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Abstract

Data analysis in high-dimensional spaces aims at obtaining a synthetic de-
scription of a data set, revealing its main structure and its salient features.
We here introduce an approach providing this description in the form of a
topography of the data, namely a human-readable chart of the probability
density from which the data are harvested. The approach is based on an un-
supervised extension of Density Peak clustering and a non-parametric density
estimator that measures the probability density in the manifold containing
the data. This allows finding automatically the number and the height of
the peaks of the probability density, and the depth of the “valleys” separating
them. Importantly, the density estimator provides a measure of the error,
which allows distinguishing genuine density peaks from density fluctuations
due to finite sampling. The approach thus provides robust and visual infor-
mation about the density peaks height, their statistical reliability and their
hierarchical organization, offering a conceptually powerful extension of the
standard clustering partitions. We show that this framework is particularly
useful in the analysis of complex data sets.
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Non-parametric-density-estimation

1. Introduction

The rapidly increasing capability to generate data calls for approaches
able to provide a compact representation of their underlying structure. The
challenge is to extract from data sets with, say, 1000 dimensions an informa-
tion content at the same time human readable and useful.

A possible route to achieve this goal is attempting to map the data on a
two or three dimensional surface that can then be directly visualized. This
low-dimensional representations of high-dimensional data can be derived, for
example, using Principal Component Analysis [36] and, within a framework
which allows taking non-linearities into account, in multidimensional scal-
ing [47], ISOMAP [46], Diffusion Maps [9], Locally Linear Embedding [39],
Tree Preserving Embedding [41], t-Distributed Stochastic Neighbor Embed-
ding [27] and Sketch-Map [6]. However, the intrinsic dimensionality (ID)
of realistic data sets is often larger than three. This has become more and
more evident in recent years, thanks to the development of powerful and
accurate approaches capable of estimating the ID [4, 18, 12]. If the ID of a
data set is, say, 10 any attempt to describe it with only two or three coor-
dinates unavoidably leads to an information loss. This can lead to several
effects like altering the local neighborhood structures of the data sets, or the
crowding of the data due to the reduction of space when passing from high
dimension to low dimension [17]. Thus, most of the above-mentioned meth-
ods try to quantify the amount of information preserved in the projection
by a suitable objective function. For instance, in Multidimensional Scaling
the objective function measures the preservation of the distances, while in
t-SNE the information preserved is the neighborhood structure [3]. However,
this information loss can lead, depending on the data set, to the presence of
artifacts that make those methods not applicable for a quantitative analysis
in case of large IDs, although they may be still useful as preprocessing, or for
visualization purposes. One example (among many) of these problems can
be found in ref. [45], where ISOMAP was employed for projecting a folding
trajectory of Villin protein described by the 32 features (with an ID of 12).
In this particular case the projection was not able of distinguish folded or
unfolded states nor provide a useful visualization of the data set.

A different strategy for summarizing the information content of a data set
is considering the data as an ensemble of realizations drawn from a probabil-
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ity distribution where the regions of space with higher density of data points,
generally defined as clusters, correspond to probability peaks. Density-based
clustering [11, 10, 38] allows finding those peaks and estimating their prop-
erties without projecting the data onto a lower-dimensional representation.
This approach offers two major advantages. First, it can be followed even in
the case of high intrinsic dimensionalities. Second, it can also be exploited
to formulate a hierarchical representation of the probability distribution, by
establishing a hierarchy of connected subsets of points. This idea was intro-
duced in the seminal work of Hartigan [19], and has been exploited in many
recent algorithms like, for instance, HDBSCAN [5], Robust Single Linkage [8]
and Robust Density-Based Clustering [44].

In this work we introduce Density Peaks Advanced (DPA), a method
for reconstructing what we call the topography of a data set, or a simpli-
fied human-readable chart of the probability distribution. The topography
conveys information on the height of all the probability peaks as well as on
the organization of these peaks in larger structures. When density peaks are
identified as clusters, the topography provides an immediate visual informa-
tion about their relationships to one another. If the probability distribution
includes N peaks (or clusters), the topography consists in a N ×N symmet-
ric matrix in which the diagonal entries are the heights of the peaks and the
off- diagonal entries are the heights of the saddle points. As we discuss in
the following, a saddle point between two peaks is estimated by searching
the point of highest density among all the points at the border between the
two peaks. An off-diagonal entry is set to zero if the two peaks are not in
contact. This matrix can be represented in the form of a tree diagram, like in
refs. [19, 5, 8, 44], obtaining a chart that unveils the hierarchies by focusing
on the highest saddles between peaks. We will also show that complementary
information about the topography can be visualized by applying one of the
approaches developed for representing the kinetic models derived by Markov
State Model analysis [34].

The topography is reconstructed by using a modified version of the Den-
sity Peaks (DP) algorithm [38]. This approach provides an empirical criterion
for a quick and reliable localization of density peaks. The original formula-
tion of DP is affected by two main drawbacks. First, the selection of cluster
centers is relatively subjective, since it is based on the visual inspection of
the so-called decision graph: a scatter plot of the density of a point vs its
minimum distance from a point with higher density (see ref. [38]). Second,
like all density-based clustering approaches, it is sensitive to the parame-
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ters involved in the density estimation [50]. These drawbacks have been ad-
dressed in many works. For instance, ref. [26] automatically finds the number
of clusters through a recursive inspection of the decision graph based on a
Divide-and-Conquer strategy. In the two-dimensional case, ref. [29] intro-
duces instead a non-parametric technique for estimating the densities based
on the heat diffusion equation. Although the method in ref. [29] still requires
the inspection of the decision graph, it shows an improved performance in
the classification of artificial data sets.

In this work we demonstrate that DP clustering algorithm can be made
fully unsupervised by combining it with PAk [37], a non-parametric den-
sity estimator recently proposed by us. This estimator is able to exploit a
statistical approach to find the largest region around each point in which
the density is approximately constant. One of the PAk’s main innovations
with respect to other non-parametric estimators is that it measures the den-
sity in the manifold in which the data lay, and not in the embedding space
whose dimensionality is normally overwhelmingly large. In the following we
show that the mathematical formulation of the estimator in ref. [37] natu-
rally induces a criterion to automatically find density peaks through the DP
clustering. Moreover, the estimator provides a measure of the uncertainty on
the density. This last feature is a key ingredient, since it allows recognizing
genuine density peaks from statistical fluctuations of the estimated density
due to finite sampling. In fact, our approach allows assessing the statistical
reliability of probability peaks thus providing a new manner for performing
a so-called multimodality test (see, for instance, refs. [42, 30]). This, to the
best of our knowledge, is an original contribution of this work.

Finally, after testing the DPA algorithm in several toy problems, we ana-
lyze two real world data sets: the MNIST database [24] of handwritten digits
and a sample of protein sequences extracted from the Pfam clan PUA [14, 15],
a complex superfamily of sequences organized into ten families, each contain-
ing a variety of architectures.

2. Methods

2.1. Topography of probability density function landscapes
Data sets can often be described as realizations of an underlying prob-

ability distribution whose density has support in the space of the features
(coordinates) of the data. This density can be characterized by the pres-
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ence of several maxima, at times organized hierarchically, as in the synthetic
example shown in Figure 1A.

The scope of our approach is reconstructing with no supervision the to-
pography of those complex probability distributions. A key step of this pro-
cedure consists in the identification of the density maxima within the data
set and the saddle points between them.

We will show that the density peaks and saddle points can be automati-
cally recognized by making use of the PAk (Point Adaptive k-nearest neigh-
bor) density estimator [37] within the framework of Density Peaks cluster-
ing [38].

2.1.1. An adaptive k-Nearest Neighbor density estimator
In this section we will describe in short the PAk density estimator as intro-

duced in ref. [37]. PAk aims to estimate the local density around each point
i in a data set. We denote by {ri,l}l≤k the sequence of the ordered distances
between i and its first k-nearest neighbors, and by vi,l = ω

(
rdi,l − rdi,l−1

)
the

volumes of the hyperspherical shells enclosed between two successive neigh-
bors l − 1 and l, where d is the Intrinsic Dimension (ID) of the manifold in
which the data points lay. As we discussed in ref. [37] the density should
be estimated by measuring the volumes in the embedding manifold whose
dimension is d, rather than the extrinsic dimension of the space in which the
data points are defined, which can be orders of magnitude larger than d. The
value of d can be estimated using one of the many approaches for computing
the intrinsic dimension. We here estimate it by the TWO-NN method [12].

PAk relies on the observation that, for a given point i, if the density
is constant the volumes vi,l are independently drawn from an exponential
distribution with rate equal to the density ρ, as proven in ref. [12]. Therefore,
the log-likelihood function of the parameter ρ given the observation of the
k-nearest neighbor distances from point i is

Li,k (ρi) = k · log ρi − ρi ·
k∑

l=1

vi,l = k · log ρi − ρi · Vi,k. (1)

where Vi,k denotes the total volume occupied by the k nearest neighbors of
point i.

Indeed, the maximization of equation 1 with respect ρi leads to the k-
Nearest Neighbor density estimator with an associated variance that de-
creases with the square root of k, so the estimate improves when using high
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Figure 1: CLUS8, a two dimensional toy example. (A) Probability density function from
which the 20000 points have been drawn. (B) Decision graph using g as density. Circled
points correspond to the putative centers chosen according with Heuristic 1, while the
colored ones are the centers of the ground truth clusters. (C) Borders (black points) and
saddles (blue points) between clusters. (D) Final assignation of the points to clusters,
black points correspond to halo points. The color code is the same for Panels B, E and F.
(E) Dendrogram representation of the data set topography. (F) Network representation
of the data set topography.
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values of k. However, when k increases, the density in the neighborhood
within a distance ri,k from the data point i can become non-constant, break-
ing the hypothesis from which equation 1 has been derived and therefore
inducing systematic errors (bias). PAk finds, for each data point, the largest
neighborhood k̂ at which the density can be considered constant by perform-
ing a Likelihood Ratio Test [31] between two models: (1) a model in which
the densities at the point and at its kth nearest neighbor are considered the
same and (2) a model in which the densities are assumed to be different.
This test involves estimating the difference Dk of the log-likelihood of the
two models for increasing values of k. For each point i the algorithm chooses
the optimal value of k, denoted by k̂, according to the condition

k̂i : (Dk < Dthr ∀ k ≤ k̂i)&(Dk̂i+1 ≥ Dthr) (2)

where Dthr = 23.928, corresponding to a p-value of 10−6. This implies
that for point i the log-likelihoods of the two models are consistent within a
p-value of 10−6 for k ≤ k̂i.

Once the optimal k for point i has been found, the algorithm corrects for
the systematic errors induced by choosing k̂i according to a fixed confidence
threshold by modifying the log-likelihood function in equation (1) to include
an extra variational parameter a. This parameter describes the linear trend
in the density estimation as one moves further and further from the central
point. At this point the density ρi and the corresponding uncertainty εi are
obtained by maximizing the log-likelihood in equation (1) with k equal to k̂i
and log (ρ) replaced by log (ρ) + a · l. By leveraging Fisher information, the

variance of log (ρ) can be derived as εi =
√

4·k̂i+2

(k̂i−1)·k̂i
. In Supp. Inf. Text S1

we provide the derivation of this expression and a pseudocode for obtaining
the PAk estimation. More details and a validations of the procedure can be
found in ref. [37].

2.1.2. Automatic detection of density peaks
The first step of our algorithm is finding automatically the density peaks.

As in the standard Density Peaks (DP) clustering, we here assume that
the density peaks are surrounded by neighbors with lower local density and
that they are at a relatively large distance from any points with a higher
local density. However, while in the standard DP algorithm this definition
is left to the interpretation of the so-called decision graph, in this section we
show that the additional information provided by PAk (an estimate of the

7



error in the density and the neighborhood size around each point in which
the density can be considered approximately constant) can be exploited to
provide a quantitative definition of density peaks, therefore allowing their
unsupervised detection.

To detect density peaks we do not directly consider the density of points,
that typically varies by several orders of magnitude, but the logarithm of
their density log(ρi) = −Fi identified as the free energy at point i from the
PAk estimator [37]. As it is, the estimate of Fi is affected by non-uniform
errors, and defining cluster centers as the maxima of the density as implicitly
done in in the DP clustering [38] is not always effective. We indeed verified
that a straightforward combination of DP clustering with the PAk density
estimator fails to properly localize the correct clusters when the error is highly
non-uniform: a point whose estimated log(ρi) is large but is affected by a
comparatively large error εi is not likely to be a genuine density peak. To
tackle this problem we developed a heuristic approach for defining cluster
centers, which provides reliable results in practical applications, as we show
in the following. We define as cluster centers the local maxima of gi, where
gi is defined as

gi = log(ρi)− εi. (3)
This definition is a generalization of the one used in ref. [38], since the local
maxima of gi coincide with the local maxima of ρi if the error is uniform. If
the error is not uniform, points with large error are less likely to be selected
as local maxima with respect to points with a small error. Following ref. [38],
we then compute δi = min

j:gj>gi
rij, namely the distance to the nearest point with

higher g, and we automatically find the cluster centers using the following
heuristic.

Heuristic 1. We consider point i a putative center if it satisfies the following
property: all its k̂ nearest neighbors contributing to determine
the value of its density have a value of g lower than gi. As a
second condition a center can not belong to the neighborhood
of any other point with higher g:

1. δi > rk̂i

2. ∀ j with gj > gi : i /∈ NNj := {k : rjk < rk̂j}

In this heuristic, k̂i is the optimal number of nearest neighbors defined as
in ref. [37], and NNj denotes the optimal neighborhood of j. Moreover, the
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second criterion in Heuristic 1 makes putative centers selection more robust in
front of statistical fluctuations in the neighborhood estimation, see Figure 2
A for an illustrative example. A pseudocode implementing this heuristic is
presented in Algorithm 1.

Algorithm 1 Automatic detection of cluster centers
Require: Set of points Npoints x1, . . . , xN ∈ Rd

Ensure: Centers, the list of points identified as centers.
1: log(ρ), ε, k̂ ← PAk(Npoints) . where ρ-density, ε-error, k̂-optimal

neighborhood size
2: g := log(ρ)− ε . compute g for all points in Npoints
3: Centers ← empty array
4: for i← 1, N do . (criterion 1 in Heuristic 1)
5: putative_center ← True
6: for j ← 1, k̂i do . loop over the points in NNi, the neighborhood of
i

7: if gj > gi then
8: putative_center ← False
9: break
10: if putative_center=True then . the closest point with higher

density is not in NNi, thus Criterion 1 is satisfied.
11: add i to Centers
12: for i in Centers do . (criterion 2 in Heuristic 1)
13: for j ← 1, N do
14: if gj > gi and j ∈ NNi then
15: remove i from Centers . i belongs to the neighborhood of

another point with higher g

In Figure 1B we show the decision graph (i.e., the value of δi as a function
of gi) for a sample of 20000 points extracted from the probability density
distribution shown in Panel A. The points surrounded by a circle are those
that are automatically chosen as putative centers according to Heuristic 1.

The next step is to assign all the points that are not centers to the same
cluster as the nearest point with higher g. This assignation is performed in
order of decreasing g. Choosing the points highlighted in Figure 1B as centers
leads to a high splitting of the data set (see Figure S1 for the result of this
preliminary assignation). Indeed, Heuristic 1 correctly identifies the genuine
probability peaks but also the spurious statistical fluctuations of the density
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induced by the finite sampling. Consequently, we developed a protocol to
assess the peaks significance, which allows distinguishing meaningful density
peaks from statistical fluctuations of the density, as explained in the following
sections.

2.1.3. Finding the saddle points
We here introduce a procedure that allows finding the saddle points of

the probability density function between each peak and its neighboring ones,
which will be crucial for providing insights on the structure of the data. We
first find the data points that are at the border between two clusters following
Heuristic 2.

Heuristic 2. A point i belonging to cluster c is assumed to be at the border
between cluster c and c′ if its closest point j belonging to c′ is
within a distance rk̂i and if i is the closest point to j among
those belonging to c:

1. Let j = arg min
k:k∈c′

rik, rij < rk̂i

2. i = arg min
k:k∈c

rjk

The saddle point of the probability density function between a pair of
clusters c and c′ is defined as the point with the highest value of g among those
at the border between c and c′, see Figure 2B for an illustrative example. The
value of the logarithm of the density of this point and its error are denoted
by log ρcc′ and εcc′ . The border points between the clusters reconstructed
from the two dimensional example in Figure 1 are shown in black in Panel C,
while the saddle points are circled in blue. The pseudocode implementing
this heuristic is presented in Algorithm 2.

2.1.4. Assessing the peaks and assignation significance
Based on the value of log (ρcc′), the logarithm of the density at the saddles,

and their error we introduce a criterion for distinguishing genuine density
peaks from statistical fluctuations of the density due to finite sampling, as
defined by Heuristic 3.
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Figure 2: Flowchart representation of the algorithm described in this work. The novel
procedure are illustrated with two dimensional examples: (A) Automatic detection of
cluster centers (Heuristic 1), (B) Saddle points between cluster c and c′ (Heuristic 2), (C)
Merging of the clusters induced by statistical fluctuation (Heuristic 3 and (D) Topography
representation
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Algorithm 2 Saddle points between clusters c and c′

Require: Neighborhood size k̂ and the cluster label assigned to each point
in Npoints

Ensure: Border cc′ , the list of points at the border between c and c′.
1: Border cc′ ← empty array
2: for i in c do . (criterion 1 in Heuristic 2)
3: for j ← 1, k̂i do . loop over the points in NNi, the neighborhood of
i

4: if j in c′ then
5: candidate ← j
6: break
7: for k ← 1, k̂j do . (criterion 2 in Heuristic 2)
8: if k = i then
9: Border cc′ ← candidate
10: break
11: if k in c then:
12: break . i is not the closest to j

Heuristic 3. A cluster c is considered as the result of a statistical fluctuation
if all the points assigned to it have density values compatible,
within their errors, with the border density. The cluster is thus
merged with a neighboring cluster c′ if:

1. (log ρc − log ρcc′) < Z · (εc + εcc′)

where ρc is the density of the center of cluster c.

The constant Z entering Heuristic 3 fixes the level of statistical confidence
at which one decides to consider a cluster meaningful. It is the only free
parameter of our approach, but its value has a clear statistical interpretation
(see Figure 2C for an illustrative example). Heuristic 3 is checked for all the
clusters c and c′ in order of decreasing log ρcc′ . Therefore, the implemented
procedure performs a multimodality test based in the error estimated with
PAk, which iteratively compares the difference between the estimated log-
density at each pair of peaks (clusters) and the log-density estimated at
the saddle point of the probability density function between them. This
procedure prunes the set of clusters from those corresponding to density
maxima that are not statistically robust, thus recovering the topography of
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the underlying probability function.
Furthermore, the knowledge of the border densities between clusters al-

lows to identify the set of points whose assignation is not reliable [38]. Indeed,
DPA inherits from standard DP clustering the capability of classifying the
points as ‘core’ (those whose assignation is robust) or ‘halo’ (they are as-
signed to a cluster but with a lower level of confidence). Points are classified
as ‘halo’ if their density is lower than the highest border density between the
cluster at which they are assigned and any other cluster.

The pseudocode implementing this heuristic is presented in Algorithm 3.

Algorithm 3 Assessing peaks significance
Require: Border cc′ , the list of points at the border between c and c′.
Ensure: Topography : Nclus ×Nclus symmetic matrix, in which the diagonal

entries are the height of the peaks and the off-diagonal entries are the
heights of the saddle points. clu_lables : the final assignation to clusters
after merging. halos : points with not reliable assignation.

1: apply_merging ← True
2: while apply_merging is True do
3: apply_merging ← False
4: for points in Border cc′ do
5: if Condition (3) is True then . (criterion 1 in Heuristic 3)
6: apply merging ← True

7: if apply_merging is True then
8: (ch, cl) ← pair with the highest ρc,c′ . ch is the peak with highest
ρ

9: merge cl with ch
10: update Topography
11: update clu_labels
12: halos ← empty array . Find halo points
13: for i in N do . loop over the point in the data ser
14: if ρi < min{ρc,c′} then Add i to halos

In Figure 1D it can be seen that the cluster assignation after the merging
(with Z = 1.5) resembles almost perfectly the peaks shown in Panel A (black
points correspond to halo). Indeed, these results will correspond with those
obtained by the standard Density Peaks method if by visual inspection one
chooses as centers the colored circles in Panel B.
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2.1.5. Representing the topography
The information about the location and the height of the saddles allows

building a compact representation of the topography of the probability dis-
tribution function from which the data points are harvested. To visualize
the topography of the density distribution we follow two paths. Both are
based on the fact that the higher the density of the border between clusters,
the more similar such clusters can be considered. Therefore, we define the
distance between two clusters as follows: dcc′ = max(log (ρi)) − log (ρcc′).
One possible way to visualize the topography is constructing a hierarchical
tree by applying the Single Linkage algorithm [20] using dcc′ as distance.
This representation is similar to the one used in hierarchical density based
methods [19, 5, 8, 44]. In our case, to encode more information when rep-
resenting the tree, the height of the branches is proportional to the density
of the peak associated to them and the separation between branches in the
x-axis is proportional to the population of the clusters. An example of this
representation is provided in Figure 1E.

An alternative way to represent the topography is by projecting the clus-
ters in two dimensions and visualizing their relationship as a network where
the thickness of the links between clusters is proportional to the log-density
at the border. This leads to a representation similar to those used in Markov
State Model analysis [34]. An example of this representation is provided in
Figure 1F. To encode more information in a single plot, the area of the circles
representing the clusters is proportional to their population.

Both visualizations provide complementary information about the under-
lying probability density function. In the example shown in Figure 1 the
hierarchical relationship between clusters 2, 3 and 6 (magenta, red and blue)
is more evident in the tree representation. However, the close contact be-
tween clusters 4 and 8 (light green and light pink) is evident only using
the network representation. Additional examples are shown in Supp. Inf.
(Figures S2-5).

2.1.6. Statistical significance of the clusters
The value of Z in the Heuristic 3 is used to control the statistical reliability

of the density peaks.
In general, at low Z values the method is more sensitive to variations of

the density, but fluctuations due to sampling artifacts are also identified as
clusters density. Then, the higher the value of Z, the lower the sensitivity
to density changes, but the higher the statistical reliability of the peaks. If
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the sampling of the probability distribution function is good enough, one can
increase the value of Z in order to enhance the statistical confidence. If the
sampling is poor (something that easily happens if the intrinsic dimension of
the data is high), one is forced to accept a lower level of confidence (lower
value of Z) and a significant probability of observing some spurious clusters.
In Figure 3 we show an example of how the parameter Z affects the clustering
classification in a well sampled distribution. Although the best results are
obtained with Z = 3, and the number of clusters increases for smaller Z,
the topography of the data set allows identifying the two main peaks of the
distribution at any value of the parameter Z. A systematic study of the role
of this parameter and its impact in detecting spurious clusters is provided in
Supp. Inf. Text S1 and Figure S6.

3. Results and Discussion

3.1. Validation on artificial data sets
We first validate our approach on artificial two-dimensional data sets

where the ground-truth classification is available. We perform benchmarks
on the sets represented in Figure 1 (hereafter called CLUS8), in Figure 3
(SPIR2), and in Figure S2 (AGGR), S3 (SPIR3) and S4 (HORSE) in Supp.
Inf., which have a number of clusters ranging between two and eight. In
all the cases the ground-truth classifications are obtained using the explicit
probability density function from which the points are generated: the ground-
truth clusters correspond to maxima in this function. In detail, for each max-
imum we find the region such that: (i) contains the maximum; (ii) its bound-
ary is a contour level of the probability density function passing through a
saddle point; (iii) no other saddle points, except the one on the boundary,
are contained in it. Data points belonging to this region form a ground-truth
cluster, while the points which do not belong to any of these regions are clas-
sified as ‘noise’. The artificial data sets and the corresponding ground-truth
classifications are provided as supplementary material.

To assess the similarity between the DPA clustering assignation and
the ground-truth classifications we use the Normalized Mutual Information
(NMI) [48]. Note that when the two sets of labels have a perfect one-to-one
correspondence, the NMI is equal to one. Since in the ground-truth some
points are classified as ‘noise’, we quantify the accuracy in two different ways.
(i) We check the accuracy in the clustering assignation of the points that be-
long to the ground-truth density peaks: we classify all the points using the
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Figure 3: Results of the topography reconstruction on SPIR2, a data set with two spirals,
at different values of Z (Panel A, Z = 1., Panel B Z = 2. and Panel C Z = 3.. The
colors in the dendrogram (center) and in the network (right) correspond to those in the
assignation (left).

DPA algorithm without labelling any point as ‘halo’, and compute the NMI
by excluding the ‘noise’ points, which is denoted in the following as NMIdpa.
(ii) We check the accuracy of all points assignation, including those classified
as ‘noise’: by following the protocol described in Methods 2.1.4 we find the
‘halo’ points that should ideally correspond to the ‘noise’ classification, and

16



then compute the NMI for all the points considering ‘noise’ as a ground-
truth label, which is denoted in the following as NMIhalo. We also provide
the False Negative and False Positive ratios for noise detection using halo
points as noise classification (FNRhalo and FPRhalo respectively).

For the data sets CLUS8, SPIR2, AGGR, SPIR3 and HORSE we find the
interval values of Z, the only relevant parameter in our approach, maximizing
NMIhalo. This interval is reported in Table 1 as [Zbest], together with the
corresponding value of NMIhalo. In the same table we also report the interval
[Z90%] within which the NMIhalo is at least 90% of its maximum value, and
Nclus as the number of clusters inferred for Z in [Zbest].

Table 1: Validation of the DPA clustering on artificial data sets. We use a selection of two-
dimensional benchmark data sets having a number of clusters ranging between two and
eight: data set CLUS8 represented in Figure 1, SPIR2 in Figure 3, and AGGR, SPIR3,
and HORSE represented in Supp. Inf. in Figure S2, S3 and S4 respectively. To assess the
similarity between the DPA clustering assignation and the ground-truth classifications we
measure the Normalized Mutual Information [48](NMI) in two different ways: NMIdpa and
NMIhalo. NMIdpa is used to assess the accuracy in the clustering assignation of the points
that belongs to the ground-truth density peaks, thus excluding the ‘noise’ points. NMIhalo
is used to assess the accuracy of all points’ assignation, by including those labelled as ‘halo’
(described in Methods 2.1.4) that should ideally correspond to the ‘noise’ classification.
For each data set in the table we report [Zbest] as the interval values of Z that maximize
the NMIhalo, together with the corresponding value of NMIhalo. We report the interval
[Z90%] within which the NMIhalo is at least 90% of its maximum value, and Nclus as the
number of clusters inferred for Z in [Zbest]. We also provide the False Negative and False
Positive ratios for noise detection using halo points as noise classification (FNRhalo and
FPRhalo respectively).

[Zbest] [Z90%] Nclus NMIdpa NMIhalo FNRhalo FPRhalo

CLUS8 [1.5, 1.9] [1.1, 4.0] 8 0.996 0.841 0.010 0.111
SPIR2 [2.9, 4.0] [2.9, 4.0] 2 0.966 0.929 0.002 0.015
AGGR [2.0, 2.5] [1.6, 2.8] 7 0.994 0.844 0.070 0.053
SPIR3 [2.5, 3.6] [2.5, 3.6] 3 0.996 0.809 0.000 0.100
HORSE [2.6, 4.0] [2.6, 4.0] 3 0.987 0.832 0.077 0.036

If the value of Z is appropriately chosen, the clustering algorithm is able
to find all the ground-truth density peaks in all the considered artificial data
sets with values of NMIdpa close to 0.99, as shown in Table 1. However, the
optimal choice for Z is not an isolated value, and the performance of the
DPA clustering is not critically dependent on its exact choice: [Z90%] show
that already excellent results are obtained for a significantly large interval
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of Z values. The NMI estimated on the full set of points (NMIhalo) is also
very large for most data sets. The worst performance is observed in SPIR3,
where NMIhalo is equal to 0.809. This can be explained by a FPRhalo of
0.1 corresponding to a misclassification as ‘halo’ of 10% of data points that
should instead belong to a cluster according to the ground-truth. A relatively
large value of FPRhalo is observed also in the data set CLUS8. Indeed, the
‘halo’ by definition identifies all points whose assignment to a cluster is not
reliable: this includes the ‘noise’ points, but also other points in low density
regions. The values for FNR are instead very small, and even zero at times,
indicating that the approach provides a reliable classification of the ‘halo’
points

3.2. Clustering a handwritten digits data set
We further test our approach on the MNIST [24] data set, which includes

60000 images of handwritten digits between 0 and 9. We compute the pair-
wise distances using the tangent distance [43], a metric explicitly developed
for image comparison that is less sensible to transformations like rotation or
translation. The intrinsic dimension of the data set estimated by the TWO-
NN approach [12] is 8, and the value of Z is set to 1.6. The results are
summarized in Figure 4, with the topography description represented by the
dendrogram in the top left panel and by the network at the bottom right.
The color of each cluster in the topography representations derives from a
majority rule assignation, namely the color is the one corresponding to the
digit label with higher presence in the cluster whose color code is indicated
under the matrix. The number of elements in each cluster is shown in italics
between the dendrogram and the matrix that represents in a grey palette the
fraction of points assigned to a cluster belonging to each of the ground truth
labels: the darker the cell, the higher the fraction. As it can be seen from
the matrix, the clusters contain almost always data points with a consistent
ground truth classification. The number of clusters is larger than the ten
classes of digits in the ground truth. For example, number seven is split in
three clusters (9 10 and 11) and number one in seven clusters. However,
those belonging to the same digit appear as closely related to each other in
the hierarchical structure represented by the dendrogram. The origin of this
splitting can be in many cases ascribed to real differences in the handwritten
digits: the same ground truth label is often assigned to images that look
qualitatively different. Some examples are provided in the bottom left panel
in Figure 4, where the images belonging to cluster 24, 27 and 18 (number
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Figure 4: Cluster analysis of the MNIST data set. In the matrix we represent, for clusters
with a population greater than 100, the fraction of elements assigned to a cluster belonging
to each of the ground truth labels. The higher the fraction, the darker the cell. On the left
we show the clusters dendrogram. In correspondence to each leaf we indicate the cluster
label and its population. To simplify the interpretation, the clusters background color
is chosen according with a majority rule. For visualization purposes, only clusters with
population higher or equal than 100 are shown. Bottom right: the clusters with population
higher than 600 in a network representation. Bottom left: images corresponding to the
centers of clusters assigned to numbers 5, 4 and 7.

19



five), and those belonging to cluster 14, 15 and 16 (number four) look indeed
qualitatively different. In the same panel we also show representative images
of clusters 9, 10 and 11 (number seven) which look instead similar. Therefore,
in this case the splitting of the three clusters is likely to be an artifact of our
approach. With the aim of quantitatively measure the quality of the clus-
tering result, we computed the NMI between the digit label assigned to each
cluster according to a majority rule and the ground truth. We find a NMI
of 0.84. A further analysis of this data set was done after undersampling it.
In this case, only 10000 out of 60000 images were analyzed. The computed
intrinsic dimension with TWO-NN [12] is equal to 7, which is coherent with
the loss of information due to the undersampling, and the parameter Z is
lowered to 1.0 to achieve a sufficient sensitivity to data structures, although
accepting a possibly larger number of spurious clusters, as discussed in the
Methods. The results are very similar to those obtained by analyzing the
complete data set. The main difference is that the mixing between the digits
four and nine in the reconstructed clusters is more significant, leading to a
lower NMI of 0.76. The confusion matrices used for the NMI calculation for
the full and the undersampled data set are respectively provided in Supp.
Inf. Table S1 and S2.

3.3. The density topography of the PUA proteins clan
We finally exploit the approach introduced in this work to reconstruct the

density topography of a sample of 9684 sequences extracted from the Pfam
clan PUA. The Pfam database [14] is a large collection of protein families,
grouped into clans or superfamilies; PUA is a complex superfamily organized
into ten families with a population ranging from a few hundreds to thousands
proteins, with many families containing a variety of protein architectures.

We first compute the local pairwise distances between the sequences by
using a Modified Hamming distance described in ref. [13]. The intrinsic
dimension of the data set estimated by TWO-NN [12] is equal to 9. If one uses
the standard k-NN density estimator to cluster the PUA protein sequences
the choice of the optimal global k is far from trivial. The PAk density
estimator, not surprisingly, finds a huge variability in the optimal values for
k, ranging from 3 to 170 across the data set, reflecting the complexity of
the sample. Using the PAk density estimator and Z equal to 2, we find 123
clusters.

We test our results against the Pfam classification of PUA sequences into
families, and going into greater detail, into architectures, by computing the
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purity of our clusters. Here the purity of a cluster C with respect to an archi-
tecture A is defined as the number of sequences in C belonging to A divided
by the total population of C. In Figure 5 we represent the correspondence
between clusters ordered according to the dendrogram (y-axis) and architec-
tures (x-axis). Again the network representation is shown at the bottom of
the graph. Only architectures and clusters with a population greater than
40 are displayed. The Pfam denomination of the architectures considered in
Figure 5 is provided in Supp. Inf. In this representation the purity of clus-
ters with respect to architectures is associated to a grey palette: the darker
the cell, the higher the purity. Figure 5 shows that clusters are substantially
pure with respect to architectures (most of the clusters are over 90% pure).
The quality of the results was also assessed by computing the NMI [48] of
the clustering partition with respect to the Pfam classification. Due to the
hierarchical nature of the method, to compute the indices a family (or archi-
tecture) label is assigned to each cluster according to a majority rule. We
find a NMI of 0.978 for the classification in families, and of 0.871 for the clas-
sification in architectures, which reveals a high degree of similarity between
the clustering partition and the Pfam classification. The considerations that
one should take into account when comparing with other methods (Fig. 6)
are the same as in the case of MNIST. The dendrogram provides further in-
formation on the complex topography of the data set, showing, for instance,
that clusters belonging to the same architecture are closely related to each
other. It essentially reflects the similarity between families in the clan as
well as their division into architectures. The only important exception is
that cluster 9 is divided between families TruB-C_2 and TruB-C. These two
families are characterized by sequences with a low similarity within the same
family, thus the error in the estimated densities is so large that the faint
saddle point that separates the two families is classified by our algorithm as
a statistical fluctuation.

The network representation shows a complex landscape. For instance,
while some families are well isolated others are interconnected through one
or several nodes. The families PUA and LON, with the main cluster nodes
2 and 24 respectively, are divided in many clusters but they are densely
interconnected between them. On the contrary, the family ASCH, although
connected, appears to be quite sparse. The centrality of cluster 9 between
families TruB-C_2 and TruB-C is in agreement with the analysis of the
dendrogram.
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Figure 5: Cluster analysis of the clan PUA from the Pfam database. We represent the
Purity Matrix for clusters and architectures with a population greater than 40. Color
boxes correspond to families. The purity of the clusters with respect to architectures is
associated to a grey palette: the darker the cell, the higher the purity. On the left of
the Purity Matrix we show the dendrogram of the clusters. In correspondence to each
leaf we indicate the cluster label and the population of the cluster. The dendrogram at
the bottom is a schematic visualization of the hierarchical relationship existing between
architectures according to Pfam: architectures connected at a higher level (e.g. a1, a2, a3)
belong to the same family, while those connected at a lower level (e.g. a12, a13) belong
to a clan. The Pfam denomination of the architectures is provided in Supp. Inf. Bottom:
network representation of the clusters represented in the top panel.
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3.4. Comparison with other methods
We compare our approach with other four state-of-the-art methods for

clustering multidimensional data sets: Spectral Clustering [32], HDBSCAN [5],
Gaussian Mixture Model [2], and DP clustering [38]. The comparison is
performed using the artificial data sets CLUS8, SPIR2, AGG, SPIR3 and
HORSE considered in Table 1, and the data sets MNIST and PUA introduced
in the previous Sections. Data are first clustered by using the Python im-
plementations available for the selected clustering methods: BayesianGaus-
sianMixture and SpectralClustering implementations from the scikit-learn
library [35], the hdbscan library [28], and our implementation of the DP clus-
tering. The similarity between the clustering partitions and the ground-truth
classification of the data sets are then evaluated using the NMI [48]. For the
PUA and the MNIST data sets, before performing the NMI calculation, we
match the clusters to reference populations using the majority rule: all points
within each cluster are labeled as the ground-truth class of highest frequency
in the cluster. This way we account for those true substructures not classified
by the ground-truth that are indeed reconstructed as different clusters.

In order to compare all the clustering methods on equal footing, we have
to consider that Spectral Clustering, Density Peaks and the Gaussian Mix-
ture Model do not attempt to recognize noise data points, while HDBSCAN
assigns always a noise category. In the ground-truth of the artificial data sets
some points are classified as ‘noise’, while no noise is expected in the PUA
and MNIST data sets. Therefore we apply method specific calculations of
the NMI when considering the artificial data sets or the real world ones. In
particular for Spectral Clustering, Density Peaks and the Gaussian Mixture
Model we compute the NMI by ignoring the points classified as ‘noise’ when
present in the ground-truth. To evaluate the HDBSCAN results on PUA and
MNIST data sets instead we compute the NMI by ignoring the points labeled
as noise by the algorithm. In the case of DPA, we can compute the NMI by
either assigning all points to a cluster, and ignoring the points classified as
‘noise’ when present in the ground-truth as done for Spectral Clustering,
Density Peaks and the Gaussian Mixture Model, or considering the points
classified as ‘halo’ in analogy to HDBSCAN.

The accuracy of each considered clustering algorithm is evaluated quanti-
fying the influence of the algorithms parameters on the NMI. This is done by
varying a single parameter of an algorithm while keeping the others at their
default values. For the DPA clustering we compute the NMI as a function
of the Z parameter. For Spectral Clustering, the free parameter is the total
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number of clusters Ncl. For the Bayesian Gaussian Mixture Model, we scan
the weight_concentration_prior parameter for the Dirichlet process as prior
type. For this method, the clustering of the high-dimensional data sets PUA
and MNIST is preceded by a projection in a 2D space obtained using the
t-SNE [27] dimensionality reduction (these projections, that are informative
by themselves, are provided in Figure S7 of Supp. Inf.). For the HDBSCAN
method, we compute the NMI as a function of the min_cluster_size param-
eter, which fixes the minimum size of a cluster, while we set the parameter
min_samples equal to it, as default option. In the standard DP method, we
compute the NMI as a function of the number of clusters, with the peaks
chosen in order of decreasing γ = ρ · δ. Following the original algorithm [38],
the δ is defined as the distance of a data point from its nearest neighbour
of higher density, and the density is estimated by the exponential kernel es-
timator whose width dc is chosen in such a way that the average number of
neighbors is the 2% of the total number of points in the data set.

The results are summarized in Fig. 6. For the DPA clustering we show
the values of NMI computed by assigning all points to a cluster and ignoring
those classified as ‘noise’ when present in the ground-truth in Panel A, and
the NMI computed by including the ‘halo’ points in Panel B. The interval
of Z values maximizing the NMI is data set dependent, however by setting
Z = 3 the value of the NMI is larger than 0.8 for all the data sets in both
Panel A and B, except for MNIST whose NMI is equal to 0.7 in Panel A. We
also notice that in the high-dimensional data sets (MNIST and PUA) the
best results are obtained with relatively low values of Z: due to the curse
of dimensionality the typical error on the density estimate is large, which
makes hard to distinguish between real clusters and statistical fluctuations.
In Panel C we plot the NMI values for the DP clustering. The performance
of this algorithm is poor, especially for the data sets MNIST, SPIR2 and
SPIR3. This is due to the complexity of the density distribution in these
data sets, which makes it difficult to identify the true clusters centers by
selecting the peaks with higher γ, because the δi parameter is typically very
small also for the cluster centers. In Panel D we report the value of NMI
for HDBSCAN. In data sets SPIR3, HORSE and MNIST, the NMI does not
vary smoothly as a function of the min_cluster_size parameter. The best
results are obtained by choosing a small value of this parameter, but for all
the possible choices there are at least two data sets for which the NMI is
significantly smaller than 0.8. In Panel E we report the value of NMI for the
Spectral Clustering approach. In this case the best performance is obtained
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Figure 6: Performance comparison between the new method, denoted as DPA (Density
Peaks Advanced), and a selection of clustering methods. The influence of the algorithms
parameters on the Normalized Mutual Information (NMI) [48] is evaluated using the ar-
tificial data sets CLUS8, SPIR2, AGG, SPIR3 and HORSE considered in in Table 1, and
the real world data sets MNIST and PUA. For Spectral Clustering [32], Density Peaks [38]
and the Gaussian Mixture Model [2] we compute the NMI by ignoring the points classified
as ‘noise’ when present in the ground-truth. To evaluate the HDBSCAN [5] results on
PUA and MNIST data sets instead we compute the NMI by ignoring the points labeled
as ‘noise’ by the algorithm. Panel A: NMI as a function of Z, free parameter for the DPA
clustering, computed by assigning all points to a cluster and ignoring those classified as
‘noise’ when present in the ground-truth. Panel B: NMI as a function of Z, free parame-
ter for the DPA clustering, computed by including the ‘halo’ points. Panle C: NMI as a
function of the number of clusters Nc, free parameter for DP clustering. Panel D: NMI
as a function of the min_cluster_size, free parameter for HDBSCAN. Panel E: NMI as
function of the number of clusters Ncl, free parameter for Spectral Clustering. Panel F:
NMI as function of the weight_concetration_parameter γ0, free parameter for Gaussian
Mixture Model.
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by setting a high value for the free parameter, the number of clusters Nc. The
NMI does not decrease when Nc becomes large because the new clusters are
either small or in the points that are assigned as noise in the ground truth.
The best values of the NMI are in many cases worse than those obtained
with DPA, in particular for the datasets HORSE, AGG and CLUS8 the best
NMI is lower than 0.8. Finally, in Panel F we plot the value of NMI for the
Gaussian Mixture Model: the NMI is remarkably stable with respect to the
free parameter, but the performance is in general worse than for the other
methods we considered.

3.5. Computational cost
In order to check the run-time performance and scaling of the DPA clus-

tering algorithm, we generated artificial data sets with a distribution defined
by the mixture of two Gaussian and background noise, in dimensions (d)
2, 4, and 8, and with the number of data points (N) ranging from 2000 to
250000. Therefore, 60 data sets with different combinations of [N, d] were
generated in total. For these tests, the time is defined as the total wall-clock
time from start to finish, as measured by the time() function of the Python
time module, and for each pair [N, d] the average time and standard devia-
tion are estimated over ten further realization of the data set. The parameter
Z has been set to a reasonable large value (Z = 5) in order to provide an
upper bound estimation of the time: as defined by Heuristic 3, the number
of merging steps increases with the value of Z, and therefore also the run
time of the algorithm.

Results are summarized in Figure 7, where we plot the average time as
a function of N · log(N). It can be seen that the clustering time for 250000
points is about 15, 5, and 20 min respectively for d equals to 2, 4, and 8, so at
relatively high dimensions the run time is of the order of a fraction of an hour.
The aforementioned times are obtained on an Intel(R) Core(TM) i7-7800X
CPU @3.50GHz using the Python implementationof DPA (see Code avail-
ability Section). This implementation heavily relies on the Scikit-learn [35]
Nearest Neighbors search, currently implemented with library that uses a
heuristic selecting between brute-force, ball-tree [33] and kd-tree [1] algo-
rithms. The scaling of the algorithm for large values of N is N · log(N), as
shown by the trends seen in Figure 7. The scaling with the dimensionality d
is more complex, because an increased value for d usually corresponds to a
reduction in the optimal neighborhood size k̂ around each point. Therefore,
while the computational cost of the Nearest Neighbor search increases with
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Figure 7: Run times for the current implementation of the DPA algorithm for different
number of data points N and embedding dimensions d. The test cases have been generated
from 400000 points that belong to a bimodal Gaussian distribution and then added 100000
points of uniform background noise. Then, they have been undersampled from in a range
that goes from 2000 to 250000 points. The procedure has been repeated ten times for
obtaining an average time and a standard deviation (error bars). In order to check the
scaling with the dimension of the data set, the calculation has been done in dimension 2,
4 and 8. While at low number of samples, the behavior is complex, when they increase it
can be seen that the time increases linearly with N · log(N). The times showed correspond
to calculations made in a Intel(R) Core(TM) i7-7800X CPU @ 3.50GHz on Linux-5.3.0-
19-generic-x86_64-with-debian-buster-sid
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d, the steps in the algorithm depending on the value of k̂ show a better per-
formance. This explains why the run times estimated at d = 4 are lower than
those at d = 2. However, this behavior depends on the specific characteristics
of the data set, and it is hard to generalize.

4. Conclusion

In this work we introduce a tool to analyze large and multidimensional
data sets, which is specifically designed to treat cases in which the standard
projection technique (e.g. PCA) gives poor results.

Data sets can often be described as realizations of an underlying prob-
ability distribution, whose density has support in the space of the features
(coordinates) of the data. Therefore, the idea is to reconstruct the topogra-
phy of the probability distribution from which the data are generated. Our
clusters topography is a list of probability peaks, each characterized by its
properties: the height of the probability maximum, the population, the list of
neighboring peaks, etc. Our tool employs only the distance between points,
avoiding the use of any coordinate system or projection, and its derivation is
based on three assumptions: (i) the data points are generated independently
from a probability distribution function; (ii) this probability distribution is
continuous and (iii) the distance between data points is a metric, and in
particular it should satisfy the triangle inequality.

We illustrated two ways to visualize this topography: a hierarchical rep-
resentation equivalent to the one used in refs. [19, 5, 8, 44] and a graph rep-
resentation tantamount to the one of Markov State Models [34]. Of course,
one can imagine other graphical representations.

The topography is reconstructed by a modified version of the unsuper-
vised Density Peaks clustering algorithm [38] whose key ingredient is the
PAk density estimator. The PAk estimator is parameter free and, with re-
spect to other non-parametric estimators, provides an accurate estimation
of the probability density at the data points in the manifold in which they
lay, and not in the space of coordinates. It also provides the error associated
with the density estimate: this is crucial to assess the statistical significance
of the peaks found by the clustering procedure and, as a consequence, to
discriminate between real features of the underlying probability distribution
function and artifacts due to finite sampling. The use of PAk coupled with
the Density Peaks clustering algorithm thus leads to an accurate detection
of the main features of the underlying probability distribution, where the

28



statistical reliability of the probability peaks is quantified by the Z score
measuring the negative of the probability that the peak is generated by a
statistical fluctuation. By choosing a threshold on Z, one can filter out the
peaks that are less reliable and obtain a more compact representation of the
data. A drawback of the method is that, due to the curse of dimensionality,
the PAk algorithm does not work well when the intrinsic dimension of the
data set is higher than 10-20 [37], and therefore neither will DPA. However,
many important data sets lay in a manifold that can be twisted and topolog-
ically complex but whose intrinsic dimension is typically much smaller than
the number of coordinates of the system [25], which is instead typically very
large. The method performs well in the two dimensional toy examples in
Figure 1 and 3. The artificial low-dimensional data sets AGG, SPIR3 and
HORSE are obtained respectively from the Aggregation [16], Spirals [7] and
Jain [22] data set, well-known as test sets for investigating density-based
clustering algorithms. In ref. [23] for example Aggregation, Spirals and Jain
are used to test the performance of the algorithms on irregular-shaped clus-
ters or clusters of varying sizes. However, real-world data sets are usually
noisy, and background noise is not present in those data sets. Moreover, if
optimized on data sets with well-separated clusters, algorithms may be less
performant on real-world data sets where clusters are typically connected by
regions with a lower density of data points, as in the case of ref. [49]. There-
fore, for our experiments we generated AGG, SPIR3, and HORSE using a
probability distribution function built as a sum of Gaussian functions cen-
tered in the original data points. The resulting data sets maintain the same
number of clusters and dimensionality of the original ones, with the addition
of noise points to better resemble the continuous distribution of data points
typical of real-world data sets. Furthermore, we investigated the method on
handwritten numbers (NMIST) and the PUA clan with intrinsic dimension
of 8 and 9 respectively, as estimated by the TWO-NN method [12]. The
MNIST hand-written digits data set is largely used in Machine Learning to
benchmark density-based clustering methods, although the presence of dif-
ferent handwritings style and the high dimensionality of the data set can
make the correct identification of ciphers challenging, as shown in ref. [21].
The PUA data set has been recently analyzed also in ref. [40] for automatic
protein domain classification.

The method shows its real power when the number of features is huge,
as in the cases of MNIST and the PUA clan where computing the density in
the manifold in which the data lay, instead of computing it in the coordinate
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space, is the key for a successful reconstruction of the topography. Moreover,
the knowledge of the density at the borders permits the visualization of the
relationship between these modes –the topography– in several ways providing
a visual grasp of the structure of the data set with an unprecedented level of
detail.

Code availability

A Python implementation of the algorithm is available on github, at
https://github.com/mariaderrico/DPA . It is also available a Fortran imple-
mentation at: https://github.com/alexdepremia/Advanced-Density-Peaks.
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