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Abstract

This work extends the randomized shortest paths (RSP) model by investigat-
ing the net flow RSP and adding capacity constraints on edge flows. The standard
RSP is a model of movement, or spread, through a network interpolating between
a random-walk and a shortest-path behavior [30, 42, 49]. The framework assumes
a unit flow injected into a source node and collected from a target node with flows
minimizing the expected transportation cost, together with a relative entropy reg-
ularization term. In this context, the present work first develops the net flow RSP
model considering that edge flows in opposite directions neutralize each other (as
in electric networks), and proposes an algorithm for computing the expected rout-
ing costs between all pairs of nodes. This quantity is called the net flow RSP
dissimilarity measure between nodes. Experimental comparisons on node cluster-
ing tasks indicate that the net flow RSP dissimilarity is competitive with other
state-of-the-art dissimilarities. In the second part of the paper, it is shown how to
introduce capacity constraints on edge flows, and a procedure is developed to solve
this constrained problem by exploiting Lagrangian duality. These two extensions
should improve significantly the scope of applications of the RSP framework.

1 Introduction

Link analysis and network science are dedicated to the analysis of network data and
are currently studied in a large number of different fields (see, e.g., [37]). One recurring
problem in this context is the definition of meaningful measures for capturing interest-
ing properties of the network and its nodes, like distance measures between nodes or
centrality measures. These quantities usually take the structure of the whole network
into account.

However, many such measures are based on strong assumptions about the move-
ment, or communication, occurring in the network whose two extreme cases are the
optimal behavior and the random behavior. Indeed, the two most popular distance
measures in this context are the least-cost distance (also called shortest-path distance)
and the resistance distance [31] (equal to the effective resistance and proportional to
the commute-time distance when considering a random walk on the graph; see [16] and
references therein). The same holds with the betweenness centrality: popular measures
are the shortest-path betweenness introduced by Freeman [18] and the random-walk
betweenness (also called the current-flow betweenness) independently introduced by
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Newman [36] and by Brandes and Fleischer [6]. Still another example is provided by
the measures of compactness of a network, such as the Wiener index (based on shortest
paths) and the Kirchhoff index (based on random walks or electric networks).

In reality, however, behavior is seldom based on complete randomness or optimality.
Therefore, a large effort has been invested in defining models interpolating between a
shortest-path and a random-walk behavior [17], especially in the context of distance
measures between nodes where both proximity and high connectivity are taken into
account (the concept of relative accessibility [9]). These models are based on extensions
of electric networks [3, 24, 38], on combinatorial analysis arguments [7, 8, 9], on mixed
L1-L2 regularization [34], on entropy-regularized network flow models [4, 21, 22], or on
entropy-regularized least-cost paths ([30, 42, 49], directly inspired by a transportation
model, denoted as the Markovian traffic assignment in this field [2], and also related
to [46]). The latter (i.e., the entropy-regularized least-cost paths) constitutes the ran-
domized shortest paths (RSP) framework which is the main subject of this paper.
For a more thorough discussion of families of distances between nodes, see, for example,
[17, 30].

This effort is pursued here by proposing two extensions to this RSP model, consid-
ering:

I A new dissimilarity measure extending the RSP dissimilarity [30, 42, 49], namely
the net-flow RSP dissimilarity. Like the standard RSP dissimilarity, this
new dissimilarity is the expected cost needed for reaching the target node from
the source node, but now considering that edge flows in two opposite directions
cancel each other out, as for the electric current [13]. Therefore, this model of
movement based on net flows more resembles electric flows when the temperature
of the system is high. An algorithm is proposed for computing the net-flow RSP
dissimilarity matrix between all pairs of nodes.

I The introduction of capacity constraints in the model. Capacity constraints on
edge flows are very common in practice [1], and the applicability of the RSP model
would certainly be increased if such constraints could be integrated. Therefore,
the main contributions related to capacity constraints are (1) to show how the
model can accommodate such constraints, for both raw edge flows and net flows,
and (2) to provide an algorithm for solving the constrained RSP model in the case
of a single pair of source/target nodes.

Capacity constraints appear frequently in network flow problems, and there is a vast
literature on the subject, especially in the operations research field (see, e.g., [1, 32]).
They arise, for instance, in the standard minimum cost flow problem that aims to
find the source-target flow with minimal cost and subject to some capacity constraints.
As discussed in [1], this task often appears in real-world problems. In short, capacity
constraints are mainly present in order to, for example, avoid congestion, spreading the
traffic, or simply because the flow is restricted. In this context, various algorithms for
solving the standard minimum cost flow problem have been proposed: minimum mean
cycle-cancelling, successive shortest paths, network simplex, and primal-dual, to name
a few (see the above citations and references therein). The difference with our work is
that, in the RSP, (1) the model is expressed in terms of full paths and (2) a Kullback-
Leibler regularization term is introduced, inducing randomized routing policies that can
be computed by standard matrix operations.

In the transportation networks field that inspired the RSP [2, 12], capacity con-
straints were also considered in various transportation models, such as the standard
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traffic assignment problem [23], the deterministic static equilibrium model [15], the
stochastic user equilibrium model [5], or the random utility theory [41] (see also the
references in these papers).

Among them, the closest to our work is the stochastic user equilibrium model.
However, to the best of our knowledge, we are not aware of such models integrating
capacity constraints based on an RSP-type full paths formalism. Therefore, because of
their practical usefulness, we found that it would be a valuable contribution to introduce
such constraints within the framework, which is developed in Section 4. Indeed, we
will exploit the fact that, as the RSP model can be derived using maximum entropy
arguments [10, 27], linear inequality constraints can be handled by Lagrangian duality
(see, e.g., [28]).

The content of this paper is structured as follows. Section 2 summarizes the standard
RSP framework. Section 3 introduces the net flow RSP dissimilarity. Then, Section 4
develops new algorithms for constraining the flow capacity on edges, while Section 5
deals with net flow capacity constraints. Illustrative examples and experiments on node
clustering tasks are described in Section 6. Finally, Section 7 presents the conclusion.

2 The standard randomized shortest paths frame-
work

As already discussed, the main contributions of the paper are based on the RSP frame-
work, interpolating between a least-cost and a random-walk behavior, and allowing
dissimilarity measures to be defined between nodes [30, 42, 49]. The formalism, in-
spired by models developed in transportation science [2, 12], is based on full paths
instead of standard “local” edge flows [1, 4, 22] and is briefly described in this section
for completeness. We start by providing a short account of the RSP before introducing,
in the following sections, the net flow RSP dissimilarity as well as the algorithm for
solving the flow-capacity constrained RSP problem on a directed graph.

2.1 Background and notation

Let us begin by introducing some necessary notation [17, 30]. First, notice that column
vectors are written in bold lowercase and matrices are in bold uppercase. Moreover,
in this work, we consider a weighted directed,1 strongly connected graph or network,
G = (V, E), with a set V of n nodes and a set E of m directed edges. An edge connecting
node i to node j is denoted by (i, j) or i→ j. Furthermore, we are given an adjacency
matrix A = (aij) ≥ 0 quantifying the directed, local, positive affinity between pairs
of adjacent nodes i, j. As usual, a zero value, aij = 0, indicates that there is no edge
between nodes i and j. In addition, we assume that there are no self-loops in the
network, that is, aii = 0 for all i. From this adjacency matrix, the standard reference
random walk on the graph is defined in the usual way: the transition probabilities
associated with each node are set proportionally to the affinities and then normalized
in order to sum to one,

pref
ij =

aij∑n
j′=1aij′

=
aij
di

(1)

1When the graph is undirected, we consider that it is made of two reciprocal, directed, edges with
the same affinities and costs.
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where di is the (out)degree of node i. The matrix Pref = (pref
ij ) is row-stochastic and is

called the transition matrix of the natural, reference, random walk on the graph.

In addition, a transition cost, cij ≥ 0, is associated with each edge (i, j) of G. If
there is no edge linking i to j, the cost is assumed to take an infinite value, cij = ∞.
We assume for consistency that cij = ∞ if aij = 0, and the cost matrix is defined
accordingly, C = (cij). Costs are usually set independently of the adjacency matrix;
they quantify the immediate penalty associated with a transition, depending on the
application at hand. This is, however, not always the case. For example, in electric
networks, the costs are resistances and the affinities are conductances: in this context,
they are linked by aij = 1/cij .

A path or walk ℘ is a finite sequence of hops to adjacent nodes on G (including
cycles), initiated from a source node s and stopping at some ending target node t
with s 6= t. A hitting path is a path where the last node t does not appear as an
intermediate node. In other words, a hitting path to node t stops when it reaches t
for the first time. In practice, we consider hitting paths to the fixed target node t by
setting this target node as absorbing (or “killing”). Computationally, this is achieved by
putting the corresponding row t of the transition matrix to zero. The node at position
τ along path ℘ is denoted by ℘(τ). The total cost of a path, c̃(℘), is simply the sum
of the edge costs cij along ℘, while its length `(℘) is the number of steps, or hops,
needed for following that entire path.

2.2 The standard randomized shortest paths formalism

The main idea behind the RSP model is closely related to maximum entropy problems
[10, 27]. Let us consider the set of all hitting paths, or walks, ℘ ∈ Pst from a node
s ∈ V (source) to an absorbing, killing node t ∈ V (target) on G. Then, we assign a
probability distribution P(·) on the discrete set of paths Pst [4, 30] by minimizing the
free energy of statistical physics [27], 2

minimize
{P(℘)}℘∈Pst

φ(P) =
∑
℘∈Pst

P(℘)c̃(℘) + T
∑
℘∈Pst

P(℘) log

(
P(℘)

π̃(℘)

)
subject to

∑
℘∈Pst

P(℘) = 1

(2)

where c̃(℘) =
∑`(℘)
τ=1 c℘(τ−1)℘(τ) is the total cumulated cost along path ℘ when visiting

the nodes (℘(τ))
`(℘)
τ=0 in the sequential order. Furthermore, π̃(℘) =

∏`(℘)
τ=1 p

ref
℘(τ−1)℘(τ) is

the product of the reference transition probabilities along path ℘, i.e., the random walk
probability of path ℘.

The objective function (Eq. 2) is a mixture of two dissimilarity terms, with the tem-
perature T > 0 balancing the trade-off between them. The first term is the expected
cost for reaching the target node from the source node (favoring shorter paths – exploita-
tion). The second term corresponds to the relative entropy [10], or Kullback-Leibler
divergence, between the path probability distribution and the reference (random-walk)
paths probability distribution (introducing randomness and diversity – exploration).
For a low temperature T , low-cost paths are favored, whereas when T is large, paths
are chosen according to their likelihood in the reference random walk on G.

2More precisely, it corresponds to a generalized free energy based on the relative entropy instead of
the Shannon entropy.
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The problem (2) corresponds to a standard minimum cost flow problem, as discussed
in the introduction,3 with a Kullback-Leibler regularization term expressed in terms of
full paths in the RSP formalism. There are, however, some subtle differences, such as
the fact that in the standard minimum cost flow problem the flows are unidirectional,
whereas the RSP defines a Markov chain for which flows are generally bi-directional.

This argument, akin to maximum entropy [10, 27], leads to a Gibbs-Boltzmann
distribution on the set of paths (see, e.g., [30, 42]),

P∗(℘) =
π̃(℘) exp[−θc̃(℘)]∑

℘′∈Pst

π̃(℘′) exp[−θc̃(℘′)]
=
π̃(℘) exp[−θc̃(℘)]

Z
(3)

where θ = 1/T is the inverse temperature and the denominator

Z =
∑
℘∈Pst

π̃(℘) exp[−θc̃(℘)] (4)

is the partition function of the system. Eq. 3 provides the randomized routing policy
in terms of full paths from s to t.

Interestingly,4 if we replace the probability distribution P(·) by the optimal distri-
bution P∗(·) provided by Eq. 3 in the objective function (Eq. 2), we obtain

φ∗ = φ(P∗) =
∑
℘∈Pst

P∗(℘)c̃(℘) + T
∑
℘∈Pst

P∗(℘) log

(
P∗(℘)

π̃(℘)

)
=
∑
℘∈Pst

P∗(℘)c̃(℘) + T
∑
℘∈Pst

P∗(℘)
(
− 1

T c̃(℘)− logZ
)

= −T logZ (5)

which has been termed the directed free energy distance [30], and plays the role of
a potential.

2.3 Computing quantities of interest

The quantities of interest can be computed by taking the partial derivative of the
optimal free energy provided by Eq. 5 [30, 42, 49]. Here, we introduce only the quantities
that are necessary to deriving the algorithms developed later.

Fundamental matrix and partition function It turns out that the partition func-
tion can be computed in closed form from an auxiliary matrix,5 W = (pref

ij exp[−θcij ]).
First, the fundamental matrix of the RSP system is defined as

Z = I + W + W2 + · · · = (I−W)−1 with W = Pref ◦ exp[−θC] (6)

where C is the cost matrix and ◦ is the elementwise (Hadamard) product. The equation
sums up contributions of different paths lengths, starting from zero-length paths (iden-
tity matrix I). The partition function is then provided by Z = [Z]st = zst [30, 42, 49].

3Here, without capacity constraints, which will be introduced in Section 4.
4This is also a standard result from statistical physics.
5Recall that the target node t is made to be killing and absorbing by setting the corresponding row

of the reference transition matrix to zero, which implies that row t of W is also zero. Note also that
the framework can easily be extended to any sub-stochastic matrix W.
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Computation of flows and numbers of visits The directed flow in edge (i, j) ∈ E
(the expected number of passages through (i, j) when going from s to t) can be obtained
from Eq. 5 and Eq. 6 for a given inverse temperature θ = 1/T (see [29, 42] for details)
by

n̄ij ,
∑
℘∈Pst

P(℘) η
(
(i, j) ∈ ℘

)
= − 1

θ

∂ logZ
∂cij

=
zsiwijzjt
zst

(7)

where η
(
(i, j) ∈ ℘

)
counts the number of times edge (i, j) appears on path ℘. Now,

as only the row s and the column t of fundamental matrix Z are needed, two systems
of linear equations can be solved instead of the matrix inversion in Eq. 6. Note also
that it can be readily shown from (7) that flows are conserved on intermediate nodes
V \ {s, t}; indeed,

∑n
i=1(n̄ij − n̄ji) = 0 (input flow to j is equal to output flow from j).

Let us further define the matrix containing the expected number of passages through
edges (i, j) by N = (n̄ij). From Eq. 7, the expected number of visits to a node j can
also be defined and easily computed as

n̄j =
∑

i∈Pred(j)

n̄ij + δsj =

n∑
i=1

n̄ij + δsj =
zsjzjt
zst

(8)

because a unit source flow of +1 is injected in node s. Note that Pred(j) is the set of
predecessor nodes of node j and that we used

∑n
i=1 zsiwij = zsj − δsj , coming from

Z(I−W) = I, with δsj being a Kronecker delta.

Optimal transition probabilities Finally, the optimal transition probabilities of
following any edge (i, j) ∈ E (the policy) induced by the set of paths Pst and their
probability mass (Eq. 3) are [42]

p∗ij =
n̄ij
n̄i

=
zjt
zit
wij for all i 6= t (9)

and p∗tj = 0 for the target node and all j. These transition probabilities define a biased
random walk (an absorbing Markov chain) on G – the random walker is “attracted” by
the target node t. The lower the temperature, the larger the attraction. Interestingly,
these transition probabilities do not depend on the source node, and they correspond
to the optimal randomized strategy, or policy, thereby minimizing free energy (Eq. 2)
for reaching the target node. Notice further that n̄ij = n̄ip

∗
ij .

3 The net flow randomized shortest paths dissimilar-
ity

In this section, we introduce the net flow RSP dissimilarity to extend the standard
RSP dissimilarity developed in [30, 42, 49]. Similarly to the standard RSP, the net flow
RSP corresponds to the expected cost for reaching target node t from source node s,
but with the important difference that net flows are considered instead of raw flows.
These measures are now introduced in this section.

3.1 Definition of the net edge flow

In some situations, such as electric networks [13], only net flows matter. Intuitively,
this means that the edge flows in opposite directions i→ j and j → i compensate each

6



other so that only the positive net flow, provided by |n̄ij − n̄ji|, is taken into account,
where edge flows are given by Eq. 7. In many situations, net flows look intuitively
more natural because of the argument of flow compensation common to electricity. Net
flows have already been used in the RSP framework in order to define node betweenness
measures [29], generalizing two previous models based on electric currents [6, 36]. They
are further investigated in this section in order to define a new dissimilarity measure
between nodes of a graph.

Inspired by electric networks [13], the non-negative net flow in each edge (i, j),
denoted here as jij , is defined from Eq. 7 by

jij = max
(
(n̄ij − n̄ji), 0

)
= δ(n̄ij > n̄ji) (n̄ij − n̄ji) (10)

where δ(p) = 1 if proposition p is true and 0 otherwise. In matrix form,

J = max
(
(N−NT),0

)
(11)

where the maximum is taken elementwise. This means that, for each edge, the net flow
is defined (that is, positive) in only one direction,6 and is equal to zero in the other
direction. From their definition, net flows are also conserved on intermediate nodes
V \ {s, t},

∑n
i=1(jij − jji) = 0 (net input flow to j is equal to net output flow from j).

Interestingly, because the flow is equal to zero in one of the two edge directions, the
net flow defines a directed graph from the source to the destination node, even if the
original graph is undirected.

3.2 Expected net cost and net RSP dissimilarity measure

The expected cost until absorption by target node t at temperature T can easily be
computed in closed form from the RSP formalism [42]. This expected cost spread in
the network has been used as a dissimilarity measure between nodes [30, 49] and has
been termed the directed RSP dissimilarity. More formally, the expected cost spread
in the network is given by

〈c̃〉 =
∑
℘∈Pst

P(℘)c̃(℘) (12)

Let us now express the cost along path ℘ as c̃(℘) =
∑

(i,j)∈E η
(
(i, j) ∈ ℘

)
cij , where

we saw that η
(
(i, j) ∈ ℘

)
is the number of times edge (i, j) appears on path ℘ and E is

the set of edges. Injecting this last result in Eq. 12 provides

〈c̃〉 =
∑

(i,j)∈E

( ∑
℘∈Pst

P(℘) η
(
(i, j) ∈ ℘

)
expected number of passages n̄ij

)
cij =

∑
(i,j)∈E

n̄ijcij (13)

or, in matrix form,
〈c̃〉 = eT(N ◦C)e (14)

where ◦ is the elementwise (Hadamard) matrix product, e is a column vector of 1s,
and N is the matrix of expected number of passages through edges defined in Eq. 7.
Intuitively, this quantity is just the cumulative sum of the expected number of passages
through each edge times the cost of following the edge.

6Another common convention is to consider jij = (n̄ij − n̄ji), and thus jji = −jij .
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When dealing with net flows instead, Eq. 14, now computing the expected net cost,
becomes

〈c̃net〉 = eT
[

max((N−NT),0) ◦C
]
e = eT(J ◦C)e (15)

This quantity can be interpreted as the net cost needed to reach the target node t from
the source node s in a biased random walk (defined by Eq. 3 or Eq. 9) attracting the
walker toward the target node t. It is, therefore, the equivalent of the expected first
passage cost defined in Markov chain theory, translated into the RSP formalism and for
net flows. It can be seen as a directed dissimilarity between node s and node t, taking
both proximity and amount of connectivity between s and t into account.

When the temperature is low, T → 0+, the directed dissimilarity 〈c̃net〉st reduces
to the least-cost dissimilarity between s and t, while when T → ∞, it tends to the
expected net cost for a random walker moving according to the reference random walk
(and thus electric current). This quantity is in fact equivalent to the so-called Rp
distance introduced in [38] for p = 1, that is, the weighted-by-costs sum of the net flows
in the case of a pure random walk (electric current).

Therefore, the net flow RSP dissimilarity (nRSP, the counterpart of the standard
RSP dissimilarity [30, 42, 49]) between node s and node t is defined as the symmetrized
quantity

∆
nrsp
st = 〈c̃net〉st + 〈c̃net〉ts (16)

where the starting and ending nodes are specified again. This is similar to the symmetric
commute-cost quantity appearing in Markov chains [16], characterizing their relative
accessibility [9].

Notice the difference between this quantity and the energy spread in an electric
network. Indeed, if the costs are viewed as resistances, then, in the context of a resistive
network, the energy weights the costs by the squared net flow, instead of by the simple
net flow in Eq. 15 [13].

3.3 Net flows define a directed acyclic graph

Let us now show that the RSP net flows to a fixed target node t define a directed
acyclic graph (DAG) when the reference probabilities are defined by Eq. 1 on a weighted
undirected graph G. This comes from the fact that the net flows provided by Eq. 10 can
be considered as an electric current generated from a new graph Ĝt derived from G by
redefining its edge weights. In addition, electric currents define a DAG because current
always follows edges in the direction of decreasing potential (voltage). This potential
therefore defines a topological ordering of the nodes, from a higher potential to a lower
one (and lowest on the target node).

More precisely, for a fixed target t, let us define the graph Ĝt by considering the
following weights on edges (i, j) (conductances in electric circuits)

âij , zitwijzjtdi = zitp
ref
ij exp[−θcij ]zjtdi = zitaij exp[−θcij ]zjt (17)

which is symmetric when A and C are symmetric (undirected graph). In this deriva-

tion, we used Eqs. 1 and 6. In matrix form, this reads Â = Diag(colt(Z))(A ◦
exp[−θC])Diag(colt(Z)) where zt = colt(Z) extracts column t (containing elements
zit) of matrix Z and Diag(zt) defines a diagonal matrix from vector zt.
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The natural transition probabilities on this new graph Ĝt are provided by Eq. 1
where we replace aij by âij ,

p̂ij =
âij∑n
j′=1âij′

=
wijzjt∑n

j′=1 wij′zj′t
=
zjt
zit
wij for all i 6= t (18)

which, from Eq. 9, are exactly the optimal RSP transition probabilities. Note that
we used the relation zit =

∑n
j′=1 wij′zj′t + δit, which can be easily derived from the

definition of the fundamental matrix, (I−W)Z = I (Eq. 6; see also, e.g., [30, 42, 49]).

This shows that the net flows resulting from the optimal biased random walk pro-
vided by Eq. 9 are generated by a natural random walk on Ĝt where target node t is
made absorbing (an absorbing Markov chain). From the close relationship7 between
random walks and electric current on an undirected graph [13], this current defines a
DAG on Ĝt. From Eq. 10, the corresponding net flow transition probabilities on
the DAG are

pnet∗
ij =

jij∑n
j′=1jij′

(19)

Let us now turn to the description of an algorithm that enables all pairs of net flow
distances to be computed on a graph.

3.4 Computation of the net flow randomized shortest paths dis-
similarity

This subsection shows how the net flow RSP dissimilarity between all pairs of nodes
(Eq. 16) can be computed in matrix form on an undirected graph. Unfortunately,
the computation of these net flow RSP dissimilarities is more time-consuming than
computing the standard RSP dissimilarities, for which it suffices to perform a matrix
inversion [30]. This is because, before being able to compute the dissimilarities, we need
to find the net flows, which involves a non-linear function (max). It is, however, still
feasible for small- to medium-size networks.

The algorithm for computing the net flow RSP dissimilarity is detailed in Algorithm
1. It uses a trick introduced in [29] for calculating the net flows between all source-
destination pairs s, t in a particular edge (i, j) without having to explicitly turn node
t into a killing, absorbing node. More specifically, the procedure is a simple adaptation
of Algorithm 2 in [29] (following Eq. 12 in this work, providing net flows) to the case
of an undirected graph and the computation of net flow dissimilarities, rather than
betweenness centrality. It is also optimized in order to loop over (undirected) edges
only once: on line 10, the contributions of the two directions of edge (i, j) (one is
necessarily equal to 0 and the other is equal to |n̄ij − n̄ji|) are summed together.

Following [29], its time complexity is O(n3 +mn2), where m is the number of edges
and n the number of nodes, or O(mn2) overall because m ≥ n for an undirected,
connected, graph. Indeed, the algorithm contains a matrix inversion, which is O(n3).
Thereafter, there is a loop over all edges that repeats some standard matrix operations
of order O(n2), which finally provides O(n3 +mn2). Therefore, the algorithm does not
scale well on large graphs; in its present form, it can only be applied on medium-size
graphs.

7Net flows defined by a random walk on an undirected graph Ĝt, where node t is made absorbing,
correspond to the electric currents (see [13], p. 50).
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Algorithm 1 Computing the net flow randomized shortest paths dissimilarity matrix (in-
spired by [29]).

Input:
– A weighted, undirected, connected graph G containing n nodes.
– The n× n symmetric adjacency matrix A associated to G, containing non-negative affinities.
– The n× n reference transition probabilities matrix Pref associated to G (usually, the transition
probabilities associated to the natural random walk on the graph, Pref = D−1A where D is the
outdegree diagonal matrix).
– The n× n symmetric cost matrix C associated to G, defining non-negative costs of transitions.
– The inverse temperature parameter θ > 0.

Output:
– The n × n randomized shortest paths net flow dissimilarity matrix ∆ defined on all source-
destination pairs.

1. W← Pref ◦ exp[−θC] . elementwise exponential and multiplication ◦
2. Z← (I−W)−1 . the fundamental matrix

3. ∆← 0 . initialize the n× n net RSP flow dissimilarity matrix
4. for i = 1 to n do . compute contribution of each node i
5. zci ← coli(Z), zri ← rowi(Z) . copy column i and row i of Z transformed into a column

vector
6. for j ∈ N (i) with j > i do . loop on neighboring nodes j, considering each (undirected)

edge only once
7. zcj ← colj(Z), zrj ← rowj(Z) . copy column j and row j of Z transformed into a

column vector

8. Nij ← wij

[(
zci (zrj)T ÷ Z

)
− e

(
(zci ◦ zrj)÷ diag(Z)

)T
]

. matrix of flow in edge i→

j for all source-destination pairs (see [29], Eq. 17)

9. Nji ← wji

[(
zcj(zri)

T ÷ Z
)
− e

(
(zcj ◦ zri)÷ diag(Z)

)T
]

. matrix of flow in edge j →

i for all source-destination pairs (see [29], Eq. 17)
10. Netij ← abs(Nij −Nji) . net flow contribution from edge i↔ j
11. ∆←∆+cijNetij . update dissimilarity matrix with the contribution of edge i↔ j
12. end for
13. end for
14. ∆←∆ + ∆T . the resulting net RSP dissimilarities matrix
15. return ∆

4 Considering edge flow capacity constraints

In this section, an algorithm computing the optimal policy (the equivalent of Eq. 9)
under flow capacity constraints on edges is derived. It is based on the fact that lin-
ear inequality constraints can easily be integrated in maximum entropy problems by
considering Lagrangian duality (see, e.g., [28] and references therein).

For convenience, we assume a weighted, undirected, connected graph G with a single
source node (node s) and a single target node (node t 6= s). An input flow is injected
into node s and absorbed by node t, but the model can easily be generalized for multiple
sources and destinations. As before, it is assumed that the target node t is killing and
absorbing, meaning that the transition probabilities pref

tj = 0 for all nodes j, including
node j = t.

The idea now is to constrain the flow visiting some edges belonging to a set of
constrained edges C. The expected number of passages through these edges (see Eq. 7)
is therefore forced not to exceed some predefined values (upper bound),

n̄ij ≤ σij for edges (i, j) ∈ C (20)

which ensures that the flows on edges in C are limited by the capacities σij > 0 and
thus must remain in the interval [0, σij ]. In this section, we consider that, although
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the graph G is assumed undirected here, each capacity constraint is directed and thus
active in only one direction of an edge. Therefore, each undirected edge i ↔ j of G
possibly leads to two directed edges (i, j) and (j, i) in C, reflecting a possibly different
capacity constraint in each of the two directions. Thus, the set of constrained edges C
contains directed edges, limiting the directional flow through them.

Moreover, we assume that the constraints are feasible, which is discussed later.8 The
problem aims to minimize the free energy objective function (Eq. 2) while satisfying
these inequality constraints.

4.1 The Lagrange function in case of capacity constraints

From nonlinear optimization theory (see, e.g., [20]), the Lagrange function (following
Eq. 2) is

L (P,λ) =
∑
℘∈Pst

P(℘)c̃(℘) + T
∑
℘∈Pst

P(℘) log

(
P(℘)

π̃(℘)

)
+ µ

( ∑
℘∈Pst

P(℘)− 1

)
+
∑

(i,j)∈C

λij
(
n̄ij − σij

)
=
∑
℘∈Pst

P(℘)c̃(℘) + T
∑
℘∈Pst

P(℘) log

(
P(℘)

π̃(℘)

)
free energy, φ(P)

+µ

( ∑
℘∈Pst

P(℘)− 1

)

+
∑

(i,j)∈C

λij

( ∑
℘∈Pst

P(℘) η
(
(i, j) ∈ ℘

)
n̄ij(see Eq. 7)

−σij
)

(21)

where there is a Lagrange parameter µ associated with the sum-to-one constraint and a
Lagrange parameter λij associated with each constrained edge. The Lagrange parame-
ters {λij}, (i, j) ∈ C, are all non-negative in the case of inequality constraints [20] and
are stacked into the parameter vector λ.

Note that, by inspecting (21) and from the convexity of the Kullback-Leibler di-
vergence, the primal objective function to be minimized with respect to the discrete
probabilities (which is similar to Eq. 2) is convex, the equality constraints are all linear,
and the inequality constraints form a convex set. Therefore, the duality gap between
the primal and dual problems is zero, which will be exploited for solving the problem
[20].

The Lagrange function in Eq. 21 can be rearranged as

L (P,λ) =
∑
℘∈Pst

P(℘)

(
c̃(℘) +

∑
(i,j)∈C

λij η
(
(i, j) ∈ ℘

))
augmented cost c̃′(℘) cumulated on path ℘

+ T
∑
℘∈Pst

P(℘) log

(
P(℘)

π̃(℘)

)
+ µ

( ∑
℘∈Pst

P(℘)− 1

)
−
∑

(i,j)∈C

λijσij

=
∑
℘∈Pst

P(℘)
∑

(i,j)∈E

η
(
(i, j) ∈ ℘

) (
cij + δ

(
(i, j) ∈ C

)
λij
)

augmented costs c′ij

8If not, the duality gap in our algorithm will not converge to zero.
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+ T
∑
℘∈Pst

P(℘) log

(
P(℘)

π̃(℘)

)
+ µ

( ∑
℘∈Pst

P(℘)− 1

)
−
∑

(i,j)∈C

λijσij

=
∑
℘∈Pst

P(℘)c̃′(℘) + T
∑
℘∈Pst

P(℘) log

(
P(℘)

π̃(℘)

)
free energy based on augmented costs, φ′(P)

+µ

( ∑
℘∈Pst

P(℘)− 1

)

−
∑

(i,j)∈C

λijσij (22)

where the symbol δ
(
(i, j) ∈ C

)
is defined as 1 when edge (i, j) ∈ C and 0 otherwise.

Note that we used c̃(℘) =
∑

(i,j)∈E η
(
(i, j) ∈ ℘

)
cij (Eq. 13) to compute the total cost

along path ℘.

During this derivation, we observed that the costs cij can be redefined into aug-
mented costs that integrate the additional “virtual” costs (the Lagrange parameters)
needed for satisfying the constraints,

c′ij =

{
cij + λij when edge (i, j) ∈ C
cij otherwise

(23)

where C′ = (c′ij) is the matrix containing these augmented costs. Thus, the Lagrange
parameters have an interpretation similar to the dual variables in linear programming:
they represent the extra cost to pay, associated with each edge, in order to satisfy the
constraints [20]. This is also common in many network flow problems [1].

Let φ′(P) be the free energy obtained in Eq. 22 from these augmented costs (Eq.
23). We now turn to the problem of finding the Lagrange parameters λij by exploiting
Lagrangian duality.

4.2 Exploiting Lagrangian duality

In this subsection, we will take advantage of the fact that, in the formulation of the
problem (close to maximum entropy arguments), the Lagrange dual function and its
gradient are relatively easy to compute; see, for instance, [28] for similar arguments
in the context of supervised classification. Indeed, as the objective function is strictly
convex, the equality constraints are linear and the support set for the path probabilities
is convex, it is known that, provided that the problem is feasible,9 there is only one
global minimum and the duality gap is zero [20]. The optimum is a saddle point of the
Lagrange function, and a common optimization procedure (sometimes called the Arrow-
Hurwicz-Uzawa algorithm) consists of sequentially (i) solving the primal (finding the
optimal probability distribution) while considering the Lagrange parameters as fixed,
and then (ii) maximizing the dual (which is concave) with respect to the Lagrange
parameters, until convergence.

In our context, this provides the following steps [20] which are iterated,
L (λ) = L (P∗(λ),λ) = minimize

{P(℘)}℘∈Pst

L (P,λ) (compute the dual function)

λ∗ = arg max
λ

L (λ) (maximize the dual function)

λ = λ∗ (update λ)

(24)

9Recall that we assume that the problem is feasible; see the discussion at the end of Subsection 4.3.
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This is the procedure that will be followed whereby the dual function will be maximized
through a simple gradient ascent procedure.

Computing the dual function

To compute the dual function L (P∗(λ),λ) in Eq. 24, we first have to find the optimal
probability distribution P∗ in terms of the Lagrange parameters. We thus have to
compute the minimum of Eq. 22 for a constant λ. But this Lagrange function (Eq. 22)
is identical to the Lagrange function associated with the standard RSP optimization
problem (Eq. 2), except that the costs cij are replaced by the augmented costs c′ij , and
that the introduction of the final additional term does not depend on the probability
distribution. Therefore, the probability distribution P(·) minimizing Eq. 22 is a Gibbs-
Boltzmann distribution of the form of Eq. 3, but it now depends on the augmented
costs instead of the original costs.

Next, we replace the probability distribution P(·) in L (P,λ) by the optimal Gibbs-
Boltzmann distribution P∗(·), which depends on the augmented costs and thus also on
the Lagrange parameters. From the result of Eq. 5, the obtained dual function10 (Eq.
24) is

L (λ) = L (P∗(λ),λ) = −T logZ ′ −
∑

(i,j)∈C

λijσij (25)

In this equation, Z ′ is the partition function (see Eq. 4), computed from the augmented
costs C′, which depends on λ. We now need to maximize this dual function with respect
to these Lagrange parameters.

Maximizing the dual function

The maximization of the dual function can be done, by, for example, using the simple
method developed by Rockafellar (see [40], Eqs. 10 and 12).

But let us first compute the gradient of the dual function (Eq. 25) with respect to the
non-negative λij defined on edges (i, j) ∈ C. From −T ∂ logZ/∂cij = n̄ij (Eq. 7) and
∂c′ij/∂λij = δ

(
(i, j) ∈ C

)
(Eq. 23), this gradient is simply ∂L (λ)/∂λij = ∂(−T logZ ′−∑

(k,l)∈C λklσkl)/∂λij = n̄ij − σij , where n̄ij is computed from the augmented costs.
It can be observed that we simply recover the expressions for the capacity constraints;
this is actually a standard result when dealing with maximum entropy problems (see,
e.g., [10, 28]).

For computing the Lagrange parameters, we thus follow [40] who proposed the
following (gradient-based) updating rule,11

λij ← max
(
λij + α(n̄ij − σij), 0

)
for all (i, j) ∈ C (26)

which is guaranteed to converge in the concave case, as long as α is positive, is not too
large, and the problem is feasible [40]. This expression states that, if the flow in an edge
(i, j) is too large (that is, n̄ij − σij > 0), the augmented cost should increase in order
to reduce this flow. On the contrary, if the flow is below the capacity threshold, the
augmented cost should decrease until eventually reach the normal cost value cij (when
λij = 0). Notice also that, because costs are multiplied by θ in the model (see Eq. 6),
it becomes insensitive to cost variations when θ is small (close to 0, an almost random

10We leave out the sum-to-one constraint term which does not depend on λ.
11Note that [40] uses 2α for the error correction term (instead of α here).
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walk behavior). We therefore set the α parameter proportional to 1/θ in Eq. 26 during
our experiments.

Of course, we could use other, more sophisticated and more efficient, optimization
techniques (see, e.g., [20]), but this simple procedure worked satisfactorily for our tests
on small- to medium-size graphs. The parameter α has to be tuned manually for
each different dataset, but this was not a problem. However, in its present form, the
algorithm does not scale to larger graphs.

4.3 The resulting algorithm

The resulting algorithm is presented in Algorithm 2.12 It computes the optimal pol-
icy (Eq. 9), minimizing the objective function (Eq. 2) while satisfying the inequality
constraints (Eq. 20). This optimal policy guides the random walker to the target state
with a trade-off between exploitation and exploration that is monitored by the inverse
temperature parameter θ = 1/T . The different steps of the procedure are as follows:

I Initialize the Lagrange parameters to 0 and the augmented costs to the original
edge costs C.

I Iterate the following steps until convergence:

– The required elements of the fundamental matrix are recomputed from the
current augmented costs (Eq. 6) by solving two systems of linear equations.

– The expected number of passages through each edge (edge flows) is computed
(Eq. 7).

– The Lagrange parameters and the augmented costs are updated (Eqs. 26,
23).

I Compute and return the optimal policy (transition probabilities) according to Eq.
9.

Because two systems of n linear equations need to be solved at each iteration, its
complexity is of the order O(kn3), depending on the number of iterations k needed
for convergence. This number of iterations is unknown in advance but could become
large depending on the problem and the gradient step. However, for sparse graphs,
the complexity could be reduced by taking advantage of special numerical methods for
solving sparse systems of linear equations.

Note also that lower bound (instead of upper bound) constraints on the expected
flows have also been considered – in this case the flow is constrained to be greater or
equal (and not lesser or equal) to a threshold value. However, the resulting virtual
costs (Lagrange parameters) in this case can become negative in order to augment
the flow in the edge. This sometimes leads to numerical instabilities when some costs
become negative and negative cycles appear. One quick fix is to prohibit negative costs;
however, by doing this, the problem becomes unfeasible in some situations. Therefore,
we decided to leave the study of lower-bounded capacities for further work.

As a last remark, note that it was assumed that the problem is feasible, which can
be difficult to check in practice. Indeed, the model injects a unit flow into the network
so that the maximum flow through the network must be at least equal to one. This

12In this pseudocode, ei is a column (basis) vector of 0s except on row i where it contains a 1.
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Algorithm 2 Randomized shortest paths with capacity constraints.

Input:
– A weighted, undirected, connected graph G containing n nodes. Node s is the source node and
node t the target node.
– The n× n reference transition probabilities matrix Pref associated to G.
– The n× n symmetric cost matrix C associated to G, defining non-negative costs of transitions.
– The set of constrained edges C (see the text for details).
– The set of non-negative capacities on flows, {σij}, defined on the set of constrained edges,
(i, j) ∈ C.
– The inverse temperature parameter θ > 0.
– The gradient ascent step α > 0.

Output:
– The n × n randomized policy provided by the transition matrix P∗, defining a biased random
walk on G satisfying the capacity constraints.

1. λ← 0 . initialize the |C| × 1 Lagrange parameters vector
2. C′ ← C . initialize the augmented costs matrix
3. Set row t of matrix Pref to 0T . target node t is made absorbing and killing
4. repeat . main iteration loop
5. W ← Pref ◦ exp[−θC′] . update W matrix (elementwise exponential and multiplication

◦)
6. Solve (I −W)zt = et . backward variables zt (column t of the fundamental matrix Z)

with elements zit
7. Solve (I−W)Tzs = es . forward variables zs (row s of the fundamental matrix Z viewed

as a column vector) with elements zsi

8. N←
Diag(zs)WDiag(zt)

zst
. compute the expected number of passages in each edge (see

Eq. 7)
9. for all (i, j) ∈ C do . gradient ascent: update all quantities associated to constrained

edges
10. λij ← max

(
λij + α(n̄ij − σij), 0

)
. update Lagrange parameters

11. c′ij ← cij + λij . update augmented costs
12. end for
13. until convergence
14. P∗ ← (Diag(zt))−1WDiag(zt) . compute optimal policy
15. return P∗

means that we cannot blindly assign capacities because, in the case where the problem
is not feasible, the algorithm does not converge. One way to check the overall capacity
of the network is to run a standard max-flow algorithm [1, 32].

5 Dealing with net flow capacity constraints

Let us now consider the case where the capacities σij > 0 with (i, j) ∈ C are defined
on net flows instead of raw flows. As before, it is assumed in this section that the
original graph is undirected and that the adjacency matrix as well as the cost matrix
are symmetric. In this situation (see Eq. 10 and its discussion), we now consider that
the constraints operate on the net flows instead of on the raw flows,

jij = max
(
(n̄ij − n̄ji), 0

)
≤ σij ,

or equivalently both

{
n̄ij − n̄ji ≤ σij and

n̄ji − n̄ij ≤ σij
for each edge (i, j) ∈ C (27)

In the net flows setting, we further assume that σji is always defined when there exists
a capacity constraint σij and that σji = σij (symmetry). In Eq. 27, only one among
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the two flow differences is positive so that the constraint only operates in this direction
of the flow: the second constraint is automatically satisfied. This also means that only
one of the two constraints can become active.

To summarize, if the set of constraint nodes C contains edge (i, j), it also necessarily
contains its reciprocal (j, i) (they come as a pair) with the same capacity value, σji =
σij . We now turn to the definition of the Lagrange function and the derivation of the
algorithm.

5.1 The Lagrange function in case of net flow capacity con-
straints

After rearranging the terms as in Eq. 22 and, once again, using n̄ij =∑
℘∈Pst

P(℘) η
(
(i, j) ∈ ℘

)
, the Lagrange function then becomes

L (P,λ) =
∑
℘∈Pst

P(℘)c̃(℘) + T
∑
℘∈Pst

P(℘) log

(
P(℘)

π̃(℘)

)
+ µ

( ∑
℘∈Pst

P(℘)− 1

)
+
∑

(i,j)∈C

λij
[
(n̄ij − n̄ji)− σij

]
=
∑
℘∈Pst

P(℘)

(
c̃(℘) +

∑
(i,j)∈C

λij
(
η
(
(i, j) ∈ ℘

)
− η
(
(j, i) ∈ ℘

)))

+ T
∑
℘∈Pst

P(℘) log

(
P(℘)

π̃(℘)

)
+ µ

( ∑
℘∈Pst

P(℘)− 1

)
−
∑

(i,j)∈C

λijσij (28)

Now, from the symmetry of edges (edges are present in pairs; for each (i, j) ∈ C:
(j, i) ∈ C and σij = σji), we deduce

∑
(i,j)∈C λij η

(
(j, i) ∈ ℘

)
=
∑

(j,i)∈C λijη
(
(j, i) ∈

℘
)

=
∑

(i,j)∈C λji η
(
(i, j) ∈ ℘

)
. Injecting this result into Eq. 28 and proceeding in the

same way as in Eq. 22 provides

L (P,λ) =
∑
℘∈Pst

P(℘)

(
c̃(℘) +

∑
(i,j)∈C

(
λij − λji

)
η
(
(i, j) ∈ ℘

))
augmented cost c̃′(℘) cumulated on path ℘

+ T
∑
℘∈Pst

P(℘) log

(
P(℘)

π̃(℘)

)
+ µ

( ∑
℘∈Pst

P(℘)− 1

)
−
∑

(i,j)∈C

λijσij

=
∑
℘∈Pst

P(℘)
∑

(i,j)∈E

η
(
(i, j) ∈ ℘

) (
cij + δ

(
(i, j) ∈ C

) (
λij − λji

))
augmented costs c′ij

+ T
∑
℘∈Pst

P(℘) log

(
P(℘)

π̃(℘)

)
+ µ

( ∑
℘∈Pst

P(℘)− 1

)
−
∑

(i,j)∈C

λijσij

=
∑
℘∈Pst

P(℘)c̃′(℘) + T
∑
℘∈Pst

P(℘) log

(
P(℘)

π̃(℘)

)
free energy based on augmented costs, φ′(P)

+µ

( ∑
℘∈Pst

P(℘)− 1

)

−
∑

(i,j)∈C

λijσij (29)
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which has exactly the same form as in the raw flow case (see Eq. 22) with the exception
that the definition of the augmented costs differs in the two expressions. Indeed, as
before, the costs cij can be redefined into augmented costs,

c′ij =

{
cij + λij − λji when edge (i, j) ∈ C
cij otherwise

(30)

We must stress the requirement that the constraints in Eq. 27 be symmetric and come
by pair. In addition, as discussed before, only one constraint can become active among
the two directions (i, j) and (j, i), which implies that one of the two Lagrange multipliers
{λij , λji} must be equal to 0: the λij for which (n̄ij − n̄ji) < 0.

Moreover, by following the same reasoning as in the previous section (see Eqs. 25
and 26), it can immediately be observed that the dual function has the same form as
before and is provided by Eq. 25.

5.2 The resulting algorithm

In the net flow context, by proceeding in the same way as in the previous sec-
tion (see Subsection 4.2), the gradient of the dual Lagrange function (Eq. 25) for
augmented costs provided by Eq. 30 is dL (λ)/dλij = (∂L (λ)/∂c′ij)(∂c

′
ij/∂λij) +

(∂L (λ)/∂c′ji)(∂c
′
ji/∂λij)+∂L (λ)/∂λij = n̄ij− n̄ji−σij . From this last result, we can

derive the update of the Lagrange parameters λij with (i, j) ∈ C,

λij ←

{
max

(
λij + α(n̄ij − n̄ji − σij), 0

)
when (n̄ij − n̄ji) ≥ 0

0 when (n̄ij − n̄ji) < 0
(31)

Algorithm 2 is easy to adapt in order to consider net flow capacity constraints (with
σij = σji); only lines 10 and 11 must be modified according to Eqs. 30 and 31.

Notice that still another procedure could be derived when considering the edges as
undirected and unique; that is, there is a unique affinity and cost value associated to
each edge i↔ j. In that situation, the Lagrange function is defined in terms of m costs
(instead of 2m in this work) and augmented costs cannot differ along the edge direction.
A similar algorithm updating only one Lagrange parameter per edge could be derived
for this case.

In practice, we however observed that the net flow constraint algorithm is slower to
converge and more sensitive to the gradient step than simple flow constraints; in other
words, the problem looks harder to solve. This is especially the case for small values
of θ, where the process behaves more like a random walker. Indeed, in that situation,
the addition of capacity constraints seems to be partly in conflict with the objective
of walking randomly and moving back and forth. One way to handle this issue [12]
would be first to define a DAG (deduced, e.g., from the electric potential on nodes
when imposing a +1 potential at the source node and a 0 potential at the target node,
followed by a topological sort). This will enable an RSP problem with simple capacity
constraints to be solved on this DAG. This has the additional advantage that it should
be more efficient (we avoid cycles and can use dynamic programming techniques to
compute the RSP solution) and scale to larger graphs. This extension is left for further
work.
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6 Experiments

In this section, we first present two illustrative examples of the use of capacity con-
straints on the edge flows of a graph as well as a brief study of the scalability of the net
flow Algorithm 1. Following this, we evaluate the net flow RSP on unsupervised classifi-
cation tasks and compare its results to other state-of-the-art graph node distances. It is
important to emphasize that our goal here was not to propose that new node clustering
algorithms outperform state-of-the-art techniques. Rather, the aim was to investigate
if the net flow RSP model is able to capture the community structure of networks in
an accurate way, compared to other dissimilarity measures between nodes.

6.1 Illustrative examples

First example The first example illustrates the expected number of visits to nodes
(see Eq. 8) over the RSP paths distribution between one source node s and one target
node t on a 20 × 20 grid, in two different situations obtained after running Algorithm
2. Nodes were linked to their neighbors13 with a unit affinity and a unit cost. In the
first situation, we did not set any capacity constraint, and the expected number of
visits is represented in Fig. 1(a). As expected, walkers followed a trajectory close to the
diagonal of the grid, representing the shortest paths between the source node and the
target node.

In the second situation, we placed two obstacles (porous walls) by constraining the
capacities of all the edges linking the nodes represented in red in Fig. 1(b) to 0.01.
As can be observed in 1(c), in this situation, the expected number of visits to nodes
no longer concentrated around the diagonal, but instead closely followed the obstacles.
This trajectory reflects the least-cost paths between the source node and the target
node, avoiding the low-capacity obstacles.

Second example Our second illustrative example was taken from [39] and makes a
link between the RSP with net flow capacity constraints and the maximum flow problem.
Its aim was to show that Algorithm 2 could be used to compute the maximum flow
(which takes a value of 12 in this example) between the source node s and the target
node t in the undirected graph G presented in Fig. 2. Each edge of this graph has a unit
cost and affinity, as well as capacities shown on the drawing. Note that, in practice,
because the RSP model assumes a unit input flow, all capacities are scaled14 so that the
value of the computed maximum flow after scaling lies between 0 and 1. The maximum
flow of G is then obtained by the reverse transformation.

To find the max-flow, we added a directed edge from s to t (dashed line) with
infinite capacity and an edge cost of 10 to the original graph. This new edge introduced
a “shortcut” allowing the passage of all the overflow of the graph, but with a higher
cost. Theoretically, our algorithm will avoid going through this shortcut as much as
possible because it has a high cost compared to the other trajectories in the graph.
Therefore, it should try to maximize the flow that travels through the original graph
before using this shortcut edge.

Fig. 3 shows the evolution of the flow between the nodes {f, g, h} and t (the flow
through the original graph), provided by Algorithm 2, and thus satisfying the capacity

13Only horizontal and vertical neighbors are considered (no diagonal edge).
14We divide capacities by a graph cut value (an upper bound on the min-cut), such as the cut between

nodes {f, g, h} and t: 22 in our example.
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(a) Expected number of visits
to nodes (see Eq. 7), with θ =
0.05 and α = 40. Red repre-
sents a higher expected number
of visits and blue a lower num-
ber of visits.

(b) Introduction of capacity
constraints on edges belonging
to the obstacles (walls in red).
Source node s (upper left cor-
ner) and target node t (lower
right corner) are in green.

(c) Expected number of visits
to nodes (see Eq. 7) after intro-
ducing capacity constraints on
the walls, for an intermediate
value of θ = 0.05 and gradient
step α = 40.

Figure 1: Illustrative example of the capacity-constrained RSP on a 2D grid.

constraints in terms of the value of the θ parameter. As observed in Fig. 3 and Fig. 4,
this flow through the original graph reaches almost exactly the maximum flow value of
12 for all values of θ larger than 1. However, when θ is low (close to zero), the walks
became increasingly random, and no longer consider costs (see Eq. 2). For that reason,
part of the total flow went through the shortcut, even if this was not optimal in terms
of cost. This explains the reduction of the flow through the original graph when θ was
close to zero.

6.2 Scalability experiment

In this subsection, we study the scalability of Algorithm 1, which computes the full net
flow RSP dissimilarity matrix (see Eq. 16), through a small experiment. To evaluate
the time complexity, we generated 120 graphs with the benchmark algorithm of Lan-
cichinetti, Fortunato and Radicchi (LFR) [33]. More precisely, we created 10 graphs
for each of the following sizes of {50, 100, 150, 200, 250, 300, 500, 1,000, 1,500, 2,000,
2,500, 3,000} nodes. Moreover, for each size among the 10 graphs, we changed the
mixing parameter value (µ) each 2 graphs between all these values {0.1, 0.2, 0.3, 0.4,
0.5}.

Algorithm 1, computing the dissimilarity matrix between all pairs of nodes, was
then run on each of these graphs. We report the average computation time in seconds
over the 10 graphs for each different size (in terms of number of nodes and number
of computed dissimilarities) in Fig. 5. All results were obtained with Matlab (version
R2017a) running on an Intel Core i7-8750H CPU@4.10GHz with 32 GB of RAM.

As previously mentioned, the time-complexity of this algorithm is O(n3 +mn2) with
n being the number of nodes and m being the number of edges. Although applicable to
medium-size graphs, it can clearly be observed that the algorithm does not scale well
on large graphs in its present form, at least if the full dissimilarity matrix is needed.

6.3 Nodes clustering experiment

In this subsection, we present an application of the Net Flow Randomized Shortest
Paths (nRSP) in a graph nodes clustering context. Note that a methodology close to
[44] is used (for further details, see the cited paper).
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Figure 2: A small undirected graph
composed of eight nodes [39]. The
values on the edges represent capaci-
ties; moreover, all edge costs are set
to 1, except the added shortcut edge
(dashed line) whose cost is 10. The
maximum possible flow between the
source node s and the target node t
is 12, and is equal to the min-cut be-
tween nodes {a, b, c} and {d, e}.
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Figure 3: Evolution of the flow
between nodes {f, g, h} and t satis-
fying the capacity constraints (total
flow in the original graph G, without
the shortcut edge), provided by Algo-
rithm 2, in terms of the θ parameter,
with a gradient step α = 1/θ. The in-
tersection between the curve and the
y-axis when θ → 0+ is 4.699. Note
that the x-axis is scaled logarithmi-
cally.

Experimental setup

Baselines As part of the node clustering experiment, four dissimilarity matrices be-
tween nodes as well as five kernels on a graph were used as baselines to assess our nRSP
method.

Baseline dissimilarities

I The Free Energy (FE) distance and the RSP dissimilarity, depending on
an inverse temperature parameter θ = 1/T . As presented earlier, these methods
have been shown to perform well in a node clustering context [44] as well as in
semi-supervised node classification tasks.

I The Logarithmic Forest (LF) distance. Introduced in [7], the LF distance re-
lies on the matrix forest theorem [9] and defines a family of distances interpolating
(up to a scaling factor) between the shortest path distance and the resistance dis-
tance [31], depending on a parameter α.

I The Shortest Path (SP) distance. This well-known, standard, distance corre-
sponds to the cost along the least-cost path between two nodes i and j, derived
from the cost matrix C.

These dissimilarity matrices were transformed into inner products (kernel matrices) by
classical multidimensional scaling (see below).

Baseline kernels on a graph
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Figure 4: Representation of the net flows from s to t depending on the value of θ, for
the capacity-constrained RSP and the graph appearing in Fig. 2. The thickness of the
arrows is scaled with respect to the largest net flow present in the graph.

I The Neumann kernel [17, 43] (Katz) is defined as K = (I− αA)−1 − I. The α
parameter has to be positive and smaller than the inverse of the spectral radium
of A, ρ(A) = maxi(|λi|).

I The Logarithmic Communicability (lCom) kernel, proposed in [26]. The
lCom kernel corresponds to the logarithmic version of the communicability mea-
sure [14], computed as K = ln(expm (tA)), t > 0, where expm is the matrix
exponential and ln the natural elementwise logarithm (see [26] for details).

I The Sigmoid Commute Time (SCT) kernel. Proposed in [48], the SCT kernel
is obtained by applying a sigmoid transform [43] on the commute-time kernel
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Figure 5: Average computation time in seconds of the net flow RSP dissimilarity matrix
over the 10 LFR graphs for each different network size, in terms of number of nodes (left)
and number of computed dissimilarities (right).

[16]. An alternative version, the Sigmoid Corrected Commute Time (SCCT)
kernel, based on the correction of the commute time suggested in [47], was also
used as part of the experiments. For both methods, the parameter α controls the
sharpness of the sigmoid.

In addition, the Modularity matrix Q (Q) was used as the final baseline, and was

computed by Q = A − ddT

vol where d contains the node degrees and vol is a constant
denoting the volume of the graph (see, e.g., [37] and references therein). Recall that
modularity is an unsupervised measure of the quality of a partition of the nodes (a set
of communities). Here, the kernel k-means is executed directly on matrix Q.

Datasets A collection of 17 datasets was investigated for the experimental compar-
isons of the dissimilarity measures. For each dataset, costs were computed as the
reciprocal of affinities, cij = 1/aij , as in electric networks. The collection included
Zachary’s karate club [50], the Dolphin datasets [35], the Football dataset [19], the
Political books,15 three LFR benchmarks [33] and nine Newsgroup datasets processed
from the original Newsgroup data16 (see [48] for details). The list of datasets along
with their main characteristics are presented in Table 1.

Evaluation metrics Each partition provided by an investigated clustering technique
was assessed by comparing it with the “observed partition” of the dataset. Two criteria
were used to evaluate the similarity between both partitions.

I The Normalized Mutual Information (NMI) [45] between two partitions U
and V was computed by dividing the mutual information [10] between the two
partitions by the average of the respective entropy of U and V.

I The Adjusted Rand Index (ARI) [25] is an extension of the Rand Index (RI),
which measures the degree of matching between two partitions. The RI has the

15Collected by V. Krebs and labelled by M. Newman, this database is not, to the best of our knowl-
edge, published but it is available for download at http://www-personal.umich.edu/~mejn/netdata/.

16Available from the UCI Machine Learning Repository.
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Dataset Name #Clusters #Nodes #Edges
Dolphin 2 2 62 159
Dolphin 4 4 62 159
Football 12 115 613
LFR1 3 600 6142
LFR2 6 600 4807
LFR3 6 600 5233
Newsgroup 2 1 2 400 33854
Newsgroup 2 2 2 398 21480
Newsgroup 2 3 2 399 36527
Newsgroup 3 1 3 600 70591
Newsgroup 3 2 3 598 68201
Newsgroup 3 3 3 595 64169
Newsgroup 5 1 5 998 176962
Newsgroup 5 2 5 999 164452
Newsgroup 5 3 5 997 155618
Political books 3 105 441
Zachary 2 34 78

Table 1: Datasets used in our experiments.

drawback of not showing a constant expected value when working with random
partitions. In contrast, the ARI has an expected value of 0 and a maximum value
of 1.

Experimental methodology

The experiments relied on the kernel k-means introduced in [48]. For the dissimilari-
ties, the experimental methodology was similar to the one used in [44]. For each given
dataset, the dissimilarity matrix D obtained by the different methods providing dis-
similarities17 was transformed into a kernel K (a inner product matrix) using classical
multidimensional scaling [17]. If the resulting kernel was not positive semi-definite, we
simply set the negative eigenvalues to zero when computing the kernel.

The kernel k-means was run 30 times (trials) on K with different initializations.
The NMI and ARI were then computed for the partition to maximize the modularity
among these 30 trials. This operation was repeated 30 times (leading to a total of 900
runs of the k-means) to obtain the average modularity, and the NMI and ARI scores
over these 30 repetitions for a given method (dissimilarity/similarity matrix), with a
given value of its parameter (for instance, θ in the case of methods based on RSP),
on a specific dataset. Finally, the reported NMI and ARI scores for each method and
dataset were the average (over the 30 repetitions) for the parameter value showing the
largest modularity. Thus, modularity (instead of a separate dataset in [44]) was used
as a metric to tune the parameters of the algorithms. These parameters were the θ for
the nRSP, the FE distance and the RSP dissimilarity, the α for the LF distance and
Katz, the t for the lCom kernel, and the α for the sigmoid transform of the SCT and
SCCT kernels. The values tested for the parameter are listed in Table 2.
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Algorithm Parameter values
FE
RSP
nRSP

θ = (0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 3, 5, 10, 15, 20)

LF α = (0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 3, 5, 10, 15, 20)
Katz α = (0.05, 0.10, . . . , 0.95)× (ρ(A))−1

lCom t = (0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1, 2, 5, 10)
SCT
SCCT

α = (5, 10, 15, . . . , 50)

Table 2: Parameter range for the investigated methods.
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Figure 6: Mean ranks and 95% Nemenyi confidence intervals of the tested methods
across the 17 datasets for the ARI (left) and the NMI (right) measures. The larger the
rank, the better.

Experimental results

The different methods were globally assessed using the same method as in [44] based on
a non-parametric Friedman-Nemenyi test [11]. Additionally, a non-parametric Wilcoxon
signed-rank test was performed pairwise to measure the significance of the difference in
the algorithms’ performance.

The results of the Friedman-Nemenyi test are summarized in Fig. 6. Additionally,
Table 3 contains the pairwise p-values for the Wilcoxon signed-rank test performed on
the results obtained from the 17 datasets. More specifically, the upper-right side of the
diagonal of the matrix contains the p-values when considering NMI and the lower-left
side contains the p-values when using the ARI.

We can observe on the Nemenyi plot that the three leading methods appear to be
the FE, the RSP and the nRSP. More specifically, the FE was the best method on the
investigated datasets and in this setup. Based on the Wilcoxon test using ARI, the FE
performed significantly better than all the other methods, at a α = 0.05 level, except
for the RSP and nRSP. However, note that, for the NMI score, the difference between
the FE and the lCom and between the FE and the SCCT were not significant.

The introduced method (nRSP) obtained results comparable to the RSP and the
FE for both the ARI and the NMI measures. None of these differences were significant
after performing a Wilcoxon signed rank test (α = 0.05). Although not the best overall,

17For methods that directly provide a kernel, the obtained kernel matrix was directly used in the
kernel k-means.
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Method nRSP FE RSP SP Q lCom LF SCT SCCT Katz
nRSP 1 0.389 0.497 0.017 0.004 0.241 0.188 0.151 0.561 0.001

FE 0.277 1 0.626 0.015 0.002 0.068 0.025 0.015 0.127 0.001
RSP 0.588 0.153 1 0.011 0.002 0.025 0.020 0.026 0.194 0.001
SP 0.019 0.015 0.031 1 0.246 0.028 0.093 0.062 0.011 0.004
Q 0.002 0.001 0.001 0.055 1 0.006 0.005 0.004 0.002 0.076

lCom 0.241 0.042 0.078 0.068 0.004 1 0.855 1.000 0.241 0.001
LF 0.151 0.011 0.078 0.062 0.003 0.952 1 0.934 0.217 0.001

SCT 0.055 0.012 0.030 0.163 0.004 0.359 0.359 1 0.009 0.001
SCCT 0.252 0.048 0.153 0.044 0.002 0.808 0.426 0.004 1 0.001
Katz 0.001 0.001 0.001 0.002 0.062 0.001 0.001 0.001 0.001 1

Table 3: The p-values provided by a pairwise Wilcoxon signed-rank test, for the NMI in
the upper right triangle and the ARI in the lower left.

the introduced nRSP method proved to be competitive with respect to the FE and the
RSP, which, in turn, performed best in a similar but more extensive node clustering
comparison [44]. It can also be observed that the nRSP and the standard RSP performed
very similarly, which was somewhat expected because both dissimilarities are based on
the same framework.

7 Conclusion

In this work, two extensions of the RSP formalism were developed. The first extension
introduces an algorithm for computing the expected net costs between all pairs of nodes
by considering the net flows between nodes instead of the raw flows. This quantity is
called the net flow RSP dissimilarity; it quantifies the level of accessibility (proximity
and ease of access) between nodes [9] and serves as a dissimilarity measure. The second
extension deals with capacity constraints on edges for both raw and net flows within
the RSP formalism. An algorithm solving the constrained problem has been developed.

These contributions extend the scope of the RSP formalism, which essentially defines
a model of movement, or spread, through the network. Indeed, as already discussed in
the introduction, many of the traditional models are based on two common paradigms
about the transfer of information, or more generally the movement, occurring in the
network: an optimal behavior based on least-cost paths and a random behavior based
on a random walk on the graph. In contrast to these standard models, the RSP,
and other families of distances (see the related work in the introductory Section 1),
interpolate between a pure random walk on the graph and an optimal behavior based
on shortest paths. They depend on a parameter that allows the amount of randomness
of the trajectories to be monitored. This acknowledges the fact that in many practical
cases the (random) walker on the graph is neither completely rational nor completely
stochastic.

Another peculiarity of the RSP model is that it adopts a statistical physics frame-
work that considers the system of all paths (or walks) connecting pairs of nodes in the
network. The path-based formalism assigns a Gibbs-Boltzmann probability distribu-
tion on the set of paths by minimizing expected cost with relative entropy regularization
weighted by temperature – the free energy objective function.

Different quantities capturing the degree of relative accessibility between the nodes
can then be derived within this formalism, showing different properties depending on the
temperature controlling randomness. Another interesting feature is that most quantities
of interest can be computed in closed form by using standard matrix operations.
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Experimental comparisons on clustering tasks demonstrated that the net flow RSP
dissimilarity is competitive in comparison with other state-of-the-art baseline methods.
This indicates that the model is able to capture the cluster structure of networks in
an accurate way on the investigated datasets. Indeed, based on the same framework,
the net flow RSP obtained results comparable to the simple RSP and the free energy
dissimilarities.

In conclusion, the contributions of this paper should enlarge the range of possible
applications of the RSP formalism. Indeed, many problems related to the spread of
information in a network involve capacity constraints on edges. Moreover, in many real
cases, it can be argued that a model based on unidirectional net flows is more realistic
than raw flows going back and forth.

Concerning further work, we are also interested in applying the proposed models
to operations research problems. Indeed, it would certainly be interesting to compare
the RSP solution (with entropy regularization) to more standard algorithms for solving
minimum cost flow problems and minimum cost flow with capacity constraints problems
[1, 32].

In addition, more sophisticated optimization techniques, going beyond the simple
gradient technique used for solving the capacity-constrained RSP problem in Section 4,
should be investigated. Still another interesting idea would be to try to reformulate the
optimization problem in terms of expected net costs instead of expected costs in Eq.
28.

We also plan to explore a route that could improve the scalability of the proposed
algorithms on sparse graphs. Following [12], the idea would be to extract a DAG from
the original s-t graph by, for instance, performing a breath-first traversal or computing
the electric current flow between the source node s and the target node t. Recall that we
saw in Subsection 3.3 that the electric current defines a DAG. It should, therefore, be
possible to compute efficiently the optimal policy (and, consequently, the directed flows)
on this DAG by using the Bellman-Ford-like expression that computes the free energy
directed distance (see [17]). It would also be interesting to explore the introduction of
capacity constraints on a DAG, as already discussed in Subsection 5.2.
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versité Libre de Bruxelles) for his remarks on the RSP formalism. Finally, we are also
grateful to the anonymous reviewers whose suggestions have helped us significantly to
improve the manuscript. Marco Saerens is also ’Collaborateur scientifique’ at IRIDIA
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[29] I. Kivimäki, B. Lebichot, J. Saramäki, and M. Saerens. Two betweenness cen-
trality measures based on randomized shortest paths. Scientific Reports Journal,
6:srep19668, 2016.
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