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Abstract

Bike-sharing networks have become a carbon-emission and environmentally friendly form of transportation in re-

cent years. However, the asymmetric demand patterns of user behaviour, both temporally and spatially, inevitably lead

to an imbalance in the distribution of shared bikes in cities, thereby becoming the greatest obstacle to the networks’

development. Based on the real-world data of cycling trips, we analyse the challenging problem of imbalanced bike

distribution from the entire-city perspective, establishing that the static rebalancing demand for the whole city is a

stochastic variable with multi-scenario characteristics. On this basis, we develop an integer programming model to

consider multiple rebalancing vehicles with time-varying rental costs, to alleviate the imbalanced bike distribution,

while also analysing the intrinsic properties of such a model. We further propose a chance constraint programming

model, optimising a bike-sharing network through the implementation of various genetic algorithms that employ block

crossover and variable mutation operators. We reveal the inability of deterministic models in addressing the real-world

problem of rebalancing demands for operational bike-sharing. In the meantime, supported with stochastic simulation,

we demonstrate that the proposed approach can resolve this problem both effectively and efficiently, ensuring the

delivery of a high-level bike-sharing service across an entire metropolitan city.

Keywords: Bike sharing network, Static rebalancing operations, Integer programming model, Genetic algorithms

1. Introduction1

Bike-sharing networks first emerged as an alternative mode of public transport in the 1960s. They have received2

worldwide attention in the past decade due to the widespread use of smart devices and the rapid development of infor-3

mation technology, such as smart phones, Internet of Things (IoT) and mobile Internet. Today, bike-sharing networks4

are in operation throughout the world, offering health benefits together with a zero-emission and environmentally5

friendly mode of transport. Bike sharing is particularly convenient for the beginning and end segments of commuters’6
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daily journeys. Both young people and high-income elites have increasingly adapted to transformation from internal-7

combustion-powered cars to shared bikes [1], and many commuters who used to take buses for short travel have8

switched to shared bikes [2]. Indeed, bike-sharing networks have made significant contributions to reducing urban9

carbon emissions and the positive transformation of commuters’ daily travel habits [3].10

Depending on the underlying form of service, bike-sharing networks can be divided into station-based and free-11

floating ones. In a station-based network, the start and end points of each cycling trip are limited to pre-selected12

parking places, which is conducive to centralised operation and management from the perspective of the company13

but implies the difficult task of planning the location and capacity of parking places. Such networks include Vélib’14

in France, Citi Bike in the United States and Hangzhou Public Bicycle in China. A free-floating network, without15

suffering from the aforementioned problem, allows users to start and finish their trips almost anywhere in the city,16

which greatly improves user satisfaction but necessitates the hugely costly operation of rebalancing the shared bikes,17

that is, transporting them to where they are needed using vehicles. Such networks include YoBike in England, oBike18

in Singapore and Mobike in China. Although both forms of bike-sharing face their own dilemmas, they inevitably19

encounter one common challenge in the asymmetric demand pattern of users across the city where a bike-sharing20

network is set up [4].21

This asymmetric demand is mainly manifested in two aspects. First, with the continuous expansion of urban22

boundaries and the increasingly clear division between residential, commercial and industrial areas, citizens’ home-23

to-work distances have become increasingly long, resulting in significant differences between the demand patterns in24

the different areas and times of service. For example, in the morning, the cycling demand is overwhelmingly from25

homes to bus stops or metro/light rail stations, and in the evening the trend is exactly the opposite. Second, from the26

perspective of the entire city, the demand patterns of citizens in a given area change over time due to the stochasticity27

and volatility of citizens’ daily activities [5]. For example, instead of taking the bus or metro/light rail after cycling as28

usual, certain commuters may choose to take a taxi directly to work due to their late departure. Therefore, asymmetric29

demand patterns, both spatially and temporally, are inevitable in a bike-sharing network. Without the help of rebal-30

ancing operations, asymmetric demand patterns will unavoidably lead to an imbalance in the distribution of shared31

bikes in the network across the serviced city.32

Imbalanced bike distribution is reflected by the accumulation of bikes in some parking places and the shortage of33

bikes in others, which is highly detrimental to the sustainable operation of a bike-sharing network for various reasons.34

For instance, if a commuter cannot find an available shared bike at the beginning of their intended cycling trip, or a35

vacant parking place at the end the trip, this commuter’s satisfaction with the network service will be severely affected36

adversely. Also, the massive accumulation of shared bikes will undoubtedly worsen the existing problem of limited37

public parking space and cause problems for the urban environment. What is worse, particularly for free-floating bike-38

sharing networks, the location distribution of bikes is also influenced by users’ disordered parking behaviours, making39

the challenge of imbalanced distribution even more difficult to deal with [6]. These problems hinder the development40

and application of bike-sharing networks, deterring their wider acceptance by commuters and their further integration41
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into traditional public transport systems.42

With the development and application of big data technology in data analysis and decision optimization [7, 8],43

extensive studies have been conducted in the field of operations and management science to enhance the ability44

of bike-sharing networks to tackle the problem of imbalanced distribution. These studies may be categorised into45

three hierarchical levels, including strategic design, tactical development and operations management [9]. In terms46

of strategic design, research has been aimed to ensure satisfactory levels of service and inventory in bike-sharing47

networks through rational planning of the location and capacity of the stations and/or parking places, thereby reducing48

user dissatisfaction, station construction cost, or both, e.g., [10, 11, 12, 13, 14, 15]. The studies at the tactical level49

have focused on formulating various user incentive policies in an effort to encourage users to ride shared bikes from50

oversupplied areas to undersupplied areas, e.g., [16, 17, 18]. Both tactical and strategic-level studies are conducted51

before the bike-sharing network under investigation begins to operate. This makes it difficult to plan for appropriate52

response to any imbalance between supply and demand resulting from short-term changes in shared bike use.53

In contrast, research at the operations level usually involves the use of rebalancing vehicles to rectify identified54

imbalanced bike distribution after the network is in service. In such cases, companies use rebalancing vehicles within55

their operational area to pick up bikes from the oversupplied parking places and deliver them to the undersupplied56

parking places. In the following, for simplicity, we refer to such an operation as rebalancing. Enjoying the inherent57

advantages of flexibility, adaptability and universality, rebalancing has become the most popular approach to imbal-58

anced bike distribution in recent years. The rebalancing operations described in the literature can be classified into two59

groups: dynamic and static. Dynamic rebalancing operations are mostly implemented during the daytime, when the60

distribution of the shared bikes depends dynamically on the users’ cycling demand [19, 20, 21, 22]. Static rebalancing61

is typically performed late at night, when the shared bike usage is almost zero, so the effect of user demand is neg-62

ligible. Static rebalancing operations have been much more extensively studied than dynamic ones, and they can be63

considered a special case of dynamic operations in which the rebalancing time period is long and the influence of bike64

usage is negligible. In this sense, research into static operations is the foundation of research into dynamic operations.65

Moreover, because static operations occur after the evening peak time and before the morning rush hours, they pro-66

vide the operational team of the service company with sufficient time to effectively alleviate the two most prominent67

imbalances in all-day operations. For these reasons, in this paper, we mainly focus on the static rebalancing operations68

of bike-sharing networks.69

Existing studies on static rebalancing operations can be summarised as follows. Raviv et al. [23] first introduced a70

static rebalancing model, and on this basis, they proposed two mixed-integer linear programming models to minimise71

the penalty and operating costs of a network. Ho and Szeto [24] examined rebalancing operations by reducing the72

total unsatisfied demand of all parking places and presented an iterative tabu search heuristic to solve the rebalancing73

problem. To reduce the problem scale, Forma et al. [25] resolved the rebalancing operations with a three-step heuristic,74

via first clustering the bike stations according to their geographic and inventory status. Szeto et al. [26] investigated75

the single-vehicle static rebalancing problem with the objective of minimising the weighted sum of unmet customer76
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demand and operational time of the rebalancing vehicles. Cruz et al. [27] also addressed the rebalancing problem77

with a single vehicle, which allows it to carry out multiple visits to the same station while regarding each station as78

a temporary warehouse to store shared bikes. On this basis, they further proposed an iterative local search heuristic79

algorithm to resolve their rebalancing model. Li et al. [28] studied the rebalancing problem with multiple types of80

bike (for example, one-seat and two-seat bikes) and resolved their proposed model using a combined hybrid genetic81

algorithm. In addition, Ho and Szeto [29] looked into the rebalancing operations with the consideration of multiple82

rebalancing vehicles without permitting shared bikes to be stored at the stations. They also proposed a hybrid large-83

neighbourhood search algorithm based on several removal and insertion operators to solve the rebalancing model.84

Using multiple rebalancing vehicles, Bulhões et al. [30] addressed the rebalancing problem by allowing vehicles85

to visit the bike stations multiple times and proposed an iterative local search metaheuristic to solve the problem.86

Pal and Zhang [31] considered the rebalancing operations of a free-floating bike-sharing network on the basis of a87

decomposed network and hybrid nested large-neighbourhood search algorithm. Tang et al. [32] attempted to resolve88

the repositioning problem with a bi-level programming model in which the upper model determines the number of89

loaded and unloaded bikes at each station and the lower model optimises the rebalancing route with consideration of90

the minimum transport cost. Lahoorpoor et al. [33] proposed a cluster method based on the origin and destination of91

cycling trips and then rebalanced the shared bikes through inter-cluster and intra-cluster methods.92

The aforementioned approaches to static rebalancing operations are all carried out from a local perspective, how-93

ever. That is, in a limited area of the city in which bike-sharing is in service, using single or multiple vehicles to pick94

up or deliver the shared bikes from one station or parking place to another and allowing single or multiple visits to the95

same station or parking place. They usually make further assumption that the number of shared bikes in the limited96

area is fixed. Yet, only from the perspective of the entire city can the total number of shared bikes be regarded as a97

fixed value within a certain period. Therefore, these studies ignored a very salient problem in the operation and man-98

agement of a practical bike-sharing network, because they fail to consider the imbalanced distribution of shared bikes99

among different areas within the city. Nonetheless, the operational scope of bike-sharing networks and the number of100

shared bikes are both expanding rapidly. For example, the fully serviced area in Beijing encompassing the centre and101

sub-centre has expanded as far as the Sixth Ring Road, and the number of bikes owned by a bike-sharing company102

in Beijing exceeded one million by 2018. Moreover, in real-world operation and management, users’ cycling trips103

are not restricted to a fixed area of the city, and the circulation of shared bikes among areas is frequent. Therefore,104

imbalanced distribution of shared bikes among areas of the city is unavoidable; after each day’s operations, the num-105

ber of bikes may increase in certain areas whilst decreasing in others. If the methods described in the literature were106

applied to the rebalancing operations of an entire city, the scale and computational cost of the rebalancing problem107

would be vast. Even if such a model could be formulated for an entire city, finding a satisfactory solution might be108

computationally intractable due to the practical limitations on computer power. Meanwhile, applying such methods109

to only a limited area of the city would yield invalid solutions due to the fluctuation of the total number of bikes in110

such an area. Of course, if the total number of shared bikes in each area could be restored to its original state before111
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the next cycle of rebalancing operation begins, the methods developed in previous studies would be applicable to the112

whole-city network.113

In this paper, to further address the imbalanced distribution problem of shared bikes among different areas, we114

analyse the area-wise characteristics of imbalanced bike distribution using the real cycling trip data of a bike-sharing115

company in Beijing. We discover that the rebalancing demand of the static operations in each area is a stochastic116

variable characterised by multiple scenarios. In addition, from the whole-city perspective, we develop an integer pro-117

gramming model to solve the imbalanced distribution problem among multiple areas and illustrate the inherent prop-118

erties of the proposed model. Finally, considering a real-world operational scenario, we propose a chance constraint119

programming model and design eight genetic algorithms with a range of combinations of evolutionary mechanisms.120

The results demonstrate that the proposed algorithms can effectively solve the static bike rebalancing problem across121

various areas with a higher solution efficiency than previous genetic algorithms.122

The remainder of this paper is organised as follows. Section 2 analyses the characteristic of imbalanced bike123

distribution based on real cycling trip data. Section 3 formulates the proposed approach for static rebalancing among124

areas and describes its inherent properties. Section 4 describes the details of combining genetic algorithms with125

different evolutionary mechanisms to implement the proposed solution mechanism. Section 5 describes the tuning126

process of the algorithm parameters and provides a case study supported with experimental analysis. In Section 6, the127

work is summarised with interesting future studies identified.128

2. Characteristic of imbalanced bike distribution129

In this section, we take one of the top two free-floating bike-sharing companies in China as an example to illustrate130

the imbalanced bike distribution among various areas in Beijing. In a free-floating network, customers use a software131

app on their mobile phones to locate available shared bikes in their vicinity when they wish to make a trip. At the132

end of their trip, users can park the bikes in any public parking space and then confirm the trip termination using the133

app. The data generated in this process are collected by the company. The operational data of such a bike-sharing134

network mainly relates to the users’ cycling trips, including the ID of the borrowed bike, the time interval, and the135

GPS location of the start and end of each trip, see Table 1. The trip data used in this paper are obtained from the136

Beijing Transportation Information Center, the department that supervises the bike-sharing companies in Beijing, the137

data covers around 1.4 million trips per day over the period considered.138

Table 1: Introduction to the operation data of bike sharing company

Bike ID Rental time Return time Rental longitude Rental latitude Return longitude Return latitude

0106775010 20180519073711 20180519075809 116.57328 39.80120 116.53508 39.80021
8610103970 20180519075649 20180519075811 116.41114 39.92304 116.39597 39.92213
0106625457 20180519075350 20180519075755 116.44262 39.82746 116.44119 39.83204
8630573667 20180519075317 20180519075649 116.49880 39.98587 116.41145 39.99997
0226622575 20180519075335 20180519075733 116.38359 39.89082 116.37919 39.88839
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To illustrate the imbalanced bike distribution problem across the entire city, the operational data acquired are pre-139

processed as follows. First, we restrict the scope of trip data to areas within the Fifth Ring Road of Beijing, which140

encompass the majority of commuter activities, and divide this entire region into 25 sub-areas of about 5 km × 5 km141

each, which covers the maximum distance of most cycling trips. Second, because 98.38% of each day’s trip data were142

collected between 06:00 and 00:00, the data for the period from 00:00 to 06:00 is negligible. Therefore, only the trip143

data from 06:00 to 00:00 on each day are extracted. On this basis, we analyse the trip data of each sub-area in turn,144

calculating the imbalanced demand of rebalancing operations in each. Specifically, if the start and end points of a trip145

are located in the same area, this trip has no influence on the number of shared bikes in this area. If the start point146

of a trip is located in a given area but the end point is not, the original area loses one shared bike. Similarly, if the147

end point of a trip is located in a given area but the start point is not, the end area gains one shared bike. Thus, after148

analysing all of the trip data, we can calculate the total numbers of shared bike gained and lost in each area. In this149

paper, we define the ‘variation number’ of shared bikes in a given area within the city as follows.150

Definition 1. The variation number of shared bikes in an area is equal to the difference between the total number of

shared bikes gained (dincreased
i ) and the total number of shared bikes lost (ddecreased

i ):

dvar
i = dincreased

i − ddecreased
i , i = 1, 2, · · · ,N, (1)

where N is the total number of sub-areas considered.151

According to Definition 1, we can see that dvar
i can take three types of value for each area, including dvar

i > 0,152

dvar
i < 0 and dvar

i = 0, where i = 1, 2, · · · ,N. dvar
i > 0 indicates that the number of shared bikes in the ith area has153

increased dvar
i after the daytime operations. dvar

i < 0 indicates that the number of shared bikes in the ith area has154

decreased −dvar
i after the daytime operations. dvar

i = 0 indicates that the number of shared bikes in the ith area is155

unchanged after the daytime operations.156

For the sake of intuitive illustration, we analyse the cycling trip data of the studied free-floating bike-sharing157

company on a randomly selected date (18 May 2018) and calculate the variation number of shared bikes in each area158

(dvar
i , i ∈ N). The pattern of the imbalanced distribution is superimposed on the map within the Fifth Ring Road of159

Beijing in Figure 1. In this figure, the horizontal axis represents longitude and the vertical represents latitude, whereas160

the colour intensity represents the variation number of shared bikes in each area according to the vertical colour bar161

on the right. For instance, the variation number of shared bikes in the first area (numbed by 1) is dvar
1 = −31, so the162

area is coloured light blue, which is the sixth colour in the colour bar from the top.163

Figure 1 shows that after the daytime operations, the areas within the Fifth Ring Road differ greatly in the number164

of available shared bikes, which reflects the city’s imbalanced bike distribution, especially on the whole-city scale.165

Without rebalancing operations, the imbalanced bike distribution will become increasingly serious and eventually166

threaten user satisfaction with the company. Figure 2 to Figure 13 plot the imbalanced bike distributions for every day167
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Figure 1: Imbalanced distribution of available bikes between different areas of Beijing on 18 May 2018.

from 18 to 29 May 2018. It can be seen that not only is the bike distribution imbalanced every day, but the variation168

number of shared bikes in each area is not a constant value; that is, for a given area, the variation number generally169

takes different values on different days.170

Figure 2: Variation numbers on 2018-05-18. Figure 3: Variation numbers on 2018-05-19. Figure 4: Variation numbers on 2018-05-20.

These findings are intuitively plausible for several reasons. First, because users may refrain from using the network171

on a certain day as either they are in poor health or they cannot find a working bike available, the total number of trips172

every day in each area is uncertain. Second, because the choice of commuters to travel by bike is easily affected by173

the weather, the frequency of cycling trips will be strongly seasonal; in spring and autumn, commuters will be more174

willing to use shared bikes to complete the beginning or end of their journey, but in summer and winter, they may175

decide not to cycle at all due to the extreme weather. Finally, commuters may show significantly different patterns176

in cycling demand on weekdays and weekends, and the characteristics of commuter movement in different areas also177

have their own behavioural patterns. For example, most commuters need to go to work on weekdays only, which178
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Figure 5: Variation numbers on 2018-05-21. Figure 6: Variation numbers on 2018-05-22. Figure 7: Variation numbers on 2018-05-23.

Figure 8: Variation numbers on 2018-05-24. Figure 9: Variation numbers on 2018-05-25. Figure 10: Variation numbers on 2018-05-26.

Figure 11: Variation numbers on 2018-05-27. Figure 12: Variation numbers on 2018-05-28. Figure 13: Variation numbers on 2018-05-29.
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leads to a huge demand for shared bikes from residential buildings to bus stops or metro/light rail stations, whereas179

at weekends, shopping, leisure and entertainment venues are more popular destinations, leading to a greater demand180

for cycling trips in commercial areas. According to the analysis of this company’s data, more than 1.4 million cycling181

trips per day were made on weekdays, but the number at weekends was only around 0.87 million. Therefore, to more182

accurately capture and describe these sorts of variations in our study, we consider the variation number of shared183

bikes in each area to be a stochastic value reflecting different scenarios in different time periods. Thus, considering184

the stochastic rebalancing demand with the existence of multiple scenarios, the aim of this work is to restore the185

imbalanced bike distribution among different areas in Beijing through static rebalancing operations. In the next186

section, we describe the construction of the models for rebalancing operations in detail.187

3. Model construction of bike rebalancing operations188

In the following, we use G = (N,A) to denote the imbalanced bike distribution of the city as a whole, where N is

the collection of areas (|N| = N) and A is the collection of routes between areas. Suppose that there are H scenarios

of imbalanced bike distribution. For each h = 1, 2, · · · ,H and n ∈ N, we use dh
n to denote the variation value of area

n in scenario h. Here dh
n > 0 means that we need to relocate bikes out of this area and dh

n < 0 means that we need to

relocate bikes into this area. Note that we should have

∑
n∈N

dh
n = 0, ∀h = 1, 2, · · · ,H. (2)

We know from the conversations with porters of a bike sharing company that lorries and electric tricycles are189

two common tools used by the bike sharing company studied. To efficiently conduct static rebalancing, we use a190

combination of lorries and electric tricycles to rebalance the shared bikes among different areas in this study. Here191

suppose that each lorry has a capacity of α and each electric tricycle has capacity β. Without loss of generality, we192

assume that β = 1 as it is the relative capacity between the two types of bike rebalancing vehicle that is of interest.193

Note that due to the substantial fixed costs of possessing own rebalancing vehicles, bike-sharing companies do not194

normally purchase them outright but instead hire them. Rebalancing lorries have a larger capacity and are the mainstay195

of rebalancing operations, but they have a higher rental cost. Bike-sharing companies typically sign a contract with196

the vehicle rental companies at the beginning of a certain operational period (usually half a year or more) to determine197

the number of lorries needed and the corresponding rental cost, which cannot be subsequently changed during the198

operational period once the contract is established. However, due to the stochasticity of rebalancing demand, the199

company cannot be certain regarding whether the number of lorries rented in advance will meet the actual rebalancing200

demand, so they will rent electric tricycles to make up for any shortfall. In general, the rental cost of electric tricycles201

is sensitive to the time-varying (i.e., seasonal) price of electricity and the amount of supply in the rental market. On202

the basis of these considerations, we assume that the cost for each lorry trip is ct and that for each electric tricycle trip203
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is ce. We also assume that the time-varying price coefficient is ph under scenario h, which is a variable for electric204

tricycles and preset to 1 for lorries (again, only the relevant cost is of interest between the two types of rebalancing205

vehicle).206

Recall that the present research goal is to seek a balanced distribution of shared bikes throughout the city. This207

rebalancing operation requires the transfer of shared bikes between different areas of the city. Picking up and deliver-208

ing bikes with the rebalancing vehicles takes time, as does driving the rebalancing vehicles from one area to another.209

Thus, we assume that each rebalancing vehicle only performs one operation per night in this study, which is typically210

the case in the real setting. The decision variables considered can therefore be represented as follows:211

• yi j: Number of lorry trips at arc (i, j) ∈ A, which must be determined at the beginning of each period because a212

long-term contract is required for hiring a lorry. Denote Y = {yi j | i, j = 1, 2, · · · ,N}.213

• zh
i j: Number of electric tricycle trips at arc (i, j) ∈ A in scenario h, which is determined at the time of rental be-214

cause no contract is required for hiring an electric tricycle. Denote Z = {zh
i j | i, j = 1, 2, · · · ,N, h = 1, 2, · · · ,H}.215

• xh
i j: Number of bikes moved from node (or area) i to node j in scenario h. Denote X = {xh

i j | i, j = 1, 2, · · · ,N, h =216

1, 2, · · · ,H}.217

From these, the basic static rebalancing model can be represented as below:

(P0)



min
X,Y,Z

N∑
i=1

N∑
j=1

ctyi j +

H∑
h=1

N∑
i=1

N∑
j=1

phcezh
i j

s.t.
N∑

j=1

xh
i j = max

{
dh

i , 0
}
, i = 1, 2, · · · ,N, h = 1, 2, · · · ,H

N∑
i=1

xh
i j = max

{
−dh

j , 0
}
, j = 1, 2, · · · ,N, h = 1, 2, · · · ,H

zh
i j = max

{
xh

i j − αyi j, 0
}
, i, j = 1, 2, · · · ,N, h = 1, 2, · · · ,H

xh
i j, yi j, zh

i j ∈ Z+, i, j = 1, 2, · · · ,N, h = 1, 2, · · · ,H.

(3)

The objective of this model is to minimise the total cost of using the lorries and electric tricycles for rebalancing.218

The first two constraints are aimed at maintaining the balance between supply and demand of bikes in each area under219

each scenario. The third constraint ensures that the number of shared bikes carried by electric tricycles is equal to220

the number remaining after all relocations carried out by all lorries. The last constraint guarantees that the decision221

variables are (encoded as) non-negative integers in the real-world operations.222
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Theorem 1. The basic model has the following integer linear equivalent form

(P1)



min
X,Y,Z

N∑
i=1

N∑
j=1

ctyi j +

H∑
h=1

N∑
i=1

N∑
j=1

phcezh
i j

s.t.
N∑

j=1

xh
i j = max

{
dh

i , 0
}
, i = 1, 2, · · · ,N, h = 1, 2, · · · ,H

N∑
i=1

xh
i j = max

{
−dh

j , 0
}
, j = 1, 2, · · · ,N, h = 1, 2, · · · ,H

xh
i j ≤ αyi j + zh

i j, i, j = 1, 2, · · · ,N, h = 1, 2, · · · ,H

xh
i j, yi j, zh

i j ∈ Z+, i, j = 1, 2, · · · ,N, h = 1, 2, · · · ,H.

(4)

Proof. If (X,Y,Z) is the optimal solution of the basic model (P0), we have Z = max {X − αY, 0}, which implies that223

X ≤ αY + Z and Z ≥ 0 such that (X,Y,Z) is a feasible solution of model (P1). Conversely, if (X,Y,Z) is the optimal224

solution of model (P1), we have X ≤ αY +Z and Z ≥ 0, which implies that Z ≥ max {X − αY, 0}. Furthermore, because225

the objective is to minimise a linear function of Z with positive coefficients, the equality holds such that (X,Y,Z) is a226

feasible solution of the basic model (P0). The proof is completed.227

Theorem 2. If ct > α × ce, the optimal solution (X,Y,Z) satisfies that X = Z and Y = 0.228

Proof. Let (X,Y,Z) be an optimal solution. If Y > 0 such that yi j ≥ 0 for i, j = 1, 2, · · · ,N, there is at least one pair of

indices (i, j) with yi j > 0, we define a new feasible solution X = X, Y = 0, Z = αY + Z. Because ct > α × ce, we have

F
(
X,Y ,Z

)
=

H∑
h=1

N∑
i=1

N∑
j=1

phce

(
αyi j + zh

i j

)
=

N∑
i=1

N∑
j=1

αceyi j +

H∑
h=1

N∑
i=1

N∑
j=1

phcezh
i j < F(X,Y,Z),

which contradicts the optimality of (X,Y,Z). Furthermore, because the objective is to minimise a linear function of Z229

with positive coefficients under constraint X ≤ Z, we have X = Z. The proof is completed.230

The above theorem indicates that if the rental cost of one lorry is higher than that of α electric tricycles, the optimal

solution is to rent the electric tricycles. In this case, the main rebalancing model (P1) degenerates to the following
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transport model (P2)

(P2)



min
X,Y,Z

H∑
h=1

N∑
i=1

N∑
j=1

phcexh
i j

s.t.
N∑

j=1

xh
i j = max

{
dh

i , 0
}
, i = 1, 2, · · · ,N, h = 1, 2, · · · ,H

N∑
i=1

xh
i j = max

{
−dh

j , 0
}
, j = 1, 2, · · · ,N, h = 1, 2, · · · ,H

xh
i j ∈ Z+, , i, j = 1, 2, · · · ,N, h = 1, 2, · · · ,H.

(5)

Note that the number of decision variables is (2H + 1) × N2 and the number of constraints is H × (N2 + 2N).

For large balancing problems with a higher value of N, we must perform a suitable decomposition into sub-models to

speed up the solution procedure. The first sub-model (P3) below finds the optimal scheduling strategy for lorries and

electric tricycles:

(P3)



min
Y,Z

N∑
i=1

N∑
j=1

ctyi j +

H∑
h=1

N∑
i=1

N∑
j=1

phcezh
i j

s.t.
N∑

j=1

(
αyi j + zh

i j

)
≥ max

{
dh

i , 0
}
, i = 1, 2, · · · ,N, h = 1, 2, · · · ,H

N∑
i=1

(
αyi j + zh

i j

)
≥ max

{
−dh

j , 0
}
, j = 1, 2, · · · ,N, h = 1, 2, · · · ,H

yi j, zh
i j ∈ Z+, i, j = 1, 2, · · · ,N, h = 1, 2, · · · ,H.

(6)

The second sub-model (P4) finds a feasible balancing strategy X with a given solution Y,Z:

(P4)



N∑
j=1

xh
i j = max

{
dh

i , 0
}
, i = 1, 2, · · · ,N, h = 1, 2, · · · ,H

N∑
i=1

xh
i j = max

{
−dh

j , 0
}
, j = 1, 2, · · · ,N, h = 1, 2, · · · ,H

xh
i j ≤ αyi j + zh

i j, i, j = 1, 2, · · · ,N, h = 1, 2, · · · ,H

xh
i j ∈ Z+, i, j = 1, 2, · · · ,N, h = 1, 2, · · · ,H.

(7)

Theorem 3. If (X,Y,Z) is a feasible solution of model (P0), then (Y,Z) is a feasible solution of sub-model (P3).231
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Proof. For each i = 1, 2, · · · ,N and h = 1, 2, · · · ,H, we have

N∑
j=1

(
αyi j + zh

i j

)
≥

N∑
j=1

xh
i j = max

{
dh

i , 0
}
,

and for each j = 1, 2, · · · ,N and h = 1, 2, · · · ,H, we have

N∑
i=1

(
αyi j + zh

i j

)
≥

N∑
i=1

xh
i j = max

{
−dh

j , 0
}
,

which implies that (Y,Z) is a feasible solution of sub-model (P3). The proof is completed.232

Theorem 4. If (Y,Z) is an optimal solution of sub-model (P3) and X is a feasible solution of sub-model (P4) with233

(Y,Z), then (X,Y,Z) is an optimal solution of model (P0).234

Proof. Let (X,Y,Z) denote an optimal solution of model (P0). If there would be another optimal solution (X1,Y1,Z1),235

it would follow from Theorem 3 that (Y1,Z1) would be a feasible solution of model (P3) with a lower objective value.236

However, this contradicts the optimality of (Y,Z). The proof is completed.237

Theorem 5. If (X,Y,Z) is an optimal solution of model (P0), then (Y,Z) is an optimal solution of model (P3) and X is238

a feasible solution of sub-model (P4) with (Y,Z).239

Proof. The feasibility of X is trivial. Now we prove the optimality on (Y,Z). According to Theorem 3, (Y,Z) is a feasi-240

ble solution of sub-model (P3). If there would be another optimal solution (Y1,Z1) with lower objective value, denote241

X1 as the corresponding feasible solution of sub-model (P4), then it would follow from Theorem 4 that (X1,Y1,Z1)242

would be the optimal solution of model (P0). This contradicts to the optimality of (X,Y,Z). The proof is com-243

pleted.244

As previously discussed, in practical operation and management of a bike-sharing network, the serving company245

needs to consider the stochastic fluctuation of rebalancing demand in each area under time-varying scenarios. There-246

fore, by introducing the concept of service satisfaction level into the previous rebalancing model (P3), we propose a247

chance constraint rebalancing model (P5) as follows.248

(P5)



min
Y,Z

N∑
i=1

N∑
j=1

ctyi j +

H∑
h=1

N∑
i=1

N∑
j=1

phcezh
i j

s.t. Pr


N∑

j=1

(
αyi j + zh

i j

)
≥ max

{
dh

i , 0
} ≥ γ1, i = 1, 2, · · · ,N, h = 1, 2, · · · ,H

Pr

 N∑
i=1

(
αyi j + zh

i j

)
≥ max

{
−dh

j , 0
} ≥ γ2, j = 1, 2, · · · ,N, h = 1, 2, · · · ,H

yi j, zh
i j ∈ Z+, i, j = 1, 2, · · · ,N, h = 1, 2, · · · ,H.

(8)
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This model is also set to minimise the total cost of operating multiple rebalancing vehicles. The first two con-249

straints ensure that the capacity of the scheduling strategy of lorries and electric tricycles meets the γ level under the250

stochastic rebalancing demand in each area and scenario, in which γ1 is the satisfaction level of the first constraint251

and γ2 is that of the second. In real-world practice, the managers of the bike sharing network have to adjust the value252

of satisfaction level γ according to the current status and business goals of the company. The last constraint simply253

guarantees that the decision variables are (again, encoded as) non-negative integers.254

4. Genetic algorithms based on variable mutation operator with different evolutionary mechanisms255

We have introduced a chance constraint integer programming model (P5) as described in Section 3, which can256

be rather complex to resolve in real-world settings. Heuristic algorithms have demonstrated their strengths over257

deterministic methods in dealing with large-scale stochastic programming models [34, 35, 36, 37]. Therefore, we258

employ genetic algorithms that are based on a variable mutation operator with different evolutionary mechanisms to259

solve this complicated problem. In particular, we utilise multiple squares to form the shape of the chromosome in the260

genetic algorithms and propose different mechanisms for the genetic processes of crossover, mutation and iterative261

update. The basic framework of the genetic algorithm-based approach is summarised in Table 2, implementation262

details of this framework are explained next.263

Table 2: Framework of genetic algorithm-based approach

Step 1: Generate a population with K feasible chromosomes;
Step 2: Calculate the fitness value of each chromosome;
Step 3: Select two chromosomes randomly to implement the crossover procedure by roulette;
Step 4: Select a chromosome randomly to implement the mutation procedure;
Step 5: Repeat step 2 to step 4 until the termination condition is reached;
Step 6: Calculate the optimal value and obtain the optimal results.

4.1. Generation of chromosome population264

The first step in a genetic algorithm is for the encoding of the chromosomes. In general, the chromosomes may265

be encoded in a variety of structures, including binary, floating-point and symbolic. In this study, considering the266

characteristics of the proposed model (P5), we develop a hierarchical square chromosome encoding method, in which267

the chromosomes are composed of multiple square matrices.268

Recall that in model (P5), the decision variables consist of yi j and zh
i j, where i, j = 1, 2, · · · ,N, h = 1, 2, · · · ,H.269

Thus, if yi j is a feasible solution of the model, its structure will consist of N rows and N columns. Similarly, if zh
i j is270

a feasible solution, it will be made up of H squares, each consisting of N rows and N columns. Therefore, we build271

the structure of the chromosome with H+1 squares. Figure 14 is a schematic diagram of the chromosome structure,272

in which the first square is the variable of the rebalancing lorries yi j and the following H squares are the variables of273

the rebalancing electric tricycles zh
i j under different scenarios; for example, in the second scenario (h = 2), the results274
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of the model will be yi j and z2
i j. The proposed genetic algorithm proceeds through the following steps based on the275

above chromosome structure.276

Figure 14: Chromosome structure of decision variables.

A population of such encoded chromosomes is generated via the application of stochastic simulation. To facilitate277

understanding, we briefly explain the application process of stochastic simulation (as further details are beyond of the278

scope of this paper). In a chance constraint programming model, a satisfaction level indicator r is typically used to279

characterise the results. To judge whether the solution expressed by a certain chromosome meets the chance constraint280

condition during the evolution of the genetic algorithm, the chromosome is subjected to the constraints represented281

by N random variables. When r×N constraints satisfy the given validation criteria, we consider that the chromosome282

meets the constraints; otherwise, it does not. Repeating this process yields a feasible solution of the model. As such,283

by repeating the above process K times, we can obtain a population containing K feasible chromosomes. Note that284

readers who wish to further familiarise themselves with stochastic simulation-based genetic algorithms can refer to285

the work presented in [38] and [34].286

4.2. Crossover procedure287

Chromosome crossover is an important part of a genetic algorithm. A well-designed crossover mechanism enables288

the solution space of large-scale models to be searched more efficiently, greatly reducing the computational time289

required for hunting the optimal solution. Considering the need both for the ability of the algorithm to jump out of290

local optimality and for the efficiency of the local search process, two crossover mechanisms are proposed in this291

study, namely: point crossover mechanism (PCM) and block crossover mechanism (BCM).292

4.2.1. Point crossover mechanism (PCM)293

In each iteration of crossover, we select several points randomly in each layer of the chromosome and exchange294

these points from one chromosome to another. If the chromosomes that have undergone the point exchange procedure295

all satisfy the constraints of the model, the crossover procedure of this iteration is completed; otherwise, we repeat the296

PCM. Figure 15 is a schematic diagram of the PCM in the case where two points are exchanged.297
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Figure 15: Point crossover mechanism.

4.2.2. Block crossover mechanism (BCM)298

Each exchange of gene fragments by PCM only accounts for a relatively small number of genes. To expand299

the search ability of the genetic algorithm, we can also use BCM. In this process, having selected the chromosomes300

between which we wish to exchange genes, we randomly select a rectangular block in each layer of each chromosome,301

and then exchange the genes between the rectangular blocks of two chromosomes. If the chromosomes that have302

undergone the BCM all satisfy the constraints of the model, the crossover procedure of this iteration is completed;303

otherwise, we repeat the BCM. Figure 16 shows a schematic diagram of BCM.304

Figure 16: Block crossover mechanism.
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In implementation, a specific control is exercised such that at initial stages, if PCM or BCM fails to satisfy the305

constraints in an iteration, the crossover procedure is repeated, and that if a satisfactory solution is yet not found306

after conducting the process for a fixed number of times (five in the present study), the algorithm will exit from the307

crossover iteration and move to the next procedure.308

4.3. Chromosome update mechanism309

The optimal solution of the chromosomes in the given population will change after running the crossover proce-310

dure; that is, sometimes the solution will be better than before, sometimes worse. Most commonly, the solution is311

directly updated with the iterative solution after each iteration, regardless of whether the optimality of the solution312

improves, which is known as the direct update mechanism (DUM) in the literature. However, this may cause the313

solution to converge too slowly. To improve upon this update mechanism, we set the algorithm only to update the314

chromosomes as the value of the iterative solution is better than the previous iteration; otherwise, we re-execute the315

crossover operation. We refer to this as improved update mechanism (IUM) hereafter. These two mechanisms have316

their own strengths: DUM increases the diversity of the solution search, while IUM accelerates the convergence of317

the algorithm.318

4.4. Mutation procedure319

Mutation is another essential procedure of genetic algorithms that helps to improve the results within local feasible320

areas. In this study, as consider the mutation operator as a variable in the genetic algorithm, by introducing two321

mutation mechanisms to enhance its local search power.322

In particular, when running each iteration of mutation, we (i) select a few points of a certain chromosome in each323

layer randomly, and then (ii) subtract a random number of points given by the positive integer δt
k, k = 1, 2, · · · ,H + 1,324

where t represents the total number of points selected in step (i). At each selected location, δt
k does not exceed the325

number of selected points t. If the mutant chromosome satisfies the constraints of the model, the mutation procedure is326

completed. However, if the constraints are not satisfied, we replace the number of subtracted points δ by half of itself,327

i.e., δt
new = [δold/2], where [·] represents the floor integer transformation of the variable in the square brackets, and328

repeat the deletion procedure until all constraints are satisfied. Because we subtract δt
k from its original value every329

time, we call this mutation process directional mutation mechanism (DMM). Although DMM is of the ability of faster330

convergence, it may be easy to fall into a local optimal solution. Therefore, we propose another mutation mechanism,331

in which every time we mutate a chromosome, we add δt
k to the original value with a probability of 50%, or subtract δt

k332

from the original value, again with a probability of 50%. We call this non-directional mutation mechanism (NMM).333

If both mutation procedures fail to find a feasible solution, we narrow the range of gene mutation by selecting only334

one point randomly in each layer of the chromosome. If these mutation procedures still fail to satisfy the constraints,335

we repeat the process until a feasible solution of the model is found. Note that in the following investigations, most336
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Figure 17: Two-point mutation process.

Figure 18: Single-point mutation process.

mutation operations are implemented using two points or a single point in each layer of the chromosome. Figures 17337

and 18 illustrate the schematic diagrams of the two-point and single-point mutation mechanism, respectively.338

So far we have proposed two crossover mechanisms (PCM and BCM), two update mechanisms (DUM and IUM)339

and two mutation mechanisms (NMM and DMM). By combining these mechanisms, we can obtain eight genetic340

algorithms with different evolutionary characteristic, as listed in Table 3. The resulting algorithms each have their341

own strengths, though it is difficult to generally predict which is most suitable for the rebalancing operations of bike342

sharing networks. We verify these algorithms in terms of their potential suitability with regard a realistic network in343

the next section.344
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Table 3: Eight genetic algorithms with different evolution mechanisms

Name Combination of mechanisms

GA1 PCM + DUM + NMM
GA2 PCM + DUM + DMM
GA3 PCM + IUM + NMM
GA4 PCM + IUM + DMM
GA5 BCM + DUM + NMM
GA6 BCM + DUM + DMM
GA7 BCM + IUM + NMM
GA8 BCM + IUM + DMM

5. Parameter tuning and case study345

In this section, we first introduce the process of adjusting the parameters of the genetic algorithms to run and then,346

use a real-world example to identify which genetic algorithm specification may be the most suitable for static bike347

rebalancing operations, taking the whole city of Beijing as the case-study area.348

5.1. Parameter tuning for proposed algorithms349

The parameters that need to be tuned in a genetic algorithm include the number of iterations T , the number of350

chromosomes in the population K, the crossover rate Cr and the mutation rate Cm. Below we use GA1 as an example351

to illustrate the adjustment process of these parameters. Note that all implemented systems are run on a Windoes 10352

personal computer, with an i7-8550u CPU and 32 GB memory, using the software Matlab, version 2019a.353

The first parameter to tune is the appropriate number of iterations. We consider the optimal value to have been354

reached when the population no longer changes from one iteration to the next. Initially, the maximum number of355

iterations allowed is set to 5000 while recording the best objective value obtained so far over the iterations, as shown356

in Figure 19. From the figure we can see that as GA1 continues to iterate, the improvement gained from fine-tuning357

the iteration number gradually slows down. We observe that the best value is essentially unchanged after the number358

of iterations exceeds 2500, so for GA1 we set T=2500 as the number of iterations in the following research.359

Then, using 2500 iterations, we re-run GA1 with the number of populations set to 10, 30, 50, 70 and 90. The360

obtained results are compared in Figure 20. From this figure we can see that when the number of populations is 10,361

GA1 converges very slowly, and as the number of populations is increased to 30, 50, 70 and 90, the convergence362

accelerates. However, the price paid (the total computation time of 2500 iterations and the unit computation time363

of each iteration) also significantly increases, as shown in Table 4. Because the convergence speeds in the last four364

cases (where the population size, popsize = 30, 50, 70, 90) are all fairly similar when the algorithm is iterated to365

2500 generations, it is therefore appropriate to set popsize = 30 in GA1, to have a trade off between effectiveness and366

efficiency.367

Finally, we move to determine the appropriate values of crossover rate and mutation rate, through two steps while368

fixing T = 2500 and K = 30. In the first step, we vary both crossover rate and mutation rate, allowing each to369
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Figure 19: Determination of optimal number of iterations.

Figure 20: Selection of appropriate population size.

Table 4: Iteration time given different popsizes

time(s)
popsize

10 30 50 70 90

total computation time 961.9 3,944.6 20,579.3 22,672.4 29,846.0
unit computation time 0.385 1.578 8.232 9.069 11.938

independently take values of 0.1, 0.3, 0.5, 0.7 and 0.9. For example, when we set the parameter combination of GA1370

to Cr = 0.1 and Cm = 0.1 (with T = 2500 and K = 30), we obtain the objective value of the model being 223,836,371

as listed in Table 5. Then we set the crossover rate and mutation rate to each of the other possible combinations372
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and recalculate the objective values, which are likewise listed in Table 5. From this table it can be seen that the best373

objective value amongst them is reached when Cr = 0.7 and Cm = 0.9, through this first step. Then, based on this374

parameter combination, we narrow the interval of the parameters, and then recalculate the objective values under375

various parameter combinations to obtain the values as recorded in Table 6. Now we can see that the objective value376

is still best when Cr = 0.7 and Cm = 0.9. Therefore, through the above two-step parameter tuning, we obtain the377

optimal parameter combination of GA1 as T = 2500, K = 30, Cr = 0.7, and Cm = 0.9.378

Table 5: First tuning step of Cr and Cm

Objective value Crossover rate
0.1 0.3 0.5 0.7 0.9

M
ut

at
io

n
ra

te 0.1 223,836 75,124 75,770.5 70855 64,874
0.3 135,460.5 76,793 57,551 69,092.5 62,005.5
0.5 87,090 77,165 66,642.5 80,029 78,346
0.7 80,312.5 72,943.5 59,880 75,072.5 52,003.5
0.9 83,605 65,754 67,587 42,115.5 52,690.5

Table 6: Second tuning step of Cr and Cm

Objective value Crossover rate
0.65 0.675 0.7 0.725 0.75

M
ut

at
io

n
ra

te 0.85 51,355.5 62,748.5 48,728 47277 69788.5
0.875 50,383 52,273 44,062 54878 61167.5

0.9 60,423.5 56,437.5 42,115.5 48902.5 61985.5
0.925 64,443.5 54,909.5 95,380.5 65006 47397.5
0.95 62,981.5 88,048 60388 83662 54404.5

Now, we use the same method to tune the optimal parameter combinations for the other seven genetic algorithms,379

with results recorded in Table 7. Having established the optimal parameters of the eight algorithms, we next determine380

which algorithm performs the best in coping with a real-world problem of bike-sharing rebalancing.381

Table 7: Optimised parameters of eight genetic algorithms

Name T K Cr Cm

GA1 2500 30 0.7 0.9
GA2 2500 30 0.65 0.85
GA3 2500 30 0.6 0.8
GA4 2500 30 0.7 0.75
GA5 2500 30 0.8 0.7
GA6 2500 30 0.75 0.8
GA7 2500 30 0.7 0.85
GA8 2500 30 0.75 0.85

5.2. Case study382

In this section, we compare the proposed genetic algorithms themselves, based on the use of the optimal param-383

eters of Table 7, and also with an existing popular software package that represents the state-of-the-art deterministic384
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algorithms in solving a real-world bike-sharing rebalancing problem. The operational situation and data sources of the385

bike-sharing company are as described in Section 2. The data used in this case study covers 74 days of the company’s386

operation in 2018, including 51 weekdays and 23 weekends days. We divide the whole of Beijing city into 29 areas,387

of which 25 are shown in Figure 1 in Section 2; the other four are the parts that lie beyond that map to the east, south,388

west and north, respectively. We utilise the daily cycling trip data to calculate the rebalancing demands in these 29389

areas and divide the rebalancing demand data of the 74 days into two groups: weekdays and weekends.390

As an alternative to our chance constrain planning model (P5), namely model (P3), may be implemented using391

optimisation software packages such as Cplex, Gurobi and Mosek. Based on availability, we use Gurobi 9.0.0 as an392

example to show why this type of optimisation software is not applicable in realistic bike-sharing operations. Since393

any lease contract for lorries must be signed in advance, we can obtain an exact description for the input to model394

(P3) using historical rebalancing demand data. In particular, to avoid potential bias, we take the average value of395

rebalancing demand as the input and use Gurobi to obtain the number of lorries and electric tricycles required, for396

comparison. After that, we feed the computed results back to model (P3) to calculate the satisfaction level of those397

constraints involved, per day. Figure 21 shows the resulting daily satisfaction level. We can see that based on the398

average historical rebalancing demand, the results obtained from model (P3) fluctuate greatly from day to day, in399

terms of the satisfaction level. The average value of the 74 days’ satisfaction level is a mere 66.6%, which is far400

below the company’s target satisfaction level of 80%. Thus, whilst the optimisation software may obtain the optimal401

solution of a deterministic model, such a solution is not suitable for scheduling the real-world rebalancing operations,402

especially when the rebalancing demand is a stochastic variable with multi-scenario characteristics.403

Figure 21: Satisfaction level of solutions calculated by Gurobi software package.

In the following, we experimentally investigate the effects of applying the chance constraint model P5 based on the404

proposed genetic algorithms, to the same given real-world problem. This is to be based on the experimental conditions405
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described and results achieved so far, in terms of rebalancing demand data over the period of 74 days, including: 29406

areas and two rebalancing scenarios, and the optimal parameter combinations of the eight genetic algorithms given in407

Table 7. We take the real rebalancing demands as input data and compute the solutions using each of the proposed408

eight algorithms. The results are shown in Figure 22.409

Figure 22: Objective values computed by eight genetic algorithms for a real-world problem case.

The baseline satisfaction level γ is set to 80%, reflecting the true level desired by the bike-sharing servicing410

company. It is clear from the results that the satisfaction levels gained from resolving the proposed model using either411

of the eight methods are all higher than 80%. This shows the effectiveness of the present approach.412

In addition, we compare the effectiveness of the individual evolutionary mechanisms by examining the results413

of the eight genetic algorithms as provided in Figure 22. From which, we can draw several important conclusive414

observations:415

• Among the proposed eight genetic algorithms, GA1 is able to obtain the most favourable results when each416

iterates to 2500 generations.417

• Genetic algorithms that adopt BCM show better convergence than the others, only requiring iterations to be418

carried out till the 500th generation while the calculation is also faster, which is ideal for companies that must419

make rapid rebalancing decisions under pressure of time.420

• From the optimal solutions obtained by all these algorithms investigated, certain methods that use BCM yield421

better results than those using PCM, indicating that the combined use of update and mutation mechanisms can422

enable a genetic algorithm to jump out of local optimal solutions.423

6. Conclusion424

We have studied the challenging problem of imbalanced distribution of bikes in a bike-sharing network from the425

entire-city perspective. First, by analysing the real operational data of a bike-sharing company in Beijing, we found426

that the rebalancing demand in each area has stochastic characteristics with multiple demand scenarios. Second, we427
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established an integer programming model to resolve the static rebalancing problem, which takes multiple rebalancing428

vehicles with time-varying rental costs into consideration. We demonstrated the inherent properties of the proposed429

approach, via the adoption of a chance constraint programming model, while revealing the inability of deterministic430

programming models to solve realistic problems. In addition, we designed eight stochastic simulation-based genetic431

algorithms running on variable mutation operators together with different evolutionary mechanisms to address the real-432

world bike-sharing rebalancing problem. The results have demonstrated that among the proposed genetic algorithms,433

those with block crossover mechanism have stronger convergence ability and are more suitable for companies that434

must take rebalancing operational decisions promptly. We have also shown that the update and mutation mechanisms435

enable the implemented algorithms to jump out of local optimal solutions.436

The underlying general ideas of the proposed approach not only can be applied in the field of rebalancing op-437

erations of shared bikes, but also can be adapted to deal with similar problems in other industrial settings where438

asymmetric demand patterns may appear in the operational areas, such as rebalancing the batteries of shared cars and439

shared electric bicycles as well as shared power bank or umbrella across a given metropolitan city.440

Future studies will focus on the rebalancing operations under dynamic rebalancing scenarios, the location and441

inventory design of bike sharing system and reinforce the design of the operators in different heuristic algorithms,442

such as ant colony algorithm, particle swarm algorithm and adaptive large neighborhood search algorithm.443
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