
Hierarchical Data Generator based on
Tree-Structured Stick Breaking Process for

Benchmarking Clustering Methods

Łukasz P. Olech1,2, Michał Spytkowski1, Halina Kwaśnicka1, and
Zbigniew Michalewicz2,3,4

1Department of Computational Intelligence
Wrocław University of Science and Technology

wybrzeże Stanisława Wyspiańskiego 27, 50-370 Wrocław, Poland
{lukasz.olech,michal.spytkowski,halina.kwasnicka}@pwr.edu.pl

2Complexica Pty Ltd.
155 Brebner Drive, West Lakes, SA 5021, Australia

{lo,zm}@complexica.com
3Institute of Computer Science, Polish Academy of Sciences

ul. Ordona 21, 01-237 Warsaw, Poland
4Polish-Japanese Academy of Information Technology

ul. Koszykowa 86, 02-008 Warsaw, Poland

Abstract

Object Cluster Hierarchies is a new variant of Hierarchical Cluster
Analysis that gains interest in the field of Machine Learning. Being still
at an early stage of development, the lack of tools for systematic analysis
of Object Cluster Hierarchies inhibits its further improvement. In this pa-
per we address this issue by proposing a generator of synthetic hierarchical
data that can be used for benchmarking Object Cluster Hierarchy meth-
ods. The article presents a thorough empirical and theoretical analysis
of the generator and provides guidance on how to control its parame-
ters. Conducted experiments show the usefulness of the data generator
that is capable of producing a wide range of differently structured data.
Further, benchmarking datasets that mirror the most common types of
hierarchies are generated and made available to the public, together with
the developed generator (http://kio.pwr.edu.pl/?page_id=396).

keywords: Artificial Data, Benchmark Data, Benchmark Data Generator,
Hierarchical Clustering, Object Cluster Hierarchy, Tree-Structured Stick Break-
ing Process, Clustering Evaluation, Cluster Analysis.

1

ar
X

iv
:1

60
6.

05
68

1v
3

 [
cs

.C
V

]
 4

 A
pr

 2
02

0

http://kio.pwr.edu.pl/?page_id=396

1 Introduction
A high volume of digital data drives rapid development of analysis methods
providing more effective tools to obtain data insights. The key data analysis
areas of research are regression, classification, and clustering [8, 35, 30, 17, 20,
32].

Clustering aims at generating meaningful groups (clusters) of points in the
provided dataset. The measure of meaningfulness of groups depends on the
application and is problem-specific [12]. However, the general idea behind any
measure of meaningfulness is that points within any particular cluster are as
similar as possible to each other, and at the same time, points that belong to
different clusters are as different as possible from each other.

The clustering methods can be characterised, among others, by the type of
results they produce. One of the classic types is Flat Clustering that organises
points into a predefined number of clusters where the only relation between
clusters is spacial. The most popular flat clustering method is k-means [37, 15],
where the number of clusters is defined by one of the input parameters. An-
other clustering type, called Hierarchical Clustering (HC) or Hierarchical Clus-
ter Analysis (HCA), produces several flat clustering solutions that are organised
into a tree structure called dendrogram (a diagram representing a tree). In the
dendrogram every node represents a cluster, and the tree structure indicates
parent-child relations between clusters which don’t exist in flat clustering. To
obtain a flat clustering from a dendrogram, it has to be cut. The final (flat)
solution can have a different number of clusters depending on where (at which
level of the dendrogram) the cut is performed. The obtained flat clustering
always cover all the observations from the input set as no data points are left
in parent nodes. Hierarchical Clustering methods do not need to specify the
number of clusters beforehand; this number is determined by the height where
the dendrogram is cut. Since dendrograms have a partial order relation (hier-
archical relation) between nodes, they provide insights into how the process of
clustering was performed. By comparing different cuts of the same dendrogram,
it can also give a view on the clustering from the perspective of different gran-
ularities (different number of clusters in the flat solution). One of the examples
of hierarchical clustering is Agglomerative Hierarchical Clustering [10, 6].

For a variety of reasons, clustering methods, in general, still have some weak-
nesses [4]. From the perspective of this article the interest is in the weaknesses
of hierarchical methods where the primary issue is a semantic gap between how
humans perceive hierarchies and results produced by Hierarchical Clustering
methods. Human perception describes hierarchical data (e.g., [31]) as possess-
ing the following properties:

1. the data can be present in any node in the hierarchy and belongs to that
node without being propagated to the child clusters; and

2. the data in the child groups should represent equal or more precise con-
cepts than the data in the corresponding parent that should resemble more
general concepts; and

2

3. the data in a node should be more similar to data in parent and child
nodes than to unrelated nodes located in other subtrees of the hierarchy.

Object Cluster Hierarchy (OCH) [33, 28, 34] is a prospective extension to
Hierarchical Clustering (HC) paradigm [19] that aims at satisfying the above
three properties, and it is further described in Section 3.

Even though the above-mentioned properties might be challenging to ad-
dress, the first point has been (at least partially) incorporated in a few already-
published methods such as Tree-Structured Stick Breaking for Hierarchical Clus-
tering (TSSB-HC) [2], Bayesian Rose Trees [5], Inheritance Retention Variance
Hierarchical Clustering (IRV-HC) [33], or modified hierarchic Gaussian Mixture
Model (Hk++) [28]. Even though OCH is at an early stage of development,
there are increasingly more new Object Cluster Hierarchy clustering methods
being published. For that reason there is a need to establish a systematic bench-
marking approach for OCH. The existing benchmark datasets created to vali-
date HC methods are not suitable to fully validate OCH methods as they don’t
consider the differences between OCH and HC structures. Because of that,
there is no publicly available set of benchmarking data which would assist OCH
development.

This lack of commonly accessible benchmark datasets is addressed in this
paper. The main contribution of the paper is the development of a new method
generating hierarchical structures of data with assumed, user-defined proper-
ties. The additional benefit for researchers is the establishment of a new set of
benchmarks — hierarchical structures of data with the ground truth assignment.
The implemented generator, together with the benchmarking datasets are freely
available online at http://kio.pwr.edu.pl/?page_id=396 along with instruc-
tions on how to use it.

The published datasets can serve as a baseline benchmark for methods gen-
erating OCH. Additionally, researches can generate new structures of data ac-
cording to their needs. Furthermore, such data and generator can help with
proposing and testing new clustering quality measures. All these applications
should significantly boost the research on OCH.

In the article, the term Object Cluster Hierarchy or its abbreviation (OCH)
appears in a variety of different contexts which are best explained when com-
pared to the classical Hierarchical Clustering. The term Hierarchical Clustering
represents the concept (approach), and similarly, Object Cluster Hierarchy rep-
resents the new concept (paradigm). Furthermore, a dendrogram is a result of a
Hierarchical Clustering method (e.g., hierarchical agglomerative clustering). In
the case of Object Cluster Hierarchy, the result is called an Object Cluster Hi-
erarchy as well, or more explicitly an Object Cluster Hierarchy structure/result.
A method is referred to as Object Cluster Hierarchy method or Object Cluster
Hierarchy generation method. Thus, in this article, Object Cluster Hierarchy
denotes both the approach and the clustering result. The exact meaning is clear,
depending on the context of use.

The paper is organised as follows. The next section provides a literature
review, followed by a more in-depth introduction to the OCH in Section 3.

3

http://kio.pwr.edu.pl/?page_id=396

Section 4 presents the details of the generator. In Section 5, the meaning of
generator parameters and their influence on generated data are described; this
section also provides insights on how to control these parameters. Conducted
experiments and their results are discussed in Section 6, whereas, the published
benchmarking datasets are presented in Section 7. Section 8 concludes the
paper.

2 Overview of benchmarking in the analysis of
clustering methods

Clustering methods can be verified on real and/or synthetic data. The first
type of data offers the advantage of representing real-world cases. However,
such data may not always be available in sufficient quantities nor in a form
that facilitates testing. Then, the second type of data can be used. Artificially
generated data should have properties that imitate real data. A generator that
produces artificial data has an additional advantage of allowing for finer control
over the data used in testing, i.e., specific aspects of clustering can be tested
independently.

Any new clustering method should be carefully evaluated and such eval-
uations are often based on a comparison to other methods. Usually, such a
comparison is made by running different methods on a number of commonly
used benchmark datasets and then by comparing their results using a set of
evaluation measures, e.g., [28, 27, 21, 7, 23, 18, 39, 14, 32]. Benchmark dataset
can be made available to the public by researchers (from academia) or come
from different companies (from industry). Additionally, there are many pub-
licly available repositories which collect and provide multiple different datasets
in one place, that can be used as benchmarking baseline for method comparison,
e.g., UCI repository [13], KEEL dataset repository [3], and many others (e.g.,
[16, 38]).

For example, Adams et al. [2] proposed a method called TSSB-HC and tested
it on two datasets – the CIFAR-100 image set [22] and a sample of 1,740 doc-
uments from the NIPS 1-121 datasets. Still, both of them lack hierarchical
structure annotations (even though a hierarchy might exist within the data) so
that the ability to establish an OCH structure has not been verified. Spytkowski
et al. [33] have proposed an extension of that method called IRV-HC. A com-
parison with the base method was made using a few synthetic benchmarks gen-
erated from a stochastic model of known parameters. Two measures were used:
internal (Average Mixture Model Likelihood) and external (Class Purity), but
again the class inclusion hierarchy was not considered. Blundell et al. [5] used
several datasets to present performance of their hierarchical method Bayesian
Rose Trees. One of them was a synthetically generated dataset in the form
of binary vectors which is not the main focus of OCH as the vast majority of
data are numerical. The other was Spambase Dataset from UCI repository –

1https://cs.nyu.edu/~roweis/data.html

4

https://cs.nyu.edu/~roweis/data.html

a subset of the CMU newsgroup dataset reduced to 4 categories. The authors
also used the CEDAR Buffalo2 digits dataset in two versions for testing – a
subset of the full dataset and a sample of only the 0, 2 and 4 digits. All of these
datasets were used in the same way as they would be for a flat clustering algo-
rithm, ignoring the unique capabilities of the method. In [28], a GMM-based
Hierarchical Clustering method called Hk++ was presented. UCI repository
datasets [13] were used for its verification, including the Iris, Wine, Glass Iden-
tification and Image Segmentation datasets. However, these datasets are not
annotated with the inclusion of the hierarchical relation between classes, so this
aspect of OCH couldn’t be verified. In that case, elementary, synthetic and
hierarchical datasets were also used, but with the purpose to show the concept
rather than thoroughly verify the method capabilities.

The above publications are the closest to the concept of Object Cluster
Hierarchy that we were able to find in the literature. However, the use of data
that is not annotated with a hierarchy of classes does not allow authors to verify
results with respect to the obtained hierarchical structure. In the case of Rose
Trees [5] in particular, the aspect was omitted due to the very conservative
approach towards testing method results. In the case of TSSB method [2], the
hierarchy was thoroughly examined empirically and presented to the reader in
a visual format. The authors of IRV-HC [33] focused on highlighting how the
additional properties of the proposed method impact the final result regarding
statistical characteristics, not external validation. In the case of Hk++ [28], the
authors attempted to find a way to verify the resulting hierarchies by generating
synthetic hierarchical datasets and evaluating results by a modified F-Measure.
However, the synthetically generated data used for testing was too simple to
support a comprehensive evaluation.

3 A brief introduction to Object Cluster Hierar-
chies

Object Cluster Hierarchy [33, 28] is a recent variant of Hierarchical Clustering.
The HC paradigm [1, 9, 11, 25, 26], whether agglomerative or divisive, produces
a dendrogram showing all levels of aggregations. Although there is a hierarchy
relationship between nodes in a dendrogram, there is no hierarchy relationship
between objects. It is because all objects are assigned only to the dendrogram
leaves, and clusters are generated by cutting the tree at any particular level.
The level at which a dendrogram is cut determines the number of clusters in
the final solution. Any node in the tree, except for leaves, does not have objects
assigned to it. Thus, the structure of the generated clusters is flat.

The OCH paradigm extends HC by allowing objects to be assigned to any
node in the hierarchy tree. Researchers have already developed methods with
such capability, enabling the hierarchy relation between clustered objects to be
obtained, e.g., [2, 5, 33, 28].

2http://www.cedar.buffalo.edu/Databases/

5

http://www.cedar.buffalo.edu/Databases/

Within this paradigm, we have formulated three critical requirements [33]
to reflect a semantic (ontological) approach to Hierarchical Clustering:

1. Inheritance – every object that belongs to a given group also belongs to
the parents’ groups, up to the root;

2. Retention – objects are not required to be located in the tree leaves;

3. Variance – groups situated lower in the hierarchy are more specific, i.e.,
every child cannot have higher variation than its ancestors.

These requirements characterise human perception of hierarchy that can also
be found in images [31, 2], documents [2, 5], and community structures in social
networks [36, 24].

In Figure 1, a comparison between Hierarchical Clustering (a) and Object
Cluster Hierarchy (b) is presented based on a simple example. In the former,
the final clustering is flat, and the number of clusters depends on the level
where the dendrogram is cut. By cutting the tree from Figure 1a at the bottom
of the hierarchy, a set of seven clusters is formed, each of them containing
one object. Regardless of where the hierarchy is cut, the resulting clustering
consists of the same seven objects. In comparison, in Figure 1b, the whole
OCH represents clustering — partition of all seven letters. There is no need to
cut such a hierarchy. Due to hierarchical relations, objects from child clusters
conceptually belong to the parent clusters. Root always contains all the objects
(i.e., the whole set), whereas leaves contain only what belongs to them.

(a)

A

G, E

C F, BD

(b)

Figure 1: Examples of a dendrogram (a) and an Object Cluster Hierarchy (b).
Letters represent objects and squares are groups. The arrows show the partial
order relation. Note, that the diagrams represent the final location of objects
within the structures, but conceptually, every object belongs to all its predeces-
sor groups (including the root). In the dendrogram, the partial order relation
exists only between the clusters, whereas in the Object Cluster Hierarchy the
partial order relation exists between both the clusters and the objects.

6

Hierarchical Clustering dendrogram always contains all the data points at
the bottom of the hierarchy (in leaves). A hierarchy where data points are placed
only in leaves is also a valid OCH. Thus, any possible HC result is always an
OCH. However, the opposite does not always hold true due to the Retention
requirement in OCH. Hence, Object Cluster Hierarchy is an abstraction over
Hierarchical Clustering.

In one of the early papers on the subject of OCH [2], the authors pointed
out that many data arise from a latent hierarchy, for example, a set of text
documents or images. An OCH can model such data. In that paper the authors
proposed a nonparametric method allowing to discover trees of unbounded width
and depth by inferring them during a learning process. That method can assign
objects to any node so some nodes can be empty, i.e., without any objects
assigned. However, this method is not capable of generating OCH as it does not
satisfy the Variance requirement – objects belonging to a child node can vary
more than objects assigned to the ancestor nodes of that child. Starting from
this method as the prototype, the ongoing development has been carried out
to propose an improved version satisfying that requirement. The results were
presented in [33].

The newly developed method couldn’t be comprehensively compared with
others against OCH-related characteristics. The problem, to the best of our
knowledge, is twofold. Firstly, there are no appropriate evaluation measures
dedicated to Object Cluster Hierarchies that would account for the distinguish-
ing characteristics. Secondly, there are no available benchmark datasets with
known properties, which could be used for testing different OCH generation
methods. The former problem was partially addressed in [34] where several
external measures dedicated to OCH have been presented. Further, new ex-
ternal and internal validation techniques have been developed and are planned
to be published soon, but their experimental studies require appropriate test-
ing datasets. These two issues led to the development of a method generating
synthetic data structures with known characteristics that are presented in this
article. Ability to model the attributes of created datasets allows for more
in-depth analysis of both methods and evaluation measures.

4 Generator model
The data generated by this model can be interpreted as coming from an in-
finite mixture model. Most commonly an infinite mixture model is composed
of infinite, indexed distributions from which the data is drawn. In such case
the mixture weights can be drawn from a Dirichlet distribution, using the Stick
Breaking Process. Generally, the distributions for the mixture components are
unrelated to each other. This generator uses a similar approach. However, it
bases its mixture weights on the Tree-Structured Stick Breaking Process, as
described in [2], which arranges the mixture components into a hierarchical
structure where each component is a separate node. This structure also defines
the relationship between the mixture components as children distributions are

7

based on their parent’s distribution parameters.
Hierarchies generated using the Stick Breaking Process possesses the follow-

ing characteristics [2, 33]:

1. Every node can have an unlimited number of child nodes, thus the hier-
archy depth and breadth are not limited;

2. The children of a node are indexed and ordered. However, this indexing
is not important after the generation process finishes;

3. The hierarchy may contain empty nodes, that is, nodes that do not have
any data directly assigned to them. However, such nodes might still have
data belonging to them indirectly through the Inheritance requirement;

4. A child node distribution parameters are generated based on its parent
distribution parameters and a kernel describing the transition;

5. The shape of the generated hierarchy depends on several control hyperpa-
rameters described in Section 5.

Throughout this paper the following symbols are used to describe the gen-
erator and the generated model:

X - set of all data points, or objects,
xi - an object or data point with unique identifier i represented by

a vector of features,
Θ - set of all clusters,
ε - specific cluster from Θ,
εxi - cluster of object xi,
εεi - the i-th child of cluster ε, if the Object Cluster Hierarchy is

defined,
ε∅ - the root cluster of the Object Cluster Hierarchy,
Xε - set of all objects in cluster ε,
XEε - set of all objects in hierarchy subtree starting with node ε,
|S| - number of elements in set S,
|ε| - a depth of a node ε,
θε - distribution of a node ε. Specifically, θε∅ is

a distribution of the root node, θεc is a distribution of a node
εc, and θεεi is a distribution of an i-th child of cluster ε,

Beta(α, β) - Beta distribution with shape parameters α and β,
Gauss(µ, σ) - Gaussian distribution with mean µ and standard deviation σ.

Additionally, to the symbols above, several values are provided to the generator
as parameters. The use of these parameters is further described in Section 5,
and their influence on the final result is empirically shown in Section 6:

d - the dimensionality of the generated data points,
n - the number of data points to be generated,
α0, λ - input parameters controlling the hierarchy depth, used by

8

equation α(ε) = α0λ
|ε|,

γ - parameter controlling the width of a tree structure,
p, q - parameters controlling the specificity of the generated data;

they influence how much smaller the deviation of points’
features in the child node should be in comparison with points
in the parent node,

θε∅ - the distribution of the root node.

Two conditional probabilities are used to determine from which node data
is generated. The first is the conditional probability of a datum remaining in
node ε, at depth |ε|, when entering the node:

νε = P (x ∈ Xε|x ∈ XEε), (1)

νε ∼ Beta(1, α(ε)), α(ε) = α0λ
|ε|. (2)

The second is the conditional probability of a datum being transferred to the
subtree εεi if it does not remain in node ε and hasn’t been transferred to any
of the previous siblings (i.e., did not travel down sibling subtrees with a lower
indices εεj , j < i):

ψεεi = P (x ∈ XEεεi
|x ∈ XEε ∧ x 6∈ Xε ∧ ¬∃j<ix ∈ XEεεj

), (3)

ψεεi ∼ Beta(1, γ). (4)
Additionally, we need to define the kernel. We begin with a specified root node
distribution θε∅ given as a starting parameter of the generation method. The
values set at this point are the means (µ) and standard deviations (σ) for each
of the Gaussian distributions in the d different dimensions:

θε∅ = (Gauss(µε∅1, σε∅1), ..., Gauss(µε∅d, σε∅d)). (5)

From there, for any node for which we need the distribution, we can draw the
distribution based on the parent’s distribution. The child’s mean values are
drawn directly from the parent distribution, and the child’s standard deviation
is based on a scaling factor (∆σn) drawn from the Beta distribution. The values
are taken separately for each dimension:

θεεi = (Gauss(∆µ1, σε1∆σ1), ..., Gauss(∆µd, σεd∆σd)), (6)

∆µn ∼ Gauss(µεn, σεn), n = 1, ..., d, (7)

∆σn ∼ Beta(p, q), n = 1, ..., d. (8)
With the kernel defined we can now generate data from the model. We begin
with the hyperparameters and the probability distribution for the root node
(θε∅ = (Gauss(µε∅1, σε∅1), ..., Gauss(µε∅d, σε∅d))).

The following process continues until n points are generated:

9

Step 1: If |X| < n go to Step2, else end.

Step 2: Randomly draw an insertion point ix ∼ Uni(0, 1), ix ∈ (0, 1).

Step 3: Set the root node as the current node (εc := ε∅), depth is 0 (|εc| := 0).

Step 4: If ν for the current node is not yet known, draw the value νεc ∼
Beta(1, α0λ

|εc|).

Step 5: If ix ≤ νεc then x ∼ θεc (x ∼ θε∅ if εc = ε∅), the point belongs to the
current node (Xεc := {x} ∪Xεc), go to Step 1, else move on to Step 6.

Step 6: Adjust ix to new value: ix := (ix − νεc)/(1− νεc).

Step 7: Set the current child node index (εcεi) to the first child node of the
current node: i := 0.

Step 8: If ψ for the current child node is not yet known, draw the value: ψεcεi ∼
Beta(1, γ).

Step 9: If θεcεi for the current child node is not yet known, draw the values
based on the parent of the node:
θεcεi = (Gauss(∆µ1, σεc1∆σ1), ..., Gauss(∆µd, σεcd∆σd)),
∆µ1 is drawn from the first dimension of the parent node (∆µ1 ∼ Gauss(µεc1, σεc1)),
...
∆µd is drawn from the d-th dimension of the parent node (∆µd ∼ Gauss(µεcd, σεcd)),
∆σ1 ∼ Beta(p, q),
...
∆σd ∼ Beta(p, q).

Step 10: If ix ≤ ψεcεi go to Step 11, else go to Step 12.

Step 11: Adjust the value of ix to new value: ix := ix/ψεcεi . Make the current
child the current node (εc := εcεi) and increase depth (|εc| := |εc|+1). Go
to Step 4.

Step 12: Adjust the value of ix to new value ix := (ix − ψεcεi)/(1 − ψεcεi).
Increment child index of currently relevant child node (i := i+ 1). Go to
Step 8.

The generation process described above is illustrated as a block diagram in
Figure 2.

10

START

Set input parameters:
d, n, α0, λ, γ, p, q, θε∅

Step 1
|X| < n

STOP

No

Step 2 & 3
ix ∼ Uni(0, 1)

εc := ε0
|εc| := 0

Yes

νεc drawn
already

Step 4
νεc ∼ Beta(1, α0λ

|εc|)

No

ix ≤ νεc

Yes

Step 5
x ∼ θεc

Xεc := {x} ∪Xεc

Yes

Step 6 & 7
ix :=

ix−νεc
1−νεc

i := 0
No

ψεcεi
drawn
already

Step 8
ψεcεi ∼ Beta(1, γ)

No

θεcεi
drawn
already

Yes

Step 9
θεcεi = (Gauss(∆µ1, σεc1∆σ1), ..., Gauss(∆µd, σεcd∆σd))
for k in 1, 2, ..., d:

∆µk ∼ Gauss(µεk, σεk)
∆σk ∼ Beta(p, q)

end

No

Step 10
ix ≤ ψεcεi

Yes

Step 11
ix := ix

ψεcεi
εc := εcεi

|εc| := |εc|+ 1

Yes

Step 12

ix :=
ix−ψεcεi
1−ψεcεi

i := i+ 1

No

1

Figure 2: Block diagram of Object Cluster Hierarchy generator.

11

5 Parameter selection
Hierarchical data might follow hierarchies of different characteristics, e.g., depth,
width, the average number of objects per node. Thus, to be applicable to various
problems, the generator should provide high flexibility in generating a variety
of hierarchies. The primary interest is in the structure of the hierarchy, that is
whether the hierarchy is tall or short, wide or narrow, as well as the distribution
of data across the levels of the hierarchy. Additionally, the difference between
data in parent and child nodes can also be important in some cases. All of these
are controlled by several parameters in the model:

1. hierarchy depth: α0, λ or in a more general sense, the α(ε) function,

2. hierarchy width: γ,

3. data specificity: p, q,

4. root node distribution: θε∅ .

The remaining part of this section is organised into five subsections. In the
following four sub-sections all the above-mentioned parameter groups are dis-
cussed. In Section 5.1 the α(ε) function and its influence on the depth of hierar-
chy are presented. The γ parameter and its impact on the hierarchy width are
described in Section 5.2. The differences in data distributions between nodes
in a hierarchy (especially parent-child nodes) are discussed in Section 5.3. As
the hierarchy generation process is iterative and top-down, the initial (root)
distribution parameters have an impact on the final hierarchy – this is discussed
in Section 5.4. A reassignment post-processing procedure allowing for the gen-
erated hierarchies to be denoised is described in Section 5.5. Furthermore, the
influence of parameters on the generated trees discussed theoretically in this
section is also empirically demonstrated later in the paper.

5.1 Controlling hierarchy depth
The depth of the hierarchy is controlled by the function α(ε) = α0λ

|ε|. The
higher the probability of a datum remaining in a node, the fewer data will
travel deep down the tree, and thus the tree will be shallower. On the other
hand, if the probability is low, the data will, on average, travel deeper into the
tree. The average probability of data remaining in a given node is based on the
selected α function, which influences the structure of the tree based on the α0

and λ parameters:

E[x ∈ Xε, |ε| = 0] =
1

1 + α0
, (9)

E[x ∈ Xε, |ε| = n] =

∏n−1
i=0 α0λ

i∏n
j=0(1 + α0λj)

. (10)

12

Additionally the variance can also be calculated:

var[x ∈ Xε, |ε| = 0] =
α0

(1 + α0)2(2 + α0)
, (11)

var[x ∈ Xε, |ε| = n] =

=
2
∏n−1
i=0 α0λ

i

(1 + α0λn)
∏n
j=0(2 + α0λj)

− (E[x ∈ Xε, |ε| = n])
2
.

(12)

It is possible to predict the shape of the tree and data distribution based on α0

and λ parameters:

• α0 = 1, λ = 1: the structure of the tree is chaotic and hard to predict, the
further away the parameters move from these values the more stable the
tree becomes;

• α0 < 1, λ ≤ 1: shallow structure, data located primarily at the top of the
tree;

• α0 ≤ 1, λ > 1: similar to the above case, the depth of the tree increases
but most data is located at the top of the tree;

• α0 ≥ 1, λ < 1: the structure is deep, but data is not located at the top,
the bigger α0 starts out, and smaller λ is the more data will move down
the tree into the central or lower region;

• α0 > 1, λ ≥ 1: deep structure, data located primarily at the top of the
tree but spread out.

5.2 Controlling hierarchy width
The width of the tree is based on the value of the γ parameter at a given node
depth j. Given that x ∈ XEε and x 6∈ Xε the average probability of data being
generated from a specific subtree (based on the index) can be used to estimate
the number of children a node can potentially have:

E[x ∈ XEεεi
, i = 1] =

1

1 + γ
, (13)

E[x ∈ XEεεi
, i = n] =

γn−1

(1 + α0λj)n
. (14)

Variance for these values can also be calculated:

var[x ∈ XEεεi
, i = 1] =

γ

(1 + γ)2(2 + γ)
, (15)

var[x ∈ XEεεi
, i = n] =

2γn−1

(1 + γ)(2 + γ)n
−
(
E[x ∈ XEεεi

, i = n]
)2
. (16)

Influence of the parameter γ on the generated hierarchies is as follows:

13

• γ = 1: the number of children is chaotic and difficult to predict;

• γ < 1: narrower tree, fewer children per node on average;

• γ > 1: wider tree, more children per node on average.

5.3 Controlling data specificity
When a new group is considered, the parameters for that group data points
distribution are drawn based on the parent distribution and the kernel parame-
ters p and q. An important aspect of the generated model is that data becomes
more specific at lower nodes following the OCH principles. However, the values
that are taken for the kernel change the average proportion of standard data
deviation between the parent and child. This is based on the expected standard
deviation of the new node compared to the old node (taken separately in each
dimension):

E[σεεid] = σεd
p

p+ q
, (17)

var[σεεid] = σεd
pq

(p+ q)2(p+ q + 1)
. (18)

By selecting p and q, the rate at which the nodes become more specific can
be altered. The lower the mean is, the more specific every child will be (on
average), the higher the variance is, the more variety there will be in how the
child nodes relate to their parent.

5.4 Influence of starting distribution on results
Due to the relative nature of the model (i.e., the specific values generated from
the model are calculated relative to each other, starting from the root distribu-
tion, as shown in equations 5, 6, 7, 8), the choice of initial distribution param-
eters is not very important. The data generated from the model can be scaled
afterwards to any desired values as well as moved in any direction along any
dimension. Because of this, the generator assumes a following data distribution
for the root node:

θε∅ = (Gauss(µε∅1, σε∅1), ..., Gauss(µε∅d, σε∅d)), (19)

where
µε∅1 = µε∅2 = ... = µε∅d = 0, (20)

and
σε∅1 = σε∅2 = ... = σε∅d = σmax. (21)

Every dimension of the root node is described by a normal distribution with zero
mean and the standard deviation of value σmax which is a method’s parameter.
Data generated from the model can be then post-processed to a more desirable
spread of values. This is done by applying scaling and translation to all the
data generated by the model as well as the parameters of each group node.

14

5.5 Reassignment post-processing
As it is shown in Section 4, the assignment of points to groups is conducted in
a top-down manner separately for every point. It starts from the root node and
moves down the hierarchy a particular path considering a different sequence of
nodes for a point assignment. For every visited node the conditional probabili-
ties νε and ψεεi are calculated (Equations (4) and (6)) and their values determine
which sequence of nodes is considered before a point is finally assigned. A point
is assigned to the first node for which certain conditions are met (see Step 5
in Section 4). As this process is greedy and stochastic, only a subset of nodes
will be considered for point assignment which does not guarantee that a node
with the highest probability will be selected. It introduces noise to the nodes
and biases their data distributions.

To address such behaviour, a hierarchy can undergo one form of post-processing
after being generated. This process, referred in this paper as reassignment,
moves the data between clusters in such a way that each object belongs to the
cluster it is most likely to be generated from:

∀x∈X (x ∈ Xεa ⇔ ¬∃εb 6=εaL(x|θεa) < L(x|θεb)) (22)

The process does not modify the number of clusters, hierarchy relations between
them or their parameters in any way. It merely relocates data to reduce noise
and produce cleaner clusters.

6 Experiments
The generator was tested with a number of different goals in mind. The tests
serve to empirically investigate the analytical and intuitive properties of the
introduced parameters provided in the previous sections. Thus, a large part of
the experiments serves to verify how the different parameter values affect the
generated hierarchies. Further, the experiments aim at demonstrating various
properties of the generated hierarchies and generator flexibility in producing
differently-structured hierarchical data. The influence of the reassignment post-
processing (Section 5.5) on the generated hierarchies has also been investigated.
The goal of the reassignment process is to reduce noise in the generated data
by moving objects to the node for which the likelihood of being drawn from is
the highest. A comparison of post-processed hierarchies with unmodified ones
was performed. All of these experiments were done with a primary objective to
provide a potential user with a comprehensive understanding of the generator
and to assist him/her in choosing the best parameter set for any given use case.
An additional benefit from conducted experiments is the establishment of new
benchmarking datasets for OCH that are ready to use for method comparison
without a need to use the generator.

Due to the stochastic nature of the generator, the results presented in this
section were obtained by averaging over 100 generated hierarchies for each of the
used parameter sets (s00 – s07) shown in Table 1. Each of the used parameter

15

sets represents a different type of hierarchical structure. Some parameters such
as n = 10,000, d = 2, p = 1, q = 5, σmin = 0.05 and σmax = 10 remained
constant across all experiments whereas α0, λ, γ varied. For every generator
run two hierarchies were produced: as generated from the statistical model (the
initial assignment of data to nodes), and after reassignment of data (reassigned
datasets). Datasets with the initial assignment of data are referred to as s00 –
s07 depending on which parameter set-up was used (Table 1). For the reassigned
hierarchies, the naming convention is the same with an additional letter ’r’
(s00r – s07r). Regardless of which variant of the hierarchy (with or without
the reassigned procedure) has been created, generator parameters remain the
same as the reassignment procedure is applied after the data is created. In
other words, the reassignment procedure does not influence the data generation
process.

Several quantitative measures were used to investigate the aggregate prop-
erties of the generated hierarchies:

• N̄ – the number of nodes in the hierarchy, averaged over all generated
hierarchies,

• L̄ – the number of leaves in the hierarchy (nodes with no children or with
empty children only), averaged over all generated hierarchies,

• D̄ – the depth of the hierarchy, averaged over all generated hierarchies,

• B̄ – the breadth of the hierarchy, averaged over all levels in a hierarchy,
and over all hierarchies generated,

• P̄ – the average length of all paths in a hierarchy, averaged over all gen-
erated hierarchies.

Table 1: Generator parameters used to create experimental data sets from s00 to
s07 (or s00r to s07r correspondingly if the reassigned post-processing procedure
has been used; the parameters are the same since reassignment is applied after
the dataset is created). The remaining parameters are shared between test sets:
n = 10,000, d = 2, p = 1, q = 5, σmin = 0.05 and σmax = 10. Parameter set
selection is based on previous research in this area [2]

.

Set α0 λ γ
s00 and s00r 1 0.5 0.2
s01 and s01r 1 1.0 0.2
s02 and s02r 1 1.0 1.0
s03 and s03r 5 0.5 0.2
s04 and s04r 5 1.0 0.2
s05 and s05r 5 0.5 1.0
s06 and s06r 25 0.5 0.2
s07 and s07r 25 0.5 1.0

16

All of the reported average measures are accompanied by standard deviations.
Since B and P are averages of averages instead of a standard deviation, an aver-
age of standard deviations over all generated hierarchies is provided. All defined
measures are reported separately for the initially generated (Table 2) and re-
assigned hierarchies (Table 3). The remaining experiments results (Figures 4
to 13) are presented as histograms averaged over the 100 generated hierarchies
for each parameter set. The histograms (except for Figures 12 and 13) present
measures across different levels of hierarchies providing a more in-depth (struc-
tural) view on the generated data. Figures 4, 6, 8, 10 and 12 show results when
the reassignment post-processing has not been executed, whereas Figures 5, 7,
9, 11 and 13 show values after the post-processing. The reported measures are:

• average width per level (Figures 4 and 5),

• average number of objects per node per level (Figures 6 and 7),

• average number of children per node per level (Figures 8 and 9),

• average number of leaves per level (Figures 10 and 11),

• average number of nodes with a given number of children (Figures 12
and 13).

Table 2: Accumulative characteristics of generated hierarchies without the
reassignment procedure. Average X̄ values together with standard deviation
σX̄ (or an average of standard deviations σ̄X̄) are provided.

Set
Nodes Leaves Depth Breadth Path length

N̄ σN̄ L̄ σL̄ D̄ σD̄ B̄ σ̄B̄ P̄ σ̄P̄
s00 17.58 7.80 8.75 4.33 4.06 0.82 3.40 2.14 2.86 0.93
s01 95.23 53.06 31.00 17.85 11.73 2.80 7.14 5.10 6.30 2.50
s02 556.81 329.74 271.80 188.79 12.33 2.20 40.44 41.33 5.40 1.99
s03 58.19 21.33 25.84 10.62 6.41 0.73 7.84 5.97 4.36 1.13
s04 3090.88 944.13 483.62 187.81 52.54 6.83 58.14 59.92 19.39 7.88
s05 485.43 149.83 297.62 108.54 6.88 0.55 61.69 64.09 4.25 1.00
s06 175.71 61.50 67.57 26.01 8.83 0.64 17.84 14.97 6.20 1.32
s07 2071.07 536.50 1109.17 367.70 9.27 0.51 201.88 223.79 5.88 1.16

The results of the conducted experiments can be confronted with prior an-
alytical estimations of the effect that parameters have on the structure of the
hierarchy (Sections 5 and 5.1 to 5.3). The simplest case is the γ parameter
(Section 5.2). This parameter is responsible for the formation of child nodes
and as such, the breadth of the hierarchy. For datasets that differ only by the
γ value (s01 and s02 or s06 and s07), the distribution of data per level is very
similar (Figures 4 and 5). It is because the data distribution is controlled by
the α function, which is not influenced by γ. On the other hand, there is a

17

Table 3: Accumulative characteristics of generated hierarchies with the reas-
signment procedure. Average X̄ values together with standard deviation σX̄ (or
an average of standard deviations σ̄X̄) are provided.

Set
Nodes Leaves Depth Breadth Path length

N̄ σN̄ L̄ σL̄ D̄ σD̄ B̄ σ̄B̄ P̄ σ̄P̄
s00r 18.11 8.17 9.30 4.68 4.05 0.82 3.50 2.23 2.86 0.92
s01r 98.56 54.99 34.76 19.50 11.70 2.82 7.40 5.31 6.30 2.48
s02r 642.02 367.21 363.20 211.42 12.23 2.19 46.88 47.62 5.43 1.96
s03r 59.88 22.11 27.64 11.33 6.40 0.74 8.07 6.15 4.35 1.14
s04r 3099.03 936.39 597.36 176.93 52.05 6.96 58.90 60.44 19.17 7.78
s05r 552.61 151.38 366.31 100.87 6.87 0.56 70.30 72.92 4.25 1.03
s06r 180.47 63.97 73.14 28.05 8.81 0.65 18.34 15.40 6.16 1.35
s07r 2310.21 524.57 1375.60 302.29 9.27 0.51 225.19 250.42 5.87 1.18

significant change in the width of the hierarchy, approximately by one order
of magnitude (10 times higher for higher γ), as it was predicted by the prior
analysis.

The influence of the α0 and λ parameters on generated hierarchies is difficult
to describe (Section 5.1) as the two parameters are interwoven together within
the α function (Equation (2)); it also depends on the level of a hierarchy that is
currently considered. However, the impact of this function is the best presented
in Figures 6 and 7, especially when results for datasets s00, s01, s02 and s04
are compared with the results for s03, s05, s06 and s07. The first set has a
clear tendency to retain data in higher nodes (nodes that are located closer to
the root). In comparison, the other set has the main mass of data located in
the lower nodes (nodes located distant from the root). Especially with the s06
and s07 the majority of objects are located in lower nodes, close to the 5th
level. For these two datasets, we can see that α on average starts out with low
values (due to a high value of α0) and because of λ parameter being smaller
than 1, inclines as moving lower in the hierarchy (compare the influence of
parameters on the Beta distribution3). For a low value of α, the probability
of retaining data in a node is on average low (see steps 2-5 in Figure 2). Thus
the nodes close to the root do not retain data, but as the value of α increases,
more objects gather in the lower nodes of the hierarchy before eventually, the
remaining data is passed on to the lowest nodes (leaves). From this, we come
to an important conclusion about the importance of these two parameters. In
cases where it is undesirable to have many generic (root level) objects, and it is
important to have clearly distinct, specific (lower level) objects parameters α0

and λ must have values similar to those present in s06 and s07 – high α0 and
λ that controls the decline of the Beta function value over levels to be smaller
than 1. Such behaviour was earlier predicted from the analytical study of the
parameters (Section 5.1), and the conducted experiments show that behaviour

3http://eurekastatistics.com/beta-distribution-pdf-grapher/

18

http://eurekastatistics.com/beta-distribution-pdf-grapher/

empirically. It appears that the bulk of data is retained at the level in which
α(ε) drops below 1.

A very prominent behaviour of the generator seen in all test cases is the
production of – what will be referred to from this point onward – trailing di-
visions of data. Trailing divisions occur when the generator attempts to split
small remaining partitions of data. This happens both in the right (higher in-
dex) children of a populated node and lowers down the hierarchy as presented
in Figure 3. In both cases, it is possible to observe large numbers of nodes
with a low number of children, usually one or zero (in the latter case the node
becoming a leaf node), as well as many nodes that are not populated with data.
Trailing divisions reveal the fractal nature of trees generated by the procedure,
which manifests itself both when producing direct children for a node (horizontal
self-similarity) and going down the hierarchy (vertical self-similarity).

Figure 3: A simple schema of the location of trailing divisions.

The above phenomenon can be visualised horizontally as an ordered set of all
children of any node being statistically similar to the ordered set of all children
of the node except the first one. It is a direct effect of the Tree-Structured
Stick Breaking process (TSSB) [2]. Similarly to the above, from a vertical point
of view, in any tree with λ = 1 (the conditional probability of a datum being
assigned to a particular node is constant for all the nodes, see Equation (2))
all sub-trees of a node are statistically similar to that node. In the presented
experimental data, these trailing divisions are visible as the falling off "tail" in
the histograms of data instances distribution per level (Figures 6 and 7) as well
as the cause of the high deviation of width within the trees (Figures 4 and 5).
Unfortunately, due to the nature of the TSSB distribution, it is impossible to
avoid this behaviour without post-processing. No forms of such post-processing
were employed for the experiments presented in this paper.

Since the γ value does not change between levels (see Equation (4)), a critical
factor in considering how many children a node will have is the number of data
passing through the node during the hierarchy generation process. Because of
that, nodes that are located closer to the root are more likely to have more
children than smaller nodes lower down the hierarchy. It has also been verified
experimentally, and it is shown in Figures 8 and 9. Additionally, the more
children a node has, the more of them will be small nodes, i.e., nodes through
which few objects pass, resulting primarily in leaf nodes or nodes with a single

19

child. This behaviour of smaller nodes also transfers lower down the hierarchy
where less data reaches, leading to similar behaviour.

Finally, the reassigned test cases show a tendency for data to move down
hierarchy levels. It is best shown when comparing Figure 6 with Figure 7.
Intuitively, the groups located lower down in the hierarchy are more specific
and potentially conflicting data would be prone to moving down into the more
specific child clusters during the reassignment process. However, despite this
tendency, the hierarchies structure do not change. Hierarchies retain most of
their initial characteristics with the mass of data being shifted down towards
the lower levels. Due to the post-processing applied to these datasets, they
can be better suited for initial testing of grouping methods as they contain less
noise. Testing using both types of datasets (unfiltered and filtered) may be the
preferred and most valuable approach in every case where the features of the
objects are considered.

7 Benchmarking dataset
One of the goals of this article is to provide the research community with a
systematic and comprehensive approach for benchmarking OCH methods. To
achieve this goal, the benchmarking dataset of 160 hierarchies was created.
These hierarchies were chosen from the 1,600 hierarchies analysed in Section 6.

The process of selecting 160 hierarchies to be included in the benchmarking
dataset was as follows. For every parameter set-ups out of 16 possibilities (see
Table 1), 100 hierarchies hsi were generated, where

• s ∈ {s00, s00r, s01, s01r, s02, s02r, s03, s03r, s04, s04r, s05, s05r, s06,
s06r, s07, s07r},

• 1 ≤ i ≤ 100.

Each of these 1,600 hierarchies has been described by a vector

descr(hsi) = (Ns
i , L

s
i , D

s
i , B

s
i , P

s
i), (23)

where

• Ns
i is the number of nodes in the i-th hierarchy for parameter set-up s,

• Lsi is the number of leaves in the i-th hierarchy for parameter set-up s,

• Ds
i is the depth of the i-th hierarchy for parameter set-up s,

• Bsi is the breadth of the i-th hierarchy for parameter set-up s,

• P si is the average length of all paths in the i-th hierarchy for parameter
set-up s.

20

0 2 4 6
0

2

4

s00

0 5 10 15
0

5

10

s01

0 5 10 15
0

50

100

s02

0 2 4 6 8
0

5

10

15

s03

0 20 40 60
0

50

100

150

s04

0 2 4 6 8
0

50

100

150

s05

0 5 10
0

10

20

30

40

s06

0 5 10
0

200

400

600

s07

Figure 4: Average hierarchy width (B) on every hierarchy level (number of
nodes on every level) without execution of reassignment procedure. Vertical
axes show hierarchy width and horizontal axes indicate hierarchy level.

0 2 4 6
0

2

4

6
s00

0 5 10 15
0

5

10

s01

0 5 10 15
0

50

100

s02

0 2 4 6 8
0

5

10

15

s03

0 20 40 60
0

50

100

150

s04

0 2 4 6 8
0

50

100

150

200

s05

0 5 10
0

20

40

s06

0 5 10
0

200

400

600

s07

Figure 5: Average hierarchy width (B) on every hierarchy level (number of nodes
on every level) with execution of reassignment procedure. Vertical axes show
hierarchy width and horizontal axes indicate hierarchy level.

21

0 2 4 6
0

2,000

4,000

s00

0 5 10 15
0

2,000

4,000

s01

0 5 10 15
0

2,000

4,000

s02

0 2 4 6 8
0

1,000

2,000

s03

0 20 40 60
0

500

1,000

1,500

s04

0 2 4 6 8
0

1,000

2,000

s05

0 5 10
0

500

1,000

1,500

2,000

s06

0 5 10
0

1,000

2,000

s07

Figure 6: Average distribution of data instances among hierarchy levels without
execution of reassignment procedure. Vertical axes show the number of instances
and horizontal axes indicate hierarchy level.

0 2 4 6
0

2,000

4,000

s00

0 5 10 15
0

1,000

2,000

3,000

4,000

s01

0 5 10 15
0

1,000

2,000

3,000

s02

0 2 4 6 8
0

500

1,000

1,500

2,000

s03

0 20 40 60
0

500

1,000

1,500
s04

0 2 4 6 8
0

1,000

2,000

s05

0 5 10
0

1,000

2,000

s06

0 5 10
0

1,000

2,000

3,000

s07

Figure 7: Average distribution of data instances among hierarchy levels with
execution of reassignment procedure. Vertical axes show the number of instances
and horizontal axes indicate hierarchy level.

22

0 2 4 6
0

1

2

3

s00

0 5 10 15
0

1

2

3

s01

0 5 10 15
0

2

4

6

8

s02

0 2 4 6 8
0

1

2

3

s03

0 20 40 60
0

1

2

3

s04

0 2 4 6 8
0

5

10

s05

0 5 10
0

1

2

3

4

s06

0 5 10
0

5

10

s07

Figure 8: Distribution of the average number of children per node among hier-
archy levels without execution of reassignment procedure. Vertical axes show
the number of children and horizontal axes indicate hierarchy level.

0 2 4 6
0

1

2

3

s00

0 5 10 15
0

1

2

3

s01

0 5 10 15
0

2

4

6

8

10
s02

0 2 4 6 8
0

1

2

3

4
s03

0 20 40 60
0

1

2

3

s04

0 2 4 6 8
0

5

10

s05

0 5 10
0

1

2

3

4

s06

0 5 10
0

5

10

s07

Figure 9: Distribution of the average number of children per node among hier-
archy levels with execution of reassignment procedure. Vertical axes show the
number of children and horizontal axes indicate hierarchy level.

23

0 2 4 6
0

1

2

3

s00

0 5 10 15
0

2

4

s01

0 5 10 15
0

20

40

s02

0 2 4 6 8
0

2

4

6

8

s03

0 20 40 60
0

10

20

s04

0 2 4 6 8
0

50

100

s05

0 5 10
0

10

20

s06

0 5 10
0

100

200

300

400

s07

Figure 10: Average number of leaf nodes (L) on every hierarchy level without
execution of reassignment procedure. Vertical axes show the number of children
and horizontal axes indicate hierarchy level.

0 2 4 6
0

1

2

3

s00

0 5 10 15
0

2

4

s01

0 5 10 15
0

20

40

60

s02

0 2 4 6 8
0

2

4

6

8

10
s03

0 20 40 60
0

10

20

30

s04

0 2 4 6 8
0

50

100

150
s05

0 5 10
0

10

20

s06

0 5 10
0

200

400

s07

Figure 11: Average number of leaf nodes (L) on every hierarchy level with
execution of reassignment procedure. Vertical axes show the number of children
and horizontal axes indicate hierarchy level.

24

2 4 6 8
0

2

4

6

8

s00

2 4 6 8
0

20

40

s01

5 10 15
0

100

200

s02

5 10
0

10

20

s03

5 10
0

1,000

2,000

s04

5 10 15 20
0

100

200

300

s05

2 4 6 8 10
0

20

40

60

s06

10 20
0

500

1,000

s07

Figure 12: Average number of child nodes for every node in generated hierar-
chies without execution of reassignment procedure. Horizontal axes show the
number of children and vertical axes show the number of occurrences (count) in
the hierarchies.

2 4 6 8
0

2

4

6

8

10

s00

2 4 6 8
0

20

40

s01

5 10 15
0

100

200

300

s02

5 10
0

10

20

30
s03

5 10
0

500

1,000

1,500

2,000

s04

5 10 15 20
0

100

200

300

400
s05

2 4 6 8 10
0

20

40

60

80
s06

10 20
0

500

1,000

1,500
s07

Figure 13: Average number of child nodes for every node in generated hierarchies
with execution of reassignment procedure. Horizontal axes show the number
of children and vertical axes show the number of occurrences (count) in the
hierarchies.

25

Additionally, for every parameters set-ups a vector of average values Hs
avg has

been established
Hs
avg = (N̄s, L̄s, D̄s, B̄s, P̄ s), (24)

where N̄s, L̄s, D̄s, B̄s, P̄ s are values of N̄ , L̄, D̄, B̄, P̄ from Tables 2 and 3 for
a corresponding s.

For all values of parameter s separately, vectors descr(hsi) and Hs
avg have

been min-max scaled to range from 0 to 1. In the scaled space, Euclidean
distance has been computed between an average vector and all the corresponding
hierarchy vectors. Based on the distances the top 10 closest hierarchies have
been identified. These hierarchies were published as benchmarking data for a
particular parameter set-up. The procedure has been repeated for all parameter
set-ups resulting in a collection of 160 hierarchies that are publicly available
(http://kio.pwr.edu.pl/?page_id=396).

Quantitative measures for the published dataset are reported in Table 4.
This table presents results in the same format as in Tables 2 and 3 with two
additional measures:

• C̄ – the average number of immediate children for every internal node
(node with at least one non-empty child) in a hierarchy, averaged over all
generated hierarchies,

• Ī – the average number of instances per node in a hierarchy, averaged over
all generated hierarchies.

The results presented in Table 4 are very similar to these presented in Ta-
bles 2 and 3 with differences mainly attributed to the stochastic nature of the
generator. Similarities in the results indicate that the chosen set of published
160 hierarchies is a representative sample and all the conclusions from Section 6
apply to them as well. Specifically, the trends (how the hierarchy statistics
change between levels) showed in Figures 4 to 13 apply to the published sample
as well.

The average number of children per internal node (C̄) is usually between
1 and 2, which indicates that the hierarchies are quite narrow (Table 4). A
manual inspection of hierarchies confirmed that nodes with multiple (e.g., 5)
children happen but far less often. The reported average number of instances
per node (Ī) differs significantly between sets, e.g., 2.74 for s04 and 679.08 for
s00. Furthermore, high standard deviation values (σ̄Ī) indicate high variability
in node sizes within hierarchies that might be compensated by the reassignment
procedure.

The reassignment post-processing procedure has the largest impact on the
instances per node measure, whereas the differences in other metrics (when hi-
erarchies for reassigned and not reassigned parameter set-ups are compared)
are not that significant. They rather stem from differences between samples
themselves (separate hierarchies have been chosen for s00 and for s00r). Reas-
signment procedure acts as a denoising component relocating instances between
nodes but leaving hierarchy structures unchanged. This is in line with earlier
observations made in this article.

26

http://kio.pwr.edu.pl/?page_id=396

Table 4: Accumulative characteristics of hierarchies published as benchmarking
dataset. Average X̄ values together with standard deviation σX̄ (or an average
of standard deviations σ̄X̄) are provided.

Set Nodes Leaves Depth Breadth Child per Instances
Int. Node per Node

N̄ σN̄ L̄ σL̄ D̄ σD̄ B̄ σ̄B̄ C̄ σ̄C̄ Ī σ̄Ī
s00 15.10 2.60 7.00 1.56 3.90 0.32 3.09 1.69 1.75 0.65 679.08 1705.60
s00r 13.90 2.23 6.70 1.16 3.70 0.48 2.98 1.58 1.81 0.63 736.32 1602.21
s01 109.20 27.29 32.10 8.09 13.10 1.20 7.68 4.81 1.41 0.53 98.32 522.55
s01r 85.40 23.68 28.50 7.53 11.60 1.65 6.72 4.36 1.49 0.56 125.29 532.46
s02 592.70 116.10 225.60 36.93 12.60 0.97 43.43 43.04 1.62 1.18 17.41 215.91
s02r 547.50 132.65 308.50 83.20 11.60 0.84 43.70 41.21 2.28 1.58 19.24 180.24
s03 50.90 8.40 21.70 4.16 6.20 0.42 7.08 5.20 1.71 0.67 201.36 707.08
s03r 50.80 7.86 23.20 5.20 6.10 0.32 7.15 5.27 1.80 0.71 201.38 441.08
s04 3711.80 502.46 445.50 58.94 50.80 2.04 71.93 70.96 1.14 0.30 2.74 45.35
s04r 2839.10 242.45 548.70 47.38 49.50 3.14 56.21 55.77 1.24 0.40 3.55 37.76
s05 468.90 47.42 260.80 25.08 6.90 0.32 59.34 60.97 2.25 1.75 21.53 127.33
s05r 512.50 87.08 336.90 55.25 6.50 0.53 68.32 67.81 2.93 2.15 19.99 64.46
s06 167.20 26.73 60.70 9.87 8.50 0.53 17.64 14.40 1.56 0.70 61.38 252.74
s06r 173.60 20.49 69.50 7.46 8.30 0.48 18.73 15.11 1.66 0.71 58.37 96.44
s07 2221.70 242.26 1032.20 106.40 9.10 0.32 220.53 243.58 1.87 1.36 4.56 23.28
s07r 2285.50 210.33 1360.20 123.66 9.40 0.52 220.00 247.80 2.47 1.81 4.41 8.71

The key summary characteristics of the published hierarchies are presented
in Table 5. They are combined for the reassigned and not reassigned variants
for the reasons provided in the paragraphs above. The table provides a quick
reference for a potential user assisting in a decision of which hierarchies to use
in a particular use-case. The decision whether to use the reassigned variant of
not should be based on the fact that reassignment denoise the hierarchy, so it
is expected to be easier to cluster the points.

One use-case for the benchmarking dataset might be a development of a new
OCH method. If a prototype is being developed, and authors want to evaluate
the performance of the method on very high and narrow hierarchies, s04 or
s04r should be used. On the other hand, if performance on not high but wider
hierarchies is to be validated, s05 or set05r are a better choice. An additional
benefit of the benchmarking dataset is that the complexity of a particular hi-
erarchy aspect (width, depth, number of nodes, number of instances per node)
can be changed gradually in the series of experiments validating method scala-
bility. For example, to test the method’s performance on hierarchies of similar
breadth and depth, the initial experiments might be conducted on s00 or s00r
which, on average, are 3.9 deep (D̄), 3.09 nodes wide (B̄), and consist of 15.1
nodes (N̄) (for the reassignment variant D̄ = 3.7; B̄ = 2.98 and N̄ = 13.9). The
second round of tests can be conducted on s03 or s03r hierarchies that are still

27

characterised by a similar breadth and depth, but in this case, the hierarchies
are higher, wider (D̄ = 6.2; B̄ = 7.08 for s03 and D̄ = 6.1; B̄ = 7.15 for s03r)
and have an increased number of nodes (50.9 for s03 and 50.8 for s03r).

The established benchmarking dataset provides research communities with
a standardised approach to compare their methods. The published hierarchies
cover a variety of different hierarchical structures and point distributions al-
lowing for a comprehensive method evaluation but they don’t provide all the
possible hierarchies. In that case, the generator described in this article can be
used in order to generate hierarchies with the desired characteristics.

Table 5: Summary description of hierarchies published as benchmarking dataset.

Set Summary Description

s00
s00r

– the smallest hierarchical structures
– similar depth and breadth
– the highest number of instances per node

s01
s01r

– the most longitudinal hierarchies (high and narrow)
– high number of instances per node
– low number of nodes
– low average number of children per node

s02
s02r

– medium number of nodes
– wide hierarchies
– low average number of instances per node
– medium number of leaves

s03 – similar to s00 and s00r but a little larger structuress03r

s04
s04r

– the highest hierarchies
– the largest number of nodes
– very narrow
– the lowest average number of children per node

s05
s05r

– very wide hierarchies
– medium number of nodes and leaves
– the largest number of children per node

s06 – similar to s01 and s01r but a bit larger structuress06r

s07
s07r

– very large number of nodes
– the widest hierarchies
– the largest number of leaves
– very low average number of instances per node
– very high average number of children per node

28

8 Conclusions
In this paper a novel generator of synthetic hierarchical data and a set of bench-
marking datasets have been proposed. They aim at providing the research com-
munity with a systematic way to benchmark OCH clustering methods and to
assist with further OCH development (e.g., development of clustering validation
measures). This research has presented a thorough (theoretical and empirical)
analysis of the generator that should provide the reader with a comprehensive
understanding of how to use it.

The experiments presented in the previous sections highlight both strengths
and weaknesses of the proposed generator. A prominent strength is a high range
of different tree structures that can be generated and the ability to fine-control
these structures using the introduced parameters. Because of that, a wide range
of different hierarchy types, often seen in the real-world problems [2], has been
generated and made publicly available4.

Published benchmarks and the ability to create more hierarchies using the
generator is laying a solid foundation for further development of the concept
of Object Cluster Hierarchies. Generated hierarchies can assist not only in
clustering methods development and comparison but also in research of OCH
quality measures. The latter is important since existing internal and external
measures do not fully recognise the differences between OCH and Hierarchical
Clustering results.

From a practical point of view, it is also beneficial that the generator’s
parameters can be separated into groups, each controlling a different aspect of
the hierarchy. Vertical distribution of data is controlled by α0 and λ, hierarchy
width depends on the value of γ, and p, q controls the data specificity. As shown
in this article, every parameter set has an interpretation, and its effect on the
generated hierarchy is straightforward. This allows for a further fine-tuning
towards desired test data. The generation process scales with the number of
points to generate, expanding the hierarchy as more elements are generated.

One of the conclusions that emerged from the experiments was that gener-
ated hierarchies would display a degree of self-similarity replicating the same
general form both vertically and horizontally. We called it as a generation of
trailing divisions. Because of that, a few specific areas of the generated hierar-
chies are not fully controlled. A remedy to this issue is to use a post-processing
procedure similar to the reassignment process described in Section 5.5. This
should result in cleaner hierarchies and give the user more control over their
overall structure.

In its current form, the generator is limited to a generation of normally-
distributed, multidimensional, and uncorrelated real value data. It can be
extended to use different kernels leading to different structures of generated
hierarchies or generators operating on different types of data.

Furthermore, the self-similar (fractal) nature of the hierarchies suggests a
potential for the generator to be described using the language of fractals and

4http://kio.pwr.edu.pl/?page_id=396

29

http://kio.pwr.edu.pl/?page_id=396

especially L-Systems [29]. Describing the generation process in that form may
provide a different (more granular) view over the details of the hierarchical
structure.

References
[1] M. Abdolali and M. Rahmati. Neither global nor local: A hierarchical

robust subspace clustering for image data. Information Sciences, 514:333 –
353, 2020.

[2] R. P. Adams, Z. Ghahramani, and M. I. Jordan. Tree-structured stick
breaking for hierarchical data. In Proceedings of the 23rd International
Conference on Neural Information Processing Systems - Volume 1, NIPS’10,
pages 19–27, USA, 2010. Curran Associates Inc.

[3] J. Alcalá-Fdez, A. Fernández, J. Luengo, J. Derrac, S. García, L. Sánchez,
and F. Herrera. Keel data-mining software tool: data set repository, in-
tegration of algorithms and experimental analysis framework. Journal of
Multiple-Valued Logic & Soft Computing, 17, 2011.

[4] C. Blundell, Y. W. Teh, and K. Heller. Discovering non-binary hierar-
chical structures with bayesian rose trees. In Mixtures: Estimation and
Applications, pages 161–185. John Wiley & Sons, 05 2011.

[5] C. Blundell, Y. W. Teh, and K. A. Heller. Bayesian rose trees. In P. Grün-
wald and P. Spirtes, editors, UAI 2010, Proceedings of the Twenty-Sixth
Conference on Uncertainty in Artificial Intelligence, Catalina Island, CA,
USA, July 8-11, 2010, pages 65–72. AUAI Press, 2010.

[6] Z. Cai, X. Yang, T. Huang, and W. Zhu. A new similarity combining re-
construction coefficient with pairwise distance for agglomerative clustering.
Information Sciences, 508:173 – 182, 2020.

[7] H. Cao, S. Bernard, R. Sabourin, and L. Heutte. Random forest dis-
similarity based multi-view learning for radiomics application. Pattern
Recognition, 88:185 – 197, 2019.

[8] A. Cena and M. Gagolewski. Genie+owa: Robustifying hierarchical clus-
tering with owa-based linkages. Information Sciences, 520:324 – 336, 2020.

[9] V. Cohen-Addad, V. Kanade, F. Mallmann-Trenn, and C. Mathieu.
Hierarchical Clustering: Objective Functions and Algorithms, pages 378–
397. Society for Industrial and Applied Mathematics, 2018.

[10] V. Cohen-addad, V. Kanade, F. Mallmann-trenn, and C. Mathieu. Hierar-
chical clustering: Objective functions and algorithms. J. ACM, 66(4):26:1–
26:42, June 2019.

30

[11] G. Costa, G. Manco, R. Ortale, and E. Ritacco. Hierarchical clustering of
{XML} documents focused on structural components. Data and Knowledge
Engineering, 84:26 – 46, 2013.

[12] N. J. de Vries, Ł. P. Olech, and P. Moscato. Introducing Clustering with
a Focus in Marketing and Consumer Analysis, pages 165–212. Springer
International Publishing, Cham, 2019.

[13] D. Dheeru and E. Karra Taniskidou. UCI machine learning repository,
2017.

[14] P. Douglas, S. Harris, A. Yuille, and M. S. Cohen. Performance comparison
of machine learning algorithms and number of independent components
used in fmri decoding of belief vs. disbelief. NeuroImage, 56(2):544 – 553,
2011. Multivariate Decoding and Brain Reading.

[15] A. K. Dubey, U. Gupta, and S. Jain. Comparative study of k-means and
fuzzy c-means algorithms on the breast cancer data. International Journal
on Advanced Science, Engineering and Information Technology, 8(1):18–29,
2018.

[16] P. Fränti and S. Sieranoja. K-means properties on six clustering benchmark
datasets, 2018.

[17] L. d. l. Fuente-Tomas, B. Arranz, G. Safont, P. Sierra, M. Sanchez-Autet,
A. Garcia-Blanco, and M. P. Garcia-Portilla. Classification of patients with
bipolar disorder using k-means clustering. PLOS ONE, 14(1):1–15, 01 2019.

[18] J. GarcÃŋa, B. Crawford, R. Soto, and G. Astorga. A clustering algorithm
applied to the binarization of swarm intelligence continuous metaheuristics.
Swarm and Evolutionary Computation, 44:646 – 664, 2019.

[19] C. Hennig, M. Meila, F. Murtagh, and R. Rocci. Handbook of cluster
analysis. CRC Press, 2015.

[20] S. Jiang, G. Chen, X. Song, and L. Liu. Deep patch representations with
shared codebook for scene classification. ACM Trans. Multimedia Comput.
Commun. Appl., 15(1s):5:1–5:17, Jan. 2019.

[21] T. Jo. Text Clustering: Evaluation, pages 249–268. Springer International
Publishing, Cham, 2019.

[22] A. Krizhevsky and G. Hinton. Learning multiple layers of features from
tiny images. University of Toronto, 1(4), 2009.

[23] S. K. Lakshmanaprabu, K. Shankar, M. Ilayaraja, A. W. Nasir, V. Vi-
jayakumar, and N. Chilamkurti. Random forest for big data classification
in the internet of things using optimal features. International Journal of
Machine Learning and Cybernetics, Jan 2019.

31

[24] E. Massaro and F. Bagnoli. Hierarchical community structure in complex
(social) networks. Acta Physica Polonica B Proceedings Supplement, 7:379,
02 2014.

[25] B. Moseley and J. Wang. Approximation bounds for hierarchical cluster-
ing: Average linkage, bisecting k-means, and local search. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems
30, pages 3094–3103. Curran Associates, Inc., 2017.

[26] F. Murtagh and P. Contreras. Algorithms for hierarchical clustering: an
overview. Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, 2(1):86–97, 2012.

[27] P. B. Myszkowski, M. E. Skowroński, Ł. P. Olech, and K. Oślizło. Hybrid
ant colony optimization in solving multi-skill resource-constrained project
scheduling problem. Soft Computing, 19(12):3599–3619, Dec 2015.

[28] Ł. P. Olech and M. Paradowski. Hierarchical Gaussian Mixture Model with
Objects Attached to Terminal and Non-terminal Dendrogram Nodes, pages
191–201. Springer International Publishing, Cham, 2016.

[29] P. Prusinkiewicz and J. Hanan. Lindenmayer systems, fractals, and plants,
volume 79. Springer Science & Business Media, 2013.

[30] M. Z. Rodriguez, C. H. Comin, D. Casanova, O. M. Bruno, D. R. Amancio,
L. d. F. Costa, and F. A. Rodrigues. Clustering algorithms: A comparative
approach. PLOS ONE, 14(1):1–34, 01 2019.

[31] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. Ima-
geNet Large Scale Visual Recognition Challenge. International Journal of
Computer Vision (IJCV), 115(3):211–252, 2015.

[32] N. Sharma, A. Bajpai, and R. Litoriya. Comparison the various clustering
algorithms of weka tools. International Journal of Emerging Technology
and Advanced Engineering, 2:73–80, 2012.

[33] M. Spytkowski and H. Kwasnicka. Hierarchical clustering through bayesian
inference. In ICCCI (1), volume 7653 of Lecture Notes in Computer Science,
pages 515–524. Springer, 2012.

[34] M. Spytkowski, Ł. P. Olech, and H. Kwaśnicka. Hierarchy of Groups
Evaluation Using Different F-Score Variants, pages 654–664. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2016.

[35] K. Sri Dhivya Krishnan and P. T. V. Bhuvaneswari. Multiple linear
regression-based prediction model to detect hexavalent chromium in drink-
ing water. In H. S. Behera, J. Nayak, B. Naik, and A. Abraham, edi-
tors, Computational Intelligence in Data Mining, pages 493–504, Singapore,
2019. Springer Singapore.

32

[36] T. M. G. Tennakoon and R. Nayak. Discovering influence hier-
archy based on frequent social interactions. In 2018 IEEE/ACM
International Conference on Advances in Social Networks Analysis and
Mining (ASONAM), pages 575–576, Aug 2018.

[37] C. TÃőrnÄČucÄČ, D. GÃşmez-PÃľrez, J. L. BalcÃązar, and J. L. Mon-
taÃśa. Global optimality in k-means clustering. Information Sciences,
439-440:79 – 94, 2018.

[38] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. Openml: Networked
science in machine learning. SIGKDD Explorations, 15(2):49–60, 2013.

[39] X. Wang, Z. Lei, X. Guo, C. Zhang, H. Shi, and S. Z. Li. Multi-view
subspace clustering with intactness-aware similarity. Pattern Recognition,
88:50 – 63, 2019.

33

	1 Introduction
	2 Overview of benchmarking in the analysis of clustering methods
	3 A brief introduction to Object Cluster Hierarchies
	4 Generator model
	5 Parameter selection
	5.1 Controlling hierarchy depth
	5.2 Controlling hierarchy width
	5.3 Controlling data specificity
	5.4 Influence of starting distribution on results
	5.5 Reassignment post-processing

	6 Experiments
	7 Benchmarking dataset
	8 Conclusions

