
ar
X

iv
:1

90
6.

08
49

6v
1

 [
cs

.L
G

]
 2

0
Ju

n
20

19
1

Accelerating Mini-batch SARAH by Step Size

Rules
Zhuang Yang, Zengping Chen, and Cheng Wang, Senior Member, IEEE,

Abstract—StochAstic Recursive grAdient algoritHm (SARAH),
originally proposed for convex optimization and also proven to be
effective for general nonconvex optimization, has received great
attention due to its simple recursive framework for updating
stochastic gradient estimates. The performance of SARAH sig-
nificantly depends on the choice of step size sequence. However,
SARAH and its variants often employ a best-tuned step size by
mentor, which is time consuming in practice. Motivated by this
gap, we proposed a variant of the Barzilai-Borwein (BB) method,
referred to as the Random Barzilai-Borwein (RBB) method,
to calculate step size for SARAH in the mini-batch setting,
thereby leading to a new SARAH method: MB-SARAH-RBB. We
prove that MB-SARAH-RBB converges linearly in expectation for
strongly convex objective functions. We analyze the complexity
of MB-SARAH-RBB and show that it is better than the original
method. Numerical experiments on standard data sets indicate
that MB-SARAH-RBB outperforms or matches state-of-the-art
algorithms.

Index Terms—Stochastic optimization, mini batches, recursive
iteration, variance reduction.

I. INTRODUCTION

S
TOCHASTIC gradient descent (SGD) type methods have

been a core methodology in applications to large scale

problems in machine learning and related areas [1]–[12]. The

classical SGD method only requires a single random example

per-iteration to approximate the full gradient. Such strategy

usually makes SGD perform with a low computational com-

plexity per-iteration. While SGD makes rapid progress early

on, the convergence rate of SGD is significantly deteriorated

by the intrinsic variance of its stochastic estimator. Even

for strongly and smooth problem, SGD only converges sub-

linearly [13].

Traditionally, there are three common ways to decrease the

variance caused by the stochastic estimate. The first one is

taking a decreasing step size sequence [14], [15]. However,

this will further reduce the convergence rate. Moreover, it’s

known that the practical convergence of SGD is very sensitive

to the choice of step size sequence, which needs to be hand-

picked. A second approach is using a mini-batching technique

[16], [17]. Obviously, this requires more computations. The

last method is using important sampling strategy [18], [19].

Although effective, this technique is not always practical, as

(Corresponding authors: Zengping Chen). Z. Yang, Z. P. Chen are with
the School of Electronics and Communication Engineering, Sun Yat-sen
University, Guangzhou510275, China(e-mail: zhuangyng@163.com, chen-
zengp@mail.sysu.edu.cn).

C. Wang is with the Fujian Key Laboratory of Sensing and Computing
for Smart Cities, School of Information Science and Engineering, Xiamen
University, Xiamen, FJ 361005, China(email: cwang@xmu.edu.cn

Manuscript received July 25, 2016.

the computation of the sampling mechanism relates to the

dimensionality of model parameters [20]. In summary, any

variance reduction technique does not come for free.

In recent years, some advanced stochastic variance-reduced

algorithms have emerged, which use the specific form of ob-

jective function and combine some deterministic and stochastic

aspects to reduce variance of the steps. The popular examples

of these methods are the stochastic average gradient (SAG)

method [21], the SAGA method [22], the stochastic dual

coordinate ascent (SDCA) method [23], the stochastic vari-

ance reduced gradient (SVRG) method [24], the accelerated

mini-batch Prox-SVRG (Acc-Prox-SVRG) method [25], the

mini-batch semi-stochastic gradient descent (mS2GD) method

[17], the StochAstic Recursive grAdient algoritHm (SARAH)

[26] and the Stochastic Path-Integrated Differential EstimatoR

method (SPIDER) [27], all of which have faster convergence

rate than that of SGD. Specifically, these methods work with

a fixed step size. However, the step size is often chosen by

mentor. Hence, this is time consuming in practice.

More recently, SARAH, originally proposed for convex

optimization, is gaining tremendous popularity due to only

requiring a simple framework for updating stochastic gradient

estimates [28]. Moreover, SARAH has been proven to be

effective for general nonconvex optimization [29]–[34]. Actu-

ally, SARAH and SVRG [24] are two similar methods which

perform a deterministic step often called outer loop, where the

full gradient of the objective functions was calculated at the

outer loop, then followed by stochastic processes. The only

difference between SVRG and SARAH is how the iterative

scheme is performed in the inner loop. In addition, SARAH

is a recursive method as SAGA [22], but do not store gradients

as SAGA. Especially, different from SVRG and other methods

(e.g., SAG, SDCA, mS2GD, etc.), SARAH does not take an

estimator that is unbiased in the last step. Instead, it is unbiased

over a long history of the method. Specifically, the advantage

of SARAH is that the iterative scheme of the inner loop itself

can converge sub-linearly [26].

Although Nguyen et al. [26] pointed out that SARAH uses

a large constant step size than that of SVRG, the step size

is still chosen by mentor. Including the variants of SARAH

also employed a constant step size [30], [34]. In addition,

Pham et al. [33] proposed proximal SARAH (ProxSARAH)

for stochastic composite nonconvex optimization and showed

that ProxSARAH works with new constant and adaptive step

sizes, where the constant step size is much larger than existing

methods, including proximal SVRG (ProxSVRG) schemes

[35] in the single sample case and adaptive step-sizes are

increasing along the inner iterations rather than diminishing as

http://arxiv.org/abs/1906.08496v1

2

in stochastic proximal gradient descent methods. However, it is

complicated to compute adaptive step size for ProxSARAH.

Especially, ProxSARAH needs to control two step size se-

quences, which make it difficult to use in practice.

To deal with this demerit associated with SARAH, we

propose using the random Barzilai-Borwein (RBB) method to

automatically calculate step size for the mini-batch version of

SARAH (MB-SARAH), proposed by Nguyen et al. [29] for

nonconvex optimization, thereby leading to a new SARAH

method named as MB-SARAH-RBB. The RBB method, a

variant of the Barzilai-Borwein (BB) method [36], has been

proposed by Yang et al. [37] and use it to calculate step size

for mini-batch algorithms. However, they just discussed the

choice of step size of SVRG-type algorithms, i.e., mS2GD

and Acc-Prox-SVRG.

The key contributions of this work are as follows:

1) We propose to use the RBB method to compute step

size for MB-SARAH and obtain a new SARAH method

named as MB-SARAH-RBB. Unlike the work in [37],

when using the RBB method to calculate step size, we

multiply a constant parameter, which is pivotal to ensure

the convergence of MB-SARAH-RBB.

2) We prove the convergence of our MB-SARAH-RBB

method and show that its complexity is better than

SARAH in the mini-batch setting.

3) We conduct experiments for MB-SARAH-RBB on

solving logistic regression problem. Experimental results

on three benchmark data sets show that the proposed

method outperforms or matches state-of-the-art algo-

rithms.

The rest of this paper is organized as follows. Section II

discusses related works that are relevant to this paper. Section

III presents problem formulation and background. Section IV

proposes our MB-SARAH-RBB method. Section V presents

the convergence analysis of MB-SARAH-RBB for strongly

convex objective functions and discusses its complexity. Sec-

tion VI conducts some empirical comparisons over some state-

of-the-art approaches. Section VII concludes the paper.

Notations: Throughout this paper, we view vectors as

columns, and use wT to denote the transpose of a vector w.

We use the symbol, ‖·‖, to denote the Euclidean vector norm,

i.e., ‖w‖ =
√
wTw. We use E[Z] to denote the expectation of

a random variable Z .

II. RELATED WORK

Early works that compute step sizes adaptively for SGD

are based on (i) a function of the errors in the predictions

or estimates, or (ii) a function of the gradient of the error

measure. For example, Kesten [38] pointed out that when

consecutive errors in the estimate of the value of a parameter

obtained by the Robbins-Monro procedure [39] are of opposite

signs, the estimate is in the vicinity of the true value and

accordingly the step size ought to be reduced. Further, an

alternative version of the gradient adaptive step size algorithm

within a stochastic approximation formulation was presented

by Benveniste et al. [40]. In addition, RMSprop, propounded

by Tieleman et al. [41], adapts a step size per weight based on

the observed sign changes in the gradients. For more related

methods, we refer readers to [42], [43] and references therein.

Recently, due to its simplicity and numerical efficiency,

many researchers try to incorporate the BB method and its

variants into SGD. For instance, Sopyła et al. [44] presented

several variants of the BB method for SGD to train the linear

SVM. Tan et al. [45] used the BB method to calculate the step

size for SGD and SVRG, thereby putting forward two new

approaches: SGD-BB and SVRG-BB. Moreover, they showed

that SVRG-BB have linear convergence for strongly convex

objective functions. To further accelerate the convergence rate

of SVRG-BB, mS2GD-BB, incorporating the BB method into

mS2GD (a variant of SVRG), was proposed by Yang et al.

[46]. They presented that mS2GD-BB has linear convergence

in expectation for nonsmooth strongly convex objective func-

tions. In addition, Yang et al. [47] introduced the BB method

into accelerated stochastic gradient (ASGD) methods and

obtained a series of new ASGD methods. Moreover, for their

proposed methods, they finished the proof of the convergence

analysis and pointed out that the complexity of their proposed

methods achieves the same level as the best known stochastic

gradient methods. Further, when considering a “big batch” for

SGD, De et al. [48] introduced the backtracking line search

and BB methods into SGD to calculate step size. Moreover,

they pointed out that the performance of SGD, using an adap-

tive step size method based on the BB method, is better than

that of using the backtracking line search on a range of convex

problems. To obtain online step size, Yang et al. [37] put

forward the RBB method and incorporated it into mS2GD and

Acc-Prox-SVRG, generating two new approaches: mS2GD-

RBB and Acc-Prox-SVRG-RBB. To avert the denominator

being close to zero when using the BB, or RBB methods, the

stabilized Barzilai-Borwein (SBB) step size was proposed by

Ma et al. [49]. Especially, they introduced it into SVRG and

obtained SVRG-SBB for dealing with the ordinal embedding

problem. Moreover, they showed that the SVRG-SBB method

converges with a rate, O(1
T
), where T is the total number of

iterations.

In addition to the above-mentioned methods, other strategies

of choosing step size were used in SGD. For instance, two

adaptive step size schemes, referred to as a recursive step

size stochastic approximation (RSA) scheme and a cascading

step size stochastic approximation (CSA) scheme, were put

forward by Yousefian et al. [50]. They also finished the proof

of convergence analysis of two new iteration schemes for

strongly convex differentiable stochastic optimization prob-

lems. In addition, Mahsereci et al. [51] suggested performing

line search for an estimated function, which is computed by

a Gaussian process with random samples. An online step size

can also be obtained by using a hypergradient descent, where

can be found in [52]. To greatly reduce the dependence of

the algorithm on initial parameters when using hypergradient,

Yang et al. [43] introduced the online step size (OSS) into

the the mini-batch nonconvex stochastic variance reduced

gradient (MSVRG) method [53] and obtain the MSVRG-OSS

method. Moreover, they showed that MSVRG-OSS has linear

converges for strongly convex objective functions. Especially,

they pointed out that the MSVRG-OSS method also can be

3

used to deal with nonconvex problems. Other different types

of choosing step size for SGD, we refer readers to [42], [54]–

[56] and references therein.

III. PROBLEM FORMULATION AND BACKGROUND

We focus on the following problem

min
w∈Rd

P (w) =
1

n

n∑

i=1

fi(w). (1)

where n is the sample size, and each fi(w) : R
d → R is

cost function estimating how well parameter w fits the data of

the i-th sample. Throughout this work, we assume that each

fi has Lipschitz continuous derivatives. Also, we assume that

both each fi and P (w), are strongly convex.

Many problems in applications are often formulated as

Problem (1). For example, when setting fi(w) = 1
2 (x

T
i w −

yi)
2 + λ

2 ‖w‖2, where λ is a regularization parameter, the

Problem (1) becomes least squares. However, when setting

fi(w) = log(1 + exp[−yix
T
i w]) +

λ
2 ‖w‖2, the Problem (1)

becomes logistic regression. Some other prevalent models,

e.g., SVM [57], sparse dictionary learning [1], low-rank matrix

completion [58] and deep learning [59], can be written in the

form of (1).

To proceed with the analysis of the proposed algorithm, we

require making the following common assumptions.

Assumption 1. Each convex function, fi(w), in (1) is L-

Lipschitz smooth, i.e., there exists L > 0 such that for all

w and v in R
d,

‖∇fi(w) −∇fi(v)‖ ≤ L ‖ w − v ‖ . (2)

Note that this assumption implies that the objective function,

P (w), is also L-Lipschitz smooth. Moreover, by the property

of L-Lipschitz smooth function (see in [60]), we have

P (w) ≤ P (v) +∇P (v)T (w − v) +
L

2
‖ w − v ‖2 . (3)

Assumption 2. P (w) is µ-strongly convex, i.e., there exists

µ > 0 such that for all w, v ∈ R
d,

(∇P (w) −∇P (v))T (w − v) ≥ µ ‖ w − v ‖2, (4)

or equivalently

P (w) ≥ P (v) +∇P (v)T (w − v) +
µ

2
‖w − v‖2. (5)

When setting w∗ = argminw P (w), it is known in [15] that

the strong convexity of P (w) implies that

2µ[P (w)− P (w∗)] ≤ ‖∇P (w)‖2, ∀w ∈ R
d. (6)

In this paper, the complexity analysis aims to bound the

number of iterations (or total number of stochastic gradient

evaluations) which requires E[‖∇F (w)‖2] ≤ ε. In this case,

we say that w is an ε-accurate solution.

IV. THE ALGORITHM

In the following, we begin with the introduction of the

RBB step size, and then we put forward our MB-SARAH-

RBB method, which incorporates the RBB step size into MB-

SARAH.

A. Random Barzilai-Borwein Step Size

To solve Problem (1), Yang et al. [61] proposed to use

the RBB method to calculate step size for mS2GD, thereby

obtaining: mS2GD-RBB. In the inner loop of mS2GD-RBB,

the updating scheme of solution sequence is:

wk+1 = wk − ηkvk, (7)

where ηk is the step size sequence and defined as:

ηk =
1

bH

‖wk − wk−1‖2
((wk − wk−1)T (∇PSH

(wk)−∇PSH
(wk−1)))

, (8)

and vk is the stochastic estimate of ∇P (w) and defined as:

vk = ∇PS(wk)−∇PS(w̃) +∇P (w̃), (9)

where ∇PSH
(wk) = 1

bH

∑
i∈SH

∇fi(wk), ∇PSH
(wk−1) =

1
bH

∑
i∈SH

∇fi(wk−1), SH ⊂ {1, . . . , n} with size bH ,

∇PS(wk) = 1
b

∑
i∈S ∇fi(wk), S ⊂ {1, . . . , n} with size b,

and w̃ is an snapshot vector for which the gradient, ∇P (w̃),
has already been previously calculated in the deterministic

step.

Actually, the RBB method satisfies the so-called quasi-

Newton property under the background of stochastic opti-

mization. Specifically, the RBB method can be viewed as a

variant of stochastic quasi-Newton method, where the second

order information was used. During recent years, more and

more researchers and communities show that stochastic quasi-

Newton iterates almost as fast as a first order stochastic

gradient but only needs less iterations to achieve the same

accuracy [62]–[66].

B. The proposed method

The MB-SARAH method, proposed by Nguyen et al. [29],

is viewed as a variant of mS2GD. However, the pivotal

difference between the mS2GD and MB-SARAH is that the

latter uses a new kind of stochastic estimate of ∇P (wk), i.e.,

vk = ∇PS(wk)−∇PS(wk−1) + vk−1 (10)

For comparison, the stochastic estimate of mS2GD-RBB is

written in a similar way as (9). Note that for mS2GD-RBB, vk
is an unbiased estimator of the gradient, i.e., from (9), we have

E[vk] = ∇P (wk). However, it’s not true for MB-SARAH.

We introduce the RBB method into MB-SARAH and obtain

a new SARAH method referred to as MB-SARAH-RBB. But

different with mS2GD-RBB, when computing the random step

size in MB-SARAH, we multiply a parameter, γ, in (8), i.e.,

η
′

k =
γ

bH

‖wk − wk−1‖2
((wk − wk−1)T (∇PSH

(wk)−∇PSH
(wk−1)))

, (11)

where the parameter, γ, is important to control the convergence

of MB-SARAH-RBB.

Now we are ready to describe our MB-SARAH-RBB

method (Algorithm 1).

Remark: At the beginning of MB-SARAH-RBB, a step

size, η0, requires to be specified. However, we observed

from the numerical experiments that the performance of MB-

SARAH-RBB is not sensitive to the choice of η0. It also can be

seen from Algorithm 1 that, if we always set ηk = η, then MB-

SARAH-RBB is reduced to the original MB-SARAH method.

4

Algorithm 1 MB-SARAH-RBB

Parameters: update frequency m, samples sizes b and bH ,

initial point w̃0, initial step size η0, a positive constant γ.

for s = 1, 2, . . . , do

w0 = w̃s−1

v0 = ∇P (w0)
w1 = w0 − η0v0
for k = 1 to m− 1 do

Randomly pick subset S ⊂ {1, . . . , n} of size b,

vk = ∇PS(wk)−∇PS(wk−1) + vk−1

Randomly pick subset SH ⊂ {1, 2, . . . , n} of size bH ,

compute a RBB step size:

η
′

k = γ
bH

· ‖wk−wk−1‖22/((wk−wk−1)
T (∇PSH

(wk)−
∇PSH

(wk−1)))
wk+1 = wk − ηkvk

end for

w̃s = wm

end for

V. CONVERGENCE ANALYSIS

In this section, we finish the proof of convergence analysis

of MB-SARAH-RBB and discuss its complexity. We first

provide the following lemmas.

Lemma 1. Under Assumption 1, consider MB-SARAH-RBB

within one single outer loop in Algorithm 1, then we obtain

m∑

k=0

E[‖∇P (wk)‖2] ≤
2µbH
γ

E[P (w0)− P (w∗)]

+

m∑

k=0

E[‖∇P (wk)− vk‖2]−
(
1− Lγ

µbH

) m∑

k=0

E
[
‖vk‖2

]
.

Proof. Available in Appendix A-A

With minor modification of Lemma 3 in [29], we obtain the

following lemma showing the upper bound for E[‖∇P (wk)−
vk‖2].
Lemma 2. Under Assumption 1, consider vk defined by (10)

in MB-SARAH-RBB, then for any k ≥ 1,

E[‖∇P (wk)− vk‖2] ≤
L2γ2

µ2bb2H

(
n− b

n− 1

) k∑

j=1

E[‖vj−1‖2].

Using the above lemmas, we obtain the following conver-

gence rate for MB-SARAH-RBB with one outer loop.

Theorem 1. Under Assumptions 1, 2 and Lemmas 1, 2, let

w∗ = argminw P (w) and choose S, SH ⊂ {1, . . . , n} with

size b and bH at random, respectively. Consider MB-SARAH-

RBB (within one outer loop in Algorithm 1) with

L2γ2

µ2bb2H

(
n− b

n− 1

)
m−

(
1− Lγ

µbH

)
≤ 0, (12)

then we have

E[‖∇P (wm)‖2] ≤ 2µbH
γ(m+ 1)

[P (w0)− P (w∗)]

Proof. Available in Appendix A-B

This result shows that the inner loop of MB-SARAH-RBB

with a single outer loop converges sublinearly. Actually, to

obtain

2µbH
γ(m+ 1)

[P (w0)− P (w∗)] ≤ ε,

it is sufficient to choose m = O
(

µbH
γε

)
. Hence, the total

complexity to require an ε-accurate solution is n + 2m =

O
(
n+ µbH

γε

)
. Therefore, the following conclusion for com-

plexity bound is obtained.

Corollary 1. Under Assumption 1, consider MB-SARAH-

RBB with one outer loop, then ‖∇P (wk)‖2 has sublinear

convergence in expectation with a rate of O(µbH/γm), and

the total complexity to achieve an ε-accurate solution is

O (n+ µbH/γε).

Since L ≫ µ, compared with Corollary 1 in [29], we

have that the complexity of our MB-SARAH-RBB method

is better than the complexity of MB-SARAH which is

O
(
n+ L2

ε2

(
n−b
n−1

))
when choosing an appropriate mini-batch

size bH . Note that, in our MB-SARAH-RBB method, the

parameter, γ, is greater than ε.

Now, we present the estimating convergence of MB-

SARAH-RBB with multiple outer steps.

Theorem 2. Under Assumptions 1, 2 and Lemmas 1, 2, let

w∗ = argminw P (w) and set S, SH ⊂ {1, . . . , n} with size

b and bH at random, respectively. Consider MB-SARAH-RBB

with

L2γ2

µ2bb2H

(
n− b

n− 1

)
m−

(
1− Lγ

µbH

)
≤ 0,

then we have

E[‖∇P (w̃s)‖2] ≤ (ρm)s‖∇P (w̃0)‖2

where ρm = bH
γ(m+1) .

Proof. Available in Appendix A-C

To obtain E[‖∇P (w̃s)‖2] ≤ (ρm)s‖∇P (w̃0)‖2 < ε, it is

sufficient to set S = O(log(1/ε)). Therefore, we have the

following conclusion for the total complexity of the proposed

method.

Corollary 2. Suppose Assumption 1 hold, the total complexity

of MB-SARAH-RBB to achieve an ε-accurate solution is

O((n+ µbH/γε) log(1/ε)).

Compared the complexity of MB-SARAH, Corollary 2

indicates that MB-SARAH-RBB has lower complexity when

choosing an appropriate mini-batch size bH .

VI. EXPERIMENTS

In this section, the effectiveness of our MB-SARAH-RBB

method is verified with experiments. In particular, our experi-

ments were performed on the well-worn problems of training

ridge regression, i.e.,

min
w∈Rd

P (w) :=
1

n

n∑

i=1

log(1 + exp(−yix
T
i w)) +

λ

2
‖w‖2, (13)

5

where {(xi, yi)}ni=1 ⊂ R
d × {+1,−1}n is a collection of

training examples.

We tested our MB-SARAH-RBB method on the three

publicly available data sets (a8a,w8a and ijcnn1)1. Detailed

information of the data sets are listed in Table I.

TABLE I
DATA INFORMATION OF EXPERIMENTS

Dataset Training size feature λ

a8a 22,696 123 10
−2

w8a 49,749 300 10
−2

ijcnn1 49,990 22 10
−4

A. Properties of MB-SARAH-RBB

In this subsection, we show the properties of MB-SARAH-

RBB conducted using data sets listed in Table I. To clearly

show the properties of our MB-SARAH-RBB method, we

present the comparison results between MB-SARAH-RBB

and MB-SARAH with the best-tuned step size. For ease

of analysis, in MB-SARAH-RBB, we take the same batch

samples, b, as MB-SARAH to obtain the solution sequence,

on different data sets. Therefore, we can easily see the cases

of batch samples, bH , for obtaining step size sequence.

In addition, for MB-SARAH-RBB, we chose the parameter,

γ, as 0.1 when the batch samples, bH , is small; otherwise, we

take γ = 1, or a slightly large number. Moreover, we set

η0 = 0.1 for MB-SARAH-RBB.

Fig. 1, 2 and 3 compare MB-SARAH-RBB with MB-

SARAH. In all sub-figures, the horizontal axis represents the

number of effective passes over the data, where each effective

pass evaluates n component gradients. The vertical axis is the

sub-optimality, P (w̃s)− P (w∗), where we obtain w∗ by per-

forming MB-SARAH with the best-tuned step size. Moreover,

the dashed lines represent MB-SARAH with different fixed

step sizes and the solid lines represent MB-SARAH-RBB with

different batch sizes b and bH . The detailed information of the

parameters is given in the legends of the sub-figures.

Fig. 1, 2 and 3 show that, MB-SARAH-RBB is comparable

to or performs better than MB-SARAH with best-tuned step

size. Also, Fig. 1, 2 and 3 indicate that, when fixed batch

samples, b, it is no need to set a large batch samples, bH , to

obtain step size sequence. However, a small batch size, bH ,

makes MB-SARAH-RBB diverge.

In Algorithm 1, we pointed out that MB-SARAH-RBB is

not sensitive to the choice of step size, η0. To present this

case, we set three different step sizes (η0 = 0.01, 0.1, 1) for

MB-SARAH-RBB on a8a and ijcnn1 and the results were

presented in Fig. 4. We set b = 4, bH = 40 for a8a and

b = 8, bH = 60 for ijcnn1.

It can be seen from Fig. 4 that, the performance of MB-

SARAH-RBB is not influenced by the choice of η0.

1a8a, w8a and ijcnn1 can be downloaded from
https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.

B. Comparison with mS2GD-RBB

mS2GD-RBB, proposed by Yang et al. [61], uses the similar

strategy as us to compute step size for mS2GD. One of the

key difference between mS2GD-RBB and MB-SARAH-RBB

is that the latter multiply a positive constant, γ, in (8). To

further show the efficacy of our MB-SARAH-RBB method,

we compare these two methods. All parameters of mS2GD-

RBB are set as suggested in [61]. Also, we use the dashed

lines to represent mS2GD-RBB and the solid lines to represent

MB-SARAH-RBB.

Fig. 5 and 6 show that our MB-SARAH-RBB method

performs better than or is comparable to mS2GD-RBB. It also

indicates that the performance of the original MB-SARAH

method can be improved by introducing the improved RBB

method.

C. Comparison with other related methods

In this section, we compare our MB-SARAH-RBB method

with the following methods:

1) SAG-LS: Stochastic average gradient method with line

search [67].

2) SAG-BB: Stochastic average gradient method with BB

step size [45].

3) SVRG: Stochastic variance reduction gradient method

[24]. For SVRG, the best constant step size was employed.

4) SVRG-BB: Stochastic variance reduction gradient method

with BB step size [45].

5) mS2GD-BB: A batch version of SVRG-BB proposed in

[46]. For mS2GD-BB, all parameters were set as suggested

in [46].

6) SDCA: Stochastic descent coordinate ascent method [23].

We chose the parameters as suggested in [23]. Also, the best

constant step size was employed

7) Acc-Prox-SVRG: an version of accelerated stochastic

gradient method in [25]. We chose η = 1, m = δb (δ = 10),

and βk = b−2
b+2 (b = 100), as suggested in [25]. Also, the best

constant step size was employed.

8) Acc-Prox-SVRG-BB: an variant of Acc-Prox-SVRG,

with the BB step size in [47]. We set the parameters of

Acc-Prox-SVRG-BB as suggested in [47].

9) Acc-Prox-SVRG-RBB: an variant of Acc-Prox-SVRG,

with the RBB step size in [61]. For Acc-Prox-SVRG-BB, we

set the best batch size b and bH for different data sets.

10) MSVRG-OSS: the MSVRG method with an online step

size [43] The parameters were set as suggested in [43].

As can be seen from Fig. 7, our MB-SARAH-RBB method

outperforms or matches state-of-the-art algorithms.

VII. CONCLUSION

This paper is motivated by a defect related to SARAH

for step size choice. Specifically, common implementations

of such schemes provide little guidance in specifying step

size parameters that prove crucial in practical performance.

Accordingly, we propose using the RBB method to automat-

ically evaluate step size for MB-SARAH and obtain MB-

SARAH-RBB. We prove that our MB-SARAH-RBB method

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

6

0 5 10 15 20 25
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Effective Passes

P
(w̃

s
)
−
P
(w

∗
)

MB−SARAH: b=4, η=0.2
MB−SARAH: b=4, η=0.4
MB−SARAH: b=4, η=0.6
MB−SARAH−RBB: b=4, b

H
=20

MB−SARAH−RBB: b=4, b
H

=40

MB−SARAH−RBB: b=4, b
H

=60

0 5 10 15 20 25
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Number of Effective Passes

P
(w̃

s
)
−
P
(w

∗
)

MB−SARAH: b=64, η=0.2
MB−SARAH: b=64, η=0.4
MB−SARAH: b=64, η=0.5
MB−SARAH−RBB: b=64, b

H
=20

MB−SARAH−RBB: b=64, b
H

=140

MB−SARAH−RBB: b=64, b
H

=180

Fig. 1. Comparison of MB-SARAH-RBB and MB-SARAH with fixed step sizes on a8a. The dashed lines stand for MB-SARAH with different fixed step
sizes η. The solid lines correspond to MB-SARAH-RBB with different mini-batch sizes b and bH .

0 5 10 15 20 25

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Effective Passes

P
(w̃

s
)
−
P
(w

∗
)

MB−SARAH: b=2, η=0.2
MB−SARAH: b=2, η=0.4
MB−SARAH: b=2, η=0.6
MB−SARAH−RBB: b=2, b

H
=40

MB−SARAH−RBB: b=2, b
H

=60

MB−SARAH−RBB: b=2, b
H

=80

0 2 4 6 8 10 12 14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Effective Passes

P
(w̃

s
)
−
P
(w

∗
)

MB−SARAH: b=8, η=0.2
MB−SARAH: b=8, η=0.4
MB−SARAH: b=8, η=0.8
MB−SARAH−RBB: b=8, b

H
=20

MB−SARAH−RBB: b=8, b
H

=60

MB−SARAH−RBB: b=8, b
H

=100

Fig. 2. Comparison of MB-SARAH-RBB and MB-SARAH with fixed step sizes on w8a. The dashed lines stand for MB-SARAH with different fixed step
sizes η. The solid lines correspond to MB-SARAH-RBB with different mini-batch sizes b and bH .

0 5 10 15 20 25

10
−10

10
−5

10
0

Number of Effective Passes

P
(w̃

s
)
−
P
(w

∗
)

MB−SARAH: b=8, η=1
MB−SARAH: b=8, η=4
MB−SARAH: b=8, η=6
MB−SARAH−RBB: b=8, b

H
=40

MB−SARAH−RBB: b=8, b
H

=60

MB−SARAH−RBB: b=8, b
H

=100

0 5 10 15 20 25 30
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Effective Passes

P
(w̃

s
)
−
P
(w

∗
)

MB−SARAH: b=32, η=4
MB−SARAH: b=32, η=6
MB−SARAH: b=32, η=8
MB−SARAH−RBB: b=32, b

H
=30

MB−SARAH−RBB: b=32, b
H

=60

MB−SARAH−RBB: b=32, b
H

=100

Fig. 3. Comparison of MB-SARAH-RBB and MB-SARAH with fixed step sizes on ijcnn1. The dashed lines stand for MB-SARAH with different fixed step
sizes η. The solid lines correspond to MB-SARAH-RBB with different mini-batch sizes b and bH .

7

0 2 4 6 8 10 12 14 16 18
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Number of Effective Passes

P
(w̃

s
)
−
P
(w

∗
)

MB−SARAH−RBB: b=4, b

H
=40, η

0
=0.01

MB−SARAH−RBB: b=4, b
H

=40, η
0
=0.1

MB−SARAH−RBB: b=4, b
H

=40, η
0
=1

0 5 10 15 20
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Number of Effective Passes

P
(w̃

s
)
−
P
(w

∗
)

MB−SARAH−RBB: b=8, b

H
=60, η

0
=0.01

MB−SARAH−RBB: b=8, b
H

=60, η
0
=0.1

MB−SARAH−RBB: b=8, b
H

=60, η
0
=1

Fig. 4. Different initial step sizes for MB-SARAH-RBB on a8a (left) and ijcnn1 (right).

0 5 10 15 20 25
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Number of Effective Passes

P
(w̃

s
)
−
P
(w

∗
)

mS2GD−RBB: b=4, b

H
=20

mS2GD−RBB: b=4, b
H

=30

mS2GD−RBB: b=4, b
H

=60

MB−SARAH−RBB: b=4, b
H

=20

MB−SARAH−RBB: b=4, b
H

=30

MB−SARAH−RBB: b=4, b
H

=60

0 2 4 6 8 10 12 14 16 18
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Number of Effective Passes

P
(w̃

s
)
−
P
(w

∗
)

mS2GD−RBB: b=16, b

H
=20

mS2GD−RBB: b=16, b
H

=30

mS2GD−RBB: b=16, b
H

=60

MB−SARAH−RBB: b=16, b
H

=20

MB−SARAH−RBB: b=16, b
H

=30

MB−SARAH−RBB: b=16, b
H

=60

Fig. 5. Comparison of MB-SARAH-RBB and mS2GD-RBB on a8a. The dashed lines stand for mS2GD-RBB with different mini-batch sizes b and bH . The
solid lines correspond to MB-SARAH-RBB with different mini-batch sizes b and bH .

0 5 10 15 20 25 30
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Number of Effective Passes

P
(w̃

s
)
−
P
(w

∗
)

mS2GD−RBB: b=8, b

H
=30

mS2GD−RBB: b=8, b
H

=40

mS2GD−RBB: b=8, b
H

=50

MB−SARAH−RBB: b=8, b
H

=30

MB−SARAH−RBB: b=8, b
H

=40

MB−SARAH−RBB: b=8, b
H

=50

0 5 10 15 20 25
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Number of Effective Passes

P
(w̃

s
)
−
P
(w

∗
)

mS2GD−RBB: b=32, b

H
=20

mS2GD−RBB: b=32, b
H

=30

mS2GD−RBB: b=32, b
H

=50

MB−SARAH−RBB: b=32, b
H

=20

MB−SARAH−RBB: b=32, b
H

=30

MB−SARAH−RBB: b=32, b
H

=50

Fig. 6. Comparison of MB-SARAH-RBB and mS2GD-RBB on ijcnn1. The dashed lines stand for mS2GD-RBB with different mini-batch sizes b and bH .
The solid lines correspond to MB-SARAH-RBB with different mini-batch sizes b and bH .

8

0 5 10 15 20 25 30
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Number of Effective Passes

P
(w̃

s
)
−
P
(w

∗
)

SDCA
SAG−LS
SAG−BB
SVRG
SVRG−BB
mS2GD−BB
Acc−Prox−SVRG
Acc−Prox−SVRG−BB
Acc−Prox−SVRG−RBB
MSVRG−OSS
MB−SARAH−RBB

0 5 10 15 20 25 30

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Number of Effective Passes

P
(w̃

s
)
−
P
(w

∗
)

SDCA
SAG−LS
SAG−BB
SVRG
SVRG−BB
mS2GD−BB
Acc−Prox−SVRG
Acc−Prox−SVRG−BB
Acc−Prox−SVRG−RBB
MSVRG−OSS
MB−SARAH−RBB

0 5 10 15 20 25 30
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

Number of Effective Passes

P
(w̃

s
)
−
P
(w

∗
)

SDCA
SAG−LS
SAG−BB
SVRG
SVRG−BB
mS2GD−BB
Acc−Prox−SVRG
Acc−Prox−SVRG−BB
Acc−Prox−SVRG−RBB
MSVRG−OSS
MB−SARAH−RBB

Fig. 7. Comparison of different methods on three data sets: a8a (left), w8a (middle) and ijcnn1 (right).

converges with a linear convergence rate for strongly con-

vex objective functions. We analyze the complexity of MB-

SARAH-RBB and show that the complexity of the original

MB-SARAH method is improved by combining the RBB

method. Numerical results show that our MB-SARAH-RBB

method outperforms or matches state-of-the-art algorithms.

APPENDIX A

PROOFS

A. Proof of Lemma 1

According to (3) and wk+1 = wk − ηkvk, we have

E[P (wk+1)]
(3)

≤ E[P (wk)]− ηkE[∇P (wk)
⊤vk]

+
Lη2k
2

E[‖vk‖2].

Employing the strong convexity of fi(w), we have the fol-

lowing upper boundary for the RBB step size from Algorithm

1.

η
′

k =
γ

bH
· ‖wk − wk−1‖2
(wk − wk−1)T (∇PSH

(wk)−∇PSH
(wk−1))

≤ γ

bH
· ‖wk − wk−1‖2
µ‖wk − wk−1‖2

=
γ

µbH

Therefore, we ascertain that

E[P (wk+1)]

≤ E[P (wk)]−
γ

µbH
E
[
∇P (wk)

⊤vk
]
+

Lγ2

2µ2b2H
E[‖vk‖2]

= E[P (wk)]−
γ

2µbH
E
[
‖∇P (wk)‖2

]
+

γ

2µbH
E[‖∇P (wk)

− vk‖2]−
(

γ

2µbH
− Lγ2

2µ2b2H

)
E
[
‖vk‖2

]
,

where the last equality is according to the fact that aT b =
1
2

[
‖a‖2 + ‖b‖2 − ‖a− b‖2

]
.

By summing over k = 0, . . . ,m, we have

E[P (wm+1)]

≤ E[P (w0)]−
γ

2µbH

m∑

k=0

E
[
‖∇P (wk)‖2

]
+

γ

2µbH

·
m∑

k=0

E[‖∇P (wk)− vk‖2]−
(

γ

2µbH
− Lγ2

2µ2b2H

) m∑

k=0

E
[
‖vk‖2

]
.

Further, we have

m∑

k=0

E
[
‖∇P (wk)‖2

]

≤ 2µbH
γ

E[P (w0)− P (wm+1)] +

m∑

k=0

E
[
‖∇P (wk)− vk‖2

]

−
(
1− Lγ

µbH

) m∑

k=0

E
[
‖vk‖2

]

≤ 2µbH
γ

E[P (w0)− P (w∗)] +

m∑

k=0

E
[
‖∇P (wk)− vk‖2

]

−
(
1− Lγ

µbH

) m∑

k=0

E
[
‖vk‖2

]
,

where the last inequality follows since w∗ = argminw P (w).

B. Proof of Theorem 1

From Lemma 2, we have

E[‖∇P (wk)− vk‖2] ≤
L2γ2

µ2bb2H

(
n− b

n− 1

) k∑

j=1

E[‖vj−1‖2].

Since ‖∇P (w0) − v0‖2 = 0, hence by summing over k =
0, . . . ,m, we obtain

m∑

k=0

E[‖∇P (wk)− vk‖2] ≤
L2γ2

µ2bb2H

(
n− b

n− 1

)[
mE[‖v0‖2]

+ (m− 1)E[‖v1‖2] + . . .+ E[‖vm−1‖2]
]
.

Further, we have

m∑

k=0

E[‖∇P (wk)− vk‖2]−
(
1− Lγ

µbH

) m∑

k=0

E[‖vk‖2]

≤ L2γ2

µ2bb2H

(
n− b

n− 1

)[
mE[‖v0‖2] + (m− 1)E[‖v1‖2]

+ . . .+ E[‖vm−1‖2]
]
−
(
1− Lγ

µbH

) m∑

k=0

E[‖vk‖2]

≤
[
L2γ2

µ2bb2H

(
n− b

n− 1

)
m−

(
1− Lγ

µbH

)] m∑

k=1

E[‖vk−1‖2]

(12)

≤ 0 (14)

9

Therefore, by Lemma 1, we have

m∑

k=0

E[‖∇P (wk)‖2] ≤
2µbH
γ

E[P (w0)− P (w∗)]

+

m∑

k=0

E[‖∇P (wk)− vk‖2]−
(
1− Lγ

µbH

) m∑

k=0

E
[
‖vk‖2

]

(14)

≤ 2µbH
γ

E[P (w0)− P (w∗)].

By the definition of w̃s in Algorithm 1 and w̃s = wm, we

have that

E[‖∇P (wm)‖2] =
1

m+ 1

m∑

k=0

E[‖∇P (wk)‖2]

≤ 2µbH
γ(m+ 1)

E[P (w0)− P (w∗)]

C. Proof of Theorem 2

Note that w0 = w̃s−1 and w̃s = wm, s ≥ 1. From Theorem

1, we obtain

E[‖∇P (w̃s)|w̃s−1‖2] = E[‖∇P (w̃s)|w0‖2]

≤ 2µbH
γ(m+ 1)

E[P (w0)− P (w∗)]

(6)

≤ bH
γ(m+ 1)

‖∇P (w0)‖2

=
bH

γ(m+ 1)
‖∇P (w̃s−1)‖2

Hence, taking expectation, we obtain

E[‖∇P (w̃s)‖2] ≤ bH
γ(m+ 1)

E[‖∇P (w̃s−1)‖2]

≤
[

bH
γ(m+ 1)

]s
‖∇P (w̃0)‖2

REFERENCES

[1] J. Mairal, F. Bach, J. Ponce, G. Sapiro, Online dictionary learning for
sparse coding, in: Proceedings of the 26th International Conference on
Machine Learning, ACM, 2009, pp. 689–696.

[2] T. Zhang, Solving large scale linear prediction problems using stochastic
gradient descent algorithms, in: Proceedings of the 21st International
Conference on Machine Learning, ACM, 2004, p. 116.

[3] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, D. Ramanan, Object
detection with discriminatively trained part-based models, IEEE transac-
tions on pattern analysis and machine intelligence 32 (9) (2009) 1627–
1645.

[4] V. Blanz, T. Vetter, Face recognition based on fitting a 3d morphable
model, IEEE Transactions on Pattern Analysis and Machine Intelligence
25 (9) (2003) 1063–1074.

[5] M. Hoffman, F. R. Bach, D. M. Blei, Online learning for latent dirichlet
allocation, in: Advances in Neural Information Processing Systems,
2010, pp. 856–864.

[6] L. Bottou, Large-scale machine learning with stochastic gradient de-
scent, in: Proceedings of COMPSTAT’2010, Springer, 2010, pp. 177–
186.

[7] Y. Lin, F. Lv, S. Zhu, M. Yang, T. Cour, K. Yu, L. Cao, T. Huang, Large-
scale image classification: fast feature extraction and svm training, in:
CVPR 2011, IEEE, 2011, pp. 1689–1696.

[8] Z. Zhang, P. Luo, C. C. Loy, X. Tang, Facial landmark detection by
deep multi-task learning, in: European Conference on Computer Vision,
Springer, 2014, pp. 94–108.

[9] Q. Tao, Q.-K. Gao, D.-J. Chu, G.-W. Wu, Stochastic learning via
optimizing the variational inequalities, IEEE Transactions on Neural
Networks and Learning Systems 25 (10) (2014) 1769–1778.

[10] M. F. Bugallo, V. Elvira, L. Martino, D. Luengo, J. Miguez, P. M. Djuric,
Adaptive importance sampling: the past, the present, and the future,
IEEE Signal Processing Magazine 34 (4) (2017) 60–79.

[11] C. Du, J. Zhu, B. Zhang, Learning deep generative models with doubly
stochastic gradient mcmc, IEEE Transactions on Neural Networks and
Learning Systems 29 (7) (2017) 3084–3096.

[12] X.-L. Li, Preconditioned stochastic gradient descent, IEEE Transactions
on Neural Networks and Learning Systems 29 (5) (2018) 1454–1466.

[13] E. Moulines, F. R. Bach, Non-asymptotic analysis of stochastic ap-
proximation algorithms for machine learning, in: Advances in Neural
Information Processing Systems, 2011, pp. 451–459.

[14] A. Nemirovski, A. Juditsky, G. Lan, A. Shapiro, Robust stochastic
approximation approach to stochastic programming, SIAM Journal on
optimization 19 (4) (2009) 1574–1609.

[15] L. Bottou, F. E. Curtis, J. Nocedal, Optimization methods for large-scale
machine learning, SIAM Review 60 (2) (2018) 223–311.

[16] A. Cotter, O. Shamir, N. Srebro, K. Sridharan, Better mini-batch
algorithms via accelerated gradient methods, in: Advances in Neural
Information Processing Systems, 2011, pp. 1647–1655.

[17] J. Konečnỳ, J. Liu, P. Richtárik, M. Takáč, Mini-batch semi-stochastic
gradient descent in the proximal setting, IEEE Journal of Selected Topics
in Signal Processing 10 (2) (2016) 242–255.

[18] D. Needell, R. Ward, N. Srebro, Stochastic gradient descent, weighted
sampling, and the randomized kaczmarz algorithm, in: Advances in
Neural Information Processing Systems, 2014, pp. 1017–1025.

[19] D. Csiba, P. Richtárik, Importance sampling for minibatches, The Journal
of Machine Learning Research 19 (1) (2018) 962–982.

[20] T. Fu, Z. Zhang, Cpsg-mcmc: Clustering-based preprocessing method
for stochastic gradient mcmc, in: Artificial Intelligence and Statistics,
2017, pp. 841–850.

[21] N. L. Roux, M. Schmidt, F. R. Bach, A stochastic gradient method with
an exponential convergence rate for finite training sets, in: Advances in
Neural Information Processing Systems, 2012, pp. 2663–2671.

[22] A. Defazio, F. Bach, S. Lacoste-Julien, SAGA: A fast incremental
gradient method with support for non-strongly convex composite ob-
jectives, in: Advances in Neural Information Processing Systems, 2014,
pp. 1646–1654.

[23] S. Shalev-Shwartz, T. Zhang, Stochastic dual coordinate ascent methods
for regularized loss minimization, Journal of Machine Learning Research
14 (Feb) (2013) 567–599.

[24] R. Johnson, T. Zhang, Accelerating stochastic gradient descent using
predictive variance reduction, in: Advances in Neural Information Pro-
cessing Systems, 2013, pp. 315–323.

[25] A. Nitanda, Stochastic proximal gradient descent with acceleration
techniques, in: Advances in Neural Information Processing Systems,
2014, pp. 1574–1582.

[26] L. M. Nguyen, J. Liu, K. Scheinberg, M. Takáč, Sarah: A novel method
for machine learning problems using stochastic recursive gradient, in:
International Conference on Machine Learning-Volume 70, JMLR. org,
2017, pp. 2613–2621.

[27] C. Fang, C. J. Li, Z. Lin, T. Zhang, Spider: Near-optimal non-convex
optimization via stochastic path-integrated differential estimator, in:
Advances in Neural Information Processing Systems, 2018, pp. 689–
699.

[28] L. M. Nguyen, M. van Dijk, D. T. Phan, P. H. Nguyen, T.-W. Weng,
J. R. Kalagnanam, Finite-sum smooth optimization with sarah, def 1
(2019) 1.

[29] L. M. Nguyen, J. Liu, K. Scheinberg, M. Takáč, Stochastic recur-
sive gradient algorithm for nonconvex optimization, arXiv preprint
arXiv:1705.07261.

[30] L. M. Nguyen, K. Scheinberg, M. Takáč, Inexact sarah algorithm for
stochastic optimization, arXiv preprint arXiv:1811.10105.

[31] S. Horváth, P. Richtárik, Nonconvex variance reduced optimization with
arbitrary sampling, arXiv preprint arXiv:1809.04146.

[32] D. Zhou, Q. Gu, Stochastic recursive variance-reduced cubic regulariza-
tion methods, arXiv preprint arXiv:1901.11518.

[33] N. H. Pham, L. M. Nguyen, D. T. Phan, Q. Tran-Dinh, ProxSARAH:
An efficient algorithmic framework for stochastic composite nonconvex
optimization, arXiv preprint arXiv:1902.05679.

[34] L. M. Nguyen, M. van Dijk, D. T. Phan, P. H. Nguyen, T.-W. Weng,
J. R. Kalagnanam, Optimal finite-sum smooth non-convex optimization
with sarah, arXiv preprint arXiv:1901.07648.

[35] L. Xiao, T. Zhang, A proximal stochastic gradient method with progres-
sive variance reduction, SIAM Journal on Optimization 24 (4) (2014)
2057–2075.

[36] J. Barzilai, J. M. Borwein, Two-point step size gradient methods, IMA
Journal of Numerical Analysis 8 (1) (1988) 141–148.

10

[37] Z. Yang, C. Wang, Z. Zhang, J. Li, Random Barzilai-Borwein step
size for mini-batch algorithms, Engineering Applications of Artificial
Intelligence 72 (2018) 124 – 135.

[38] H. Kesten, Accelerated stochastic approximation, Annals of Mathemat-
ical Statistics 29 (1) (1958) 41–59.

[39] H. Robbins, S. Monro, A stochastic approximation method, Annals of
Mathematical Statistics (1951) 400–407.

[40] A. Benveniste, M. Mtivier, P. Priouret, Adaptive Algorithms and
Stochastic Approximations, Springer Berlin Heidelberg, 1990.

[41] T. Tieleman, G. Hinton, Lecture 6.5-rmsprop: Divide the gradient by a
running average of its recent magnitude., COURSERA: Neural Networks
for Machine Learning.

[42] A. P. George, W. B. Powell, Adaptive stepsizes for recursive estima-
tion with applications in approximate dynamic programming, Machine
Learning 65 (1) (2006) 167–198.

[43] Z. Yang, C. Wang, Z. Zhang, J. Li, Mini-batch algorithms with online
step size, Knowledge-Based Systems 165 (2019) 228–240.

[44] K. Sopyła, P. Drozda, Stochastic gradient descent with barzilai–borwein
update step for svm, Information Sciences 316 (2015) 218–233.

[45] C. Tan, S. Ma, Y. H. Dai, Y. Qian, Barzilai-Borwein step size for stochas-
tic gradient descent, in: Advances in Neural Information Processing
Systems, 2016, pp. 685–693.

[46] Z. Yang, C. Wang, Y. Zang, J. Li, Mini-batch algorithms with Barzilai–
Borwein update step, Neurocomputing 314 (2018) 177–185.

[47] Z. Yang, C. Wang, Z. Zhang, J. Li, Accelerated stochastic gradient
descent with step size selection rules, Signal Processing 159 (2019)
171–186.

[48] S. De, A. Yadav, D. Jacobs, T. Goldstein, Automated inference with
adaptive batches, in: International Conference on Artificial Intelligence
and Statistics, 2017.

[49] K. Ma, J. Zeng, J. Xiong, Q. Xu, X. Cao, W. Liu, Y. Yao, Stochastic
Non-convex Ordinal Embedding with Stabilized Barzilai-Borwein step
size, in: AAAI Conference on Artificial Intelligence, 2018.

[50] F. Yousefian, A. Nedić, U. V. Shanbhag, On stochastic gradient and
subgradient methods with adaptive steplength sequences, Automatica
48 (1) (2012) 56–67.

[51] M. Mahsereci, P. Hennig, Probabilistic line searches for stochastic
optimization, Journal of Machine Learning Research 18 (119) (2017)
1–59.

[52] A. G. Baydin, R. Cornish, D. M. Rubio, M. W. Schmidt, F. D.
Wood, Online learning rate adaptation with hypergradient descent, in:
International Conference on Learning Representations, 2018.

[53] S. J. Reddi, A. Hefny, S. Sra, B. Poczos, A. Smola, Stochastic variance
reduction for nonconvex optimization, in: International Conference on
Machine Learning, 2016, pp. 314–323.

[54] L. B. Almeida, T. Langlois, J. D. Amaral, A. Plakhov, Parameter
adaptation in stochastic optimization, in: On-line learning in neural
networks, Cambridge University Press, 1999, pp. 111–134.

[55] T. Schaul, S. Zhang, Y. Lecun, No more pesky learning rates, in:
International Conference on Machine Learning, 2013, pp. 343–351.

[56] T. Tieleman, G. Hinton, Divide the gradient by a running average of
its recent magnitude. coursera: Neural networks for machine learning,
Technical Report.

[57] Z. Wang, K. Crammer, S. Vucetic, Breaking the curse of kernelization:
Budgeted stochastic gradient descent for large-scale svm training, Jour-
nal of Machine Learning Research 13 (Oct) (2012) 3103–3131.

[58] S. Bhojanapalli, B. Neyshabur, N. Srebro, Global optimality of local
search for low rank matrix recovery, in: Advances in Neural Information
Processing Systems, 2016, pp. 3873–3881.

[59] I. Sutskever, J. Martens, G. Dahl, G. Hinton, On the importance of ini-
tialization and momentum in deep learning, in: International Conference
on Machine Learning, 2013, pp. 1139–1147.

[60] Y. Nesterov, Introductory lectures on convex optimization : basic course,
Kluwer Academic, 2004.

[61] Z. Yang, C. Wang, Z. Zhang, J. Li, Random Barzilai–Borwein step
size for mini-batch algorithms, Engineering Applications of Artificial
Intelligence 72 (2018) 124–135.

[62] A. Bordes, L. Bottou, P. Gallinari, SGD-QN: Careful quasi-newton
stochastic gradient descent, Journal of Machine Learning Research
10 (Jul) (2009) 1737–1754.

[63] R. H. Byrd, G. M. Chin, J. Nocedal, Y. Wu, Sample size selection in
optimization methods for machine learning, Mathematical programming
134 (1) (2012) 127–155.

[64] R. H. Byrd, S. L. Hansen, J. Nocedal, Y. Singer, A stochastic quasi-
newton method for large-scale optimization, SIAM Journal on Opti-
mization 26 (2) (2016) 1008–1031.

[65] N. Agarwal, B. Bullins, E. Hazan, Second-order stochastic optimization
for machine learning in linear time, The Journal of Machine Learning
Research 18 (1) (2017) 4148–4187.

[66] N. Tripuraneni, M. Stern, C. Jin, J. Regier, M. I. Jordan, Stochastic cubic
regularization for fast nonconvex optimization, in: Advances in Neural
Information Processing Systems, 2018, pp. 2899–2908.

[67] M. Schmidt, R. Babanezhad, M. O. Ahmed, A. Defazio, A. Clifton,
A. Sarkar, Non-uniform stochastic average gradient method for training
conditional random fields., in: AISTATS, 2015.

	I Introduction
	II Related Work
	III Problem formulation and background
	IV The Algorithm
	IV-A Random Barzilai-Borwein Step Size
	IV-B The proposed method

	V Convergence Analysis
	VI Experiments
	VI-A Properties of MB-SARAH-RBB
	VI-B Comparison with mS2GD-RBB
	VI-C Comparison with other related methods

	VII Conclusion
	Appendix A: Proofs
	A-A Proof of Lemma ??
	A-B Proof of Theorem ??
	A-C Proof of Theorem ??

	References

