
Accelerated learning algorithms of general fuzzy min-max neural network
using a novel hyperbox selection rule

Thanh Tung Khuata,∗, Bogdan Gabrysa

aAdvanced Analytics Institute, Faculty of Engineering and Information Technology,
University of Technology Sydney, NSW, Australia

Abstract

This paper proposes a method to accelerate the training process of general fuzzy min-max neural network.

The purpose is to reduce the unsuitable hyperboxes selected as the potential candidates of the expansion

step of existing hyperboxes to cover a new input pattern in the online learning algorithms or candidates of

the hyperbox aggregation process in the agglomerative learning algorithms. Our proposed approach is based

on the mathematical formulas to form a new solution aiming to remove the hyperboxes which are certain

not to satisfy expansion or aggregation conditions, and in turn decreasing the training time of learning

algorithms. The efficiency of the proposed method is assessed over a number of widely used data sets.

The experimental results indicated the significant decrease in training time of proposed approach for both

online and agglomerative learning algorithms. Notably, the training time of the online learning algorithms is

reduced from 1.2 to 12 times when using the proposed method, while the agglomerative learning algorithms

are accelerated from 7 to 37 times on average.

Keywords: General fuzzy min-max neural network, novel hyperbox selection, online learning,

agglomerative learning, accelerated learning algorithms

1. Introduction

General fuzzy min-max (GFMM) neural network (GFMMNN) [8] is a generalization framework of fuzzy

min-max neural network for classification [21] and clustering [22]. The GFMM model can handle both labelled

and unlabelled data as well as crisp and fuzzy input samples in a single model. One of the remarkable

characteristics of the GFMMNN is that it is able to explain the predictive results based on the rule sets

extracted directly or indirectly from hyperboxes [15]. This interpretable property of the GFMMNN is essential

so that it can be used for high-stakes applications such as medical diagnosis, self-driving cars, and financial

investment [20]. Interpretability helps fuzzy min-max neural networks to overcome the black-box drawbacks

of the traditional neural networks.

∗Corresponding author
Email addresses: thanhtung.khuat@student.uts.edu.au (Thanh Tung Khuat), bogdan.gabrys@uts.edu.au (Bogdan

Gabrys)

Preprint submitted to Journal of ABC May 20, 2020

ar
X

iv
:2

00
3.

11
33

3v
2

 [
cs

.L
G

]
 1

9
M

ay
 2

02
0

There are two types of learning algorithms for the general fuzzy min-max neural network, i.e., incremental

(online) learning (Onln-GFMM) [8] and agglomerative (batch) learning [6]. The online learning algorithm

accommodates new input patterns by extending the current existing hyperboxes or creating a new hyperbox.

In contrast, the agglomerative learning algorithm starts with all training samples and conducts a process of

merging hyperboxes satisfying aggregation criteria to generate larger sized hyperboxes. To take advantages of

the strong points of the online and agglomerative learning algorithms, a recent study proposed an improved

version of online learning algorithm (IOL-GFMM) [12] to avoid the hyperbox contraction process which is

more likely to cause the classification errors in the online learning algorithm.

However, all of the current learning algorithms for the general fuzzy min-max neural network have the

same drawback in the selection of expandable or mergeable hyperbox candidates. The creation of a new

hyperbox in the online learning algorithms only occurs when all existing hyperboxes with the same class as

the input patterns cannot satisfy the expansion condition to cover the new input pattern. The expansion

condition is the maximum hyperbox size and the non-overlap of hyperboxes representing different classes if

using the IOL-GFMM. Similarly, in the agglomerative learning algorithm, the process of hyperbox merging

only terminates if all pairs of hyperbox candidates are examined with regard to the aggregation criteria

but the aggregation process cannot be performed. The aggregation conditions include maximum hyperbox

size, minimum similarity value, and the non-overlap of hyperboxes with different classes. The consideration

of expansion or merging conditions for all hyperbox candidates leads to a waste of time. Therefore, in

this study, we provide a lower bound on the membership functions and similarity measures to reduce the

considered hyperbox candidates for the expansion or merging process. This method contributes to decreasing

the training time of the learning algorithms.

Our contributions in this paper can be summarized as follows:

• We propose and prove the lemmas to reduce significantly the considered hyperboxes for both online and

batch learning algorithms for the general fuzzy min-max neural network. To the best of our knowledge,

this is the first study tackling this issue.

• The effectiveness of the proposed method is assessed on widely used datasets. Experimental results

confirmed the strong points of the method in decreasing the training time of the algorithms.

The rest of this paper is structured as follows. Section 2 discusses several studies related to the improve-

ments of fuzzy min-max neural networks. Section 3 presents an overall architecture and learning algorithms

of general fuzzy min-max neural network. Section 4 shows our proposed method. The experimental results

and discussion are decribed in section 5. Section 6 concludes the main findings.

2

2. Related work

This section presents briefly several studies related to fuzzy min-max neural networks as well as its

improvements. We refer the readers to a recent comprehensive survey [15] related to hyperbox-based machine

learning algorithms and their applications for more details.

Since the fuzzy min-max neural network (FMNN) was proposed by Simpson [21], there have been many

studies focusing on enhancing this type of neural network. The improvements can be divided into two main

directions. The first direction enhances the learning algorithms by changing the learning mechanisms, while

the second research direction focuses on accelerating the learning algorithms. The direction of enhancing

learning algorithms can be separated into two main groups. The first group includes the algorithms which

do not allow the overlap between hyperboxes representing different classes. The second group covers the

algorithms which accept the overlap between hyperboxes belonging to different classes and use a specific

mechanism to handle the samples located in the overlapping regions.

General fuzzy min-max neural network [8] is a significant improvement of the FMNN to create a single

framework for both classification and clustering problems. This type of neural network does not allow the

overlap occurring between hyperboxes belonging to different classes. There are two primary types of learning

algorithms to build the GFMM model, which are incremental learning [8] and agglomerative learning [6]

algorithms. As was discussed in [9] both types of algorithms can be used as the basic building blocks within

a combination of a range of algorithm independent statistical learning methods in the context of using single

or multi-version GFMM for problems requiring dynamically adaptable classifiers. In a later study, Castillo

and Cardenosa [4] extended the incremental learning algorithm so that it can handle datasets with both

numerical and categorical features. In a recent study, we improved the incremental learning of the GFMM

neural network [12] by eliminating the contraction process, which is likely to cause the classification errors.

We also proposed a new two-phase learning algorithm [11] to build a learning system through many levels

of abstraction. The new algorithm can reduce the number of hyperboxes generated in the training process

but still maintain high classification accuracy. In addition to the GFMM model, the first group also contains

other variants of the FMNN. One of these improved algorithms is an enhanced fuzzy min-max neural network

(EFMNN) [16] supplementing several conditions for the overlap test. In a later study, the authors proposed

the use of the K-nearest neighbor principle to select up to K winning hyperboxes for the expansion process

[17]. In a recent study, Al-Sayaydeh et al. [2] introduced a refined fuzzy min-max neural network (RFMNN)

with a new general formula for the overlap test procedure and a new hyperbox contraction operation.

The second group in the research direction on the enhancements of the learning algorithms for the original

fuzzy min-max neural network introduces different methods to handle the data points falling in the overlap-

ping regions of hyperboxes representing different classes. Bargiela et al. [3] introduced an exclusion/inclusion

fuzzy min-max model. They used inclusion hyperboxes for samples of the same class and exclusion hyper-

boxes for samples located in the overlapping areas. In another study, Nandedkar and Biswas introduced

3

a fuzzy min-max model with compensatory neurons (FMCN) [18]. The FMCN model used three types of

neurons, i.e., overlap compensation, containment compensation, and classification neurons. In a later study,

the authors extended the FMCN so that it can handle the input samples in both forms of crisp and hy-

perboxes [19] similar to the GFMM neural network. Zhang et al. [24] introduced a data-core-based fuzzy

min-max model (DCFMN) removing the contraction process by adding a new type of overlapping neurons to

the original structure of the FMNN. The DCFMN utilizes a new membership function considering both data

core and noise. In another research, Davtalab et al. [5] proposed a multi-level fuzzy min-max neural network

(MLF). Each node in the MLF model contains a subnet to handle the samples in the overlapping regions.

We can see that the algorithms in this group increase the complexity of the training process. Therefore, the

applicability of these algorithms for the large-sized datasets is limited.

Although there have been a lot of studies focusing on the improvement of learning algorithms for fuzzy

min-max neural networks, only few studies have been devoted to accelerating the learning algorithms. Gabrys

[7] proposed a novel method for accelerated learning by splitting a dataset into multiple exclusive subsets,

learning individual GFMM models on each of the subsets in parallel and then performing a model level combi-

nation of the resulting mutliple GFMM models achieving not only significant acceleration in the training time

but also a single, interpretable GFMM model as a result. In a more recent study, Ilager and Prasad [10] pro-

posed the use of MapReduce to parallelize the learning process of the original fuzzy min-max neural network

for the large-sized datasets. Upasani and Om [23] discussed the way of implementing the modified version

of the EFMNN model using modern Graphics Processing Units (GPUs) aiming to accelerate the learning

algorithm for the intrusion detection problem in the real-time. In a recent study, we introduced a method to

redefine the learning process of the GFMM model using matrix operations and took advantage of GPUs to

speed-up the learning algorithms for very high dimensional datasets [13]. However, the existing studies on

accelerating the learning algorithms focus only on the use of parallel execution mechanisms. In contrast, this

paper accelerates the learning algorithms by modifying the selection process of hyperbox candidates based

on the proposed mathematical lemmas identifying certain relationships between key hyperparameters of the

learning algorithm. This is the first work on this topic.

3. General fuzzy min-max neural network and learning algorithms

3.1. An overall architecture

General fuzzy min-max neural network contains three layers as shown in Fig. 1. The input layer includes

2n nodes, where n is the number of dimensions of the input pattern. The first n nodes are the lower bounds

of the input, while the remaining n nodes correspond to the upper bounds. These input nodes are connected

to m hyperbox nodes in the hidden layer, in which the connection weights of the lower bound input nodes

are stored in a matrix V and the connection weights between upper bound input nodes and hyperbox nodes

4

x
l
1

x
l
2

x
l
n

x
u

1

x
u

2

x
u

n

B1

B2

B3

Bm

c0

c1

cp

V

W

Input nodes Hyperbox nodes Class nodes

U

x
l
1

x
l
2

x
l
n

x
u

1

x
u

2

x
u

n

B1

B2

B3

Bm

c0

c1

cp

V

W

Input nodes Hyperbox nodes Class nodes

U

x
l
1

x
l
2

x
l
n

x
u

1

x
u

2

x
u

n

B1

B2

B3

Bm

c0

c1

cp

V

W

Input nodes Hyperbox nodes Class nodes

U

Figure 1: An architecture of general fuzzy min-max neural network

are saved in a matrix W. These weights correspond to minimum points and maximum points of hyperboxes,

and their values are adjusted during the training process. Each hyperbox node Bi is associated with an

activation function, which is also known as the membership function defined by Eq. (1).

bi(X) =
n

min
j=1

(min([1− f(xuj − wj , γj)], [1− f(vj − xlj , γj)])) (1)

where f(z, γ) =


1, if zγ > 1

zγ, if 0 ≤ zγ ≤ 1

0, if zγ < 0

is the ramp function, γ = [γ1, . . . , γn] is a sensitivity parameter describ-

ing the speed of decreasing of the membership function, and X = [X l, Xu] is an input pattern with lower

bounds X l and upper bounds Xu, which are vectors with values limited in the n-dimensional unit hyper-cube

[0, 1]n.

Each hyperbox Bi in the hidden layer is connected to each output (class) node cj by a binary-valued

parameter uij computed using Eq. (2). There are p+ 1 output nodes corresponding to p classes, where node

c0 is linked to all unlabelled hyperboxes in the hidden layer. The transfer function of cj is determined by the

maximum membership value of all hyperboxes with same class as cj and is shown in Eq. (3).

uij =

1, if hyperbox Bi represents class cj

0, otherwise

(2)

5

cj =
m

max
i=1

bi · uij (3)

where m is the number of hyperboxes in the middle layer. The output of each class node can be a fuzzy value

calculated directly from Eq. (3) or a crisp value if the node associated with the highest membership value

gets the value of one, and the others are assigned zero values [8].

Although the GFMM model can be applied for labelled and unlabelled datasets, this paper focuses only

on the classification problems. Therefore, the learning algorithms in the next sections are presented for

labeled training data. It is noted that our proposed method with the mathematical lemmas does not use

the information about the class labels, so it can be applied for the unsupervised (i.e. clustering) or semi-

supervised learning problems using the GFMM model as well.

3.2. Online learning algorithm

The incremental (online) learning algorithm, proposed in [8], adjusts the size of existing hyperboxes or

create new hyperboxes to accommodate new coming input patterns. There are three main steps in the

algorithms including hyperbox expansion/creation, hyperbox overlap test, and hyperbox contraction. The

pseudo code of the original online learning algorithm is given in Algorithm 1.

Assuming that each input pattern is represented in the form of X = [X l, Xu, lX], where lX is a class

label and X l and Xu are lower and upper bounds. The online learning algorithm first selects all existing

hyperboxes with the same class as lX . After that, the algorithm performs the computation of the membership

values between these selected hyperboxes and the input pattern X, and then these membership values are

sorted in a descending order (lines 8-9). Next, the algorithm traverses in turn each hyperbox Bi in the list of

selected hyperboxes starting from the hyperbox with the maximum membership value to choose a hyperbox

candidate aiming to expand and cover the input pattern. This process terminates when there is a hyperbox

satisfying the expansion condition or the membership value is one (lines 12-28). Otherwise, a new hyperbox

will be created with the same co-ordinates and label as the input pattern (lines 29-31). The expansion

condition relates to the maximum hyperbox size threshold in each dimension as shown in Eq. (4).

max(wij , x
u
j)−min(vij , x

l
j) ≤ θ, ∀j ∈ [1, n] (4)

If this criterion is met, the hyperbox Bi is extended to accommodate the input pattern X using Eqs. (5) and

(6).

vnewij = min(voldij , x
l
j) (5)

wnewij = max(woldij , x
u
j), ∀j ∈ [1, n] (6)

If the expansion step of the hyperbox candidate is carried out, the extended hyperbox Bi is verified for the

overlap with the hyperboxes Bk representing other classes. For each dimension j, four following conditions

are checked (initially δold = 1):

6

Algorithm 1 The original online learning algorithm

Require:

• θ: The maximum hyperbox size threshold

• γ: The speed of decreasing of the membership function

Ensure:

A list H of hyperboxes with minimum-maximum values and classes

1: Initialize an empty list of hyperboxes: min-max values V =W = ∅, hyperbox classes: L = ∅
2: for each input pattern X = [Xl, Xu, lX] do

3: n← The number of dimensions of X

4: if V = ∅ then

5: V ← Xl; W ← Xu; L ← lX

6: else

7: H1 = [V1,W1,L1]← Find hyperboxes in H = [V,W,L] representing the same class as lX

8: M← ComputeMembershipValue(X,V1,W1,L1)

9: Hd ← SortByDescending(H1,M(H1))

10: Set H1 ← H \H1

11: flag ← false

12: for each h = [Vh,Wh, lh] ∈ Hd do

13: if M(h) = 1 then

14: flag = true

15: break

16: end if

17: if max(whj , x
u
j)−min(vhj , x

l
j) ≤ θ, ∀j ∈ [1, n] then

18: W t
h ← max(Wh, X

u); V t
h ← min(Vh, X

l)

19: for each hyperbox [Vi,Wi, li] ∈ H1 do

20: isOver ← OverlapTest(V t
h ,W

t
h, Vi,Wi)

21: if isOver = true then

22: DoContraction(V t
h ,W

t
h, Vi,Wi)

23: end if

24: end for

25: flag = true

26: break

27: end if

28: end for

29: if flag = false then

30: V ← V ∪Xl; W ←W ∪Xu; L ← L ∪ lX
31: end if

32: end if

33: end for

34: return H = [V,W,L]

• vij < vkj < wij < wkj : δnew = min(wij − vkj , δold)

• vkj < vij < wkj < wij : δnew = min(wkj − vij , δold)

• vij < vkj ≤ wkj < wij : δnew = min(min(wkj − vij , wij − vkj), δold)

• vkj < vij ≤ wij < wkj : δnew = min(min(wij − vkj , wkj − vij), δold)

7

If δnew < δold, then we set ∆ = j and δold = δnew to show an overlapping area on the ∆th dimension,

and the testing procedure is repeated for the next dimension. In contrast, there is no overlap region between

two considered hyperboxes, and the hyperbox contraction step will not be performed (∆ = −1). If ∆ 6= −1,

the contraction procedure is applied on the ∆th dimension to remove the overlapping area between two

hyperboxes. The overlapping region is eliminated by tuning the value of the dimension with the smallest

overlap. If ∆ > 0, this dimension is adjusted according to the four following cases:

Case 1: vi∆ < vk∆ < wi∆ < wk∆ : wnewi∆ = vnewk∆ = (woldi∆ + voldk∆)/2

Case 2: vk∆ < vi∆ < wk∆ < wi∆ : wnewk∆ = vnewj∆ = (woldk∆ + voldj∆)/2

Case 3: vi∆ < vk∆ ≤ wk∆ < wi∆ :

vnewi∆ = woldk∆, if wk∆ − vi∆ ≤ wi∆ − vk∆

wnewi∆ = voldk∆, if wk∆ − vi∆ > wi∆ − vk∆

Case 4: vk∆ < vi∆ ≤ wi∆ < wk∆ :

wnewk∆ = voldi∆ , if wk∆ − vi∆ ≤ wi∆ − vk∆

vnewk∆ = woldi∆ , if wk∆ − vi∆ > wi∆ − vk∆

Time complexity of the Onln-GFMM algorithm. In terms of time complexity, assuming that there are N

training samples with n features, the algorithm will first traverse each input sample and find a list of K

hyperboxes with the same class as the input sample. The time complexity for this operation is constant if

we use the hashtable technique. The membership computation must check all n dimensions of K hyperboxes,

so the time complexity is O(Kn). We obtain K membership values for each input, therefore, the time

complexity of the sorting operation is O(K logK). Let R be the number of hyperboxes representing classes

different from the input class in the current iteration, we need O(R) to collect these R hyperboxes. In the

worst-case, we have to traverse over all K selected hyperboxes to find the expandable hyperbox (line 12).

For each hyperbox candidate, the checking of the expansion condition through n dimensions requires O(n).

The overlap test between the hyperbox candidate and R hyperboxes belonging to other classes requires

O(Rn) for time complexity. We need only constant time for the process of contraction or generating a new

hyperbox. Hence, the time complexity from line 12 to line 28 in the worst-case is O(KRn). Finally, let K

be the average number of hyperbox candidates for each iteration, R be the average number of hyperboxes

representing classes different from the input class over N training samples, the time complexity of learning

algorithm 1 in the worst-case is O(N · K · R · n).

3.3. Agglomerative learning algorithm

The online learning algorithm creates or adjusts the size of hyperboxes whenever an input sample comes

in the network. Therefore, its performance depends on the data presentation order. In [6], Gabrys proposed

8

an agglomerative learning algorithm based on the full similarity matrix (AGGLO-SM) to reduce the impact

of the data presentation order on the accuracy of the learning algorithm. In contrast to the online learning

algorithm, the AGGLO-SM algorithm for the classification problems starts with all of the training samples.

The idea is to merge hyperboxes with the same class, possessing the similarity values larger than a given

threshold, and not generating the overlapping areas with existing hyperboxes representing other classes. The

main steps of the AGGLO-SM algorithm are shown in Algorithm 2.

Algorithm 2 The agglomerative algorithm with full similarity matrix - AGGLO-SM

Require:

• X = [Xl,Xu]: A list of training features

• L: A vector of pattern classes

• θ: The maximum hyperbox size threshold

• γ: The speed of decreasing of the membership function

Ensure:

A list H of hyperboxes with minimum-maximum values and classes

1: Initialize a list of hyperboxes: min-max values V = Xl,W = Xu, hyperbox classes: L = L

2: loop← true; n← the number of features of X

3: S ← ComputeSimilarityValPairWithinEachClass(V,W,L)

4: while loop = true do

5: loop← false

6: S ← S \ {s ∈ S|s < σ}

7: I,K, S ← SortByDescending(S,V,W,L)

8: for each [i, k, s] ∈ [I,K, S] do

9: if max(wij , wkj)−min(vij , vkj) ≤ θ, ∀j ∈ [1, n] then

10: Wt ← max(Wi,Wk); Vt ← min(Vi, Vk)

11: H1 ← A list of hyperboxes with classes different from li ∈ L

12: isOver ← IsOverlap(Vt,Wt,H1)

13: if isOver = false then

14: loop← true

15: Vi ← Vt; Wi ← Wt

16: V ← V \ Vk; W ←W \Wk; L ← L \ Lk

17: S ← UpdateSimilarityMatrix(V,W,L)

18: break

19: end if

20: end if

21: end for

22: end while

23: return H = [V,W,L]

Firstly, the algorithm initializes a matrix V of minimum points and a matrix W of maximum points

using the lower bounds X l and upper bounds Xu of all training samples. Next, the algorithm performs a

repeated training process of aggregating hyperboxes starting from the computation of a similarity matrix of

hyperboxes for each class. There are three measures possible to be used to find the similarity value of each

pair of hyperboxes Bi and Bk as follows:

9

• The first similarity measure is based on maximum points or minimum points of two hyperboxes. For

simplifying, we call this measure as “middle distance” in this paper, though the similarity measures are

not distance measures:

sik = s(Bi, Bk) =
n

min
j=1

(min(1− f(wkj − wij , γj), 1− f(vij − vkj , γj)))

It can be seen that sik 6= ski, thus the similarity value between Bi and Bk may receive the minimum or

maximum value between sik and ski. If the maximum value is used, this measure is called “mid-max

distance”; otherwise, the name “mid-min distance” is used.

• The second similarity measure employs the smallest gap between two hyperboxes Bi and Bk, namely

“shortest distance” in this paper:

s̃ik = s̃(Bi, Bk) =
n

min
j=1

(min(1− f(vkj − wij , γj), 1− f(vij − wkj , γj))) (7)

• The third similarity measure is based on the longest possible distance between two hyperboxes Bi and

Bk, called “longest distance” for short, defined as follows:

ŝik = ŝ(Bi, Bk) =
n

min
j=1

(min(1− f(wkj − vij , γj), 1− f(wij − vkj , γj)))

We can observe that both s̃ik and ŝik possess the symmetrical property.

From the similarity matrix of hyperboxes with the same class, the algorithm will merge sequentially

hyperboxes by seeking for a pair of hyperboxes with the maximum similarity value. It is noted that the

algorithm only considers pairs of hyperboxes with similarity values larger than or equal to a minimum

similarity threshold (σ): sih ≥ σ (line 6 - Algorithm 2). Assuming that these two hyperboxes are Bi and

Bk, the following conditions will be checked before aggregating:

(a) Maximum hyperbox size:

max(wij , wkj)−min(vij , vkj) ≤ θ, ∀j ∈ [1, n]

(b) Overlap test. Newly aggregated hyperbox from Bi and Bk does not overlap with any existing hyperboxes

belonging to other classes. The overlap checking conditions between two hyperboxes are shown in

subsection 3.2. If any overlapping area exists, another pair of hyperboxes is selected.

If all above constraints are met, the hyperbox aggregation process is carried out as follows:

(a) Updating the coordinates of Bi so that Bi represents the coordinates of the merged hyperbox (line 15).

(b) Removing Bk from the current set of hyperboxes (line 16) and update the similarity matrix (line 17).

This training process is iterated until there are no pairs of hyperboxes to aggregate.

10

Time complexity of the AGGLO-SM algorithm. The time complexity of the computation of similarity values

at line 3 in Algorithm 2 is O(N2n), where N is the number of training samples and n is the number of

features. With N training samples, we obtain a maximum of N(N − 1)/2 hyperbox pairs. In the worst-

case, we have to loop through all pairs of hyperboxes. At each iteration, let Y be the number of existing

hyperboxes, the filtering step of hyperbox pairs satisfying the minimum similarity value (line 6) requires

O(Y2) for time complexity. Assuming we obtain Z pairs of hyperbox candidates for the aggregation process,

the complexity of the sorting step is O(Z logZ). In the worst-case, we need to check all of these Z candidate

pairs for the aggregation process. For each pair, the checking for the maximum hyperbox size condition

requires O(n). The process of collecting hyperboxes representing classes different from the newly aggregated

hyperbox takes O(Y). The overlap test between the newly aggregated hyperbox and existing hyperboxes

requires O(Yn). The update step of the similarity matrix takes O(Yn). Therefore, in the worst-case, the

process of aggregating a pair of hyperboxes (lines 6-21 in Algorithm 2) requires O(ZYn + Y2) for time

complexity. As a result, let Z be the average number of pairs of hyperbox candidates considered during the

training process and Y be the number of existing hyperboxes in each iteration, the time complexity for the

AGGLO-SM algorithm is O(N2 · (Z · Y · n+ Y2
)) in the worst-case.

Training process of the AGGLO-SM algorithm takes a very long time to complete, especially for massive

datasets, due to the fact that we need to compute and sort the similarity matrix for all pairs of hyperboxes.

To lower the training time of the AGGLO-SM algorithm, Gabrys [6] introduced the second agglomerative al-

gorithm (AGGLO-2) removing the usage of the full similarity matrix when selecting and merging hyperboxes.

The main steps of the AGGLO-2 are shown in Algorithm 3.

The AGGLO-2 algorithm traverses and selects in turn each hyperbox in the current list of hyperboxes to

perform the hyperbox merging process. For the first selected hyperbox candidate Bi, the similarity values of

Bi and the remaining hyperboxes with the same class as Bi are computed and sorted (lines 7-9 in Algorithm

3). The hyperbox Bk with the highest similarity value is chosen as the second candidate for the aggregation.

The aggregation constraints of Bi and Bk are the same as in the AGGLO-SM algorithm. If the aggregation

conditions are met, we update the coordinates of Bi so that it shows the aggregated hyperbox and remove

Bk of the list of current hyperboxes. If Bi and Bk do not meet the constraints, the hyperbox with the

second largest similarity value is selected, and the above checking and merging steps are repeated until the

agglomeration happens. The learning algorithm stops when no pair of hyperboxes can be aggregated (the

variable loop = false in Algorithm 3).

Time complexity of the AGGLO-2 algorithm. Assuming that we have N training samples with n features,

in the worst-case, the training process has to loop through all N initial hyperboxes. In each iteration, the

process of finding the hyperboxes representing the same class as the considered hyperbox takes constant

time if using the hashtable. Let K be the number of hyperboxes with the same class as the considered

11

Algorithm 3 The agglomerative algorithm version two - AGGLO-2

Require:

• X = [Xl,Xu]: A list of training features

• L: A vector of pattern classes

• θ: The maximum hyperbox size threshold

• γ: The speed of decreasing of the membership function

Ensure:

A list H of hyperboxes with minimum-maximum values and classes

1: Initialize a list of hyperboxes: min-max values V = Xl,W = Xu, hyperbox classes: L = L

2: loop← true; n← the number of features of X

3: while loop = true do

4: loop← false; i← 1

5: while i ≤ |L| do

6: H1 = [V1,W1,L1]← Find hyperboxes in [V,W,L] representing the same class as li ∈ L

7: S ← ComputeSimilarityValPair(Vi,Wi,H1)

8: S ← S \ {s ∈ S|s < σ}

9: K,S ← SortByDescending(S,V1,W1,L1)

10: for each [k, s] ∈ [K,S] do

11: if max(wij , wkj)−min(vij , vkj) ≤ θ, ∀j ∈ [1, n] then

12: Wt ← max(Wi,Wk); Vt ← min(Vi, Vk)

13: H1 ← A list of hyperboxes with classes different from li

14: isOver ← IsOverlap(Vt,Wt,H1)

15: if isOver = false then

16: loop← true

17: Vi ← Vt; Wi ← Wt

18: V ← V \ Vk; W ←W \Wk; L ← L \ Lk

19: if i > k then

20: i← i− 1

21: end if

22: break

23: end if

24: end if

25: end for

26: i← i+ 1

27: end while

28: end while

29: return H = [V,W,L]

hyperbox in the current iteration, the computation step of similarity values takes O(Kn). The filtering step

of hyperbox candidates satisfying the minimum similarity value takes O(K). Let Z be the number of pairs of

hyperbox candidate for the aggregation process, the sorting step requires O(Z logZ). In the worst-case, the

aggregation process needs to loop through all Z pairs of hyperbox candidates. For each candidate pair, the

checking step of the maximum hyperbox size condition requires O(n). Let R be the number of hyperboxes

representing classes different from the considered pair of hyperbox candidate, we need to take O(R) to find

these hyperboxes. The overlap test step (line 14 in Algorithm 3) requires O(Rn). The operation of removing

12

a merged hyperbox requires O(K) but this step only occurs once among Z pairs of hyperbox candidates.

As a result, the time complexity for the aggregation process (lines 6-26) is O(ZRn). In summary, let Z be

the average number of pairs of hyperbox candidates and R be the average number of hyperboxes belonging

to classes different from the class of the considered pair of hyperbox, the time complexity of the AGGLO-2

algorithm is O(N · Z · R · n) in the worst-case.

3.4. An improved online learning algorithm

The improved online learning algorithm (IOL-GFMM) is proposed in [12] to tackle the disadvantages

of the original online learning algorithms related to the hyperbox contraction and equal membership value.

Similarly to the agglomerative learning algorithm, the IOL-GFMM algorithm prevents the overlap between

the expanded hyperbox and any existing hyperboxes representing other classes, so it removes the contrac-

tion step from the learning algorithm. The learning process contains only two main steps, i.e., hyperbox

expansion/creation and overlap test. The details of the IOL-GFMM are given in Algorithm 4.

Algorithm 4 The IOL-GFMM algorithm

1: Lines 1-11 from the Algorithm 1

2: for each h = [Vh,Wh, lh] ∈ Hd do

3: if M(h) = 1 then

4: flag = true

5: Increase the number of samples contained in h

6: break

7: end if

8: if max(whj , x
u
j)−min(vhj , x

l
j) ≤ θ, ∀j ∈ [1, n] then

9: W t
h ← max(Wh, X

u); V t
h ← min(Vh, X

l)

10: isOver ← IsOverlap(W t
h, V

t
h ,H1)

11: if isOver = false then

12: Vh ← V t
h ; Wh ← W t

h

13: flag ← true

14: Increase the number of samples contained in h

15: break

16: end if

17: end if

18: end for

19: Lines 29-34 from the Algorithm 1.

Expansion of hyperboxes. When an input sample X = [X l, Xu, lX] comes to the network, the algorithm first

filters all existing hyperboxes representing the same class as lX . Next, the membership values between X

and all selected hyperboxes are computed and sorted in a descending order. If the maximum membership

value is one, the learning process continues with another input sample. Otherwise, the algorithm traverses in

turn each hyperbox starting from the hyperbox with the maximum membership value to verify the expansion

criteria. If all constraints are satisfied, the size of the selected hyperbox and the number of pattern included

in that hyperbox are updated and the learning process continues with next input samples (lines 2-18). If

13

none of the hyperbox candidates satisfies the conditions, a new hyperbox is generated to accommodate the

input pattern and added to the current set of hyperboxes. Two expansion criteria include the maximum

hyperbox size shown in Eq. (4) and overlap. If the maximum hyperbox size constraint is satisfied, then the

non-overlapping condition is verified as follows:

Overlap test. The overlap test is performed between the newly extended hyperbox and the hyperboxes

belonging to other classes. If there is any overlapping regions occurring, the next hyperbox candidate is

considered. Otherwise, the chosen hyperbox is updated by the new coordinates of the expanded hyperbox,

and the learning steps continue with another input sample. The overlap test between each pair of hyperboxes

is conducted in the same way as the steps shown in subsection 3.2.

Classification phase. In the classification phase, when an unseen sample X comes to the network, the mem-

bership degrees between X and all existing hyperboxes in the model are calculated. The input X will be

classified to the class of the hyperbox with the maximum membership value. In the original online learning

algorithm, if there are at least two hyperboxes with the same maximum membership value but different

classes, the algorithm will select the predicted class randomly. In contrast, in the IOL-GFMM algorithm, if

many hyperboxes belonging to K different classes output the same maximum membership degree (bwin), we

need to deploy an additional criterion to specify the suitable class for X. If bwin = 1 and ∃i : ni = 1, then

the class of X is the class of Bi, where ni is the number of patterns included in the hyperbox Bi. Otherwise,

the predicted class of X is the class ck with the highest value of P(ck|X) defined by:

P(ck|X) =

∑
j∈Ikwin

nj · bj∑
i∈Iwin

ni · bi
(8)

where k ∈ [1,K] and Iwin = {i, if bi = bwin} contains the indexes of all hyperbox with the same maximum

membership value, Ikwin = {j, if class(Bj) = ck and bj = bwin} is a subset of Iwin created by indexes of the

kth class.

Time complexity of the IOL-GFMM algorithm. We can see that the IOL-GFMM is different from the original

online learning algorithm of the GFMM neural network in the contraction step only. Therefore, the time

complexity of the IOL-GFMM algorithm is the same as that of the Onln-GFMM algorithm in the worst-case,

i.e., O(N ·K ·R ·n), where N is the number of training samples, n is the number of features, K is the average

number of expandable hyperbox candidates considered during the training process, and R is the average

number of hyperboxes representing classes different from the class of the current training sample.

4. Proposed method

In order to alleviate the computational issues, we present an approach to training algorithms that drasti-

cally reduces the number of considered expandable hyperbox candidates by omitting hyperboxes certain not

14

to satisfy the expansion or aggregation conditions.

4.1. Accelerated online learning algorithms

It is observed that in online learning algorithms of GFMMNN, a new hyperbox is only created to cover

the input pattern if all hyperbox candidates cannot satisfy the conditions to be expanded for accommodating

the new input pattern. However, in the current versions of the online learning algorithms, there is no way

to reduce the considered hyperbox candidates. In this paper, therefore, we provide a lemma to narrow down

the expandable hyperboxes during the training process. This solution is given in Lemma 1.

Lemma 1. When finding the candidates of expandable hyperboxes to cover an input pattern X ∈ [0, 1]n, we

only need to consider the hyperboxes (h) with the same class as X and having a membership degree (bh(X)) to

the new input pattern satisfying: bh(X) ≥ 1− θ ·γmax, where γmax =
n

max
j=1

(γj); γj > 0, and θ is the maximum

hyperbox size. If the input pattern X is in the form of a hyperbox, its size must be below θ in all dimensions.

The proof of Lemma 1 can be found in the Appendix A. This lemma shows the relationship between

the membership function and the maximum hyperbox size parameter if we keep the sensitivity parameter γ

fixed. By using this lemma, we can reduce the number of hyperbox candidates considered for the expansion

step based on their membership values. We can modify the Algorithm 1 into Algorithm 5 to accelerate the

original online learning algorithm of GFMM model. The only change in this algorithm is that we use the

proposed lemma to limit the number of hyperboxes considered for each input pattern. The other steps are

the same as in the original version.

Algorithm 5 The accelerated original online learning algorithm

1: Lines 1-8 from the Algorithm 1

2: Hs ← {h : h ∈ H1,M(h) ≥ 1− θ · γmax}

3: Hd ← SortByDescending(Hs,M(Hs))

4: Lines 10-34 from Algorithm 1

Similarly, we can also change the steps of the IOL-GFMM shown in Algorithm 4 to Algorithm 6 to

accelerate the IOL-GFMM procedure. With the Lemma 1, we can reduce the extendable hyperbox candidates

to cover the new input pattern. The remaining operations are the same as the original version of the IOL-

GFMM algorithm.

Algorithm 6 The accelerated IOL-GFMM algorithm

1: Lines 1-8 from the Algorithm 1

2: Hs ← {h : h ∈ H1,M(h) ≥ 1− θ · γmax}

3: Hd ← SortByDescending(Hs,M(Hs))

4: Set H1 ← H \H1

5: flag ← false

6: Lines 2-19 from Algorithm 4

15

As will be illustrated in the experimental section, these changes to the algorithms and the use of the

proved Lemma 1 resulted in from 2 to 3.5 times reduction of learning time on average.

Time complexity of the accelerated online learning algorithms. It is easily observed that the accelerated

online learning algorithms are different from the original version in the reduction of the hyperbox candidates

considered during the training process. Therefore, the time complexity of these algorithms are similar to the

original versions, i.e., O(N · K1 · R · n), where K1 is the average number of expandable hyperbox candidates

considered during the training process, the meaning of other parameters is the same as in the original versions.

The accelerated learning algorithms run faster than the original versions because of K1 < K.

4.2. Accelerated agglomerative learning algorithms

In the original agglomerative learning algorithms, the hyperbox aggregation process considers all pairs of

hyperboxes for which their similarity values are larger than or equal to a given minimum similarity threshold.

If this threshold is set too small, then there might be many candidates considered, and so the training process

can be long. However, when the minimum similarity condition is met and two hyperboxes could be merged,

the newly aggregated hyperbox has to still be checked for the maximum hyperbox size constraint. In this

paper, we will show the dependency of the similarity value with the maximum hyperbox size parameter.

Based on this identified relationship, we can remove immediately the pairs of hyperboxes for which the

hyperbox aggregated from these candidates cannot, with absolute certainty, satisfy the maximum hyperbox

size condition. The details of the proposed method are described in Lemma 2.

Lemma 2. Regardless of the similarity measure used, the hyperbox aggregation process only considers pairs

of hyperbox candidates that their similarity values satisfy the following condition: s(Bi, Bk) ≥ max(σ, 1 −

θ · γmax), where γmax =
n

max
j=1

(γj); γj > 0, σ is the minimum similarity threshold, and θ is the maximum

hyperbox size parameter. It is noted that the size of all hyperbox candidates must be below θ.

The proof of Lemma 2 can be found in the Appendix B. By using Lemma 2, we can change the steps

of the AGGLO-SM algorithm in Algorithm 2 to Algorithm 7, and modify the AGGLO-2 algorithm as shown

in Algorithm 8. The only change in these accelerated algorithms compared to their original versions is the

limitation of pairs of candidates considered during the learning process by a stricter lower bound. The

remaining operations are kept unchanged as described in the original algorithms.

Algorithm 7 The accelerated AGGLO-SM algorithm

1: Lines 1-5 from the Algorithm 2

2: S ← S \ {s ∈ S|s < max(σ, 1− θ · γmax)}

3: Lines 7-23 from Algorithm 6

As will be shown in the experimental section, these changes to the agglomerative learning algorithms

and the usage of the proposed Lemma 2 led to the acceleration of seven times in the training time of the

16

Algorithm 8 The accelerated AGGLO-2 algorithm

1: Lines 1-7 from the Algorithm 3

2: S ← S \ {s ∈ S|s < max(σ, 1− θ · γmax)}

3: Lines 9-29 from Algorithm 3

AGGLO-SM algorithm, while the training time of the AGGLO-2 algorithm is reduced from 25 to 37 times

on average depending on the similarity measure and dataset deployed.

Time complexity of the accelerated agglomerative learning algorithms. We can see that the accelerated version

of the AGGLO-SM algorithm is only reduced by the number of pairs of hyperbox candidates considered in the

aggregation process. Therefore, the complexity of the accelerated AGGLO-SM algorithm is O(N2 · (Z1 · Y ·

n+Y2
)), where Z1 is the average number of pairs of hyperbox candidates, the meaning of the other notations

is the same as in the description of the original AGGLO-SM algorithm shown in the subsection 3.3. Similarly,

the complexity of the accelerated AGGLO-2 algorithm is O(N · Z1 ·R ·n) in the worst-case, where Z1 is also

the average number of pairs of hyperbox candidates considered during the training process of the accelerated

AGGLO-2 algorithm. The other parameters have the same meaning as shown in the subsection 3.3 for the

original AGGLO-2 algorithm. The accelerated agglomerative algorithms run faster than the original versions

due to Z1 < Z.

For the time complexity of the AGGLO-2 algorithm, Z, N, n, andR are equally important factors affecting

the algorithm time complexity. However, for the complexity of the AGGLO-SM algorithm, the role of Z is

much less important than those of N2 and Y2
, especially in the large-sized datasets. Therefore, the impact of

the reduction of Z on the AGGLO-2 algorithm is more significant compared to the AGGLO-SM algorithm.

This fact is confirmed by the experimental results in section 5. As an illustrative example, Fig. 2 shows the

speed-up factors of the AGGLO-2 and AGGLO-SM using the proposed method with the “longest distance”

similarity value in correlation to the numbers of samples and features for the 24 experimental datasets. We

can see that the acceleration of the AGGLO-2 algorithm is much higher than that of the AGGLO-SM when

using the proposed approach. Apart from the numbers of samples and features, the input data distribution

and the complexity of the classification problem have a significant effect on the speed-up factor of the proposed

approach. For instance, in Table 3, two datasets plant species leaves texture and plant species leaves margin

have the same numbers of samples, features, and classes, but their speed-up factors are significantly different.

17

0 0.5 1 1.5 2 2.5 3 3.5
No of samples x No of features 105

0

50

100

150

200

250

300

S
pe

ed
-u

p
fa

ct
or

AGGLO-2
AGGLO-SM

Figure 2: The speedup factor of the AGGLO-2 and AGGLO-SM algorithms according to the number of samples and the number

of features over 24 experimental datasets (using the “longest distance” similarity measure).

5. Experiments

5.1. Experimental datasets and parameter settings

To evaluate the effectiveness of the proposed method, we conducted the experiments on 24 datasets taken

from the UCI machine learning repository 1. A summary of these datasets related to the numbers of classes,

features, and samples is shown in Table 1.

For each dataset, we carried out 5 times 2-fold cross-validation, and then the average values of the training

time and the number of hyperbox candidates considered during the training process are reported in this paper.

Experiments were executed on a Intel Xeon Gold 6150 2.7GHz computer with 32GB RAM running Red Hat

Enterprise Linux. The algorithms were implemented using Python programming language.

The sensitivity parameter γj impacts the decreasing speed of the membership function on the jth di-

mension. If we set a large value of γj , there may be cases that samples are not classified correctly as the

membership values for all classes are zero. Therefore, to avoid this situation, we used the sensitivity param-

eter γj = 1;∀j ∈ [1, n] as recommended in [1] when all the input data were normalized to the range of [0, 1].

If the maximum hyperbox size parameter θ is assigned a large value, the classification accuracy of GFMM is

negatively affected. A high classification accuracy is usually achieved for a small value of θ but it significantly

increases the training time [14]. Therefore, to show the efficiency of the proposed method, we used a small

1https://archive.ics.uci.edu/ml/datasets.php

18

Table 1: The summary of the used datasets

ID Dataset # samples # features # classes

1 blance scale 625 4 3

2 banknote authentication 1372 4 2

3 blood transfusion 748 4 2

4 breast cancer wisconsin 699 9 2

5 breast cancer coimbra 116 9 2

6 climate model crashes 540 18 2

7 connectionist bench sonar 208 60 2

8 glass 214 9 6

9 haberman 306 3 2

10 heart 270 13 2

11 ionosphere 351 33 2

12 movement libras 360 90 15

13 optical digit 5620 62 10

14 page blocks 5473 10 2

15 pendigits 10992 16 10

16 pima diabetes 768 8 2

17 plant species leaves margin 1600 64 100

18 plant species leaves texture 1600 64 100

19 ringnorm 7400 20 2

20 seeds 210 7 3

21 image segmentation 2310 19 7

22 spambase 4601 57 2

23 spectf heart 267 44 2

24 landsat satellite 6435 36 6

value of θ = 0.1 for learning algorithms in this experiment. In the agglomerative learning algorithms, we set

the minimum similarity threshold σ = 0 to assess the impact of the lower bound related to θ on the training

time of algorithms. For σ = 0, the hyperbox aggregation step depends only on the maximum hyperbox size.

We refer the readers to our previous study [14] for the analysis of the impacts of different parameters on the

classification performance of GFMM learning algorithms.

The purpose of this experiment is to illustrate and validate the effectiveness of the accelerated learning

algorithms in terms of the training time speed up and the reduction of the number of considered hyperbox

candidates in comparison to the original versions. The classification accuracy of the accelerated learning

algorithms is identical to the original algorithms. The comparison of the learning algorithms of the GFMM

model with other state-of-the-art machine learning algorithms can be also found in our previous study [14].

5.2. Experimental results for online learning algorithms

Table 2 shows the average speed-up factor and the number of hyperbox candidates considered during the

learning process over 10 iterations (5 times 2-fold cross-validation) for each dataset. The speed-up value is

computed by dividing the training time of the algorithm without using the lemma by the training time of the

19

algorithm using the lemma to accelerate the learning process. The training time of online learning algorithms

are shown in Table C.7 in the Appendix C.

Table 2: Speed-up factor and the number of hyperbox candidates considered during the training process of online learning

algorithms

Dataset

IOL-GFMM Onln-GFMM

Speed-up

factor
Number of hyperbox candidates

Speed-up

factor
Number of hyperbox candidates

w/o. lemma w. lemma w/o. lemma w. lemma

blance scale 5.7227 20880 0 5.3978 20880 0

banknote authentication 1.3016 5192.5 914 1.0563 5129 904

blood transfusion 1.2487 2154.5 392 1.0568 1542 320

breast cancer wisconsin 3.8746 14655 0 3.6556 14655 0

breast cancer coimbra 2.3571 768 2 1.9804 768 2

climate model crashes 6.2478 30634 0 6.0559 30634 0

connectionist bench

sonar
2.8302 2664.5 0 2.5664 2664.5 0

glass 1.3178 567 49.5 1.1009 567 49.5

haberman 1.3418 960.5 143.5 1.122 913.5 141.5

heart 3.5575 4479.5 1 3.1069 4479.5 1

ionosphere 2.7678 5705 46 1.6163 5705 46

movement libras 1.5575 676 24.5 1.0989 676 24.5

optical digit 4.5451 393452.5 0 3.0049 393452.5 0

page blocks 1.3019 21124.5 2928.5 1.0458 20825.5 2909.5

pendigits 4.2866 892103 3421.5 1.0656 892103 3421.5

pima diabetes 4.9452 26995.5 197.5 1.8977 26995.5 197.5

plant species leaves

margin
2.0362 2800 0 1.3029 2800 0

plant species leaves

texture
7.2026 309308 16 7.417 309308 16

ringnorm 12.7486 2986751.5 4108.5 3.0377 2986751.5 4108.5

seeds 1.7213 959.5 42.5 1.2 959.5 42.5

image segmentation 1.8082 26153 1052.5 1.0332 26153 1052.5

spambase 3.3182 329619.5 2815.5 1.2982 329619.5 2815.5

spectf heart 3.8481 5929.5 0 3.7564 5929.5 0

landsat satellite 2.76 349032.5 12759 1.0733 349029 12752

Average ratio with

over without lemma
3.526963 0.038444 2.372788 0.039792

It can be easily observed that the online learning algorithms using the proposed lemma are much faster

than ones without deploying the lemma. These figures can be explained based on the number of hyperboxes

considered during the training process. We can see that the use of lemma has significantly reduced the

unsuitable hyperbox candidates that the original versions have to verify. In several datasets, the number of

hyperbox candidates is zero in the case of using the proposed lemma because all existing hyperboxes cannot

be extended to cover the new input patterns. It means that the resulting models only contain hyperboxes

20

with one data point. In this case, the speed-up of learning process using the proposed lemma is obvious.

In general, the proposed method contributes to the acceleration of IOL-GFMM algorithm more sig-

nificantly than the Onln-GFMM. This is because the training time of IOL-GFMM is usually faster than

Onln-GFMM algorithm with the small value of θ (θ = 0.1 in this work) [12]. Therefore, when the num-

ber of candidates considered in the IOL-GFMM reduces, the overlap test operation between the extended

hyperbox and the existing hyperboxes is conducted much faster. Meanwhile, the original online learning algo-

rithm needs to check overlap and find the dimension to conduct the contraction for each pair of hyperboxes.

These operations occupy most of the computational expense of the Onln-GFMM algorithm, so the obtained

speed-up of Onln-GFMM is smaller than that of IOL-GFMM algorithm.

5.3. Experimental results of agglomerative learning algorithms

Table 3: Speed-up factor of the AGGLO-2 algorithm

Dataset Longest distance Shortest distance Mid-max distance Mid-min distance

blance scale 31.7626 31.9529 21.156 21.2067

banknote authentication 3.5408 2.6579 2.6302 2.7469

blood transfusion 4.3349 2.7389 2.7078 3.2302

breast cancer wisconsin 21.3396 21.1669 14.7005 14.5726

breast cancer coimbra 8.9 9.0253 6.0635 6.0397

climate model crashes 32.5457 32.2009 20.9304 20.89

connectionist bench sonar 12.1624 12.0424 7.829 7.699

glass 4.1902 3.6753 2.9623 3.1639

haberman 5.0756 3.5084 3.1492 3.7729

heart 17.5549 17.5233 11.4509 11.3709

ionosphere 14.5455 12.7882 8.9468 9.6922

movement libras 3.84 3.4975 2.8035 2.9697

optical digit 272.9711 259.0673 176.7774 183.3464

page blocks 5.5846 3.4114 3.5063 4.1349

pendigits 76.6387 59.2468 51.1295 57.0118

pima diabetes 35.3624 28.1336 21.2801 23.7888

plant species leaves margin 5.8103 5.725 4.1252 4.1257

plant species leaves texture 59.9784 60.189 37.6131 37.3868

ringnorm 154.348 110.4401 89.7151 100.4713

seeds 6.2366 5.2175 4.1833 4.6059

image segmentation 13.6811 9.7371 8.6332 10.1224

spambase 52.2312 29.2803 28.7548 34.9655

spectf heart 20.6977 20.6945 13.2112 13.239

landsat satellite 46.4068 16.1142 20.3232 32.471

Average 37.9058 31.66811 23.52427 25.54268

This part reports the experimental results of agglomerative learning algorithms with and without using

the proposed lemma. Table 3 presents the speed-up factor of the AGGLO-2 algorithm with the use of the

proposed lemma compared to one without using the lemma for four similarity measures. These values are

calculated from the average training time shown in Table C.8 in the Appendix C. Table 4 describes the

21

number of considered hyperbox candidates of the AGGLO-2 algorithm for each similarity measure. Table 5

shows the speed-up factors of the AGGLO-SM algorithm on the experimental datasets, which are computed

from their training time in Table C.9 in the Appendix C. The number of hyperbox candidates considered

during the training process of the AGGLO-SM algorithm with four similarity measures is presented in Table

6.

Table 4: The number of hyperboxes considered during the training process of the AGGLO-2 algorithm

Dataset
Longest distance Shortest distance Mid-max distance Mid-min distance

w/o. lemma w. lemma w/o. lemma w. lemma w/o. lemma w. lemma w/o. lemma w. lemma

blance scale 41760 0 41760 0 41760 0 41760 0

banknote

authentication
22340 552 22105.5 2896 22300 1675.5 22285.5 1046

blood transfusion 17806.5 447 14332 1952.5 14470.5 1256.5 17637.5 836.5

breast cancer

wisconsin
119974 106.5 119974 106.5 119974 106.5 119974 106.5

breast cancer

coimbra
3038.5 2 3038.5 2 3038.5 2 3038.5 2

climate model

crashes
61268 0 61268 0 61268 0 61268 0

connectionist bench

sonar
5329 0 5329 0 5329 0 5329 0

glass 3004 36.5 2954.5 120.5 2954 107.5 3005 60.5

haberman 5912.5 93.5 4913.5 398.5 4905.5 275.5 5746.5 142.5

heart 13311.5 1 13311.5 1 13311.5 1 13311.5 1

ionosphere 33598 27 26748 167.5 26747.5 134.5 33599 36

movement libras 3897 34.5 3127.5 55 3127.5 54 3897 36

optical digit 786905 0 786905 0 786905 0 786905 0

page blocks 235607 2522 164723.5 15074.5 194023 8211.5 231764.5 5870

pendigits 5080436 1276 5077333 19843 5077333 11493.5 5080439 2128.5

pima diabetes 128175.5 61.5 100825.5 576.5 100825.5 372.5 128175.5 84

plant species leaves

margin
5600 0 5600 0 5600 0 5600 0

plant species leaves

texture
1232425 12.5 1232425 32.5 1232425 32.5 1232425 12.5

ringnorm 11629867 250 11631487 29762.5 11631487 14020.5 11629867 311

seeds 3333 28.5 3289.5 120 3289.5 95 3333 34.5

image segmentation 181993 570 157079.5 4098.5 157231 2709 181772 1173

spambase 3707848 1150 3340482 51622.5 3345250 21569.5 3707269 4208.5

spectf heart 11859 0 11859 0 11859 0 11859 0

landsat satellite 2021658 1187.5 1956507 81882.5 1956399 39069 2438703 11493

Average ratio

with over without

lemma

0.004713 0.026592 0.016686 0.008346

In general, the use of the proposed lemma makes the agglomerative learning algorithm much faster because

the number of candidates for the hyperbox aggregation process is considerably reduced. Among two versions

22

of the batch learning algorithms, the influence of the proposed lemma on the performance of the AGGLO-2 is

more significant compared to the AGGLO-SM. It is due to the fact that the number of hyperbox candidates

for the aggregation process in the original AGGLO-2 is higher than the AGGLO-SM algorithm. For several

datasets in the AGGLO-2 algorithm such as optical digit, pendigits, rignorm, and spambase, the use of the

proposed lemma accelerates the training process from 50 to nearly 280 times compared to the original version.

Although the AGGLO-SM algorithm cannot obtain such speed-up, the training time also reduces considerably

when using the proposed lemma. These results confirm that our proposed method is efficient for all learning

algorithms of the GFMM neural network.

Table 5: Speed-up factor of the AGGLO-SM algorithm

Dataset Longest distance Shortest distance Mid-max distance Mid-min distance

blance scale 17.9903 17.9709 17.8937 17.8841

banknote authentication 1.1323 1.1549 1.1503 1.1634

blood transfusion 1.1521 1.1381 1.1133 1.1198

breast cancer wisconsin 3.0204 3.0734 2.9323 3.0311

breast cancer coimbra 2.6782 2.6897 2.6782 2.6782

climate model crashes 21.6677 21.4537 21.7 21.4056

connectionist bench sonar 7.4505 7.4286 7.4505 7.4615

glass 1.0887 1.0678 1.0637 1.0775

haberman 1.1469 1.1208 1.1308 1.1521

heart 1.7236 1.7073 1.6763 1.6911

ionosphere 1.2263 1.3166 1.2595 1.2782

movement libras 1.0842 1.0981 1.0841 1.0845

optical digit 86.5943 83.8357 75.9623 83.9551

page blocks 1.1686 1.1677 1.1389 1.1638

pendigits 3.3746 1.6839 1.591 3.0278

pima diabetes 1.5718 1.4924 1.519 1.5698

plant species leaves margin 3.6856 3.7029 3.6874 3.6836

plant species leaves texture 3.3463 3.3465 3.3581 3.3449

ringnorm 1.5222 1.4626 1.4874 1.5244

seeds 1.1595 1.1351 1.1399 1.1459

image segmentation 1.0589 1.0521 1.0545 1.0577

spambase 1.0672 1.0647 1.0658 1.0623

spectf heart 12.6057 12.6098 12.5547 12.5587

landsat satellite 1.2885 1.0914 1.0982 1.2314

Average 7.49185 7.286029 6.949579 7.348021

In the AGGLO-2 algorithm, among four similarity measures, the proposed lemma has the most impact

on the longest distance measure and the least influence on the mid-max distance-based similarity measure.

This is because the number of hyperbox candidates considered during the original training process using the

longest distance-based measure is highest, but after using the proposed method, the number of considered

candidates is smallest. Although the number of hyperbox candidates considered in the training process with

regard to the middle distance-based similarity measures using the proposed lemma is lower than that of the

23

Table 6: Number of hyperbox candidates considered during the training process of the AGGLO-SM algorithm

Dataset
Longest distance Shortest distance Mid-max distance Mid-min distance

w/o. lemma w. lemma w/o. lemma w. lemma w/o. lemma w. lemma w/o. lemma w. lemma

blance scale 18032 0 18032 0 18032 0 18032 0

banknote

authentication
5003 552.5 21709.5 18143.5 10925 6988.5 6546.5 2390.5

blood transfusion 2426 572 3940 2482.5 3078.5 1375 2754 947.5

breast cancer

wisconsin
12731.5 106.5 12731.5 106.5 12731.5 106.5 12731.5 106.5

breast cancer

coimbra
767.5 2 767.5 2 767.5 2 767.5 2

climate model

crashes
30631 0 30631 0 30631 0 30631 0

connectionist bench

sonar
2652.5 0 2652.5 0 2652.5 0 2652.5 0

glass 543.5 37 679 198.5 654.5 161.5 550 56.5

haberman 1018.5 95.5 1276 418.5 1200.5 285 1003.5 119

heart 419 1 419 1 419 1 419 1

ionosphere 4385.5 26.5 4522 219 4480.5 171.5 4403 47

movement libras 690 34.5 727.5 77 720.5 69.5 697 42

optical digit 268395.5 0 268395.5 0 268395.5 0 268395.5 0

page blocks 27414 3158.5 203481 188327.5 76313.5 59269.5 44376.5 20037

pendigits 801368 1266 825055.5 32153 809903 17248.5 801416.5 2085

pima diabetes 27268.5 60 30319.5 3535.5 29136.5 2133.5 27328.5 133

plant species leaves

margin
2792.5 0 2792.5 0 2792.5 0 2792.5 0

plant species leaves

texture
300635.5 12.5 301010 45.5 301010 45.5 300636.5 12.5

ringnorm 3000191 241 3952685 965343.5 3451147 456658 3002038 2119.5

seeds 946 29.5 1152 268.5 1080.5 183.5 948.5 33

image segmentation 25541 571.5 68281.5 44145.5 49774 25671 28740 4101

spambase 328946.5 1158 665797.5 356241.5 513685 198932 342728 18653.5

spectf heart 5916 0 5916 0 5916 0 5916 0

landsat satellite 384186.5 1179.5 1592177 1258323 1070981 745576 446447.5 66231

Average ratio

with over without

lemma

0.03153 0.241009 0.187135 0.077284

shortest distance-based measure, its speed-up factor on average is still lower compared to the value of the

shortest-based measure. This is due to the fact that the middle-based measures are asymmetrical values, so

for each pair of candidates Bi and Bk, the training step has to spend time computing both similarity values

sik and ski. The repetition of similarity computation increases the training time and reduces the speed-up

factor though there is a reduction in the number of considered candidates.

Similarly, the speed-up factor of the training process using the proposed lemma with regard to the longest

distance-based similarity measure in the AGGLO-SM is highest because the number of hyperbox candidates

24

after using the proposed lemma is much lower than those of other similarity measures. Hence, its training

time is fastest on average. The influence of the proposed lemma on the AGGLO-SM using mid-max distance

measure is still smallest among four similarity measures since its training process has to calculate the similarity

values for each pair of hyperboxes twice and the number of hyperbox candidates is relatively high after using

the proposed lemma. In contrast to the outcomes of the AGGLO-2, the impact of the proposed lemma on the

training time of the AGGLO-SM algorithm using the mid-min distance-based measure is ranked in the second

place as the number of candidates is much smaller than those of the shortest and mid-max distance-based

measures.

6. Conclusion

One of the drawbacks in the current learning algorithms of the general fuzzy min-max neural network is

the consideration of too many candidates in the expansion or aggregation process of hyperboxes. Therefore,

this paper presented and proved stricter lower bounds for online and agglomerative learning algorithms of

the GFMM neural network. The proposed method reduces significantly the unsuitable hyperbox candidates

considered during the learning process, espescially in the AGGLO-2 algorithm. Therefore, the training

operations are accelerated when applying our proposed solutions. Experimental results on many datasets

confirmed the effectiveness of our approach. In particular, the acceleration factors of the online learning

algorithms are from two to three on average, while the training time of the AGGLO-SM algorithm is reduced

about seven times on average. Especially, the speed-up factor in the AGGLO-2 algorithm using the proposed

lemma can achieve from 30 to 250 on several datasets when the number of unsuitable hyperbox candidates

is considerably reduced.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that

could have appeared to influence the work reported in this paper.

CRediT authorship contribution statement

Thanh Tung Khuat: Conceptualization, Methodology, Validation, Software, Writing - original draft.

Bogdan Gabrys: Conceptualization, Methodology, Writing - review & editing, Supervision, Project ad-

ministration.

25

Acknowledgement

Thanh Tung Khuat would like to thank the UTS-FEIT for awarding him Ph.D. scholarships. The authors

would like to thank all anonymous reviewers because of their valuable comments for the quality improvement

of this paper.

Appendix A. Proof of Lemma 1

This is a proof of Lemma 1.

Proof. We need to prove that if the membership degree bh(X) is below 1 − θ · γmax then the maximum

hyperbox size condition is not satisfied for at least one of the dimensions. First of all, we need prove that if

the membership value for the jth dimension bh(xj) < 1− θ ·γj , then the maximum hyperbox size condition is

not met for the jth dimension, i.e., wnewj −vnewj > θ. An assumption for this lemma is that all the dimensions

of the input hyperbox X = [X l, Xu] must satisfy the maximum hyperbox size condition xuj − xlj ≤ θ and

xuj , x
l
j ∈ [0, 1] ∀j ∈ [1, n]. For each jth dimension, there are six cases concerning the positions of the input

pattern X = [X l, Xu] and the hyperbox h = [V,W] as follows:

Case 1 : xlj ≤ vj ≤ xuj ≤ wj . The membership value along the jth dimension is:

bhj = bh(xj) = min([1− f(xuj − wj , γj)], [1− f(vj − xlj , γj)]) = 1−min((vj − xlj) · γj , 1)

We only consider (vj −xlj) · γj ≤ 1, because in case of (vj −xlj) · γj > 1⇒ bhj = 0 and 1 < (vj −xlj) · γj ≤

(xuj − xlj) · γj ≤ θ · γj , thus 1 − θ · γj < 0 ⇒ bhj = 0 > 1 − θ · γj . Therefore, if (vj − xlj) · γj > 1, the case

bhj < 1− θ · γj will never occur. For (vj − xlj) · γj ≤ 1, we have:

bhj = 1− (vj − xlj) · γj

If the hyperbox h is expanded, then:

vnewj = min(vj , x
l
j) = xlj ; wnewj = max(wj , x

u
j) = wj

We obtain:

bhj < 1− θ · γj ⇒ 1− (vj − xlj) · γj < 1− θ · γj ⇒ vj − xlj > θ (because of γj > 0)

⇒ wj − xlj > θ (because of wj ≥ vj)⇒ wnewj − vnewj > θ

Hence, if bhj < 1− θ · γj , then wnewj − vnewj > θ in this case.

Case 2 : vj ≤ xlj ≤ wj ≤ xuj . The membership value along the jth dimension is:

bhj = bh(xj) = min([1− f(xuj − wj , γj)], [1− f(vj − xlj , γj)]) = 1−min((xuj − wj) · γj , 1)

26

Similarly to case 1, we only consider (xuj − wj) · γj ≤ 1, thus we have:

bhj = 1− (xuj − wj) · γj

If the hyperbox h is expanded, then:

vnewj = min(vj , x
l
j) = vj ; wnewj = max(wj , x

u
j) = xuj

We have:

bhj < 1− θ · γj ⇒ 1− (xuj − wj) · γj < 1− θ · γj ⇒ xuj − wj > θ (because of γj > 0)

⇒ xuj − vj > θ (because of vj ≤ wj)⇒ wnewj − vnewj > θ

Hence, if bhj < 1− θ · γj , then wnewj − vnewj > θ in this case.

Case 3 : xlj ≤ vj ≤ wj ≤ xuj . The membership value along the jth dimension is:

bhj = bh(xj) = min([1− f(xuj − wj , γj)], [1− f(vj − xlj , γj)]) = min([1− (xuj − wj) · γj], [1− (vj − xlj) · γj])

According to the assumption of the lemma with regard to the input hyperbox, xuj − xlj ≤ θ, thus,

xuj −wj ≤ xuj −xlj ≤ θ and vj−xlj ≤ xuj −xlj ≤ θ. These lead to (xuj −wj) ·γj ≤ θ ·γj and (vj−xlj) ·γj ≤ θ ·γj
(because of γj > 0)⇒ 1− (xuj −wj) ·γj ≥ 1−θ ·γj and 1− (vj−xlj) ·γj ≥ 1−θ ·γj . Therefore, bhj ≥ 1−θ ·γj .

As a result, in this case, bhj < 1− θ · γj never happens.

Case 4 : vj ≤ xlj ≤ xuj ≤ wj , we have the membership value: bhj = 1 ≥ 1− θ · γj , and so bhj < 1− θ · γj
never occurs in this case.

Case 5 : vj ≤ wj ≤ xlj ≤ xuj . The membership value along the jth dimension is:

bhj = bh(xj) = min([1− f(xuj − wj , γj)], [1− f(vj − xlj , γj)]) = 1−min((xuj − wj) · γj , 1)

If the hyperbox h is expanded, then:

vnewj = min(vj , x
l
j) = vj ; wnewj = max(wj , x

u
j) = xuj

Case 5.1 : (xuj − wj) · γj > 1⇔ xuj − wj > 1/γj due to γj > 0. In addition, bhj = 0. We have:

bhj < 1− θ · γj ⇒ 0 < 1− θ · γj ⇒ θ · γj < 1⇒ θ < 1/γj < xuj − wj ≤ xuj − vj (due to vj ≤ wj and γj > 0)

⇒ θ < wnewj − vnewj

Hence, if bhj < 1− θ · γj , then wnewj − vnewj > θ in this case.

Case 5.2 : (xuj − wj) · γj ≤ 1, we have:

bhj = 1− (xuj − wj) · γj

27

and

bhj < 1− θ · γj ⇒ 1− (xuj − wj) · γj < 1− θ · γj ⇒ xuj − wj > θ (due to γj > 0)

⇒ xuj − vj > θ (because of vj ≤ wj)⇒ wnewj − vnewj > θ

As a result, if bhj < 1− θ · γj , then wnewj − vnewj > θ in this case as well.

Case 6 : xlj ≤ xuj ≤ vj ≤ wj . The membership value along the jth dimension is:

bhj = bh(xj) = min([1− f(xuj − wj , γj)], [1− f(vj − xlj , γj)]) = 1−min((vj − xlj) · γj , 1)

If the hyperbox h is expanded, then:

vnewj = min(vj , x
l
j) = xlj ; wnewj = max(wj , x

u
j) = wj

Case 6.1 : (vj − xlj) · γj > 1⇔ vj − xlj > 1/γj due to γj > 0. In addition, bhj = 0. We obtain:

bhj < 1− θ · γj ⇒ 0 < 1− θ · γj ⇒ θ · γj < 1⇒ θ < 1/γj < vj − xlj ≤ wj − xlj (due to vj ≤ wj and γj > 0)

⇒ θ < wnewj − vnewj

Hence, if bhj < 1− θ · γj , then wnewj − vnewj > θ in this case.

Case 6.2 : (vj − xlj) · γj ≤ 1, we obtain:

bhj = 1− (vj − xlj) · γj

and:

bhj < 1− θ · γj ⇒ 1− (vj − xlj) · γj < 1− θ · γj ⇒ vj − xlj > θ (due to γj > 0)

⇒ wj − xlj > θ (because of vj ≤ wj)⇒ wnewj − vnewj > θ

As a result, if bhj < 1− θ · γj , then wnewj − vnewj > θ in this case as well.

From the six above cases, we can see that for each dimension j if bhj < 1− θ · γj , then wnewj − vnewj > θ.

Given that the membership function for the input hyperbox X is bh(X) =
n

min
j=1

bhj and 0 ≤ θ ·γj ≤ θ ·
n

max
j=1

γj =

θ ·γmax ⇒ 1− θ ·γj ≥ 1− θ ·γmax. Therefore, if bhj < 1− θ ·γmax, then wnewj − vnewj > θ for every dimension

j. As a result, if bh(X) < 1 − θ · γmax, then the maximum hyperbox size condition is not satisfied for the

expanded hyperbox. The lemma is proved.

Appendix B. Proof of Lemma 2

This is a proof of Lemma 2.

28

Proof. An underlying assumption in this lemma is that all input hyperboxes and aggregatable hyperbox

candidates have sizes less than θ. If not, the aggregation process will not be possible. First of all, we need to

prove that if the similarity value sik = s(Bi, Bk) < 1− θ · γmax, then the maximum hyperbox size constraint

is not satisfied for at least one of the dimensions of the hyperbox aggregated from Bi and Bk. Therefore, we

will prove that if sjik < 1 − θ · γj for any dimension j ∈ [1, n], then the maximum hyperbox size condition

is not met for that jth dimension, i.e., wnewj − vnewj > θ. We see that the similarity measure using middle

distance between two hyperboxes is the same as the membership value between a hyperbox and an input

pattern. Therefore, the proof is the same as in the appendix A. Here, we only prove the above condition for

the longest and shortest distance measures.

Using the shortest distance based similarity measure

The shortest distance based similarity value for the jth dimension is computed as follows:

s̃jik = min[1− f(vkj − wij , γj), 1− f(vij − wkj , γj)]

For each jth dimension, there are six cases concerning the positions of the hyperbox Bi = [Vi,Wi] and

the hyperbox Bk = [Vk,Wk] as follows:

Case 1 : vij ≤ vkj ≤ wij ≤ wkj . The similarity value: s̃jik = 1 ≥ 1 − θ · γj (because of θ · γj > 0).

Therefore, s̃jik < 1− θ · γj will never happen in this case.

Case 2 : vkj ≤ vij ≤ wkj ≤ wij . The similarity value: s̃jik = 1 ≥ 1− θ · γj . Therefore, s̃jik < 1− θ · γj will

never happen in this case as well.

Case 3 : vkj ≤ wkj ≤ vij ≤ wij . The coordinate at the jth dimension of the hyperbox aggregated from

Bi and Bk is:

vnewj = min(vij , vkj) = vkj ; wnewj = max(wij , wkj) = wij

The similarity value: s̃jik = 1−min[1, (vij − wkj) · γj]

Case 3.1 : (vij − wkj) · γj > 1⇔ vij − wkj > 1/γj (because of γj > 0). In this case: s̃jik = 0. We have:

s̃jik < 1− θ · γj ⇒ 0 < 1− θ · γj ⇒ θ · γj < 1⇒ θ < 1/γj < vij − wkj ≤ wij − wkj ≤ wij − vkj

(due to vkj ≤ wkj , vij ≤ wij , γj > 0)⇒ θ < wnewj − vnewj

Therefore, if s̃jik < 1− θ · γj , then wnewj − vnewj > θ in this case.

Case 3.2 : (vij − wkj) · γj ≤ 1⇒ s̃jik = 1− (vij − wkj) · γj . We obtain:

s̃jik < 1− θ · γj ⇒ 1− (vij − wkj) · γj < 1− θ · γj ⇒ θ < vij − wkj (due to γj > 0)

⇒ θ < wij − wkj ≤ wij − vkj = wnewj − vnewj (because of vkj ≤ wkj ; vij ≤ wij)

Therefore, if s̃jik < 1− θ · γj , then wnewj − vnewj > θ in this case as well.

Case 4 : vij ≤ wij ≤ vkj ≤ wkj . This case is proved similarly to case 3.

29

Case 5 : vkj ≤ vij ≤ wij ≤ wkj . The similarity value: s̃jik = 1 ≥ 1− θ · γj . Therefore, s̃jik < 1− θ · γj will

never happen in this case.

Case 6 : vij ≤ vkj ≤ wkj ≤ wij . The similarity value: s̃jik = 1 ≥ 1 − θ · γj . Hence, s̃jik < 1 − θ · γj will

never happen in this case as well.

Using the longest distance based similarity measure

The longest distance based similarity value for the jth is calculated as follows:

ŝjik = min[1− f(wkj − vij , γj), 1− f(wij − vkj , γj)]

For each jth dimension, we also consider in turn six cases relevant to the positions of the hyperbox

Bi = [Vi,Wi] and the hyperbox Bk = [Vk,Wk] as follows:

Case 1 : vij ≤ vkj ≤ wij ≤ wkj . The coordinate at the jth dimension of the hyperbox aggregated from

Bi and Bk is:

vnewj = min(vij , vkj) = vij ; wnewj = max(wij , wkj) = wkj

The similarity value: ŝjik = min[1 − min((wkj − vij) · γj , 1), 1 − min((wij − vkj) · γj , 1)]. In this case, we

have wkj − vij ≥ wkj − vkj ≥ wij − vkj ⇒ min((wkj − vij) · γj , 1) ≥ min((wij − vkj) · γj , 1). Therefore,

ŝjik = 1−min((wkj − vij) · γj , 1)

Case 1.1 : (wkj − vij) · γj > 1⇔ wkj − vij > 1/γj (because of γj > 0). In this case: ŝjik = 0. We have:

ŝjik < 1− θ · γj ⇒ 0 < 1− θ · γj ⇒ θ < 1/γj (due to γj > 0)⇒ θ < wkj − vij = wnewj − vnewj

Therefore, if ŝjik < 1− θ · γj , then wnewj − vnewj > θ.

Case 1.2 : (wkj − vij) · γj ≤ 1⇒ ŝjik = 1− (wkj − vij) · γj . We have:

ŝjik < 1− θ · γj ⇒ 1− (wkj − vij) · γj < 1− θ · γj ⇒ θ < wkj − vij (due to γj > 0)⇒ θ < wnewj − vnewj

Therefore, if ŝjik < 1− θ · γj , then wnewj − vnewj > θ in this case.

Case 2 : vkj ≤ vij ≤ wkj ≤ wij . This case is proved similarity to case 1.

Case 3 : vkj ≤ wkj ≤ vij ≤ wij . The coordinate at the jth dimension of the hyperbox aggregated from

Bi and Bk is:

vnewj = min(vij , vkj) = vkj ; wnewj = max(wij , wkj) = wij

The similarity value: ŝjik = 1−min((wij − vkj) · γj , 1).

Case 3.1 : (wij − vkj) · γj > 1⇔ wij − vkj > 1/γj (because of γj > 0). In this case: ŝjik = 0. We have:

ŝjik < 1− θ · γj ⇒ 0 < 1− θ · γj ⇒ θ < 1/γj (due to γj > 0)⇒ θ < wij − vkj = wnewj − vnewj

Therefore, if ŝjik < 1− θ · γj , then wnewj − vnewj > θ in this case.

30

Case 3.2 : (wij − vkj) · γj ≤ 1⇒ ŝjik = 1− (wij − vkj) · γj . We obtain:

ŝjik < 1− θ · γj ⇒ 1− (wij − vkj) · γj < 1− θ · γj ⇒ θ < wij − vkj (due to γj > 0)⇒ θ < wnewj − vnewj

Therefore, if ŝjik < 1− θ · γj , then wnewj − vnewj > θ in this case.

Case 4 : vij ≤ wij ≤ vkj ≤ wkj . This case is proved similarly to case 3.

Case 5 : vkj ≤ vij ≤ wij ≤ wkj . The coordinate at the jth dimension of the hyperbox aggregated from

Bi and Bk is:

vnewj = min(vij , vkj) = vkj ; wnewj = max(wij , wkj) = wkj

The similarity value: ŝjik = min[1−min((wkj − vij) · γj , 1), 1−min((wij − vkj) · γj , 1)].

According to the assumption of the lemma the sizes of the input hyperboxes for the aggregation process

must be below θ along each of their n dimensions. Therefore, in this case:

wkj − vkj ≤ θ ⇒ 0 ≤ wkj − vij ≤ θ and 0 ≤ wij − vkj ≤ θ (because of vkj ≤ vij and wij ≤ wkj)

⇒ (wkj − vij) · γj ≤ θ · γj and (wij − vkj) · γj ≤ θ · γj (because of γj > 0)

⇒ min((wkj − vij) · γj , 1) ≤ min(θ · γj , 1) and min((wij − vkj) · γj , 1) ≤ min(θ · γj , 1)

⇒ 1−min((wkj − vij) · γj , 1) ≥ 1−min(θ · γj , 1) and 1−min((wij − vkj) · γj , 1) ≥ 1−min(θ · γj , 1)

⇒ ŝjik ≥ 1−min(θ · γj , 1) ≥ 1− θ · γj

Therefore, the input hyperboxes size assumption always leads to ŝjik ≥ 1− θ · γj . As a result, ŝjik < 1− θ · γj
will never occur in this case.

Case 6 : vij ≤ vkj ≤ wkj ≤ wij . This case is proved similarly to case 5.

From the above proofs, we can see that if the similarity value sjik < 1−θ ·γj ; ∀j ∈ [1, n], then the hyperbox

aggregated from two hyperboxes Bi and Bk does not satisfy the maximum hyperbox size condition on the jth

dimension. We also have 0 ≤ θ ·γj ≤ θ ·γmax ⇒ 1−θ ·γj ≥ 1−θ ·γmax;∀j ∈ [1, n]. Therefore, if the similarity

score between two hyperboxes sik < 1− θ · γmax, then the maximum hyperbox size condition is not satisfied

for at least one of the dimensions of the aggregated hyperbox. In addition, in the agglomerative learning,

two hyperboxes Bi and Bk are aggregated if their similarity value sik ≥ σ, where σ is a given minimum

similarity threshold. From these two conditions, we only need to consider pairs of hyperboxes with similarity

values sik ≥ max(σ, 1− θ · γmax) when selecting hyperbox canditates for the aggregation process. Lemma 2

is proved.

Appendix C. Training time of algorithms

This appendix subsection shows the training time of online and agglomerative learning algorithms from the

experiments in this paper. Table C.7 shows the training time of the IOL-GFMM and original online learning

algorithms. Table C.8 presents the training time of the AGGLO-2 algorithm, while Table C.9 decribes the

learning time of the AGGLO-SM algorithm.

31

Table C.7: Training time of online learning algorithms

Dataset
IOL-GFMM Onln-GFMM

w/o. lemma w. lemma w/o. lemma w. lemma

blance scale 0.1465 0.0256 0.1479 0.0274

banknote authentication 0.0984 0.0756 0.471 0.4459

blood transfusion 0.0497 0.0398 0.1322 0.1251

breast cancer wisconsin 0.1205 0.0311 0.121 0.0331

breast cancer coimbra 0.0099 0.0042 0.0101 0.0051

climate model crashes 0.2093 0.0335 0.2168 0.0358

connectionist bench sonar 0.03 0.0106 0.029 0.0113

glass 0.0141 0.0107 0.0382 0.0347

haberman 0.0212 0.0158 0.0469 0.0418

heart 0.0402 0.0113 0.0407 0.0131

ionosphere 0.0584 0.0211 0.091 0.0563

movement libras 0.0271 0.0174 0.0578 0.0526

optical digit 4.9332 1.0854 3.7477 1.2472

page blocks 0.8802 0.6761 4.8526 4.64

pendigits 14.4605 3.3734 179.4647 168.4146

pima diabetes 0.406 0.0821 0.6995 0.3686

plant species leaves margin 0.2702 0.1327 0.1768 0.1357

plant species leaves texture 4.3093 0.5983 4.5103 0.6081

ringnorm 38.1094 2.9893 54.7914 18.037

seeds 0.0315 0.0183 0.0714 0.0595

image segmentation 0.7204 0.3984 10.2108 9.8831

spambase 5.567 1.6777 17.4908 13.4731

spectf heart 0.1039 0.027 0.1033 0.0275

landsat satellite 6.4317 2.3303 58.5758 54.5749

Average 3.210358 0.570238 14.00407 11.34798

References

[1] S. Abe. Dynamic fuzzy rule generation. In Pattern Classification: Neuro-fuzzy Methods and Their

Comparison, pages 177–196. Springer London, 2001.

[2] O.N. Al-Sayaydeh, M.F. Mohammed, E. Alhroob, H. Tao, and C.P. Lim. A refined fuzzy min-max neural

network with new learning procedures for pattern classification. IEEE Transactions on Fuzzy Systems,

Early Access, 2019.

[3] A. Bargiela, W. Pedrycz, and M. Tanaka. An inclusion/exclusion fuzzy hyperbox classifier. International

Journal of Knowledge-based and Intelligent Engineering Systems, 8(2):91–98, 2004.

[4] P.R.D. Castillo and J. Cardenosa. Fuzzy min-max neural networks for categorical data: application to

missing data imputation. Neural Computing and Applications, 21(6):1349–1362, 2012.

[5] R. Davtalab, M.H. Dezfoulian, and M. Mansoorizadeh. Multi-level fuzzy min-max neural network clas-

sifier. IEEE Transactions on Neural Networks and Learning Systems, 25(3):470–482, 2014.

32

Table C.8: Training time of the AGGLO-2 algorithm

Dataset
Longest distance Shortest distance Mid-max distance Mid-min distance

w/o. lemma w. lemma w/o. lemma w. lemma w/o. lemma w. lemma w/o. lemma w. lemma

blance scale 0.883 0.0278 0.8819 0.0276 0.8949 0.0423 0.8928 0.0421

banknote

authentication
0.6161 0.174 0.6153 0.2315 0.6686 0.2542 0.6675 0.243

blood

transfusion
0.4673 0.1078 0.3892 0.1421 0.417 0.154 0.4842 0.1499

breast cancer

wisconsin
2.74 0.1284 2.7136 0.1282 2.8078 0.191 2.7892 0.1914

breast cancer

coimbra
0.0712 0.008 0.0713 0.0079 0.0764 0.0126 0.0761 0.0126

climate model

crashes
1.4255 0.0438 1.4104 0.0438 1.4442 0.069 1.4435 0.0691

connectionist

bench sonar
0.1423 0.0117 0.1421 0.0118 0.1511 0.0193 0.1509 0.0196

glass 0.0859 0.0205 0.0849 0.0231 0.0942 0.0318 0.0946 0.0299

haberman 0.1477 0.0291 0.1249 0.0356 0.1351 0.0429 0.1562 0.0414

heart 0.3037 0.0173 0.3014 0.0172 0.3149 0.0275 0.3127 0.0275

ionosphere 0.832 0.0572 0.6701 0.0524 0.6898 0.0771 0.8597 0.0887

movement

libras
0.1728 0.045 0.142 0.0406 0.1612 0.0575 0.1963 0.0661

optical digit 323.1978 1.184 324.0414 1.2508 324.5103 1.8357 331.7654 1.8095

page blocks 14.5953 2.6135 10.8555 3.1821 13.2088 3.7672 15.3054 3.7015

pendigits 597.5753 7.7973 596.2356 10.0636 599.6309 11.7277 599.684 10.5186

pima diabetes 6.3228 0.1788 4.9712 0.1767 5.0455 0.2371 6.3992 0.269

plant species

leaves margin
0.6798 0.117 0.6807 0.1189 0.7446 0.1805 0.7451 0.1806

plant species

leaves texture
119.9449 1.9998 120.5406 2.0027 122.1148 3.2466 121.6378 3.2535

ringnorm 1350.8695 8.7521 1352.427 12.2458 1357.874 15.1354 1354.012 13.4766

seeds 0.174 0.0279 0.1727 0.0331 0.1849 0.0442 0.187 0.0406

image

segmentation
11.882 0.8685 10.3135 1.0592 10.6223 1.2304 12.1874 1.204

spambase 441.0555 8.4443 396.2303 13.5323 400.5978 13.9315 446.2259 12.7619

spectf heart 0.6437 0.0311 0.6436 0.0311 0.6632 0.0502 0.6646 0.0502

landsat satellite 255.4462 5.5045 242.8039 15.0677 243.0923 11.9613 307.8871 9.4819

Average 130.4281 1.591225 127.811 2.480242 128.5894 2.680292 133.5344 2.405383

[6] B. Gabrys. Agglomerative learning algorithms for general fuzzy min-max neural network. Journal of

VLSI signal processing systems for signal, image and video technology, 32(1):67–82, 2002.

[7] B. Gabrys. Combining neuro-fuzzy classifiers for improved generalisation and reliability. In Proceedings

of the 2002 International Joint Conference on Neural Networks, volume 3, pages 2410–2415, 2002.

[8] B. Gabrys and A. Bargiela. General fuzzy min-max neural network for clustering and classification.

IEEE Transactions on Neural Networks, 11(3):769–783, 2000.

33

Table C.9: Training time of the AGGLO-SM algorithm

Dataset
Longest distance Shortest distance Mid-max distance Mid-min distance

w/o. lemma w. lemma w/o. lemma w. lemma w/o. lemma w. lemma w/o. lemma w. lemma

blance scale 0.3724 0.0207 0.3702 0.0206 0.3704 0.0207 0.3702 0.0207

banknote

authentication
20.4138 18.0293 20.9532 18.1422 20.5455 17.8608 20.6175 17.722

blood

transfusion
0.5674 0.4925 0.8059 0.7081 0.7212 0.6478 0.6057 0.5409

breast cancer

wisconsin
0.3999 0.1324 0.4103 0.1335 0.3982 0.1358 0.3998 0.1319

breast cancer

coimbra
0.0233 0.0087 0.0234 0.0087 0.0233 0.0087 0.0233 0.0087

climate model

crashes
0.6912 0.0319 0.6951 0.0324 0.6944 0.032 0.6914 0.0323

connectionist

bench sonar
0.0678 0.0091 0.0676 0.0091 0.0678 0.0091 0.0679 0.0091

glass 0.1718 0.1578 0.1733 0.1623 0.1686 0.1585 0.1738 0.1613

haberman 0.1577 0.1375 0.1893 0.1689 0.1893 0.1674 0.1598 0.1387

heart 0.0212 0.0123 0.021 0.0123 0.0233 0.0139 0.0208 0.0123

ionosphere 0.4828 0.3937 0.5086 0.3863 0.4907 0.3896 0.4833 0.3781

movement

libras
0.2215 0.2043 0.225 0.2049 0.2218 0.2046 0.2208 0.2036

optical digit 105.8615 1.2225 103.9479 1.2399 98.2648 1.2936 104.8599 1.249

page blocks 494.1239 422.8161 1409.174 1206.817 1156.35 1015.346 511.3471 439.3924

pendigits 130.6623 38.7196 267.1413 158.6442 250.7539 157.6118 140.068 46.2601

pima diabetes 3.7218 2.3679 3.9888 2.6727 3.932 2.5885 3.7252 2.3731

plant species

leaves margin
0.3564 0.0967 0.3577 0.0966 0.3562 0.0966 0.3562 0.0967

plant species

leaves texture
40.4664 12.0927 40.5373 12.1132 40.6338 12.1003 40.4593 12.0958

ringnorm 1327.968 872.3743 1442.132 986.0059 1382.036 929.1679 1332.649 874.2278

seeds 0.3235 0.279 0.3286 0.2895 0.3259 0.2859 0.3197 0.279

image

segmentation
62.3063 58.843 72.7162 69.1137 71.0587 67.3851 63.6872 60.2109

spambase 1506.906 1412.081 1642.779 1543.002 1621.651 1521.519 1516.833 1427.837

spectf heart 0.3101 0.0246 0.3102 0.0246 0.3101 0.0247 0.3102 0.0247

landsat satellite 237.7967 184.5571 965.5685 884.7285 908.0397 826.8151 291.1204 236.4152

Average 163.9331 126.046 248.8927 203.5307 231.5678 189.7451 167.8987 129.9926

[9] Bogdan Gabrys. Learning hybrid neuro-fuzzy classifier models from data: to combine or not to combine?

Fuzzy Sets and Systems, 147(1):39–56, 2004.

[10] S. Ilager and P.S. Prasad. Scalable mapreduce-based fuzzy min-max neural network for pattern classifi-

cation. In Proceedings of the 18th International Conference on Distributed Computing and Networking,

pages 1–7. ACM, 2017.

[11] T. T. Khuat, F. Chen, and B. Gabrys. An effective multi-resolution hierarchical granular representation

34

based classifier using general fuzzy min-max neural network. IEEE Transactions on Fuzzy Systems,

Early Access, 2019.

[12] T.T. Khuat, F. Chen, and B. Gabrys. An improved online learning algorithm for general fuzzy min-max

neural network. arXiv e-prints, page arXiv:2001.02391, 2020.

[13] T.T. Khuat and B. Gabrys. Accelerated training algorithms of general fuzzy min-max neural network us-

ing gpu for very high dimensional data. In Proceeding of International Conference on Neural Information

Processing, pages 583–595, 2019.

[14] T.T. Khuat and B. Gabrys. A comparative study of general fuzzy min-max neural networks for pattern

classification problems. Neurocomputing, 386:110 – 125, 2020.

[15] T.T. Khuat, D. Ruta, and B. Gabrys. Hyperbox based machine learning algorithms: A comprehensive

survey. arXiv e-prints, page arXiv:1901.11303, 2019.

[16] M.F. Mohammed and C.P. Lim. An enhanced fuzzy min-max neural network for pattern classification.

IEEE Transactions on Neural Networks and Learning Systems, 26(3):417–429, 2015.

[17] M.F. Mohammed and C.P. Lim. Improving the fuzzy min-max neural network with a k-nearest hyperbox

expansion rule for pattern classification. Applied Soft Computing, 52:135–145, 2017.

[18] A.V. Nandedkar and P.K. Biswas. A fuzzy min-max neural network classifier with compensatory neuron

architecture. IEEE Transactions on Neural Networks, 18(1):42–54, 2007.

[19] A.V. Nandedkar and P.K. Biswas. A granular reflex fuzzy min-max neural network for classification.

IEEE Transactions on Neural Networks, 20(7):1117–1134, 2009.

[20] C. Rudin. Stop explaining black box machine learning models for high stakes decisions and use inter-

pretable models instead. Nature Machine Intelligence, 1:206–215, 2019.

[21] P.K. Simpson. Fuzzy min-max neural networks. i. classification. IEEE Transactions on Neural Networks,

3(5):776–786, 1992.

[22] P.K. Simpson. Fuzzy min-max neural networks - part 2: Clustering. IEEE Transactions on Fuzzy

Systems, 1(1):32, 1993.

[23] N. Upasani and H. Om. A modified neuro-fuzzy classifier and its parallel implementation on modern

gpus for real time intrusion detection. Applied Soft Computing, 82:105595, 2019.

[24] H. Zhang, J. Liu, D. Ma, and Z. Wang. Data-core-based fuzzy min-max neural network for pattern

classification. IEEE Transactions on Neural Networks, 22(12):2339–2352, 2011.

35

	1 Introduction
	2 Related work
	3 General fuzzy min-max neural network and learning algorithms
	3.1 An overall architecture
	3.2 Online learning algorithm
	3.3 Agglomerative learning algorithm
	3.4 An improved online learning algorithm

	4 Proposed method
	4.1 Accelerated online learning algorithms
	4.2 Accelerated agglomerative learning algorithms

	5 Experiments
	5.1 Experimental datasets and parameter settings
	5.2 Experimental results for online learning algorithms
	5.3 Experimental results of agglomerative learning algorithms

	6 Conclusion
	Appendix A Proof of Lemma 1
	Appendix B Proof of Lemma 2
	Appendix C Training time of algorithms

