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Abstract

It is widely known that there is a lot of useful information hidden in big data, leading to a new saying that ’data is money.” Thus,
it is prevalent for individuals to mine crucial information for utilization in many real-world applications. In the past, studies have
considered frequency. Unfortunately, doing so neglects other aspects, such as utility, interest, or risk. Thus, it is sensible to discover
high-utility itemsets (HUIs) in transaction databases while utilizing not only the quantity but also the predefined utility. To find
patterns that can represent the supporting transaction, a recent study was conducted to mine high utility-occupancy patterns whose
contribution to the utility of the entire transaction is greater than a certain value. Moreover, in realistic applications, patterns may not
exist in transactions but be connected to an existence probability. In this paper, a novel algorithm, called High-Utility-Occupancy
— Pattern Mining in Uncertain databases (UHUOPM), is proposed. The patterns found by the algorithm are called Potential High
(a )] Utility Occupancy Patterns (PHUOPs). This algorithm divides user preferences into three factors, including support, probability,
D and utility occupancy. To reduce memory cost and time consumption and to prune the search space in the algorithm as mentioned

{ above, probability-utility-occupancy list (PUO-list) and probability-frequency-utility table (PFU-table) are used, which assist in

() providing the downward closure property. Furthermore, an original tree structure, called support count tree (SC-tree), is constructed

—as the search space of the algorithm. Finally, substantial experiments were conducted to evaluate the performance of proposed
«—| UHUOPM algorithm on both real-life and synthetic datasets, particularly in terms of effectiveness and efficiency.

Keywords: utility mining, utility occupancy, uncertain data, probability, potential pattern.

1. Introduction

With the prevalence of Internet of Things (IoTs) technology,
information sensing equipment (such as sensors, RFID tags,
and so on) always generate massive amounts of data per sec-
ond. It is essential for humans to discover hidden and useful

> information from this rich data. Agrawal ef al. [2]] first advo-

cated the pioneering Apriori algorithm to level-wisely discover
frequent patterns from a precise database. Unfortunately, this
method traverses the database multiple times and generates a
host of candidate itemsets, which leads to too much memory
and consumption during execution. Han et al. [15]] further pre-
sented the FP-growth algorithm and invented a novel tree struc-
ture, named FP-tree, with which no candidates are generated.
In recent decades, a multitude of investigators have has-
tened to improve data mining algorithms due to only finding
limited interestingness measures, for example, frequency or sup-
port. However, these are insufficient because every object or
item is actually unequal in the final analysis. Other preferences,
like the profit, cost, risk, and weight [10l 23]], have increasingly
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been studied, and they allow more valuable information to be
discovered than the previous support-based mining algorithms.
The utility-driven mining framework such as high-utility item-
set mining (HUIM) model [4} 37] is thus proposed. HUIM
considers the unit utility (external utility) and quantity (internal
utility) of objects or items. Based on these two factors, it is easy
to calculate the utility of itemsets. If the derived utility value
is greater than a defined minimum utility threshold in advance,
then the itemsets can be called high-utility itemsets (HUIs). Af-
ter that, Liu et al. [27] designed the two-phase model in which
the main emphasis is to find the upper bound of the utility of
itemsets and then trim most of the unqualified itemsets without
further calculating their supersets. Other utility-based mining
algorithms, such as HUP-growth [19], UP-growth [34], HUI-
Miner [26]], CoUPM [6]], ProUM [13], and HUSP-ULL [14]
have also been proposed to deal with different mining tasks.
Up to now, some studies of privacy-preserving utility mining
also have been addressed and reviewed in prior work [7]].

First, Tang et al. [33] creatively proposed the concept of oc-
cupancy, which is the ratio of the number of items in the item-
set to the one in the transaction, and considered it a dominant
factor. Unfortunately, it could not help solve the problem of
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profit and utility. To address this issue, Shen et al. [32] blended
the concepts of occupancy and utility, and then presented util-
ity occupancy with the OCEAN algorithm, which is used to
find patterns on behalf of the relative supporting transactions in
the utility ratio. However, this utility-driven algorithm does not
completely find the patterns that meet the requirements. Gan
et al. [12] put forward a novel algorithm, called high utility-
occupancy pattern mining (HUOPM) algorithm. It can avoid
the errors in the OCEAN algorithm [32] and uses two novel
structures to prune the search space. Finding qualified utility
occupancy patterns has a wide range of applications in real life,
especially in the era of rapid information development. For in-
stance, Alipay analyzes the consumption records of consumers
on various online platforms, such as Taobao and Meituan, and
calculates the proportion of goods consumed in the record to
obtain products that can represent the corresponding trade and
thus gain consumer spending habits to recommend products to
consumers based on their preferences.

The algorithms mentioned above are all based on precise
databases. Conversely, as a result of noisy data sources or fail-
ure of data transmission, losing some data is unavoidable and
triggers uncertainty in databases [[1]. Therefore, it is difficult
to apply these existing algorithms to handle uncertain database.
Uapriori [S]] was the first algorithm to discover frequent item-
sets from uncertain databases. It mainly adopts a generate-
and-test mechanism. However, it is relatively unsatisfactory
because of memory space consumption. Subsequently, an ap-
proach without generating candidates by utilizing a UFP-tree
structure was introduced [17]. Utility-based mining in uncer-
tain databases is also indispensable. For example, the upper-
bound-based PHUI-UP [20]] algorithm and PU-list-based PHUI-
List algorithm [20] were designed to seek out potential high-
utility patterns in uncertain databases. PHUI-UP adopts a hier-
archical strategy and it depends on multiple scanning the database
and generates a large number of candidate itemsets during the
mining process. PHUI-List uses a vertical structure to store
data, and the pruning strategy mentioned in this algorithm can
speed up the mining process.

So far, decision-makers can not find out existing algorithms
for analyzing some complicated data with uncertainty and re-
vealing high utility-occupancy patterns. To address this issue,
in this paper we focus on the need for combining pattern min-
ing, utility occupancy, and uncertain databases. Thus we intro-
duce a novel algorithm, called High Utility-Occupancy Pattern
Mining in Uncertain databases (UHUOPM for short). Three
factors are involved in this algorithm, namely, frequency, proba-
bility, and utility occupancy. Among them, frequency is mainly
applied to distinguish the number of occurrences of the pattern,
probability is the chance of appearing in the existing database,
and utility occupancy is used to assess the contribution of se-
lected patterns to the supporting transactions. The main contri-
butions of this paper can be summarized as follows:

e This paper presents an efficient UHUOPM algorithm aimed
at discovering potential high utility-occupancy patterns
from uncertain databases. To the best of our knowledge,
this is the first study to address the problem of utility-

driven exploiting high utility-occupancy patterns in un-
certain data.

e To reduce the amount of access to the database, two list
structures, named probability utility occupancy list (PUO-
list) and probability frequency utility table (PFU-table),
are constructed.

e Moreover, several pruning strategies are proposed to re-
duce the search space. A concept called the remaining
utility occupancy is adopted to calculate the overestimated
upper bound of patterns since the utility occupancy does
not hold the downward closure property.

o To evaluate the performance of the compared algorithms,
subsequent experiments were conducted on both real-life
and synthetic datasets. The experiments show that sev-
eral pruning strategies can effectively eliminate most of
the unqualified patterns and improve the performance of
the designed algorithm in terms of memory consumption
and runtime.

The remainder of this paper is organized as follows: Related
work is briefly introduced in Section[2] To better explain the al-
gorithm, some preliminaries are illustrated in Section[3] In Sec-
tion ] the UHUOPM algorithm and several pruning strategies
are introduced in detail. Furthermore, to verify the performance
of the proposed algorithm, the experiments that were conducted
are described in Section[5] At last, a summary is given and fu-
ture works are discussed in Section[6l

2. Related Work

The related work consists of two areas, high-utility pattern
mining and interesting pattern mining in uncertain databases.
Details of the current developments and advances are presented
below.

2.1. High-utility pattern mining

Data mining is a complex process of extracting and mining
unknown and valuable patterns or laws from a large amount of
data. Utility-driven mining is a branch of data mining, which
focus on discovering mining patterns with high utility. In support-
based pattern mining algorithms, information discovery merely
needs to extract high-frequency patterns from the binary trans-
action database [3] 29]. Here, whether a pattern appears in a
transaction is a binary judgment. However, in real life, an item
will appear more than once in a transaction and the frequency
of the occurrence alone is not enough to measure how much
utility a pattern brings to the supermarket or business company.
Utility-driven pattern mining [7, (8} [10] combines external util-
ity with local utility (i.e., the quantity of patterns in relative
transactions) to calculate the utility of pattern. Provided that its
overall utility value is greater than a predefined minimum utility
threshold, the pattern is considered to be a high-utility pattern.
Chan et al. [4] designed a novel framework that considers not
only the positive utility but also the negative utility to discover
the top-k high-utility patterns. Yao et al. [38] formally defined



the concept of utility mining. Through this, profitable patterns
can be found by combining external and internal utility. More-
over, a mathematical model was proposed to predict the util-
ity upper bounds of k-itemset through a qualified k-/-itemset.
Liu et al. [27] then designed a transaction-weighted utiliza-
tion model to unveil qualified patterns by taking advantage of
transaction-weighted downward closure property to prune the
inefficient patterns. Next, Liu ef al. [26] developed a more
efficient algorithm named HUI-miner. This algorithm adopts
the utility-list structure that contains the internal utility and re-
maining utility of the pattern in the supporting transactions. The
upper bound of a pattern can be directly calculated by consider-
ing the information of its parent-node and parent-node’s sibling
nodes. If the utility of a pattern is less than the given defined
minimum utility threshold, then the extension of this pattern can
be directly pruned. Currently, the issues of HUIM has been ex-
tensively studied, such as ACO-based approach of HUIM [36],
mining high-utility association rules [28], HUIM with multiple
minimum utility thresholds [25] [16], HUIM over data streams
[30]], and so on. While considering sequential data, the topic
of high-utility sequential pattern mining has also been studied
with methods like USpan [39], ProUM [13], and HUSP-ULL
[14]. Several studies of utility mining have been introduced
to improve the mining effectiveness with constraints of various
discount strategies [22]] and discriminative patterns [21]. Devel-
oping effective and efficient algorithms for mining high-utility
patterns is an active research area, and more recent studies can
be referred to in the review literature [10].

When the utility contribution ratio of a pattern is consid-
ered, the above-mentioned algorithms are not applicable. Tang
et al. [33] explained the concept of occupancy by introducing
an application called investment portfolio recommendation and
accordingly manifested a dominant and frequent itemset min-
ing algorithm. Unfortunately, occupancy is merely based on
the number of appearances of the pattern, and it cannot be ap-
plied to the range of utility. Subsequently, Shen et al. [32]
proposed an OCEAN algorithm in which the utility occupancy
is defined as the utility share of a pattern in supporting trans-
actions. Nevertheless, this algorithm suffers from some short-
comings. Among them, the fatal disadvantage is that it can not
discover the complete eligible patterns. To overcome that prob-
lem, Gan et al. [12] proposed two new data structures and the
HUOPM algorithm. In HUOPM, the utility occupancy of the
pattern X in a supporting transaction is defined as the utility of
pattern X divided by the total utility in the transactions, and the
utility occupancy of X is the sum of each utility occupancy in
all the supported transactions. This qualified pattern is said to
be a high utility-occupancy pattern if the value obtained is no
less than the minimum thresholds given.

2.2. Interesting pattern mining in uncertain data

Due to sensor or network failure when collecting data in
the real world, it is difficult to detect accurate or complete data.
However, most algorithms have a preference for precise data
and do not consider uncertain data. The above algorithms are
all aimed at handling precise data. Therefore, it is essential to
develop some algorithms to effectively discover useful patterns

in uncertain databases [[1]. Chui ez al. [3] first introduced a pio-
neering work to mine qualified frequent patterns in an uncertain
database, and their Apriori-like UApriori algorithm adopts a hi-
erarchical search measure, similar to the Apriori algorithm [2],
by comparing thresholds of support count and the probability
to delete useless itemsets. The UApriori algorithm was opti-
mized by Leung et al. [17]] using an extended frequent pattern
tree structure. This method does not generate candidate item-
sets and greatly improves the execution time and the mining
performance. After that, Lin et al. [18] developed an algo-
rithm based on a tree structure, called CUFF-tree to efficiently
mine frequent patterns. In addition to mining frequent patterns
in uncertain databases, it is also important to extract weighted
frequent patterns [[L1, 23] or high-utility patterns [20, 24] in
uncertain databases. Lin et al. [20] proposed a novel frame-
work, which is the potential high-utility itemset mining model.
Several efficient algorithms, named PHUI-UP [20], PHUI-List
[20], MUHUI [24], CPHUI-List [35]], and HUPNU [9], were
developed to find interesting patterns with both high utility and
high probability. To summarize, the problem now is that ac-
cording to what has been learned currently, 1) no work has
utilized the concept of utility occupancy and uncertainty to-
gether to discover high utility-occupancy patterns in uncertain
databases. 2) Besides, the measure of utility-occupancy is dif-
ferent from that of utility, in terms of definition, upper bound,
and pruning strategies. Therefore, this paper is aimed at ad-
dressing this challenging task.

3. Preliminary and Problem Statement

To describe the proposed algorithm for finding potential
high utility-occupancy patterns in the given databases, we used
the uncertain database that is shown in Table[I] which is made
up of ten transactions and five items that are distinct to each
other. There are four parts to each entry: the transaction iden-
tifier, purchased items, number of relative items, and proba-
bility of each item. Let I = {iy, i3, ..., iy} be a collection of
items; and let D = {T'|, T, ..., T,;} be an uncertain quantitative
database, where in supporting transactions, such as T, each
item i, consists of three parts (the item name, the number of
occurrences q(i., Ty) and the corresponding probability of oc-
currence p(i., Tx)). The sum of the utility of each transaction is
tu. Table 2] shows the utility and profit of each item, which are
manually defined. Table[T]and Table 2] are taken as an example
to explain the proposed algorithm below.

Definition 1 (support count). Supposing thatin a given database,

several transactions contain itemset X, that is, itemset X appears
in these transactions, and then the number of occurrences is
called SC (support count) and denoted as SC(X) [2, 15]. Then,
the transactions that meet the conditions are put into a collec-
tion Iy, and thus the equation SC(X) = |['x| can be obtained.
The pattern X is considered a frequent pattern if and only if
SC(X) is equal or greater than a predefined minimum support
threshold a.



Table 1: Example of an uncertain quantitative database
tid | Transaction (item, quantity, probability) | fu

T, (@2, 0.6} {c:4, 0.8) {d:7, 0.5} $65
T> (b:2,0.7} {c:3, 0.4} $37
T, {a:3,0.6) (b:2, 0.6} {c:1, 0.9} {d:2,0.8) | $38
T, {b:4, 0.5} {d3, 0.8} $11

{a:1,0.9} {b:3, 0.7} {c:2, 0.9}

Ts {d:5, 0.6} {e:1, 0.8} $49
Ts {c:2, 0.9} {e:4, 0.8} $58
T, {¢:2,0.4} {d:1, 0.9} $23
T {a:3, 0.6} {b:1, 0.8} {d:2, 0.8} {e:4, 0.5} $61
T {a:2, 0.6} {c:4, 0.5} {d:1, 0.3} $59
T {c:3, 0.6} {e:1, 0.7} $42

Table 2: Unit utility of each item

Item | Utility ($)
a 7
b 2
c 11
d 1
e 9

Example 1. In Tablel[l} it can be seen that pattern (b) appears
in transaction T,, T3, Ty, Ts, and Tg, respectively. Therefore, it
can be concluded that SC(b) = 5. Similarly, SC(bc) = 3.

Definition 2 (utility calculation). As shown in Table E], each
item corresponds to a certain unit utility in the database. It
represents the degree of preference of users for the product or
the importance of the commodity as considered by experts. If
p(i.) denotes the unit utility of each item, then the utility of the
pattern u(i., Ty) = p(i.) X q(i., Ty), where item i, exists in the
transaction 7. The utility of itemset X in a supporting transac-
tion can be expressed as u(X, Tx) = X exnaxcr, u(ij, Tx). More-
over, the utility of X in a given database D is defined as u(X)
= Y.xcrarep WX, Ty). Finally, the transaction utility (fu) is de-
fined as the sum of the utility of all the items in this transaction.

Example 2. For example, u(b) = u(b, T») + u(b, T3) + u(b, T4)
+ u(b, Ts) + u(b,Tg) = $4 + $4 + $8 + $6 + $4 = $26. u(bc)
= u(be, Ty) + u(bc, T3) + u(be, Ts) = $37 + $15 + $28 = $80.
Thus, tu(Ty) = u(a, Ty) + u(c,Ty) + u(d, Ty) = $14 + $44 + $7
= $65.

Definition 3 (utility occupancy [12,32]). In a given transac-
tional database, the utility contribution rate of an itemset in a
database is also very significant, which is called the utility oc-
cupancy. The utility occupancy of an itemset X in the relative
supporting transaction Ty is expressed as:

M(X, Tk)

uo(X,Ty) = (T

ey

Like the definition of utility, the calculation formula of utility
occupancy of itemset X in a database is defined as:

2 xcront,en U0(X, Ty)
|I'x| ’

uo(X) = @

where ['x is a collection of transactions containing itemset X,
and |I'x| is the length of the collection.

Example 3. For example, according to Definition 2] it can ob-
tained that tu(T,) = $37, tu(T3) = $38, tu(Ty) = $11, tu(Ts)
= $49, and tu(Tg) = $61. Therefore, it is simple to calculate
uo(b), which is first to compute the value of u(b, T»)/tu(T,) +
u(b, T3)/tu(T3) + u(b, T4)/tu(T4) + u(b, Ts)/tu(Ts) + u(b, Tg)/tu(Tg)
and then divide this value by 5. Finally, it can be calculated that
the final result is approximately 0.2257. Similarly, uo(bc) can
be calculated as 1.6553.

Definition 4. This paper focuses on situations with uncertain
databases, where the probability of data is used to represent the
uncertainty. pro(X) represents the probability of itemset X in
the corresponding transaction, and it can be denoted as pro(X)
= 22 T1ex P(xi, Tp) [20]. In the UHUOPM model, the possi-
bility of a pattern is defined as pro(X) = Y xcr,ar.ep PX, Th).

Example 4. For example, pro(b) = p(b, T») + p(b, T3) + p(b, T4)
+ p(b,Ts) + p(b,Tg) = 0.7 + 0.6 + 0.5 + 0.7 + 0.8 = 3.3,
pro(bc) = p(be, Tr) + p(be, T3) + p(be, Ts) + p(be, Tg) = 0.28
+0.54 + 0.63 = 1.45.

Definition 5. Given an uncertain database, if the support of
an itemset X is no less than the predefined minimum support
threshold «, the utility occupancy is no less than the minimum
utility occupancy threshold 3, and the probability is equal to or
greater than the predefined minimum probability threshold vy,
then it can be called a potential high utility-occupancy pattern
(PHUOP). These thresholds are flexibly set according to the re-
quirements of decision-makers based on their prior knowledge
and interest.

Example 5. For example, based on the results obtained above,
it is not difficult to obtain that SC(b) = 5, SC(bc) = 3, uo(b)
= 0.2257, uo(bc) = 1.6553, pro(b) = 3.3, and pro(bc) = 1.45.
Let a be 0.3, B be 0.3, and y be 0.05. After comparing each
value with the corresponding threshold, we have that uo(b) is
less than B. Thus, the itemset b is not a PHUOP.

Definition 6. Supposing that the items in the database are ar-
ranged in a certain order, such as alphabetical order or TWU-
ascending order, then there is no harm in reordering the items
in the database in support of ascending order and expressing
this order with the symbol <.

Example 6. For example, in the above database, the support
counts of each item can be easily obtained, and they are S C(a):
5, SCb): 5, SC(c): 8 SC(d): 7, and SC(e): 4. Since SC(e) <
SC(a) < SC(b) < SC(d) < SC(c) holds, the support-ascending
orderise<a<b<d<c.

Problem Statement. The main goal of this paper is to first
give an uncertain quantitative database and then discover in-
teresting patterns that satisfy the conditions in which the sup-
port count is no less than the minimum support threshold «,
the utility occupancy value is no less than the minimum util-
ity occupancy threshold 3, and the probability value that exists



in the database is equal or greater than the minimum probabil-
ity threshold y. It is obvious that the task of mining PHUOPs
depends upon three different parameters: a, 5, and vy.

4. Proposed Algorithm for Mining PHUOPs

In this section, two list-based structures, called probability
utility occupancy list (PUO-list) and probability frequency util-
ity table (PFU-table), are used respectively to store information
in the database. They can reduce the execution time required
for the database to be accessed and processed. Furthermore,
by judging three elements, the support count, utility occupancy,
and probability, the eligible patterns are selected.

4.1. Two data structures

Previous level-wise works of pattern mining (e.g., the well-
known Apriori algorithm [2]]) have adopted a hierarchical search
strategy, and each level of pattern generation requires one ac-
cess to the database, which greatly wastes memory space and
increases execution time. The list-based HUIM algorithms (e.g.,
HUI-Miner [26] and HUOPM [12]) creatively store the hori-
zontal list structure and maintain the mining information re-
quired for discovering high-utility patterns. In this case, travers-
ing the database many times is sufficient. Inspired by the idea
of a vertical list structure (note that there are two common data
structures - horizontal [2] vs vertical [40]), this paper proposes
two list-based structures to store the necessary information for
mining potential high utility-occupancy patterns. The two list-
based structures are described in detail below.

Definition 7 (remaining utility occupancy [12,32]). Assume
that all items in the database are sorted by <. The remaining
utility occupancy (ruo) of an itemset X in a supporting trans-
action Ty is defined as the sum of the utility occupancy of all
items succeeding X in this transaction and denoted as:

ruo(X, Ty) = Z uo(i, Ty). 3)

X AX<iNET}

Let I'x is a collection of transactions containing itemset X. The
remaining utility occupancy of an itemset X in a database D is
defined as:

2xcrintiep THo(X, Ty)

ruo(X) = T . “4)

Definition 8 (PUO-list). Inspired by the UO-list [12], the prob-
ability utility occupancy list (PUO-list) is a collection of tu-
ples where an itemset X appears. It includes four elements
(tid, pro, uo, ruo), which are an identifier of the transaction (tid),
the probability value (pro), the utility occupancy value (uo),
and the remaining utility occupancy value (ruo) of itemset (X).
Among them, (pro) is the occurrence probability of itemset (X),
(uo) 1is the proportion of utility in the transaction, and (ruo) in
the given order database is the proportion of sum of the utility
of all the items after itemset (X) in this transaction.

Example 7. For example, each item in every transaction is first
reordered in support count ascending order, as shown in the
Table[3| Then, a PUO-list using itemset (e) as an example can
be considered, where (e) appears in transactions 5, 6, 8, and
10. The probability of (e) is 0.8, the utility occupancy is 0.1837,
and the remaining utility occupancy is 0.8163, which appears
in transaction 5. Consequently, one tuple in the PUO-list of (e)
can be written as (5,0.8,0.1837,0.8163). The other tuples of
(e) are then calculated and listed in the same way. Finally, the
PUO-lists of each item in Table[3|are listed in Fig.

Table 3: Revised uncertain quantitative database
tid | Transaction (item, quantity, probability) |

T {a:2,0.6} {d:7, 0.5} {c:4, 0.8} $65
T> (b:2, 0.7} {c:3, 0.4} $37
T {a:3, 0.6} (b:2, 0.6} {d:2, 0.8} {c:1, 0.9} | $38
T, {b:4, 0.5} {d3, 0.8} $11

{e:1, 0.8} {a:1, 0.9} {b:3, 0.7}

Ts {d:5, 0.6} {c:2, 0.9} $49
Ts {e:4, 0.8} {c:2, 0.9} $58
T, {d:1, 0.9} {c:2, 0.4} $23
Ts {e:4, 0.5} {a:3, 0.6} {b:1, 0.8} {d:2, 0.8} $61
Ty {a:2, 0.6} {d:1, 0.3} {c:4, 0.5} $59
T {e:1,0.7} {c:3, 0.6} $42
(€) (@
tid pro uo ruo tid pro uo ruo
Ts | 0.8 |0.1837|0.8163 T, | 05 |0.1077 | 0.6769
Ts | 0.8 |0.6207 | 0.3793 T, | 0.8 |0.0526|0.2895
Te | 05 |0.5902 | 0.4098 T, | 08 02727 o0
T | 07 [0.2143 07857 Ts | 0.6 | 0.102 | 0.4490
T, | 0.9 |0.0435] 0.9565
Te | 0.8 [00328| 0
(@)
w0 oo | w -~ T, | 0.3 |0.0169 | 0.7458
T, | 0.6 |0.2154|0.7846
T, | 0.6 |05526|0.4474
Ts | 0.9 |0.1429 | 0.6735 ©
tid pro uo ruo
Ty | 06 |0.3443 | 0.0656 T o8 [oeres| o
T, | 0.6 |0.2373]0.7627 T T oa [ose| o
T, | 09 [02895| 0
) Ts | 0.9 | 0449 0
tid | pro | wo ruo Te | 09 (03793 0
T, | 0.7 [0.1081 | 0.8919 T, | 04 |[0.9565 0
T, | 06 |0.1053 03421 Ty | 05 07458 0
T, | 05 |0.7273] 02727 Ty | 06 [ 07857 0
Ts | 0.7 |0.1224] 05510
Te | 0.8 |0.0328]0.0328

Figure 1: PUO-lists of five items



As shown in the designed PUO-list, it is easy to obtain the
support count, the probability, and utility occupancy informa-
tion of a target itemset in the entire processed database. For
easier calculation, information is extracted from it and put into
the PFU-table, as defined below.

Definition 9 (PFU-table). The information in probability fre-
quency utility table (PFU-table) can be extracted from the PUO-
list, including the itemset name, the number of its supporting
transaction, the probability (pro), the utility occupancy (uo),
and the remaining utility occupancy (ruo). Among them, the
probability of an itemset (X) is the sum of probability in each
transaction that contains it, and the average utility occupancy
of an itemset (X) is equal to the average of effective utility oc-
cupancy in the corresponding PUO-list. Similarly, the average
remaining utility occupancy is equal to the average of all re-
maining utility occupancy of (X).

Example 8. Using the PFU-table of an itemset (b) as an exam-
ple, its construction processes are presented below. Observing
the PUO-list of itemset (b) in Fig. [I} it can be seen that (b)
appears in five transactions, and thus its support count is 5 and
the sum of the probability of (b) appearing in these five trans-
actions is (0.7 + 0.6 + 0.5 + 0.7 + 0.8) = 3.3. The calculation
process of its utility occupancy is (0.1081 + 0.1053 + 0.7273
+ 0.1224 + 0.0328)/5 = 0.2192, and its remaining utility oc-
cupancy is (0.8919 + 0.3241 + 0.2727 + 0.5510 + 0328))5 =
0.4181. Thus, the result of itemset (b) is {sup(b): 5, pro(b): 3.3,
uo(b): 0.2192, ruo(b): 0.4181}. The construction process of (b)
is shown in Fig. 2} and the PFU-tables of all 1-itemsets in Table
Blare shown in Fig. 3]

(b) b)

tid | pro uo ruo sup | pro uo ruo
T 0.7 | 0.1081 | 0.8919 : 0.2192 | 0.4181

Ts 0.6 | 0.1053 | 0.3421

T 0.5 | 0.7273 | 0.2727

Ts 0.7 | 0.1224 | 0.5510

Ty 0.8 | 0.0328 | 0.0328

Figure 2: The PUO-list and PFU-table of itemset (b)

When the PUO-lists and PFU-tables of the 1-itemsets have
been constructed, there is no need to follow these processes to
build them for k-itemsets (k > 1) by rescanning the database.
Instead of traversing the database multiple times, the follow-
ing construction based on the PUO-list and PFU-table of the 1-
itemsets is used, where the required information is already con-
tained. Algorithm 1 shows how to calculate k-itemsets (k > 2)
based on 1-itemsets. At the beginning, an itemset X and two
extensions of it, namely, X, and X, are given, and the order of
a precedes b. A new itemset X, can be obtained by combining
these two extensions. The algorithm also involves a pruning
strategy, which is explained in detail in the next subsection. In

(e) (a)

sup pro uo ruo sup pro uo ruo

4 2.8 | 0.4022 | 0.5978 5 33 | 0.2985| 0.5467
(b) )

sup pro uo ruo sup pro uo ruo

5 33 | 02192 0.4181 7 47 | 0.0898 | 0.4454
(c)

sup pro uo ruo

8 54 | 06468 0

Figure 3: Constructed PFU-tables of all 1-itemsets

Algorithm 1, lines 5 to 16 illustrate two cases of whether X is
an empty set. If X is an empty set (lines 12 to 15), then the
probability of X, is directly multiplied by the probability of X,
and X, appearing in the same transaction. Moreover, its utility
occupancy is the sum of utility occupancy of X, and Xj,, and the
remaining utility occupancy is the same as in the later itemset
w.r.t. the total order. If X is not an empty set (lines 5 to 10), then
the probability of X, should be the probability of X, multiplied
by the probability of X} and then divided by the probability of
X. Besides, the utility occupancy of X, equals X, plus X, and
then subtracts that of X.

4.2. Upper bound on probability and utility occupancy

It is widely known that the Apriori algorithm [2]] has the
downward closure property of support, which means that if a
k-itemset is a frequent pattern, then any of its subsets should
be frequent. On the contrary, if a k-itemset is not a frequent
pattern, then its superset should be not frequent either. Mak-
ing use of this property can greatly reduce the search space and
the execution time in those support-based pattern mining mod-
els. However, this property is not applicable for utility occu-
pancy. For example, when the minimum threshold for utility
occupancy is set to 0.3, the utility occupancy value of item-
set (ab) is 0.4334, which is a high utility-occupancy itemset.
Besides, that value of a is 0.2985, which does not satisfy the
requirements. In general, constructing the two structures of all
the itemsets requires much memory and runtime, which is quite
expensive. Consequently, it is necessary to find the upper bound
on utility occupancy, which is called ¢.

Definition 10 (SC-tree). According to a previous study [31]],
a set-enumeration tree can be constructed and enumerated in
a certain order. In the UHUOPM algorithm, the order of the
ascending support count is taken as the overall order of the set-
enumeration tree, and the full name is Support-Count tree (SC-
tree). A part of this specific tree is shown in Fig. 4}



Algorithm 1 Construct(X, X,, X;)

Input: X, an itemset with its corresponding PUO-list and
PFU-table; X,, the extension of X with an item a; X,, the
extension of X with an item b.

Output: X,.

1: initialize X,;,.PUO « 0, X,;,.PFU « 0;

2: setsupUB = X,.PFU.sup;

3: for each tuple E, € X,,.PUO do

4: if AE, € X,.PUO A E,.tid == E},.tid then

5 if X.PUO # () then

6: search for E € X.PUO, E. tid = E,.tid;

7: E., «— <E,.tid, E,.pro X Ey.pro/E.pro, E,.uo +
Ey.uo - E.uo, Ep.ruo>;

8: Xaup-PFU.pro += E,.pro X Ep.pro/E.pro;
9: Xap.PFU.uo += E,.uo + Ep.uo - E.uo;

10: Xup.PFU.ruo += Ej.ruo;

11: else

12: E. « <E,.tid, E,.pro X Ep.pro, E,.uo + Ej.uo,

Ey.ruo>;

13: X .PFU.pro += E,.pro XEy.pro;

14: X - PFUT .uo += E,.uo + Ep.uo;

15: Xup-PFU.ruo += Ej.ruo;

16: end if

17: X .PUO « X,,, PUO U E;

18: Xap.PFU.sup ++;

19:  else

20: supUB - -;

21: if supUB < a X |D| then

22: return null;

23: end if

24:  end if

25: end for

26: return X,

Figure 4: SC-tree

Lemma 1. For any node X in the SC-tree, the upper bound on
the utility occupancy of its child node Y can be calculated as

b= Diopaxipiriery (40X, Ti) + ruo(X, T} (T2, where |D)| de-
la < |D|

notes the number of transactions in the database and I'x is the
collection of transactions that contain itemset X. Besides, top
and | signify that the values of the utility occupancy are sorted
in descending order, and the top a X |D| values are utilized for
further calculation, in which k is the length of X (a k-itemset).
The detailed proof of this upper bound can be referred to in
prior work [12].

Example 9. For example, consider the node ¢ and its two sub-
sets, ca and cd, in the SC-tree. The utility occupancy of ¢ can
be calculated by Definition[3|and the value is 0.6468. Similarly,
according to Lemma |l| the upper bound on the subset with a
size of 2 with ¢ as the root node can be calculated as 0.3081.
This upper bound is greater than the threshold of utility occu-

pancy.

Lemma 2. Suppose there exists itemset X (containing k items)
and Xy (containing k-1 items) in an uncertain database, and
Xi—1 is a subset of Xy. If Xy is a high probability itemset, then
Xi—1 should be a high probability itemset too. In other words,
the high probability itemset has a downward closure property,
such as pro(Xy) < pro(Xi-1) [20].

Example 10. For example, the probability of node c appearing
in the running example is 5.4 while that of node ca is 2.13. The
former should be greater than or equal to the latter.

4.3. Proposed algorithm and pruning strategy

This section describes the proposed algorithm and the effec-
tive pruning strategies in detail. Given the several parameters
involved, the utilized pruning strategies are mainly based on
support count, probability, and utility occupancy. The adopted
strategies are presented below.

Strategy 1. When depth-first traversing the designed SC-tree
as mentioned above, if the support count of a node X is less
than the user-defined minimum support threshold a multiplied
by the database size, then this node and its descendants can be
directly pruned.

Proof 1. This strategy is based on the Apriori algorithm [2],
and the property can be extracted as SC(X;) < SC(Xi-1). There
is no doubt that if SC(X;_;) < a X |D|, then SC(X;) < a X |D|
and X; can be directly pruned.

Strategy 2. In an SC-tree constructed in < order, if the up-
per bound on utility occupancy of their offspring is calculated
based on a node X, which is less than the user-defined minimum
threshold B, then all the nodes rooted at X as descendant nodes
can be quickly pruned.

Proof 2. After building the corresponding list structures for a
tree node X in SC-tree, the upper bound on utility occupancy of
X can be quickly calculated using Lemmal[l] Since this value is
derived from the utility occupancy and the remaining utility oc-
cupancy, if the upper bound is less than the minimum threshold
B, then there is no need to build the PUO-lists of any descendant
nodes of X.



Algorithm 2 UHUOPM (D, utable, a, B3, y)

Algorithm 3 PHUOP-Search (X, extenOfX, a, B, y)

Input: an uncertain transaction database D, utility table utable,
the minimum support threshold «, the minimum utility oc-
cupancy threshold 83, and the minimum probability thresh-
old .

Output: PHUOPs:.

1: scan D to calculate the SC(i) and pro(i) of each item i € I
and the ru value of each transaction;

2: find I" « {i € [ISC() = a X |D| A pro(i)) =y x|D|};

3: sort I* in the designed total order <, such as ascending sup-
port count;

4: using the total order <, scan D once to build the PUO-list
and PFU-table for each 1-itemi € I*;

5. call PHUOP-Search(¢,I*, a, 3, 7).

6: return PHUOPs

Strategy 3. In the designed SC-tree, if the overall probability
of a pattern X is greater than or equal to the minimum proba-
bility threshold vy, then this pattern is a high probability pattern.
On the contrary, if the value is less than the threshold, then node
X and all nodes with it as the root will be pruned.

Proof 3. Like Strategy [I] based on Lemma [2] we can obtain
pro(Xy) < pro(Xy-1). It is easy to acquire that pro(X;) < y in
the case of pro(Xx-1) <.

Strategy 4. One step closer to Strategy[I| in Algorithm if
the support count that itemset X, holds is less than or equal to
the minimum support threshold a X |D)|, then it is not necessary
to measure its extended itemset X,

Proof 4. The function of Strategy [4]is the same as Strategy
except that Strategy [] strengthens the judgment at the end of
the proposed UHUOPM algorithm.

Feasible strategies for trimming the search space and reduc-
ing the runtime are proposed above. The core processes of the
UHUOPM algorithm are explained according to these proposed
strategies and shown below.

For the UHUOPM algorithm, the processed database with
its utility-table and three parameters are needed in advance.
They are the uncertain quantitative database D, the unit utility
corresponding to each item w.r.t. utable, the minimum support
threshold @, the minimum utility occupancy threshold S, and
the minimum probability threshold y. At the beginning of Al-
gorithm 2, during the first traversal of the database, the support
count and corresponding probability for each item are calcu-
lated. At the same time, the transaction utility (fu) of the trans-
actions are calculated according to Definition 2] which will be
used in the subsequent processes. Then, the 1-itemsets I* whose
support count and probability meet the conditions are filtered
out, and these itemsets in every processed transaction in the as-
cending order of their support counts are reordered. After that,
the database is traversed again to construct the corresponding
PUO-lists and PFU-table for each 1-itemset in /*. After the ini-
tial processes, the next step is to filter out PHUOPs based on
the given conditions. More details are given in Algorithm 3.

Input: an uncertain transaction database D, an itemset X
and its extended itemsets extenOfX, the minimum support
threshold «, the minimum utility occupancy threshold g,
and the minimum probability threshold 7.

Output: PHUOPs:.

1: for each itemset X,, € extenOfX do

2 obtain S C(X,) and uo(X,) from the built X,.PF U,
3 if SC(X,) = ax|D| A pro(X,) =y x|D| then

4 if uo(X,) > S then

5: PHUOPs <« PHUOPs UX,;

6: end if

7 #(X,) « UpperBound(X,.PUO, a);

8 if $(X,) > S then

9 extenOfX, < 0;

10: for each X, € extenOfX that X, < X;, do

11: X < X, U Xp;

12: call Construct(X, X,, Xp,);

13: if X,,.PUO # 0 then

14: if SC(X,p) = aX|D|A pro(Xy) = ¥ X|D] then
15: extenOfX , < extenOfX, U X,,.PUO;
16: end if

17: end if

18: end for

19: call PHUOP-Search(X,, extenOfX,, a, B,7);
20: end if

21:  end if

22: end for

23: return PHUOPs

For Algorithm 3, the input consists of a prefix itemset X,
which is initially a set of extended itemsets extendOfX that is
composed of the combination of X and each of items after it
and the three user-specified thresholds that are used as judg-
ment conditions. The algorithm mainly adopts recursion to
reduce the amount of computation and performs a depth-first
traversal on the SC-tree. For each itemset X, in the extension
of X, it is easy to obtain its support count and probability from
the corresponding PFU-table. If the values of these two param-
eters meet the conditions, then this itemset can participate in
the subsequent calculation. Next, the utility occupancy of X,
is calculated and if it is greater than 7, then, according to the
previous definitions, this itemset is the PHUOP that we want
to discover. On the contrary, if it does not meet the conditions
of utility occupancy threshold, then the upper bound ¢(X,) of
this itemset extension extendOfX is calculated and it is assumed
that this upper bound is greater than 8, which means that ex-
tendOfX , may be a PHUOP. In the next step, each itemset Xj_;
in extendOfX, is combined with the itemset after itself to form
Xy and two lists are accordingly constructed. The specific con-
struction process can be referred to in Algorithm 1. If the newly
constructed itemset meets the two basic conditions of PHUOP
w.r.t. support count and probability, then this itemset can be put
into the set for subsequent iterative processes.

Strategy []is applied in lines 20 to 22 in Algorithm 1. The
support count of the extension of X, should be equal to or less



Algorithm 4 UpperBound (X,.PUO, @)
Input: an uncertain transaction database D, itemset X, and its
corresponding PUO-list, the minimum support threshold a.
Output: the upper bound on X, ¢(X,).
1: sumTopK « 0,$(X,) < 0, Voeeu < 0;
2: calculate (uo(X, Ty) + ruo(X, Ty)) of each tuple from the
built X,.PUO and put them into the set of V,..,;
. sort V., by descending order as V(fccu;
. for k «— 1 to @ x |D| in V., do
sumTopK « sumTopK + Vim [k]1;

: end for Tonk
X sumTop
(X)) = ————
$(Xa) a % |D|

8: return ¢(X,)

than that of X,. Using this condition, whether the extension of
X, can be directly trimmed is determined without calculating
other conditions. Algorithm 4 develops the design upper bound
calculation formula obtained by Lemmall] The entire algorithm
adopts a pruning strategy, which can efficiently prune some un-
promising nodes in the SC-tree.

5. Experiments

This section describes the experiments that were conducted.
The experimental results can be used to determine whether the
performances of the compared algorithms were acceptable (both
efficient and effective) or not. It should be noted that this is
the first paper that combines utility occupancy and uncertainty
embedding in databases to utility-driven discover potential high
utility-occupancy patterns. The OCEAN [32] and HUOPM [12]
methods are closely related to the current research work. OCEAN
is the first algorithm for mining HUOPs, while it cannot dis-
cover the complete final results. Thus, OCEAN is not compared
as the baseline to evaluation the proposed model, and HUOPM
is the best existing algorithm for mining utility-occupancy pat-
terns. In the recent literature, several utility mining methods,
e.g., PHUI-UP [20], PHUI-List [20], CPHUI-List [35], and

MUHUI [24]], have been proposed to deal with uncertain databases.

However, all these methods do not measure the concept of utility-
occupancy. Utility-driven mining aims to explore the interest-
ing patterns by taking utility into account. In addition, utility
and utility-occupancy are two different measures, as mentioned
before.

Therefore, to evaluate whether the proposed algorithm is
acceptable, the proposed UHUOPM algorithm was compared
with the state-of-the-art HUOPM algorithm in terms of runtime,
visited nodes, and the number of derived patterns. Since high
utility-occupancy patterns mining is a relatively novel concept,
there is no other comparison algorithm that can be used in ex-
periments for evaluation the proposed model. We also included
two variants in the comparison to further evaluate the perfor-
mance of the proposed pruning strategies. We call these two
algorithms UHUOPM; (using the pruning strategies 1 and 2)
and UHUOPM; (using the pruning strategies 1 and 3).

5.1. Experimental setup and datasets

All the experimental procedures were written in Java and
the program was ran on a desktop computer. The computer’s
basic configuration included 4GB of memory and 64-bit Win-
dows 7 operating system.

To better evaluate the performance of the compared algo-
rithms, this experiment involved not only realistic datasets but
also artificially synthesized datasets. Both real-life datasets (con-
sisting of retail, mushroom, and kosarak) and the synthesized
dataset (T40I110D100K) were selected for the experiments. These
datasets included sparse, dense, short, and long features, and
the algorithms could be compared in a comprehensive manner.
Among them, the data source of the retail dataset consists the
sales of a retail store in Belgium, which is a sparse dataset. The
mushroom dataset aims to determine whether it is a poisonous
mushroom by judging the 22 characteristics of a mushroom,
which is a dense dataset. The kosarak dataset is longer than
the other two datasets. T40I10D100K is a synthetic dataset.
Sparse means that the number of items in the dataset is small,
the length of the items is short and the dataset contains few
transactions while a dense dataset is the opposite. The main
features of these datasets are described in detail in Tabledl In
this table, |D| represents the number of transactions and || im-
plies the number of distinct items contained in the dataset.

Table 4: Features of the datasets

Datasets |D| || Type
mushroom 8,124 120 dense
retail 88,162 16,470 | sparse
kosarak 990,002 | 41,271 | sparse
T40I1D100K | 100,000 1000 sparse

5.2. Runtime analysis

The runtime of the four algorithms is evaluated below. For
comparison of two factors (utility occupancy and uncertainty),
one is assumed to be fixed and the other one is set differently.
Since the algorithm involves in three parameters, experiments
on the three ingredients needed to be performed separately. For
example, when comparing the effects of utility occupancy, we
needed to set the minimum thresholds of support and probabil-
ity to be constant. It should be noted that the minimum support
threshold is referred to as MS, the minimum utility occupancy
threshold is referred to as MUO, and the minimum probability
threshold is referred to as MP.

The trends of the runtime under the conditions that the sup-
port, utility occupancy, and probability separately changed while
the other two parameters were fixed are respectively shown in
Fig.[5] Fig.[6] and Fig.[7} Since the HUOPM algorithm is based
on an precise dataset, it does not contain probability values.

The UHUOPM algorithm was generally superior to the other
three algorithms in runtime except for on the mushroom dataset,
as shown in Fig. [5] Fig. [6} and Fig. [ This implies that sev-
eral of the strategies proposed in this paper worked well. For
example, as shown inE] (d), B was set to 0.01, vy was 0.001, and
a changed from 0.9% to 1% in increments of 0.02%. It can
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be seen from the figure that the runtime of the HUOPM algo-
rithm was the longest, and the runtime of the UHUOPM algo-
rithm was the shortest. The runtime of the other two versions of
the proposed algorithm were between HUOPM and UHUOPM.
This is due to the lack of probability constraints in HUOPM.
The number of traversed nodes was much more than the other
algorithms, and thus the time consumption was significantly
large. Compared to the UHUOPM algorithm, UHUOPM;, and
UHUOPM,; were not good enough because they used part of the
proposed strategies. They traversed more nodes, and thus their
runtimes were slightly more than the UHUOPM algorithm. As
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shown in Fig. |§Ka), B was setto 0.1, y was 0.01, and a changed
from 9% to 14% in increments of 1%. This figure shows that
the runtime of the UHUOPM, algorithm was the shortest. This
is because the mushroom dataset is very dense, and Strategy
[T and Strategy [3] play an obvious role while Strategy 2] and
Strategy [ had little effect. A similar situation occurred when
the utility occupancy was fixed or the probability was fixed, as
shown in the other datasets. Besides, Fig. [/|depicts the condi-
tion in the runtime when the other parameters were fixed and
the probability varied. No matter how the minimum probabil-
ity threshold varied, the runtime of the HUOPM algorithm was
always stable. This is because the test datasets involved in the
HUOPM algorithm were precise instead of uncertain. In other
words, all the occurrence probabilities of the itemsets processed
by HUOPM were 1.0; thus, its image curve was reasonably a
straight line.

5.3. Visited node analysis

Because the interesting patterns needed to be saved into
the memory during the algorithm execution, although the infor-
mation has developed rapidly in the big data era, many large-
capacity storage media could be found, but the demand for
memory consumption was still large. Hence, for data mining
tasks, it is a common demand to reduce memory usage. This
subsection is mainly used to compare the number of nodes vis-
ited by several algorithms. When each node in the search space
is accessed, the corresponding PUO-list and PFO-table should
be constructed and they need to consume a certain amount of
memory space. Thus, the detailed memory consumption of
these algorithms can be indirectly reflected by measuring the
number of visited nodes. For the convenience of observation,
let the number of nodes visited by the four compared algo-
rithms be Ny, N,, N3, and N4. The experimental comparisons
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are shown in Fig. [8] Fig. 0] and Fig. [I0] respectively.

It is obvious that whether the support, utility occupancy, or
probability varied, the UHUOPM algorithm required less mem-
ory consumption compared to the UHUOPM; and UHUOPM,
algorithms, both of which adopted partial pruning strategies and
had less-visited nodes than that of the state-of-the-art HUOPM
algorithm for the selected four datasets under different charac-
teristics. For example, in Fig. @l (d), @ was set to 0.9%, B was
also set to 0.9%, and y increased from 0.02% to 0.12% in incre-
ments of 0.02%. With the gradual increase of vy, all four poly-
lines show a downward trend, which means that as the value
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of y increased, the constraint of the probability conditions on
the traversal nodes also increased accordingly, which naturally
reduced the number of nodes that met the conditions of derived
interesting patterns. However, without the constraint of prob-
ability, the number of visited nodes in the HUOPM algorithm
was significantly more than that of the UHUOPM algorithm,
and was sometimes even dozens of times.

5.4. Patterns analysis

The PHUOPs mined by the proposed algorithm in the un-
certain datasets are further evaluated in this section. Since no
existing methods have been proposed in the literature for dis-
covering the potential high utility-occupancy patterns from un-
certain datasets, the state-of-the-art HUOPM was chosen for
comparison with the algorithms mentioned in this paper. Al-
though UHUOPM, and UHUOPM, only have some of the prun-
ing strategies, they had the same restrictions on the patterns.
Therefore, they could successfully discover the same number of
target patterns as the UHUOPM algorithm. Based on this, we
only compared the number of patterns found by the HUOPM al-
gorithm and the UHUOPM algorithm on four different datasets
and recorded them as N; and N,, respectively.

A comparison of the number of valid patterns as the a, 3,
and 7y changed is shown in Fig. [TI] Fig. [12] and Fig. [T3]
These figures show that the number of potential high-utility oc-
cupancy patterns found in an uncertain dataset should be less
than the number found in a precise dataset, and sometimes it
could be up to ten times less.

For example, Fig. [T1](a) shows that as the minimum thresh-
old continued to increase, the number of patterns found by both
algorithms constantly decreased. Furthermore, few PHUOPs
were always discovered on the given datasets. Moreover, com-
pared to the HUOPM algorithm, the line chart of the UHUOPM
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algorithm was more stable. This is reasonable because it not
only considers the utility occupancy and support restrictions in
mining PHUOPs but also the role of probability.

6. Conclusion and Future Work

So far, many algorithms have been proposed to solve the
problem of extracting high utility patterns in precise quantita-

tive databases or mining frequent patterns in uncertain databases.
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alyze the performance of the compared algorithms in terms of
runtime, visited nodes w.r.t. memory consumption, and found
patterns. Since this is the first work to find PHUOPs in an un-
certain database, there is still much room for future research
in terms of different constraint-based patterns or other types of
processed data.

Acknowledgment

This work is supported in part by the National Natural Sci-
ence Foundation of China under Grant 61300167 and Grant
61976120, the Natural Science Foundation of Jiangsu Province
under Grant BK20151274 and Grant BK20191445, and the Six
Talent Peaks Project of Jiangsu Province under Grant XYDXXJS-
048.

References

[1] Charu C Aggarwal, Yan Li, Jianyong Wang, and Jing Wang. Frequent
pattern mining with uncertain data. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 29-38. ACM, 2009.

[2] Rakesh Agrawal, Ramakrishnan Srikant, et al. Fast algorithms for mining
association rules. In Proceedings of the 20th International Conference on
Very Large Data Bases, pages 487-499, 1994.



[3]

[4]

[3]

(6]

[7]

[8]

[9]

[10]

(1]

(12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

(22]

Chowdhury Farhan Ahmed, Syed Khairuzzaman Tanbeer, Byeong Soo
Jeong, and Young Koo Lee. Efficient tree structures for high utility pattern
mining in incremental databases. IEEE Transactions on Knowledge and
Data Engineering, 21(12):1708-1721, 2009.

Raymond Chan, Qiang Yang, and Yi-Dong Shen. Mining high utility
itemsets. In Proceedings of the 3rd IEEE International Conference On
Data Mining, pages 19-26. IEEE, 2003.

Chun-Kit Chui, Ben Kao, and Edward Hung. Mining frequent itemsets
from uncertain data. In Pacific-Asia Conference on knowledge discovery
and data mining, pages 47-58. Springer, 2007.

Wensheng Gan, Jerry Chun-Wei Lin, Han-Chieh Chao, Tzung-Pei Hong,
and Philip S Yu. CoUPM: Correlated utility-based pattern mining. In Pro-
ceeding of the IEEE International Conference on Big Data, pages 2607—
2616. IEEE, 2018.

Wensheng Gan, Jerry Chun-Wei Lin, Han-Chieh Chao, Shyue-Liang
Wang, and Philip S Yu. Privacy preserving utility mining: a survey. In
IEEE International Conference on Big Data, pages 2617-2626. IEEE,
2018.

Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh
Chao, Tzung-Pei Hong, and Hamido Fujita. A survey of incremental
high-utility itemset mining. Wiley Interdisciplinary Reviews: Data Min-
ing and Knowledge Discovery, 8(2):e1242, 2018.

Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh
Chao, and Vincent S Tseng. Mining high-utility itemsets with both pos-
itive and negative unit profits from uncertain databases. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining, pages 434-446.
Springer, 2017.

Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh
Chao, Vincent S Tseng, and Philip S Yu. A survey of utility-oriented
pattern mining. /[EEE Transactions on Knowledge and Data Engineering,
(DOI: 10.1109/TKDE.2019.2942594), 2019.

Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh
Chao, Jimmy Ming-Tai Wu, and Justin Zhan. Extracting recent weighted-
based patterns from uncertain temporal databases. Engineering Applica-
tions of Artificial Intelligence, 61:161-172, 2017.

Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh
Chao, and Philip S Yu. HUOPM: High utility occupancy pattern mining.
IEEE Transactions on Cybernetics, 50(3):1195-1208, 2020.

Wensheng Gan, Jerry Chun-Wei Lin, Jiexiong Zhang, Han-Chieh Chao,
Hamido Fujita, and Philip S Yu. ProUM: High utility sequential pattern
mining. In Proceedings of the IEEE International Conference on Systems,
Man, and Cybernetics, pages 767-773. IEEE, 2019.

Wensheng Gan, Jerry Chun-Wei Lin, Jiexiong Zhang, Philippe Fournier-
Viger, Han-Chieh Chao, and Philip S Yu. Fast utility mining on se-
quence data. [EEE Transactions on Cybernetics,, (DOIL: 10.1109/T-
CYB.2020.2970176), 2020.

Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao. Mining frequent
patterns without candidate generation: A frequent-pattern tree approach.
Data Mining And Knowledge Discovery, 8(1):53-87, 2004.

Srikumar Krishnamoorthy. Efficient mining of high utility itemsets with
multiple minimum utility thresholds. Engineering Applications of Artifi-
cial Intelligence, 69:112-126, 2018.

Carson Kai-Sang Leung, Mark Anthony F Mateo, and Dale A Brajczuk.
A tree-based approach for frequent pattern mining from uncertain data.
In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 653-661. Springer, 2008.

Chun-Wei Lin and Tzung-Pei Hong. A new mining approach for un-
certain databases using cufp trees. Expert Systems with Applications,
39(4):4084-4093, 2012.

Chun-Wei Lin, Tzung-Pei Hong, and Wen-Hsiang Lu. An effective tree
structure for mining high utility itemsets. Expert Systems with Applica-
tions, 38(6):7419-7424, 2011.

Jerry Chu-Wei Lin, Wensheng Gan, Philippe Fournier-Viger, Tzung-Pei
Hong, and Vincent S Tseng. Efficient algorithms for mining high-utility
itemsets in uncertain databases. Knowledge-Based Systems, 96:171-187,
2016.

Jerry Chun-Wei Lin, Wensheng Gan, Philippe Fournier-Viger, Tzung-Pei
Hong, and Han-Chieh Chao. FDHUP: Fast algorithm for mining dis-
criminative high utility patterns. Knowledge and Information Systems,
51(3):873-909, 2017.

Jerry Chun-Wei Lin, Wensheng Gan, Philippe Fournier-Viger, Tzung-Pei

13

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[33]

[34]

[40]

Hong, and Vincent S Tseng. Fast algorithms for mining high-utility item-
sets with various discount strategies. Advanced Engineering Informatics,
30(2):109-126, 2016.

Jerry Chun-Wei Lin, Wensheng Gan, Philippe Fournier-Viger, Tzung-Pei
Hong, and Vincent S Tseng. Weighted frequent itemset mining over un-
certain databases. Applied Intelligence, 44(1):232-250, 2016.

Jerry Chun-Wei Lin, Wensheng Gan, Philippe Fournier-Viger, Tzung-Pei
Hong, and Vincent S Tseng. Efficiently mining uncertain high-utility
itemsets. Soft Computing, 21(11):2801-2820, 2017.

Jerry Chun-Wei Lin, Wensheng Gan, Philippe Fournier-Viger, Tzung-
Pei Hong, and Justin Zhan. Efficient mining of high-utility itemsets
using multiple minimum utility thresholds. Knowledge-Based Systems,
113:100-115, 2016.

Mengchi Liu and Junfeng Qu. Mining high utility itemsets without can-
didate generation. In Proceedings of the 21st ACM International Confer-
ence on Information and Knowledge Management, pages 55-64. ACM,
2012.

Ying Liu, Wei-Keng Liao, and Alok Choudhary. A two-phase algorithm
for fast discovery of high utility itemsets. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pages 689-695. Springer, 2005.

Thang Mai, Bay Vo, and Loan TT Nguyen. A lattice-based approach for
mining high utility association rules. Information Sciences, 399:81-97,
2017.

Jian Pei, Jiawei Han, and Laks VS Lakshmanan. Mining frequent item-
sets with convertible constraints. In Proceedings of 17th International
Conference on Data Engineering, pages 433—442, 2001.

Heungmo Ryang and Unil Yun. High utility pattern mining over data
streams with sliding window technique. Expert Systems with Applica-
tions, 57:214-231, 2016.

Ron Rymon. Search through systematic set enumeration. Proceeding of
the 3rd International Conference on Principles of Knowledge Represen-
tation and Reasoning, pages 539-550, 1992.

Bilong Shen, Zhaoduo Wen, Ying Zhao, Dongliang Zhou, and Weimin
Zheng. Ocean: fast discovery of high utility occupancy itemsets. In
Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 354-365. Springer, 2016.

Linpeng Tang, Lei Zhang, Ping Luo, and Min Wang. Incorporating occu-
pancy into frequent pattern mining for high quality pattern recommenda-
tion. In Proceedings of the 21st ACM International Conference on Infor-
mation and Knowledge Management, pages 75-84. ACM, 2012.

Vincent S Tseng, Cheng-Wei Wu, Bai-En Shie, and Philip S Yu. UP-
Growth: an efficient algorithm for high utility itemset mining. In Proceed-
ings of the 16th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 253-262. ACM, 2010.

Bay Vo, Loan TT Nguyen, Nguyen Bui, Trinh DD Nguyen, Van-Nam
Huynh, and Tzung-Pei Hong. An efficient method for mining closed po-
tential high-utility itemsets. IEEE Access, 8:31813-31822, 2020.

Jimmy Ming-Tai Wu, Justin Zhan, and Jerry Chun-Wei Lin. An aco-
based approach to mine high-utility itemsets. Knowledge-Based Systems,
116:102-113, 2017.

Hong Yao and Howard J Hamilton. Mining itemset utilities from transac-
tion databases. Data and Knowledge Engineering, 59(3):603-626, 2006.
Hong Yao, Howard J Hamilton, and Cory J Butz. A foundational approach
to mining itemset utilities from databases. In Proceedings of the SIAM
International Conference on Data Mining, pages 482—-486. SIAM, 2004.

Junfu Yin, Zhigang Zheng, and Longbing Cao. USpan: an efficient al-
gorithm for mining high utility sequential patterns. In Proceedings of the
18th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 660-668. ACM, 2012.

Mohammed J Zaki and Karam Gouda. Fast vertical mining using diffsets.
In Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 326-335, 2003.



	1 Introduction
	2 Related Work
	2.1 High-utility pattern mining
	2.2 Interesting pattern mining in uncertain data

	3 Preliminary and Problem Statement
	4 Proposed Algorithm for Mining PHUOPs
	4.1 Two data structures
	4.2 Upper bound on probability and utility occupancy
	4.3 Proposed algorithm and pruning strategy

	5 Experiments
	5.1 Experimental setup and datasets
	5.2 Runtime analysis
	5.3 Visited node analysis
	5.4 Patterns analysis

	6 Conclusion and Future Work

