, which combine previously mentioned techniques incrementally and are more complex practical examples
of the theory described here. For example, the DEFLATE algorithm represents the initial string as a composition
(fH ◦ fLZ) (r), where fH can be viewed as a Huffman coding feature and fLZ – a Lempel-Ziv compression feature.
Other compression algorithms like fractal compression can also be related to the present formalism. When a picture
is decoded as a set of rules for building a fractal resembling a picture after some iterations of a fractal drawing, this
process could be represented as the application of the same feature several times: x = (f1 ◦ . . . ◦ f1) (r), where f1
represents only one iteration.
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Overall, usual compression algorithms can achieve some compression for a vast class of strings and may be
expected to emerge at the first steps of compression because of their small length. Nevertheless, due to the
narrowness of those methods, the achieved compression rate can be expected to be far from the golden standard
set by Kolmogorov complexity K(x), whereas the theory proposed here is fairly general (see Subsection 6.2) and it
reaches K(x) with certain precision (Theorem 3.6).

6.2. Generality
There is probably a price to be paid for the gained efficiency. The theory is only applicable to data possessing

any properties, i.e. features at all. As the relationship to Martin-Löf randomness has demonstrated, properties –
i.e. non-random aspects – guarantee the existence of features. Even though it is hard to imagine compressible data
without any features at all, it might exist in abundance. Of course, compressible strings always possess at least
one feature – the universal feature if the string is long enough (Lemma 2.2) or the singleton feature engulfing all
of the information about x (Lemma 2.1). These degenerate features constitute extreme cases and contain either
nonsignificant or all of the information about x. However, the interesting question is how many nondegenerate
cases exist, in which the information in x is divided into several chunks of intermediate size, which is expected to
lead to the highest boost in efficiency, according to eq. (53). Unfortunately, in order to estimate this number, we
would need to know how feature lengths are distributed. If strings with these nondegenerate, medium-sized features
constitute a genuine subset of all data, it would render our theory non-universal. From a practical perspective
however, the universe we inhabit seems to be teeming with features, wherever we look. In this sense, our theory
may not be a theory of universal compression, but a compression theory for our universe.

6.3. Machine learning and compression
Machine learning models generalize better when the number of degrees of freedom of the employed models is

small and the size of the data set large. In concordance with the reviewed Solomonoff theory of universal induction
the generalization ability of a model is firmly tied to the idea of data compression. In fact, it is not an exaggeration
to say that data compression is an essential property of machine learning in general, sometimes disguised as the
minimum description length principle, bias-variance trade-off, various regularization techniques and model selection
criteria [1, 4, 25]. For example, deep belief networks (DBNs) [9] consist of stacked autoencoders. In fact our theory
of incremental compression can be viewed as an algorithmic generalization of deep belief networks, maybe even of
deep learning in general, in so far as to show that compressing data in small incremental steps (such as neuronal
layers) is a reasonable thing to do. Any transformation f from a description r to the data x can be viewed as a
feature as long as some compression is achieved. In the context of machine learning, often f is fixed after learning
and is required to represent as set of data sets x1, . . . , xn with the respective descriptions r1, . . . , rn: f(ri) = xi. In
that respect, as long as n is large and l(ri) < l(xi), compression is achieved. Our theory predicts that compression
(and thereby the generalization properties), will be best if the model f and the description r of data in that model
(including noise) do not carry mutual information. This can be achieved by picking the simplest possible model f∗
achieving compression. In the context of DBNs, f is the one-layer neural network generating visual neuron patterns
x from the hidden neuron patterns r. This observation raises doubts about whether a one-layer network can cover
a broad enough set of features for arbitrary data and is not too biased toward a narrow class of transformations.

6.4. Searching for features in practice
It is important to ask how features can be found in practice. If exhaustive search is to be used, the search might

turn out to be slow. However, as we have seen, the shortest feature f∗ and descriptive map f ′∗ are bounded by a
constant for well-compressible strings. Therefore, even though f∗ and f ′∗ are incomputable in general, an adaptation
of the Coding Theorem Method [30] could be used since the halting problem has known solutions for simple Turing
machines. This in an interesting perspective, since a practical implementation of incremental compression would
be possible to some extent without the loss of theoretical guarantees.

A straightforward method to search for features is to use some parametrized family of functions fw employing
e.g. gradient descent on E(w) := (fw(r)− x)

2. It turns out that in this case an even shorter feature f can be found
since the parameter w can be moved into the residual: f(w, r) = x since l(f) < l(fw) and in practice probably even
l(f) � l(fw). This observation undermines the attempt to look for shortest features using a parametrized family
of functions and emphasizes that exhaustive search might not be a bad idea, since the shortest features appear to
be very short and it allows the discovery of very different functions. It does appear to work in practice [6, 7].

Nevertheless, the incomputability of shortest features raises the question about the consequences of picking not
the shortest feature. From Theorem 3.3 we know that if f is not the shortest, we risk wasting d := l(f)− l(f∗) bits
of description length on the data: K(f) +K(r) . K(x) + d. If the model class fw from which we pick the models
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is not appropriate for the data, then the shortest model from this class might still be much longer than the shortest
model from the Turing complete class, l(f∗w) � l(f∗), and much description length would be wasted. Or, such as
in the case of a single-layered neural network, the reconstruction f(r) might be far from the actual data x risking
substantial information loss.

Apart from that, f not being shortest might spoil its incompressibility (Theorem 3.1) which might require
compressing f further in order to achieve the smallest total description.

Note also that we should strive for lossless compression since the residual r contains both model parameters and
noise. The reconstruction f(r) = x consists of computing the model prediction and adding the noise to retrieve
the data x exactly. The “noise” is part of r since it may, in general, contain information not captured by the first
model f1, but which might in turn be captured by the next model f2. This is reminiscent of principal component
analysis, where at each step the principal component of the a residual description ri is searched for.

Another consequence of not picking the shortest feature (i.e. the simplest model) could be that the residual
description will be somehow messed up. In other words, it could contain noise unrelated to x. Algorithmically
expressed, it is a question about the value of K(r | x). We have encountered this term in Theorem 3.4 about
superfluous information. Interestingly, this can not happen to a severe extent, even if the feature is not the
shortest. This follows from the proof of the above-mentioned theorem where so-called first features of a fixed
length are search for. If we fix the length of the feature l(f) = n, then r can be computed from x. Therefore,
K(r | x) ≤ K(r | x, n) + K(n) + O(1) ≤ K(n) + O(1) = O (log l(f)), which is not much. For example, in the
context of DBNs, if the first layer consists of weights w1, . . . , wN , then l(f) ≈

∑N
i=1 l (D(wi)) where D is some

way to describe floats to some precision. If the number of data-description pairs (xi, ri) is large compared to that,
the superfluous information in r will be small. Thus, while we could spoil some description length by overlap d,
the residual will not be spoiled much, meaning that by compressing the residual further we will still be mostly
describing the original data x and not irrelevant information. It might be confounded by information in f , but since
the superfluous information in the latter is also bounded by O (log l(f)), it does not matter much.

Another concern might be that an unfortunate autoencoder (f1, f
′
1) might transform x into a description r1

whose shortest feature f∗2 might be long and therefore difficult to find. After all, there is no guarantee, that there
always exists a decomposition of a large set of short features, which would be optimal from the point of view of
search efficiency. However, as we have seen in Theorem 3.7, a string will always have a feature whose length is
bounded by a constant, if it is well-compressible. If it is not well-compressible, not much can be done anyway, since
we are dealing with an almost random string.

It all sounds like good news, if we merely care about the amount of information but not computation time.
For example, if an unfortunate, highly non-linear transformation f ′ distorts x into r, the amount of “distortion”
in r is not high only because we assume that we can find the reverse, “fixing” operation f by merely providing its
length l(f) to an algorithm that searches through all 2l(f) such reverse transformations until it finds the one that
generates x from the distorted r. In practice, l(f) is not available and executing 2l(f) functions in parallel might
simply be too computationally expensive. Therefore, even if the shortest program computing r, with length K(r),
is not much longer than K(x) − l(f∗) ≈ K(r) − K(f∗, r | x), we might end up spending much time “unwinding”
the superfluous information K(f∗, r | x) that has been inserted into r. It is hence advisable to use short descriptive
maps f ′ that are not able to inject much superfluous information into r, due to the relationship l(f ′∗) = K(r | x)
in Lemma 3.1. In practice, for example, in the case of linear regression f ′ might be the least squares algorithm that
finds the parameters of a linear function such as to minimize the reconstruction error. Apart from the parameters,
the residual r will mostly consist of the reconstruction error which is not spoiled much by the transformation and
can be compressed further if it contains information not captured by the linear function.

7. Conclusions

As we have seen in the discussion, the presented theory lays a foundation for a more efficient and fairly general
compression algorithm, aiming to be applied in practice. Most importantly, since many machine learning algorithms
rely on good data compression the generality of the proposed compression scheme could help those algorithms to
overcome their narrowness and improve their performance. In the context of the theory of universal intelligence
[11] this theory could be a fruitful way to derive more efficient formulations of the generally intelligent AIXI agent.
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