
LUNAR: Cellular Automata for Drifting Data Streams

Jesus L. Loboa,∗, Javier Del Sera,b,c, Francisco Herrerad

aTECNALIA, Basque Research and Technology Alliance (BRTA), 48160 Derio-Bizkaia, Spain
bUniversity of the Basque Country UPV/EHU, 48013 Bilbao, Spain

cBasque Center for Applied Mathematics (BCAM), 48009 Bilbao, Spain
dAndalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of

Granada, 18071 Granada, Spain

Abstract

With the advent of huges volumes of data produced in the form of fast streams, real-
time machine learning has become a challenge of relevance emerging in a plethora of
real-world applications. Processing such fast streams often demands high memory and
processing resources. In addition, they can be affected by non-stationary phenomena
(concept drift), by which learning methods have to detect changes in the distribution
of streaming data, and adapt to these evolving conditions. A lack of efficient and scal-
able solutions is particularly noted in real-time scenarios where computing resources
are severely constrained, as it occurs in networks of small, numerous, interconnected
processing units (such as the so-called Smart Dust, Utility Fog, or Swarm Robotics
paradigms). In this work we propose LUNAR, a streamified version of cellular au-
tomata devised to successfully meet the aforementioned requirements. It is able to act
as a real incremental learner while adapting to drifting conditions. Extensive simula-
tions with synthetic and real data will provide evidence of its competitive behavior in
terms of classification performance when compared to long-established and successful
online learning methods.

Keywords: Cellular automata, real-time analytics, data streams, concept drift

1. Introduction

Real-Time Analytics (RTA), also referred to as stream learning, acquired special
relevance years ago with the advent of the Big Data era (Laney, 2001; Bifet, Gavaldà,
Holmes & Pfahringer, 2018), becoming one of its most widely acknowledged chal-
lenges. Data streams are the basis of the real-time analytics, composed by sequences of
items, each having a timestamp and thus a temporal order, and arriving one by one. Due
to the incoming sheer volume of data, real-time algorithms cannot explicitly access all

∗Corresponding author: jesus.lopez@tecnalia.com (Jesus L. Lobo). TECNALIA, E-700, 48160 De-
rio (Bizkaia), Spain. Tl: +34 946 430 50. Fax: +34 901 760 009.

Preprint submitted to Elsevier February 7, 2020

ar
X

iv
:2

00
2.

02
16

4v
1

 [
cs

.L
G

]
 6

 F
eb

 2
02

0

historical data because the storage capacity needed for this purpose becomes unman-
ageable. Indeed, data streams are fast and large (potentially, infinite), so information
must be extracted from them in real-time. Under these circumstances, the consumption
of limited resources (e.g. time and memory) often implies sacrificing performance for
efficiency of the learning technique in use. Moreover, data streams are often produced
by non-stationary phenomena, which imprint changes on the distribution of the data,
leading to the emergence of the so-called concept drift. Such a drift causes that pre-
dictive models trained over data flows become eventually obsolete, and do not adapt
suitably to new distributions. Therefore, these predictive models need to be adapted to
these changes as fast as possible while maintaining good performance scores (Gama,
Žliobaitė, Bifet, Pechenizkiy & Bouchachia, 2014).

For all these reasons, the research community has devoted intense efforts towards
the development of Online Learning Methods (OLMs) capable of efficiently undertak-
ing predictive tasks over data streams under minimum time and memory requirements
(Widmer & Kubat, 1996; Ditzler, Roveri, Alippi & Polikar, 2015; Webb, Hyde, Cao,
Nguyen & Petitjean, 2016; Lu, Liu, Dong, Gu, Gama & Zhang, 2018; Losing, Hammer
& Wersing, 2018; Lobo, Del Ser, Bifet & Kasabov, 2020). The need for overcom-
ing these setbacks stems from many real applications, such as sensor data, telecom-
munications, social media, marketing, health care, epidemics, disasters, computer se-
curity, electricity demand prediction, among many others (Žliobaitė, Pechenizkiy &
Gama, 2016). The Internet of Things (IoT) paradigm deserves special attention at this
point (Manyika, Chui, Bisson, Woetzel, Dobbs, Bughin & Aharon, 2015; De Fran-
cisci Morales, Bifet, Khan, Gama & Fan, 2016), where a huge quantity of data is
continuously generated in real-time by sensors and actuators connected by networks
to computing systems. Many of these OLMs are based on traditional learning meth-
ods (i.e. Naive Bayes, Support Vector Machines, Decision Trees, Gaussian methods,
or Neural Networks (Bifet, Gavaldà, Holmes & Pfahringer, 2018)), which have been
streamified to make them work incrementally and fast. By contrast, other models are al-
ready suitable for mining data streams by design (Cervantes, Gagné, Isasi & Parizeau,
2018). Unfortunately, most existing RtML models show a high complexity and de-
pendence on the value of their parameters, thereby requiring a costly tuning process
(Losing, Hammer & Wersing, 2018). In addition, some of them are neither tractable
nor interpretable, which are features lately targeted with particularly interest under the
eXplainable Artificial Intelligence (XAI) paradigm (Barredo Arrieta, Dı́az-Rodrguez,
Del Ser, Bennetot, Tabik, Barbado, Garcı́a, Gil-López, Molina, Benjamins, Chatila &
Herrera, 2019). Nowadays, learning algorithms featuring these characteristics are still
under active search, calling for new approaches that blow a fresh breeze of novelty
over the field (Gama, Žliobaitė, Bifet, Pechenizkiy & Bouchachia, 2014; Khamassi,
Sayed-Mouchaweh, Hammami & Ghédira, 2018).

Cellular Automata (CA) become fashionable with the Conway’s Game of Life in
1970, but scientifically relevant after the Stephen Wolfram’s study in 2002 (Wolfram,
2002). Despite they are not widely used in data mining tasks, the Fawcett’s work
(Fawcett, 2008) showed how they can turn into a simple and low-bias data mining

2

method, robust to noise, and with competitive classification performances in many
cases. Until now, their appearance on the RTA has been timid, without providing evi-
dences of their capacity for incremental learning and drift adaptation.

This work enters this research avenue by proposing the use of Cellular Automata for
RTA. Our approach, hereafter coined as celluLar aUtomata for driftiNg dAta stReams
(LUNAR), capitalizes on the acknowledged capacity of CA to model complex systems
from simple structures. We show the intersection of CA and RTA in the presence of
concept drift, showing that CA are promising incremental learners capable of adapting
to evolving environments. Specifically, we provide a method to transform a traditional
CA into its streamified version (sCA) so as to learn incrementally from data streams.
We show that LUNAR performs competitively with respect to other online learners on
several real-world datasets. More precisely, we will provide informed answers to the
following research questions:

• RQ1: Does sCA act as a real incremental learner?

• RQ2: Can sCA efficiently adapt to evolving conditions?

• RQ3: Does our LUNAR algorithm perform competitively with respect to other con-
solidated RTA approaches reported in the literature?

The rest of the manuscript is organized as follows: first, Section 2 provides a general
introduction to CA, placing an emphasis on their historical role in the pattern recogni-
tion field, and concretely their relevance for stream learning. Next, Section 3 delves
into the methods and the LUNAR approach proposed in this work. Section 4 introduces
the experimental setup, whereas Section 5 presents and discusses the obtained results
from such experiments. Finally, Section 6 draws conclusions and future research lines
related to this work.

2. Related Work

Before going into the technical details of the proposed approach, we herein provide
a historical overview of CA (Subsection 2.1), along with a perspective on how these
models have been progressively adopted for pattern recognition (Subsection 2.3) and,
more lately, stream learning (Subsection 2.4).

2.1. The Limelight Shone Down on Cellular Automata
The journey of CA was initiated by John von Neumann (Neumann, Burks et al.,

1966) and Ulam for the modeling of biological self-reproduction. They became really
fashionable due to the popularity of Conway’s Game of Life introduced by Gardner
(Games, 1970) in the field of artificial life (Langton, 1986). Arguably, the most scien-
tifically significant and elaborated work on the study of CA arrived in 2002 with the
thoughtful studies of Stephen Wolfram (Wolfram, 2002). In recent years, the notion
of complex systems proved to be a very useful concept to define, describe, and study

3

various natural phenomena observed in a vast number of scientific disciplines. De-
spite their simplicity, they are able to describe and reproduce many complex phenom-
ena (Wolfram, 1984) that are closely related to processes such as self-organization and
emergence, often observed within several scientific disciplines: biology, chemistry and
physics, image processing and generation, cryptography, new computing hardware and
algorithms designs (i.e., automata networks (Goles & Martı́nez, 2013) or deconvolution
algorithms (Zenil, Kiani, Zea & Tegnér, 2019)), among many others (Ganguly, Sikdar,
Deutsch, Canright & Chaudhuri, 2003; Bhattacharjee, Naskar, Roy & Das, 2016). CA
have also been satisfactorily implemented for heuristics (Nebro, Durillo, Luna, Dor-
ronsoro & Alba, 2009) and job scheduling (Xhafa, Alba, Dorronsoro, Duran & Abra-
ham, 2008). Besides, the capability to perform universal computation (Cook, 2004)
has been one of the most celebrated features of CA that has garnered the attention of
the research community: an arbitrary Turing machine can be simulated by a cellular
automaton, so universal computation is possible (Wolfram, 2002).

Considering their parallel nature (which allows special-purposed hardware to be
implemented), CA are also called to be a breakthrough in paradigms such as Smart
Dust (Warneke, Last, Liebowitz & Pister, 2001; Ilyas & Mahgoub, 2018), Utility Fog
(Hall, 1996; Dastjerdi & Buyya, 2016), Microelectromechanical Systems (MEMS or
“motes”) (Judy, 2001), or Swarm Intelligence and Robotics (Ramos & Abraham, 2003;
Del Ser, Osaba, Molina, Yang, Salcedo-Sanz, Camacho, Das, Suganthan, Coello &
Herrera, 2019), due to their capability to be computationally complete. Microscopic
sensors are set to revolutionize a range of sectors, such as space missions (Niccolai,
Bassetto, Quarta & Mengali, 2019). The sensing, control, and learning algorithms
that need to be embarked in such miniaturized devices can currently only be run on
relatively heavy hardware, and need to be refined. However, nature has shown us that
this is possible in the brains of insects with only a few hundred neurons. CA can
also be decisive in other paradigms such as Nanotechnology, Ubiquitous Computing
(López-de Ipiña, Chen, Mitton & Pan, 2017), and Quantum Computation (introduced
by Feynman (Feynman, 1986)), particularly the Quantum CA (Lent, Tougaw, Porod &
Bernstein, 1993; Watrous, 1995; Adamatzky, 2018). Due to the miniaturization hurdles
of these devices, CA for stream learning may become of interest when there is no
enough capacity to store huges volumes of data, and the computational capacity is very
limited. After all, it is therefore not surprising that CA have received particular attention
since the early days of CA investigation, and that CA for stream learning allows us to
move in the correct direction in these scenarios, which are not far off the near future
(Jafferis, Helbling, Karpelson & Wood, 2019).

2.2. Foundations of Cellular Automata
CA are usually described as discrete dynamical systems which present a universal

computability capacity (Wolfram, 2018). Their beauty lies in its simple local interac-
tion and computation of cells, which results in a huge complex behavior when these
cells act together.

We can find four mutually interdependent parts in CA: i) the lattice, ii) its states,

4

iii) the neighborhood, and iv) the local rules. A lattice is created by a grid of elements
(cells), which can be composed in one, two or higher dimensional space, but typically
composed of uniform squared cells in two dimensions. CA contain a finite set of dis-
crete states, whose number and range are dictated by the phenomenon under study.
We find the simplest CA built using only one Boolean state in one dimension. The
neighborhood, which is used to evaluate a local rule, is defined by a set of neighbor-
ing (adjacent) cells. A neighboring cell is any cell within a certain radius of the cell
in question. Additionally, it is important to specify whether the radius R applies only
along the axes of the cell space (von Neumann neighborhood), or if it can be applied
diagonally (Moore neighborhood). In two dimensions, the R = 1 von Neumann neigh-
borhood or the R = 1 Moore neighborhood are often selected (see Figure 1a). Finally,
a local rule defines the evolution of each CA; it is usually realized by taking all states
from all cells within the neighborhood, and by evaluating a set of logical or arithmeti-
cal operations written in the form of an algorithm (see Figure 1b). We can formally
define a cellular automaton as follows, by adopting the notation used in (Kari, 2005):
A ≐ (d,S, f⊞, fÿ), where d represents the dimension, S a finite set of discrete states,
f⊞(⋅) is a function that given a cell’s coordinates at its input, returns the neighbors of
the cell to be used in the update rule, and fÿ(⋅) is a function that updates the state of
the cell at hand as per the states of its neighboring cells. Therefore, in the case of a
radius R = 1 von Neumann neighborhood defined over a d = 2-dimensional lattice, the
set of neighboring cells and state of cell with coordinates c = [i, j] is given by:

f⊞([i, j]) = {[i, j + 1], [i − 1, j], [i, j − 1], [i + 1, j]}, (1)
S(c) = S([i, j]) = fÿ(S([i, j + 1]), S([i − 1, j]), S([i, j − 1]), S([i + 1, j])), (2)

i.e., the states vector S([i, j]) of the [i, j] cell within the lattice is updated according
to the local rule fÿ(⋅) applied over its neighbors given by f⊞([i, j]). In general, in a
d-dimensional space, a cell’s von Neumann neighborhood will contain 2d cells, and a
Moore neighborhood will contain 3d − 1 cells. With this in mind, a cellular automaton
should exhibit three properties to be treated as such: i) parallelism or synchronicity (all
of the updates to the cells compounding the lattice are done at once); ii) locality (when
a cell [i, j] is updated, its state S[i, j]) is based on the previous state of the cell and
those of its nearest neighbors; and iii) homogeneity or properties-uniformity (the same
update rule fÿ(⋅) is applied to each cell). The use of CA for pattern recognition is not
straightforward. Some modifications and considerations should be performed before
using CA for pattern recognition, since we need to map a dataset to a cell space:

• Grid of cells (lattice): despite being a natural fit to two-dimensional problems, CA
must be extended to multiple dimensions to accommodate general pattern recognition
tasks encompassing more dimensions. For n features, an approach adopted in the
related literature is to assign one grid dimension to each feature of the dataset. Once
dimensions of the grid have been set, we need to partition each grid dimension by
the feature’s values, obtaining an equal number of cells per dimension. To do that,
evenly spaced values based on the maximum and minimum feature values (with an

5

R

1

2

(a)

? ?

(b)

(c)

2
x
5

2
x
1
0

2
x
2
0

(d)

Figure 1: Visual representation of CA for pattern recognition: (a) the von Neumann’s (left) and Moore’s
(right) neighborhoods with radius R = 1; (b) the center cell examines its von Neumann’s (left) and
Moore’s (right) neighborhoods and applies the local rule (majority vote) in a one-step update; (c) a two-
dimensional dataset with instances Xt = (X1

t ,X
2
t) falling between [2,6] (min/max X1

t) and [−2,−4]
(min/max X2

t), and a grid divided into G = 2 bins; (d) von Neumann’s automata (R = 1, d ×G) ability
to learn the data distribution from a few instances, and running up to 7 iterations of the initialization step
(generations).

6

additional margin (marg) to ensure a minimal separation among feature’s values) are
used to create “bins” for each dimension of the data (see Figure 1c), which ultimately
yield the cells of the lattice.

• States: a finite number of discrete states ∣S ∣ are defined, corresponding to the number
of classes considered in the task.

• Local rule: in pattern recognition tasks the update rule f(⋅) can be set to very assorted
forms, being the most straightforward a majority voting among the states (labels) of
its neighbors, i.e. for d = 2,

S([i, j])= argmax
s∈S

∑
[k,l]∈f⊞([i,j])

I(S([k, l]) = s), (3)

where f⊞([i, j]) returns the coordinates of neighboring cells of [i, j], and I(⋅) is
an auxiliary function taking value 1 if its argument is true (and 0 otherwise). Any
other update rule can be defined to spread the state activation of each cell over its
neighborhood (see Figure 1b).

• Neighborhood: it is necessary to specify a neighborhood and its radius. Although
there are more types of local rules, “von Neumann” or “Moore” neighborhoods are
often used (Figure 1a).

• Initialization: the grid is seeded depending on the feature values of the instances of
the training dataset. Specifically, the state of each cell is assigned the label corre-
sponding to the majority of training data instance with feature values falling within
the range covered by the cell. As a result, cells will organize themselves into regions
of similar labels (Figure 1d).

• Generations: after the initialization step, some cells can remain unassigned. Then,
it is necessary to run the CA (generations) until no cells are left empty, and then
continuing until either no changes are made or a fixed threshold is exceeded. Along
this process, each cell computes its new state by applying the update rule over the
cells in its immediate neighborhood. Each cell follows the same update rule, and all
cells are updated simultaneously and synchronously. A critical characteristic of CA is
that the update rule examines only its neighboring cells, so the processing is entirely
local. No global or macro grid characteristics are computed whatsoever (Figure 1d).

2.3. Cellular Automata in Pattern Recognition
Despite the early findings presented in (Jen, 1986; Raghavan, 1993; Chaudhuri,

Chowdhury, Nandi & Chattopadhyay, 1997), CA are not commonly used for pattern
recognition. An exception is the work in (Fawcett, 2008), where CA were used as a
form of instance-based classifiers for pattern recognition. These kinds of classifiers are
well known by the pattern recognition community in the form of instance-based learn-
ing and nearest neighbors classifiers (Aha, Kibler & Albert, 1991; Duda, Hart & Stork,

7

2012). They represent regions of the instance space, so when a new instance needs to be
classified, they select one or more close neighbors in these regions, and use their labels
to assign a label to the new instance. Nevertheless, these are distinguished from CA
in that they are not strictly local: there is no fixed neighborhood, hence an instance’s
nearest neighbor may change. In CA, by contrast, there is a fixed neighborhood, and
the local interaction between cells influences the evolution and behavior of each cell.
Fawcett, on the basis of Ultsch’s work (Ultsch, 2002), put CA in value for the pattern
recognition community by introducing them as a low-bias data mining method, simple
but powerful for attaining massively fine-grained parallelism, non-parametric, with an
effective and competitive classification performance in many cases (similar to that pro-
duced by other complex data mining models), and robust to noise. Besides, they were
found to perform well with relatively scarce data. All this prior evidence makes CA
suited for pattern recognition tasks.

Finally, it is worth highlighting the ability of CA to extract patterns from informa-
tion and the possibility of generating tractable models, and being simple methods at the
same time. This ability has encouraged the community to use them as a machine learn-
ing technique. Concretely, their traceability and reversibility (Kari, 2018) are renowned
drivers for their adoption in contexts where model explainability is sought (Ribeiro,
Singh & Guestrin, 2016; Gunning, 2017; Barredo Arrieta, Dı́az-Rodrguez, Del Ser,
Bennetot, Tabik, Barbado, Garcı́a, Gil-López, Molina, Benjamins, Chatila & Herrera,
2019).

2.4. Cellular Automata for Stream Learning
In a real-time data mining process (stream learning), data streams are read and pro-

cessed once per arriving sample (instance). Algorithms learning from such streams
(stream learners) must operate under a set of constrained conditions (Domingos & Hul-
ten, 2003):

• Each instance can be processed only once.

• The processing time of each instance must be low.

• Memory must be low as well, which implies that only a few instances of the stream
should be explicitly stored.

• The algorithm must be prepared for providing an answer (i.e. a prediction) at any
time of the process.

• Data streams evolve along time, which is an aspect that should be mandatorily con-
sidered.

In mathematical terms, a stream learning process evolving over time can be for-
mally defined as follows: given a time period [0, t], we denote the historical set of
instances as D0,t = d0, . . . ,dt, where di = (Xi, yi) is a data instance, Xi is the fea-
ture vector and yi its label. We assume that D0,t follows a certain joint probability

8

distribution Pt(X, y). Such data streams are usually affected by non-stationary events
(drifts) that eventually change their distribution (concept drift), making predictive mod-
els trained over these data obsolete. Bearing the previous notation in mind, concept
drift at timestamp t + 1 occurs if Pt(X, y) ≠ Pt+1(X, y), i.e. as a change of the joint
probability distribution of X and y at time t.

Since in stream learning we cannot explicitly store all past data to detect or quantify
this change, concept drift detection and adaptation are acknowledged challenges for
real-time processing algorithms (Lu, Liu, Dong, Gu, Gama & Zhang, 2018). Two
strategies are usually followed to deal with concept drift:

• Passive, by which the model is continuously updated every time new data instances
are received, ensuring a sufficient level of diversity in its captured knowledge to ac-
commodate changes in their distribution; and

• Active, in which the model gets updated only when a drift is detected.

Both strategies can be successful in practice, however, the reason for choosing one
strategy over the other is typically specific to the application. In general, a passive
strategy has shown to be quite effective in prediction settings with gradual drifts and
recurring concepts, while an active strategy works quite well in settings where the
drift is abrupt. Besides, a passive strategy is generally better suited for batch learn-
ing, whereas an active strategy has been shown to work well in online settings (Gama,
Medas, Castillo & Rodrigues, 2004; Bifet & Gavalda, 2007; Alippi, Boracchi & Roveri,
2013). In this work we have adopted an active strategy due to the fact that stream learn-
ing acts in an online manner.

Stream learning under non-stationary conditions is a field plenty of new challenges
that require more attention due to its impact on the reliability of real-world applica-
tions. CA may provide a revolutionary view on RTA. Unfortunately, as shown later in
Section 2.2, the original form of CA for pattern recognition does not allow for stream
processing. A few timid attempts at incorporating CA concepts to RTA have been re-
ported in the past. In (Hashemi, Yang, Pourkashani & Kangavari, 2007; Pourkashani
& Kangavari, 2008) a cellular automaton-based approach was used as a real-time in-
stance selector for stream learning. The classification task is carried out in batch mode
by other non-CA-based learning algorithms. This is an essential difference with re-
spect to the LUNAR approach proposed in this work, as the CA approach in (Hashemi,
Yang, Pourkashani & Kangavari, 2007; Pourkashani & Kangavari, 2008) is not used
for the learning task itself, but rather as a complement to the learning algorithm under
use. Besides, they do not answer the relevant research questions posed in Section 1,
which should be the basis for the use of CA in stream learning. The developed LUNAR
algorithm is a streamified learning version of CA. It transforms CA into real incre-
mental learners that incorporate an embedded mechanism for drift adaptation. In what
follows we address the posed research questions by providing rationale on the design
of LUNAR, and discussing on a set of experiments specifically devoted to inform our
answers.

9

3. Proposed Approach: LUNAR

As it has been previously mentioned, LUNAR relies on the usage of CA for RTA. In
this section we first introduce the modifications to streamify a CA pattern recognition
approach (Subsection 3.1). Secondly, LUNAR is deeply detailed, grounded on the
previously introduced material (Subsection 3.2).

3.1. Adapting Cellular Automata for Incremental Learning
The CA approach designed for pattern recognition can be adapted to cope with the

constraints imposed by incremental learning. We present the details of this adaptation,
which we coin as streamified Cellular Automaton (sCA), in Algorithm 1 (Streamified
Cellular Automaton (sCA)):

• First, the sCA is created after setting the value of its parameters as per the dataset at
hand (lines 1 to 5).

• Then, a set of P preparatory data are used to initialize the grid off-line by assigning
the states of the corresponding cells according to the instances’ values (lines 6 to 11).

• After this preliminary process, it is important to note that several preparatory data
instances might collide into the same cell, thereby yielding several state occurrences
for that specific cell. Since each cell must possess only one state for prediction pur-
poses, lines 12 to 16 aim at removing this multiplicity of states by assigning each cell
the state that occurs most among the preparatory data instances that fell within its
boundaries.

• Similarly, we must ensure that all cells have a state assigned, i.e. no empty grid cell
status must be guaranteed. To this end, lines 17 to 23 apply the local rule fÿ(⋅) over
the neighbors of every cell, repeating the process (generations) until every cell has
been assigned a state.

• This procedure can again render several different states for a given cell, so the previ-
ously explained majority state assignment procedure is again enforced over all cells
of the grid (lines 24 to 28).

Once this preparatory process is finished, the sCA is ready for the test-then-train (Gama,
Žliobaitė, Bifet, Pechenizkiy & Bouchachia, 2014) process with the rest of the instances
(lines 29 to 34). In this process, the sCA first predicts the label of the arriving instance
(testing phase), and updates the limits to reconfigure the bins (training phase). By this
way, the sCA always represents the currently prevailing distribution of the streaming
data at its input. After that, the sCA updates the current state of the cell enclosing the
instance with the true label of the incoming instance. As a result, the cells of sCA
always have an updated state according to the streaming data distribution.

The details of the proposed LUNAR algorithm underline the main differences be-
tween the CA version for pattern recognition and sCA. We highlight here the most
relevant ones:

10

Algorithm 1: Streamified Cellular Automaton (sCA)
Input : Preparatory data instances [(Xt, yt)]t=P−1t=0 ; training/testing data for the

rest of the stream [(Xt, yt)]∞t=P ; the grid size G (bins per dimension); a
local update rule fÿ(⋅); a neighborhood function f⊞(c) for cell with
coordinates c ∈ G = {1, . . . ,G}d as its argument; a radius R for the
neighborhood operator

Output: Trained streamified CA (sCA), producing predictions ŷt ∀t ∈ [P,∞)
1 Let the number of dimensions d of the grid be the number of features in Xt

2 Let the number of cell states ∣S ∣ be the number of classes (alphabet of yt)
3 Set an empty vector of state hits per every cell: hc = [] ∀c ∈ G
4 Initialize the limits of the grid: [(limlow

n , limhigh
n)]dn=1

5 Create the sCA grid as per G, n and [(limlow
n , limhigh

n)]dn=1
6 for t = 0 to P − 1 do // Preparatory process
7 Update limits as per Xt, e.g., limlow

n =min{limlow
n , xnt }

8 Reconfigure grid bins as per G and the updated [(limlow
n , limhigh

n)]dn=1
9 Select the cell c in the grid that encloses Xt

10 Append yt to the vector of state hits in the cell, e.g. hc′ = [hc′ , yt]
11 end
12 for c ∈ G do // Guaranteeing one state per cell
13 if ∣hc∣ > 1 then // More than 1 state hit in cell
14 S(c) = argmaxs∈S∑

∣hc∣
i=1 I(hic = s)

15 end
16 end
17 while ∃c ∈ G ∶ hc = [] do // Ensuring a hit in all cells
18 for c ∈ G do
19 Compute the neighboring cells of c as per f⊞(c) and R
20 Compute state s′ by applying rule fÿ(⋅) over the neighboring cells
21 Append s′ to hc, i.e., hc = [hc, s′]
22 end
23 end
24 for c ∈ G do // Guaranteeing one state per cell
25 if ∣hc∣ > 1 then // More than 1 state hit in cell
26 S(c) = argmaxs∈S∑

∣hc∣
i=1 I(hic = s)

27 end
28 end
29 for t = P to ∞ do // Stream learning
30 Predict ŷt as S(c), with c denoting the coordinates of the cell enclosing Xt

31 Update limits as per Xt, e.g., limlow
n =min{limlow

n , xnt }
32 Reconfigure grid bins as per G and the updated [(limlow

n , limhigh
n)]dn=1

33 Update cell state to the verified class of the test instance: S(c) = yt
34 end

11

• Preparatory instances: a small portion of the data stream (preparatory instances
[(Xt, yt)]P−1t=0) is used to perform the sCA initialization. Then, the grid is seeded
with these data values, and sCA progresses through several generations (and apply-
ing the local rule) until all cells are assigned a state. With the traditional CA for
pattern recognition, the whole dataset is available from the beginning. Therefore, the
CA initialization is not required.

• An updated representation of the instance space: since historical data is not available
and data grow continuously, the sCA updates the cell bins of the grid every time a
new data instance arrives. By doing this, we ensure that the range of values of the
instance space is updated during the streaming process. With the traditional CA for
pattern recognition, as the whole training dataset is static, the grid boundaries and cell
bins are calculated at the beginning of the data mining process, and remain unaltered
during the test phase.

• CA’s cells continuously updated: sCA’s cells are also updated when new data ar-
rives by assigning the incoming label (state) to the corresponding cell. Instead of
examining the cells in the immediate neighborhood of this corresponding cell during
several generations (which would take time and computational resources), sCA just
checks the previous state of the cell and the current state provided by the recent data
instance. When both coincide, no change is required, but when they differ, the cell
adopts the state of the incoming data instance. In this sense, sCA always represents
the current data distribution. This is the way sCA works as an incremental learner.
However, with the traditional CA for pattern recognition, once initialized, a local rule
is applied over successive generations to set the state of a given cell depending on the
states of its neighbors.

3.2. LUNAR: a sCA with Drift Detection and Adaptation Abilities
LUNAR blends together sCA and paired learning in order to cope with concept drift.

In essence, a stable sCA is paired with a reactive one. The scheme inspires from the
findings reported in (Bach & Maloof, 2008): a stable learner is incrementally trained
and predicts considering all of its experience during the streaming process, whereas a
reactive learner is trained and predicts based on its experience over a time window of
length W . Any online learning algorithm can be used as a base learner for this strategy.
As shown in Algorithm 2 (Paired learning for OLMs), the stable learner is used for
prediction, whereas the reactive learner is used to detect possible concept drifts:

• While the concept remains unchanged, the stable learner provides a better perfor-
mance than the reactive learner (lines 6 and 7).

• A counter is arranged to count the number of times within the window that the reac-
tive learner predicts correctly the stream data, and the stable learner produces a bad
prediction (lines 8 to 10).

12

• If the proportion of these occurrences surpasses a threshold θ (line 11), a concept
change is assumed to have occurred, the stable learner is replaced with the reactive
one, and the stable learner is reinitialized.

• Finally, both stable and reactive learners are trained incrementally (lines 15 and 16).

Algorithm 2: Paired learning for OLMs
Input : Preparatory data instances {(Xt, yt)}t=P−1t=0 ; training/testing data for the

rest of the stream {(Xt, yt)}∞t=P ; window size W for the reactive
learner; threshold θ for substituting the stable learner with the reactive
one; stream learning model f(X)

Output: Updated stable and reactive learners fs(⋅) and fr(⋅)
1 Let c = [cw]Ww=1 be a circular list of W bits, each initially set to cw = 0 ∀w
2 for t = 0 to P − 1 do // Preparatory process
3 Train both fs(⋅) and fr(⋅) with (Xt, yt)
4 end
5 for t = P to ∞ do // Stream learning
6 Let ŷs = fs(Xt) (output of the model) and ŷr = fr(Xt)
7 Set c1 = 0 and cw = cw−1 for w = 2, . . . ,W
8 if ŷs ≠ yt and ŷr = yt then
9 Set c1 = 1

10 end
11 if W −1∑W

w=1 cw > θ then // Drift detection
12 Replace fs(⋅) with fr(⋅) (including its captured knowledge)
13 Set cw = 0 ∀w = 1, . . . ,W
14 end
15 Train fs()̇ incrementally with (Xt, yt)
16 Train fr(⋅) from scratch over {(Xt′ , yt′)}tt′=t−W+1
17 end

Algorithm 3 (LUNAR) describes in detail the proposed algorithm. In essence the
overall scheme relies on a couple of paired sCA learners: one in charge of making
predictions on instances arriving in the data stream (stable sCA learner), whereas the
other (reactive sCA learner) captures the most recent past knowledge in the stream (as
reflected by a time window W). As previously explained for generic paired learning,
the comparison between the accuracies scored by both learners over the time window
permits to declare the presence of a concept drift when the reactive learner starts pre-
dicting more accurately than its stable counterpart. When this is the case, the grid state
values of the reactive sCA is transferred to the stable automaton, and proceeds forward
by predicting subsequent stream instances with an updated grid that potentially best
represents the prevailing distribution of the stream.

We now summarize the most interesting capabilities of the LUNAR algorithm:

• Incremental learning: as it relies on sCA learners, LUNAR shows a natural ability to
learn incrementally, which is a crucial requirement under the constrained conditions

13

Algorithm 3: LUNAR
Input : Preparatory data instances {(Xt, yt)}P−1t=0 ; training/testing data for the

rest of the stream (Xt, yt)∞t=P ; window size W for the reactive sCA
learner; threshold θ for substituting the stable sCA learner with the
reactive one; sCA parameters G, fÿ(⋅), f⊞(c) and R as per Algorithm
1

Output: Updated stable and reactive learners sCAs and sCAr

1 Let c = [cw]Ww=1 be a circular list of W bits, each initially set to cw = 0 ∀w
2 Perform lines 1 − 28 of Algorithm 1 for sCAs and sCAr over {(Xt, yt)}P−1t=0
3 for t = P to ∞ do // Stream learning
4 Let ŷs = sCAs(Xt) and ŷr = sCAr(Xt) as per line 30 of Algorithm 1
5 Set c1 = 0 and cw = cw−1 for w = 2, . . . ,W
6 if ŷs ≠ yt and ŷr = yt then
7 Set c1 = 1
8 end
9 if W −1∑W

w=1 cw > θ then // Drift detection
10 Copy grid state values of sCAr to sCAs (knowledge transfer)
11 Clear sCAr and seed it with {(Xt′ , yt′)}tt′=t−W+1
12 Perform lines 1 − 28 of Algorithm 1 for sCAr

13 Set cw = 0 ∀w = 1, . . . ,W
14 end
15 Train sCAs incrementally with (Xt, yt)// Lines 31 − 33, Alg.1
16 Train sCAr from scratch over {(Xt′ , yt′)}tt′=t−W+1
17 end

present in RTA.

• Few parameters: LUNAR requires only a few parameters, a warmly welcome charac-
teristic that simplifies the parameter tuning process in drifting environments.

• Little data to be trained: LUNAR can learn a data distribution with relatively few
instances which, in the context of stream learning, involves a quicker preparation
(warm-up) phase. However, depending on the grid size G, several generations may
be required to make all cells be assigned a state. This is exemplified in Figure 1d,
which considers a dataset with 2 continuous features Xt = (X1

t ,X
2
t) ∈ R[0,1], and a

binary target class yt ∈ {0,1} . Here, a d ×G = 2 × 5 cellular automaton only needs
2 iterations of the loops in lines 12 to 28 (hereafter referred to as generation) until
all cells are assigned one and only one state (see Algorithm 1). However, the grid
is coarse, and its distribution of states does not represent the distribution of the data
stream. With a d × G = 2 × 10 cellular automaton, 4 generations are needed until
no cells are left empty, and the representation of the data distribution is more finely
grained. Finally, the d × G = 2 × 20 cellular automaton needs 7 generations until

14

no cells are left empty, yet the representation of the data distribution is well defined.
A good balance between representativeness and complexity must be met in practice
when deploying LUNAR in real setups.

• Constrained scenarios: in setups where computational costs must be reduced even
more, a subsampling strategy is often recommended, where only a fraction of in-
stances of the data stream is considered for model updating. In these scenarios, the
capability of CA to represent the data distribution with a few instances fits perfectly.
So does LUNAR by embracing sCA at its core.

• Stream learning under verification latency: learning in an environment where labels
do not become immediately available for model updating is known as verification la-
tency. This requires mechanisms and techniques to propagate class information for-
ward through several time steps of unlabeled data. This remains as an open challenge
in the stream learning community (Krempl, Žliobaite, Brzeziński, Hüllermeier, Last,
Lemaire, Noack, Shaker, Sievi, Spiliopoulou & Stefanowski, 2014). Here, LUNAR
finds its gap as well, due to its capability of evolving through several generations and
represents a data distribution from a few annotated data instances.

• Evolving scenarios: by harnessing the concept of paired learners, LUNAR adapts to
evolving conditions where changes (drifts) provoke that learning algorithms have to
forget and learn the old and the new concept, respectively.

• Tractable and interpretable: both characteristics lately targeted with particularly in-
terest under the eXplainable Artificial Intelligence (XAI) paradigm (Barredo Arrieta,
Dı́az-Rodrguez, Del Ser, Bennetot, Tabik, Barbado, Garcı́a, Gil-López, Molina, Ben-
jamins, Chatila & Herrera, 2019).

Finally, LUNAR enters the stream learning scene as a new base learner for the state-
of-the-art.

4. Experimental Setup

We have designed two experiments in order to answer the three research questions
posed in the Section 1. The first experiment addresses the research questions RQ1 and
RQ2 on the capability of sCA to learn incrementally and adapt to changes conditions,
while the second experiment addresses RQ3 by discussing on the competitiveness of
our LUNAR algorithm with respect to other streaming learners.

In all the experiments we have used the von Neumann neighborhood because it is
linear in the number of dimensions of the instance space, so it scales well when dealing
with problems of high dimensionality. In addition, this neighborhood is composed of
less neighbors than in Moore’s case, and the local rule is applied over less cells, which
makes the process lighter and better for streaming scenarios in terms of computational
and processing time costs. Regarding the performance measurement, we have adopted

15

the so-called prequential accuracy (Dawid, Vovk et al., 1999) for all experiments, as
it is a suitable metric to evaluate the learner performance in the presence of concept
drift (Dawid, Vovk et al., 1999; Gama, Sebastião & Rodrigues, 2013; Gama, Žliobaitė,
Bifet, Pechenizkiy & Bouchachia, 2014). This metric quantifies the average accuracy
obtained by the prediction of each test instance before its learning in an online test-
then-train fashion, and is defined as:

preACC(t)=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

preACCex(t), if t = tref ,

preACCex(t-1) +
preACCex(t) − preACCex(t-1)

t − tref + 1
, otherwise, (4)

where preACCex(t) = 0 if the prediction of the test instance at time t before its learning
is wrong and 1 if it is correct; and tref is a reference time that fixes the first time step
used in the calculation. This reference time allows isolating the computation of the
prequential accuracy before and after a drift has started.

As for the initialization of sCA, following Algorithm 1 we have used a reduced
group of P preparatory instances. In the second experiment we have also used these
instances to carry out the hyper-parameter tuning of the OLMs under analysis. The
selection of the size of this preparatory data usually depends on the available memory
or the processing time we can take to collect or process these data. Finally, following
the recommendations of (Fawcett, 2008), we have assigned one grid dimension to each
attribute.

4.1. First Experiment: Addressing RQ1 and RQ2 with sCA
In order to address RQ1 and RQ2, we have used several two-dimensional synthetic

datasets for the first experiment, where results can be easily visualised and interpreted.
Synthetic data are advisable because in real datasets is not possible to know exactly
when a drift appears, which type of drift emerges, or even if there is any confirmed
drift. Thus, it is not possible to analyze the behavior of sCA in the presence of concept
drift by only relying on real-world datasets.

This being said, for this experiment we have used the sCA detailed in Section 3.1
(Algorithm 1). We have compared its naive version with the one using an active adap-
tation mechanism: assuming a perfect drift detection (the drift point is known before-
hand), once a drift occurs the grid of the sCA model is seeded with a W -sized window
of past instances, which allows representing the current concept (data distribution).
Then, sCA progresses again through several generations (and applying the local rule)
until all cells are assigned a state. As highlighted before, this ability of CA to represent
a data distribution from a few instances is very valuable here, where only a limited slid-
ing window is used to initialize the sCA grid. This experiment is designed to illustrate
and visualize the operation of sCA in two dimensions (two features).

We use the renowned set of four balanced synthetic datasets (CIRCLE, LINE,
SINEH, and SINEV) described in (Minku, White & Yao, 2009). Very briefly, these
datasets contain one simulated drift characterized by low and high speed, resulting 2
different types of drift for each dataset. Speed is the inverse of the time taken for a

16

new concept to completely replace the previous one. Each dataset has 2,000 instances
(t ∈ {1, . . . ,2,000}), 2 normalized ([0,1]) continuous features Xt = (X1

t ,X
2
t), and a

binary target class yt ∈ {0,1}. Drift occurs at t = 1,000 (where it goes from the old con-
cept to the new one), and the drifting period is 1 for abrupt drifts (high speed datasets)
and 500 for gradual ones (low speed datasets). For abrupt drifts we have opted for a
small window size of W = 25, whereas for gradual drifts we need a bigger window of
W = 100 (Gama, Sebastião & Rodrigues, 2013). The size of this window will depend
on the type of drift: a small window can assure fast adaptability in abrupt changes,
while a large window produces lower variance estimators in stable phases, but cannot
react quickly to gradual changes. Thus, sliding windows is a very common form of the
so-called forgetting mechanism (Gama, 2010), where outdated data is discarded and
adapt to the most recent state of the nature, then emphasis is placed on error calculation
from the most recent data instances.

4.2. Second Experiment: Addressing RQ3 with LUNAR
For the second experiment we have resorted to real-world datasets to confirm the

competitive performance of LUNAR in a comparison with recognized OLMs in the lit-
erature, answering RQ3. In this case, since we deal with problems having n features, an
extensive use is to assign one grid dimension of the CA to each feature of the dataset.
In this experiment, LUNAR is compared with paired learning models (see Algorithm
2) using at their core different online learning algorithms from the literature. These
comparison counterparts have been selected over others due to the fact that they are
well-established methods in the stream learning community. Also because their imple-
mentations are reliable and easily accessible in well-known Python frameworks such
as scikit-multiflow (Montiel, Read, Bifet & Abdessalem, 2018) and scikit-learn (Pe-
dregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss,
Dubourg et al., 2011). As this is the first experiment carried out to know about their per-
formance as incremental learners with drift adaptation, we have selected these reputed
methods:

• Stochastic Gradient Descent Classifier (SGDC) (Bottou, 2010) implements an stochas-
tic gradient descent learning algorithm which supports different loss functions and
penalties for classification.

• Hoeffding Tree (HTC) (Domingos & Hulten, 2000), also known as Very Fast Decision
Tree (VFDT), is an incremental anytime decision tree induction algorithm capable of
learning from massive data streams, assuming that the distribution of data instances
does not change over time, and exploiting the fact that a small instance can often be
enough to choose an optimal splitting attribute.

• Passive Agressive Classifier (PAC) (Crammer, Dekel, Keshet, Shalev-Shwartz &
Singer, 2006) focuses on the target variable of linear regression functions, ŷt = ωT

t ⋅Xt,
where ωt is the incrementally learned weight vector. After a prediction is made, the
algorithm receives the true target value yt and an instantaneous ε-insensitive hinge

17

loss function is computed to update the weight vector. This loss function was specif-
ically designed to work with stream data, and is analogous to a standard hinge loss.
The role of ε is to allow for a lower tolerance of prediction errors. Then, when a
round finalizes, the algorithm uses ωt and the instance (Xt, yt) to produce a new
weight vector ωt+1, which is then used to predict the next incoming instance.

• k-Nearest Neighbours (KNN) (Read, Bifet, Pfahringer & Holmes, 2012), a well-
known lazy learner where the output is given by the labels of theK training instances
closest (under a certain distance measure) to the query instance Xt. In its streami-
fied version, it works by keeping track of a sliding window of past training instances.
Whenever a query request is executed, the algorithm will search over its stored in-
stances and find theK ≤W closest neighbors in the window, again as per the selected
distance metric.

Three real-world datasets have been utilized in this second experiment:

• The Australian New South Wales Electricity Market dataset (ELEC2) (Gama, Medas,
Castillo & Rodrigues, 2004) is a widely adopted real-world dataset in studies related
to stream processing/mining, particularly in those focused on non-stationary settings.
In essence the dataset represents electricity prices over time, which are not fixed and
become affected by the demand and supply dynamics. It contains 45,312 instances
dated from 7 May 1996 to 5 December 1998. Each instance Xt of the dataset refers to
a period of 30 minutes, and has d = 5 features (day of week, time stamp, NSW elec-
tricity demand, Vic electricity demand, and scheduled electricity transfer between
states). The target variable yt to be predicted is binary, and identifies the change of
the price related to a moving average of the last 24 hours. The class level only reflect
deviations of the price on a one day average, and removes the impact of longer term
price trends.

• The Give Me Some Credit dataset (GMSC1) correspond to a credit scoring task in
which the goal is to decide whether a loan should be granted or not (binary target
yt). This is a core decision for banks due to the risk of unexpected expenses and fu-
ture lawsuits. The dataset comprises supervised historical data of 150,000 borrowers
described by d = 10 features.

• The POKER-HAND dataset2 originally consists of 1,000,000 stream instances. Each
record is an example of a hand consisting of five playing cards drawn from a standard
deck of 52 cards. Each card is described by 2 attributes (suit and rank), giving rise
to a total of d = 10 predictive attributes for every stream instance Xt. The goal is

1Available at: https://www.kaggle.com/c/GiveMeSomeCredit. Last accessed on De-
cember 5th, 2019.

2Available at: https://archive.ics.uci.edu/ml/datasets/Poker+Hand. Last ac-
cessed on December 5th, 2019.

18

https://www.kaggle.com/c/GiveMeSomeCredit
https://archive.ics.uci.edu/ml/datasets/Poker+Hand

to predict the poker hand upon such features, out of a set of ∣S ∣ = 10 possible poker
hands (i.e., multiclass classification task).

In order to alleviate the computational effort needed to run the entire benchmark,
we have selected 20,000 instances of each dataset. We have considered the first 50% of
the datasets (10,000 instances) to tune the parameters of the OLMs and to seed LUNAR,
whereas the rest 50% has been used for prediction and performance assessment. Each
experiment has been carried out 25 times in the case of SGDC, PAC and KNNC to ac-
count for the stochasticity of the hyperparameter search algorithm and their learning
procedure. Indeed, the considered online models are sensible to parameter values.
Thus we have performed a randomized hyper-parameter tuning over preparatory in-
stances, obtaining different hyper parameter settings for each run. Table 1 summarizes
the parameters that have participated in each randomized search process, following the
nomenclature of the scikit-learn3 and scikit-multiflow4 frameworks. In the case of HTC,
we found experimentally that its default values (see documentation of scikit-multiflow
for more details) have worked very well in all datasets, so it was not necessary to carry
out the randomized search on hyper parameters, which helped speed up the experimen-
tation. Finally, the same window size W than LUNAR has been assigned to KNNC for
the sake of a fair comparison between them.

Model Parameters Values used Tuning

SGDC

alpha 10−x, x ∈ {−1,−2, . . . ,−6}

yes

loss ‘perceptron’, ‘hinge’, ‘log’, ‘modified huber’, ‘squared hinge’
learning rate ‘constant’, ‘optimal’, ‘invscaling’, ‘adaptive’

eta0 0.1,0.5,1.0
penalty None, ‘l2’, ‘l1’, ‘elasticnet’
max iter 1,100,200,500

PAC
C 0.001,0.005,0.01,0.05,0.1,0.5,1.0 yesmax iter 1,100,200,500

KNNC

n neighbors 5,10,15,25,50

yesleaf size 5,10,20,30
algorithm ‘auto’
weights ‘uniform’, ‘distance’

HTC

grace period 200

nosplit criterion ‘info gain’
leaf prediction ‘nba’
nb threshold 0

Table 1: Parameters that have participated in each randomized searching process of SGDC, PAC and
KNNC. In the case of HTC its default values show a good enough performance and has not participated
in the randomized hyperparameter searching process. This has alleviated the computing cost of the
experiments.

Finally, Table 2 summarizes the parameter settings of LUNAR and the OLMs used
for the real-world experiments.

3https://scikit-learn.org/. Last access in December 5th, 2019.
4https://scikit-multiflow.github.io/. Last access in December 5th, 2019.

19

Model Parameter Real data Synthetic data
ELEC2 GMSC POKER-HAND

All models P 50% of the considered stream length 5% of the considered stream length
W 50 instances 250 instances 250 instances 25,50,100 instances

L
U
N
A
R

f⊞(⋅) von Neumann
fÿ(⋅) Majority voting from Expression (3)
R 1 (()
S {0,1} {0,1} {0,1, . . . ,9} {0,1}

d ×G 5 × 5 10 × 3 10 × 3 2 × 5, 2 × 10, 2 × 20
θ 0.05 0.01 0.001 Not applicable

SGDC 0.8 0.001 0.1
HTC 0.1 0.0001 0.01
PAC θ 0.8 0.001 0.1 Not used
KNNC 0.1 0.001 0.001

Table 2: Parameters configuration for LUNARand the considered OLMs in synthetic (RQ1 and RQ2)
and real-world experiments (RQ3).

5. Results and Analysis

Next, we present the results for the two experiments, organizing the foregoing anal-
ysis and discussion in terms of the research questions posed in Section 1:

5.1. RQ1: Does sCA act as a real incremental learner?
Definitely yes. If we combining the definition of incremental learning suggested by

(Giraud-Carrier, 2000; Lange & Zilles, 2003) with Kuncheva’s and Bifet’s desiderata
for non-stationary learning (Kuncheva, 2004; Bifet, Gavaldà, Holmes & Pfahringer,
2018), incremental learning can be understood as the capacity to process and learn from
data in an incremental fashion, and to deal with data changes (drifts) that may occur
in the environment. Therefore, the properties that guide the creation of incremental
learning algorithms (Ditzler & Polikar, 2012) are:

• Learning new knowledge: this feature is essential for online learners that have to be
deployed over non-stationary settings. To provide evidence that SCA incorporates
this characteristic, Figures 2 and 4 summarize the performance results obtained over
two synthetic datasets (CIRCLE and SINEH) with an abrupt drift occurring at t =
1000, and assuming to have been detected at t = 1025. The adaptation mechanism
resorts to a window of W = 25 past data instances; upon the detection of the drift,
the entire knowledge contained in the cellular automata (i.e. the distribution of cell
states) is erased, and the automata is seeded with the instances falling in the last W -
sized window. Although the abrupt drift obliges to learn quickly the new concept and
forgetting the old one, we observe in these plots that sCA excels at this task, yielding
a prequential accuracy over time that does not get apparently affected by the change
of concept.

• Preserving previous knowledge: related to the previous property, gradual drifts re-
quire maintaining part of the previous concept over time, so that the evolved model

20

leverages the retained knowledge during its transition to the new concept. This is
clearly shown in Figures 3 and 5, which both focus on CIRCLE and SINEH respec-
tively, showing a gradual drift at t = 1000, and assuming a drift detection at t = 1600.
The adaptation mechanism resorts to a window of W = 100 past data instances. In
particular, the prequential accuracy results and subplots therein included show that
sCA can preserve the old concept while learning the new one through the implemen-
tation of a forgetting strategy.

• One-pass (incremental) learning: through preceding sections we have elaborated on
the incremental learning strategy of sCA (lines 30 to 33 in Algorithm 1), by which it
is able to learn one instance at a time without requiring any access to historical data.

• Dealing with concept drift: Finally, we have seen in the previous experiments that
sCA is capable of dealing with evolving conditions by using a drift detection and by
implementing an adaptation scheme. We will later revolve around these results.

21

2x5

2x10

2x20

2x5

2x10

2x20

(a)
2x5 2x10 2x20

(b)

2x5 2x10 2x20

(c)
2x5 2x10 2x20

2x5 2x10 2x20

(d)

2x5 2x10 2x20

2x5 2x10 2x20

(e)

Figure 2: Learning and adaptation of von Neumann’s sCA of different grid sizes for the CIRCLE dataset,
which exhibits an abrupt drift at t = 1000. The drift is detected at t = 1025 and then the adaptation
mechanism, which uses a window of instances W = 25, is triggered. (a) Performance comparison at
points b (initial), c (just before the drift occurs), d (W = 25 instances after drift detection and the
adaptation mechanism were triggered), and e (final). The dashdotted line points out the drift detection
and the dotted line the point in which the performance is measured. The shaded area corresponds to
the preparatory instances. (b) The cells of sCAs are seeded with the preparatory instances (b). (c)
The learning process of sCA before drift occurs (c). (d) The learning process of sCA after the drift
occurs, and how those with the adaptation mechanism is initialized and seeded with a set of W = 25 past
instances (d). (e) The learning process of sCA until the end of the stream (e).

22

2x5

2x10

2x20

2x5

2x10

2x20

(a)
2x5 2x10 2x20

(b)

2x5 2x10 2x20

(c)
2x5 2x10 2x20

2x5 2x10 2x20

(d)

2x5 2x10 2x20

2x5 2x10 2x20

(e)

Figure 3: Learning and adaptation of von Neumann’s sCA of different grid sizes for the CIRCLE dataset,
which exhibits a gradual drift at t = 1000. The drift is detected at t = 1600, and then the adaptation
mechanism, which uses a window of instances W = 100, is triggered. The interpretation of the remaining
plots is the same than those in Figure 2.

23

2x5

2x10

2x20

2x5

2x10

2x20

(a)
2x5 2x10 2x20

(b)

2x5 2x10 2x20

(c)

2x5 2x10 2x20

2x5 2x10 2x20

(d)

2x5 2x10 2x20

2x5 2x10 2x20

(e)

Figure 4: Learning and adaptation of von Neumann’s sCA of different grid sizes for the SINEH dataset,
which exhibits an abrupt drift at t = 1000. The drift is detected at t = 1025 and then the adaptation
mechanism, which uses a window of instances W = 25, is triggered. The interpretation of the remaining
plots is the same than those in Figure 2.

24

2x5

2x10

2x20

2x5

2x10

2x20

(a)

2x5 2x10 2x20

(b)

2x5 2x10 2x20

(c)
2x5 2x10 2x20

2x5 2x10 2x20

(d)

2x5 2x10 2x20

2x5 2x10 2x20

(e)

Figure 5: Learning and adaptation of von Neumann’s sCA of different grid sizes for the SINEH dataset,
which exhibits a gradual drift at t = 1000. The drift is detected at t = 1600 and then the adaptation
mechanism, which uses a window of instances W = 100, is triggered. The interpretation of the remaining
plots is the same than those in Figure 2.

25

5.2. RQ2: Can sCA successfully adapt to evolving conditions?
In a nutshell, the answer is yes. However, the success rate depends on the type of

drift and the size G of the CA grid.
This is empirically shown in Figures 2 and 4 for abrupt drifts, where we have ap-

plied an adaptation mechanism to a sCA of different grid sizes over the CIRCLE and
SINEH datasets, respectively. Once the drift appears at t = 1000 (solid vertical line) and
is detected (dashdotted vertical line), we observe that sCA with and without adaptation
mechanism perform equal at points b and c . But when the adaptation mechanism is
triggered we see at point d (25 instances after drift detection and adaptation) and e
(the end of the data stream) that sCA using grids of d ×G = 2 × 10 and d ×G = 2 × 20
obtain better prequential accuracies when incorporating an adaptation mechanism. In
the case of CIRCLE dataset, the adaptive versions of sCA obtain an average prequen-
tial accuracy of 0.873 (2×10) and 0.900 (2×20) versus their non-adaptive counterparts,
which respectively score accuracies of 0.866 and 0.880. The same situation holds with
the SINEH dataset, where again adaptive sCAs obtain average prequential accuracies
of 0.773 (2×10) and 0.833 (2×20) against their non-adaptive versions (0.765 and 0.808,
respectively). The adaptive versions are able to forget quickly the old concept because
they are reinitialized with a few instances (25) of the new concept, as opposed to the
non-adaptive versions which keep the old concept along time (see Figures 2d and 4d
). At point e (Figures 2e and 4e), we can observe some differences in the learning of
both versions. In the case of the small grid size 2×5, neither adaptive nor non-adaptive
versions are able to learn the concepts properly and establishing the boundaries be-
tween classes, yielding a poor classification performance. Therefore, when the change
from the old to the new concept is abrupt, the fast forgetting of the old concept be-
comes primordial (Gama, Sebastião & Rodrigues, 2013). For a complete comparison
with more datasets we refer to Table 3.

Now, we focus on gradual drifts of CIRCLE and SINEH dataset (Figures 3 and 5
respectively), where a gradual drift also occurs at (t = 1,000). Figures 3a and 5a, and
Table 3, show how both sCA with and without adaptation mechanism obtain almost the
same mean prequential accuracy. As the old concept disappears slowly while the new
one also does it slowly, the adaptive version with a window of instances (w = 100) and
the non-adaptive version do preserve the old concept while learn the new one. Even
so, we can observe slight improvements of adaptive versions over the non-adaptive
ones at points d and e . These differences are bigger in the case of sCA with a
2 × 20 grid: 0.894 for the adaptive version against 0.888 for the non-adaptive version
(CIRCLE at point d), 0.897 for the adaptive version against 0.881 for the non-adaptive
version (CIRCLE at point e), 0.812 for the adaptive version against 0.811 for the
non-adaptive version (SINEH at point d), and 0.820 for the adaptive version against
0.811 for the non-adaptive version (SINEH at point e). Again, in the case of a 2 × 5
grid, due to the small grid size neither adaptive nor non-adaptive versions are able to
learn the concepts properly and establishing the boundaries between classes, achieving
a poor classification performance. For the case of sCA2 × 10, because the drift is
gradual, the grid size does not allow for capturing well enough the differences of both

26

concepts. Finally, when the change from the old concept to the new one is gradual, an
slow forgetting of the old concept becomes primordial (Gama, Sebastião & Rodrigues,
2013).

Synthetic
datasets sCA d ×G

preACC(t)
c d e Average

CIRCLE
(abrupt)

Adaptive
2 × 5 0.827 0.822 0.827 0.794
2 × 10 0.928 0.918 0.905 0.873
2 × 20 0.958 0.943 0.931 0.900

Non-adaptive
2 × 5 0.827 0.822 0.828 0.795
2 × 10 0.928 0.915 0.892 0.866
2 × 20 0.958 0.939 0.881 0.880

CIRCLE
(gradual)

Adaptive
2 × 5 0.827 0.816 0.820 0.789
2 × 10 0.928 0.885 0.890 0.867
2 × 20 0.958 0.894 0.897 0.890

Non-adaptive
2 × 5 0.827 0.817 0.820 0.789
2 × 10 0.928 0.886 0.891 0.868
2 × 20 0.958 0.888 0.881 0.888

LINE
(abrupt)

Adaptive
2 × 5 0.795 0.784 0.783 0.754
2 × 10 0.928 0.912 0.913 0.868
2 × 20 0.972 0.959 0.957 0.911

Non-adaptive
2 × 5 0.795 0.785 0.783 0.754
2 × 10 0.928 0.905 0.900 0.861
2 × 20 0.972 0.953 0.887 0.883

LINE
(gradual)

Adaptive
2 × 5 0.795 0.721 0.729 0.731
2 × 10 0.928 0.870 0.880 0.855
2 × 20 0.972 0.910 0.918 0.898

Non-adaptive
2 × 5 0.795 0.722 0.728 0.731
2 × 10 0.928 0.871 0.879 0.855
2 × 20 0.972 0.903 0.893 0.895

Synthetic
datasets sCA d ×G

preACC(t)
c d e Average

SINEV
(abrupt)

Adaptive
2 × 5 0.833 0.822 0.811 0.777
2 × 10 0.933 0.920 0.921 0.877
2 × 20 0.960 0.947 0.948 0.907

Non-adaptive
2 × 5 0.833 0.823 0.811 0.777
2 × 10 0.933 0.912 0.905 0.867
2 × 20 0.960 0.939 0.876 0.879

SINEV
(gradual)

Adaptive
2 × 5 0.833 0.753 0.756 0.757
2 × 10 0.933 0.881 0.891 0.866
2 × 20 0.960 0.893 0.906 0.893

Non-adaptive
2 × 5 0.833 0.754 0.757 0.757
2 × 10 0.933 0.882 0.892 0.867
2 × 20 0.960 0.884 0.879 0.890

SINEH
(abrupt)

Adaptive
2 × 5 0.514 0.514 0.501 0.473
2 × 10 0.822 0.811 0.806 0.773
2 × 20 0.889 0.874 0.877 0.833

Non-adaptive
2 × 5 0.514 0.514 0.503 0.474
2 × 10 0.822 0.804 0.790 0.765
2 × 20 0.889 0.862 0.822 0.808

SINEH
(gradual)

Adaptive
2 × 5 0.514 0.513 0.510 0.478
2 × 10 0.822 0.756 0.770 0.756
2 × 20 0.889 0.812 0.820 0.818

Non-adaptive
2 × 5 0.514 0.514 0.511 0.478
2 × 10 0.822 0.763 0.774 0.757
2 × 20 0.889 0.811 0.811 0.817

Table 3: Comparative results of sCA with and without adaptive mechanism with different grid sizes for
synthetic CIRCLE, LINE, SINEV and SINEH datasets. The prequential accuracy is measured at points
c (before the drift occurs), d (after drift occurs and adaptation mechanism has been triggered), and
e (final). The last column amounts to the mean prequential accuracy averaged over the duration of the

whole stream.

In light of the above claim, we can finally confirm that in case of abrupt drifts
we should opt for small grid sizes G, which is better in terms of computational cost.
However, for gradual drifts the grid should be made finer in order to emphasize the
differences between adaptive and non-adaptive versions. For the sake of space, only
the cases of CIRCLE and SINEH datasets are presented in Figures 2 (abrupt drift) and
3 (gradual drift), and 4 (abrupt drift) and 5 (gradual drift), respectively. The results for
all the synthetic datasets can be found in Table 3.

5.3. RQ3: Is LUNAR competitive in comparison with other consolidated OLMs of the
literature?

In Table 4 and Figure 6 we analyze the competitiveness of LUNAR in terms of clas-
sification performance for the considered real-world datasets. In the ELEC2 dataset,
only SGDC (0.820) outperforms LUNAR (0.763), and HTC shows almost the same score
(0.766). In case of the GMSC dataset, only HTC (0.910) and PAC (0.891) outperforms
LUNAR (0.869). For the POKER-HAND dataset, only HTC (0.573) and KNNC (0.567)
outperforms LUNAR (0.527).

27

Following the evaluation method used in (Bifet, Holmes, Pfahringer & Frank, 2010),
the column Global mean preACC of Table 4 averages the results in all datasets, and
shows how LUNAR (0.719) is the second best method, only surpassed by HTC (0.749),
which is arguably one of the best stream learners in the field. After the analysis of
the results, we can confirm that effectively LUNAR has turned into a very competitive
stream learning method.

Method Dataset preACC (mean±std) Global mean preACC

LUNAR
ELEC2 0.763 ± 0.0

0.719 ± 0.0GMSC 0.869 ± 0.0
POKER-HAND 0.527 ± 0.0

SGDC
ELEC2 0.820 ± 0.058

0.703 ± 0.068GMSC 0.845 ± 0.085
POKER-HAND 0.446 ± 0.061

HTC
ELEC2 0.766 ± 0.0

0.749 ± 0.0GMSC 0.910 ± 0.0
POKER-HAND 0.573 ± 0.0

PAC
ELEC2 0.670 ± 0.043

0.685 ± 0.030GMSC 0.891 ± 0.032
POKER-HAND 0.496 ± 0.015

KNNC
ELEC2 0.621 ± 0.019

0.670 ± 0.029GMSC 0.822 ± 0.014
POKER-HAND 0.567 ± 0.055

Table 4: Comparative results of LUNAR with other stream learners in real-world datasets. The column
preACC (mean±std) denotes the mean prequential accuracy of every method in each dataset. The
column Global mean preACC presents the mean prequential accuracy for all datasets of each method,
and serves as a reference for a global comparison. Global results of the two best methods are marked in
bold.

5.4. Final Observations, Remarks and Recommendations
Once the three research questions have been thoroughly answered, it is worth dis-

cussing some general recommendations related to LUNAR. When designing a sCA for
non-stationary scenarios, we should consider that generally we will assign one grid
dimension to each feature of the dataset, thus as many dimensions in the grid and as
many cells per feature, as much computational cost and more processing time will be
required. Specifically, provided that a problem with d dimensions is under target, and
given a granularity (size) of the grid given by G, the worst-case complexity of predict-
ing the class of a given test instance Xt is given by O(Gd), which is the time taken
by a single processing thread to explore all cells of the d-dimensional grid of cells and
discriminate the cell enclosing Xt. Due to the exponential complexity, we recommend
the use of sCA (and CA in pattern recognition in general) in datasets with a low num-

28

U

(a) ELEC2 dataset

U

(b) GMSC dataset

U

(c) POKER-HAND dataset

Figure 6: Prequential accuracy preACC(t) for LUNAR and the OLMs under consideration in the se-
lected real-world datasets. The first 50% of the dataset is for preparatory instances, while the rest is
adopted as streaming test-then-train instances. A moving window of 500 instances has been applied in
order to smooth out short-term fluctuations and to furnish a more friendly visualization.

29

ber of features. Nevertheless, the search process over the grid’s cells can be easily
parallelized, hence allowing for fast prediction and cell updating speeds.

We also pause at the streamified version of the KNNC model, whose similarity to
LUNAR calls for a brief comparison among them. In essence, both learning models
rely on the concept of neighborhood in the feature space, induced by either the selected
measure of similarity among instances (KNNC) or the arrangement of cells in a grid
(LUNAR). We have seen in Table 4 that our proposed method overcomes the results
of KNNC in ELEC2 and GMSC datasets. Here it is worth mentioning that in order
to have a fair comparison between both methods, the number of nearest neighbors
to search for in the KNNC method has been properly optimized before the streaming
process runs. Furthermore, the maximum size of the window storing the last viewed
instances of KNNC has been set equal to the W parameter in LUNAR. The capability
of the sCA grid’s cells to reflect and maintain the prevailing knowledge in the stream
renders a superior performance than that offered by the KNNC method when computing
the similarity over the W -sized window of past instances.

6. Conclusions and Future Work

Cellular automata have been successfully applied to different real-world applica-
tions since their inception several decades ago. Among them, pattern recognition has
been proven to be a task in which the self-organization and modeling capabilities of
cellular automata can yield significant performance gains. This work has built upon
this background to explore whether such benefits can also be extrapolated to real-time
machine learning under non-stationary conditions, which is arguably among the hottest
topics in Data Science nowadays. Under the premises of real-time settings, aspects such
as complexity and adaptability to changing tasks are also important modeling design
drivers that add to the performance of the model itself.

The algorithm introduced in this work provides a new perspective in the stream
learning scene. We have proposed a cellular automaton able to learn incrementally and
capable of adapting to evolving environments (LUNAR), showing a competitive classi-
fication performance when is compared with other reputed state-of-the-art algorithms.
LUNAR contributes to the discussion on ways to use cellular automata for paradigms
in which the computation effort relies on a network of simple, interconnected devices
with very low processing capabilities and constrained battery capacity (e.g. Utility
Fog, Smart Dust, MEMS or Swarms). Under these circumstances, learning algorithms
should be embarked in miniaturized devices running on low-power hardware with lim-
ited storage.

LUNAR has shown a well performance in practice over the datasets considered in
this study, with empirical evidences of its adaptability when mining non-stationary data
streams. Future work will be devoted towards experimenting with other local rules or
neighborhoods to determine their effects on these identified properties of cellular au-
tomata. Some preliminary experiments carried out off-line suggest that a sCA could
also detect drifts, which, along with their simplicity, paves the way towards adopting

30

them in active strategies for stream learning in non-stationary setups. We have also
conceived the possibility of configuring ensembles of sCA, wherein diversity among
the constituent automata can be induced by very diverse means (e.g. online bagging,
boosting or probabilistic class switching). We strongly believe that moving in this
algorithmic direction may open up the chance of designing more powerful cellular au-
tomata with complementary, potentially better capabilities to deal with stream learning
scenarios.

Acknowledgements

This work has received funding support from the ECSEL Joint Undertaking (JU)
under grant agreement No 783163 (iDev40 project). The JU receives support from the
European Union’s Horizon 2020 research and innovation programme, national grants
from Austria, Belgium, Germany, Italy, Spain and Romania, as well as the European
Structural and Investment Funds. It has been also supported by the ELKARTEK pro-
gram of the Basque Government (Spain) through the VIRTUAL (ref. KK-2018/00096)
research grant. Finally, Javier Del Ser has received funding support from the Con-
solidated Research Group MATHMODE (IT1294-19), granted by the Department of
Education of the Basque Government.

References

References

Adamatzky, A. (2018). Cellular Automata: A Volume in the Encyclopedia of Complex-
ity and Systems Science. Springer.

Aha, D. W., Kibler, D., & Albert, M. K. (1991). Instance-based learning algorithms.
Machine learning, 6, 37–66.

Alippi, C., Boracchi, G., & Roveri, M. (2013). Just-in-time classifiers for recurrent
concepts. IEEE transactions on neural networks and learning systems, 24, 620–634.

Bach, S. H., & Maloof, M. A. (2008). Paired learners for concept drift. In 2008 Eighth
IEEE International Conference on Data Mining (pp. 23–32). IEEE.

Barredo Arrieta, A., Dı́az-Rodrguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado,
A., Garcı́a, S., Gil-López, S., Molina, D., Benjamins, R., Chatila, R., & Herrera, F.
(2019). Explainable artificial intelligence (xai): Concepts, taxonomies, opportunities
and challenges toward responsible ai. arXiv:1910.10045.

Bhattacharjee, K., Naskar, N., Roy, S., & Das, S. (2016). A survey of cellular automata:
types, dynamics, non-uniformity and applications. Natural Computing, (pp. 1–29).

31

http://arxiv.org/abs/1910.10045

Bifet, A., & Gavalda, R. (2007). Learning from time-changing data with adaptive win-
dowing. In Proceedings of the 2007 SIAM international conference on data mining
(pp. 443–448). SIAM.

Bifet, A., Gavaldà, R., Holmes, G., & Pfahringer, B. (2018). Machine Learning for
Data Streams with Practical Examples in MOA. MIT Press. https://moa.cms.
waikato.ac.nz/book/.

Bifet, A., Holmes, G., Pfahringer, B., & Frank, E. (2010). Fast perceptron decision
tree learning from evolving data streams. In Pacific-Asia conference on knowledge
discovery and data mining (pp. 299–310). Springer.

Bottou, L. (2010). Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010 (pp. 177–186). Springer.

Cervantes, A., Gagné, C., Isasi, P., & Parizeau, M. (2018). Evaluating and characteriz-
ing incremental learning from non-stationary data. arXiv preprint arXiv:1806.06610,
.

Chaudhuri, P. P., Chowdhury, D. R., Nandi, S., & Chattopadhyay, S. (1997). Additive
cellular automata: theory and applications volume 1. John Wiley & Sons.

Cook, M. (2004). Universality in elementary cellular automata. Complex systems, 15,
1–40.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., & Singer, Y. (2006). Online
passive-aggressive algorithms. Journal of Machine Learning Research, 7, 551–585.

Dastjerdi, A. V., & Buyya, R. (2016). Fog computing: Helping the internet of things
realize its potential. Computer, 49, 112–116.

Dawid, A. P., Vovk, V. G. et al. (1999). Prequential probability: Principles and proper-
ties. Bernoulli, 5, 125–162.

De Francisci Morales, G., Bifet, A., Khan, L., Gama, J., & Fan, W. (2016). Iot big data
stream mining. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (pp. 2119–2120). ACM.

Del Ser, J., Osaba, E., Molina, D., Yang, X.-S., Salcedo-Sanz, S., Camacho, D., Das, S.,
Suganthan, P. N., Coello, C. A. C., & Herrera, F. (2019). Bio-inspired computation:
Where we stand and what’s next. Swarm and Evolutionary Computation, 48, 220–
250.

Ditzler, G., & Polikar, R. (2012). Incremental learning of concept drift from streaming
imbalanced data. IEEE transactions on knowledge and data engineering, 25, 2283–
2301.

32

https://moa.cms.waikato.ac.nz/book/
https://moa.cms.waikato.ac.nz/book/

Ditzler, G., Roveri, M., Alippi, C., & Polikar, R. (2015). Learning in nonstationary
environments: A survey. IEEE Computational Intelligence Magazine, 10, 12–25.

Domingos, P., & Hulten, G. (2000). Mining high-speed data streams. In Kdd (p. 4).
volume 2.

Domingos, P., & Hulten, G. (2003). A general framework for mining massive data
streams. Journal of Computational and Graphical Statistics, 12, 945–949.

Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern classification. John Wiley &
Sons.

Fawcett, T. (2008). Data mining with cellular automata. ACM SIGKDD Explorations
Newsletter, 10, 32–39.

Feynman, R. P. (1986). Quantum mechanical computers. Foundations of physics, 16,
507–531.

Gama, J. (2010). Knowledge discovery from data streams. Chapman and Hall/CRC.

Gama, J., Medas, P., Castillo, G., & Rodrigues, P. (2004). Learning with drift detection.
In Brazilian symposium on artificial intelligence (pp. 286–295). Springer.

Gama, J., Sebastião, R., & Rodrigues, P. P. (2013). On evaluating stream learning
algorithms. Machine learning, 90, 317–346.

Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., & Bouchachia, A. (2014). A survey
on concept drift adaptation. ACM computing surveys (CSUR), 46, 44.

Games, M. (1970). The fantastic combinations of john conways new solitaire game life
by martin gardner. Scientific American, 223, 120–123.

Ganguly, N., Sikdar, B. K., Deutsch, A., Canright, G., & Chaudhuri, P. P. (2003). A
survey on cellular automata, .

Giraud-Carrier, C. (2000). A note on the utility of incremental learning. Ai Communi-
cations, 13, 215–223.

Goles, E., & Martı́nez, S. (2013). Neural and automata networks: dynamical behavior
and applications volume 58. Springer Science & Business Media.

Gunning, D. (2017). Explainable artificial intelligence (xai). Defense Advanced Re-
search Projects Agency (DARPA), nd Web, 2.

Hall, J. S. (1996). Utility fog: The stuff that dreams are made of. Nanotechnology, (pp.
161–184).

33

Hashemi, S., Yang, Y., Pourkashani, M., & Kangavari, M. (2007). To better handle
concept change and noise: a cellular automata approach to data stream classification.
In Australasian Joint Conference on Artificial Intelligence (pp. 669–674). Springer.

Ilyas, M., & Mahgoub, I. (2018). Smart Dust: Sensor network applications, architec-
ture and design. CRC press.

López-de Ipiña, D., Chen, L., Mitton, N., & Pan, G. (2017). Ubiquitous intelligence
and computing for enabling a smarter world.

Jafferis, N. T., Helbling, E. F., Karpelson, M., & Wood, R. J. (2019). Untethered flight
of an insect-sized flapping-wing microscale aerial vehicle. Nature, 570, 491.

Jen, E. (1986). Invariant strings and pattern-recognizing properties of one-dimensional
cellular automata. Journal of statistical physics, 43, 243–265.

Judy, J. W. (2001). Microelectromechanical systems (mems): fabrication, design and
applications. Smart materials and Structures, 10, 1115.

Kari, J. (2005). Theory of cellular automata: A survey. Theoretical computer science,
334, 3–33.

Kari, J. (2018). Reversible cellular automata: from fundamental classical results to
recent developments. New Generation Computing, 36, 145–172.

Khamassi, I., Sayed-Mouchaweh, M., Hammami, M., & Ghédira, K. (2018). Dis-
cussion and review on evolving data streams and concept drift adapting. Evolving
systems, 9, 1–23.

Krempl, G., Žliobaite, I., Brzeziński, D., Hüllermeier, E., Last, M., Lemaire, V., Noack,
T., Shaker, A., Sievi, S., Spiliopoulou, M., & Stefanowski, J. (2014). Open chal-
lenges for data stream mining research. SIGKDD Explor. Newsl., 16, 1–10.

Kuncheva, L. I. (2004). Classifier ensembles for changing environments. In Interna-
tional Workshop on Multiple Classifier Systems (pp. 1–15). Springer.

Laney, D. (2001). 3d data management: Controlling data volume, velocity and variety.
META group research note, 6, 1.

Lange, S., & Zilles, S. (2003). Formal models of incremental learning and their analy-
sis. In Proceedings of the International Joint Conference on Neural Networks, 2003.
(pp. 2691–2696). IEEE volume 4.

Langton, C. G. (1986). Studying artificial life with cellular automata. Physica D:
Nonlinear Phenomena, 22, 120–149.

Lent, C. S., Tougaw, P. D., Porod, W., & Bernstein, G. H. (1993). Quantum cellular
automata. Nanotechnology, 4, 49.

34

Lobo, J. L., Del Ser, J., Bifet, A., & Kasabov, N. (2020). Spiking neural networks and
online learning: An overview and perspectives. Neural Networks, 121, 88–100.

Losing, V., Hammer, B., & Wersing, H. (2018). Incremental on-line learning: A review
and comparison of state of the art algorithms. Neurocomputing, 275, 1261–1274.

Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zhang, G. (2018). Learning under concept
drift: A review. IEEE Transactions on Knowledge and Data Engineering, .

Manyika, J., Chui, M., Bisson, P., Woetzel, J., Dobbs, R., Bughin, J., & Aharon, D.
(2015). Unlocking the potential of the internet of things. McKinsey Global Institute,
.

Minku, L. L., White, A. P., & Yao, X. (2009). The impact of diversity on online
ensemble learning in the presence of concept drift. IEEE Transactions on knowledge
and Data Engineering, 22, 730–742.

Montiel, J., Read, J., Bifet, A., & Abdessalem, T. (2018). Scikit-multiflow: a multi-
output streaming framework. The Journal of Machine Learning Research, 19, 2915–
2914.

Nebro, A. J., Durillo, J. J., Luna, F., Dorronsoro, B., & Alba, E. (2009). Mocell: A
cellular genetic algorithm for multiobjective optimization. International Journal of
Intelligent Systems, 24, 726–746.

Neumann, J., Burks, A. W. et al. (1966). Theory of self-reproducing automata volume
1102024. University of Illinois Press Urbana.

Niccolai, L., Bassetto, M., Quarta, A. A., & Mengali, G. (2019). A review of smart dust
architecture, dynamics, and mission applications. Progress in Aerospace Sciences, .

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V. et al. (2011). Scikit-learn: Machine
learning in python. Journal of machine learning research, 12, 2825–2830.

Pourkashani, M., & Kangavari, M. R. (2008). A cellular automata approach to detecting
concept drift and dealing with noise. In 2008 IEEE/ACS International Conference
on Computer Systems and Applications (pp. 142–148). IEEE.

Raghavan, R. (1993). Cellular automata in pattern recognition. Information Sciences,
70, 145–177.

Ramos, V., & Abraham, A. (2003). Swarms on continuous data. In The 2003 Congress
on Evolutionary Computation, 2003. CEC’03. (pp. 1370–1375). IEEE volume 2.

Read, J., Bifet, A., Pfahringer, B., & Holmes, G. (2012). Batch-incremental versus
instance-incremental learning in dynamic and evolving data. In International sym-
posium on intelligent data analysis (pp. 313–323). Springer.

35

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should i trust you?: Explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD interna-
tional conference on knowledge discovery and data mining (pp. 1135–1144). ACM.

Ultsch, A. (2002). Data mining as an application for artificial life. In Proc. Fifth
German Workshop on Artificial Life (pp. 191–197). Citeseer.

Warneke, B., Last, M., Liebowitz, B., & Pister, K. S. (2001). Smart dust: Communi-
cating with a cubic-millimeter computer. Computer, 34, 44–51.

Watrous, J. (1995). On one-dimensional quantum cellular automata. In Proceedings of
IEEE 36th Annual Foundations of Computer Science (pp. 528–537). IEEE.

Webb, G. I., Hyde, R., Cao, H., Nguyen, H. L., & Petitjean, F. (2016). Characterizing
concept drift. Data Mining and Knowledge Discovery, 30, 964–994.

Widmer, G., & Kubat, M. (1996). Learning in the presence of concept drift and hidden
contexts. Machine learning, 23, 69–101.

Wolfram, S. (1984). Cellular automata as models of complexity. Nature, 311, 419.

Wolfram, S. (2002). A new kind of science volume 5. Wolfram media Champaign, IL.

Wolfram, S. (2018). Cellular automata and complexity: collected papers. CRC Press.

Xhafa, F., Alba, E., Dorronsoro, B., Duran, B., & Abraham, A. (2008). Efficient batch
job scheduling in grids using cellular memetic algorithms. In Metaheuristics for
Scheduling in Distributed Computing Environments (pp. 273–299). Springer.

Zenil, H., Kiani, N. A., Zea, A. A., & Tegnér, J. (2019). Causal deconvolution by
algorithmic generative models. Nature Machine Intelligence, 1, 58.

Žliobaitė, I., Pechenizkiy, M., & Gama, J. (2016). An overview of concept drift ap-
plications. In Big data analysis: new algorithms for a new society (pp. 91–114).
Springer.

36

	1 Introduction
	2 Related Work
	2.1 The Limelight Shone Down on Cellular Automata
	2.2 Foundations of Cellular Automata
	2.3 Cellular Automata in Pattern Recognition
	2.4 Cellular Automata for Stream Learning

	3 Proposed Approach: LUNAR
	3.1 Adapting Cellular Automata for Incremental Learning
	3.2 LUNAR: a sCA with Drift Detection and Adaptation Abilities

	4 Experimental Setup
	4.1 First Experiment: Addressing RQ1 and RQ2 with sCA
	4.2 Second Experiment: Addressing RQ3 with LUNAR

	5 Results and Analysis
	5.1 RQ1: Does sCA act as a real incremental learner?
	5.2 RQ2: Can sCA successfully adapt to evolving conditions?
	5.3 RQ3: Is LUNAR competitive in comparison with other consolidated OLMs of the literature?
	5.4 Final Observations, Remarks and Recommendations

	6 Conclusions and Future Work

