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Abstract

Multi-view clustering is an important approach to analyze multi-view data in an

unsupervised way. Among various methods, the multi-view subspace clustering

approach has gained increasing attention due to its encouraging performance.

Basically, it integrates multi-view information into graphs, which are then fed

into spectral clustering algorithm for final result. However, its performance

may degrade due to noises existing in each individual view or inconsistency

between heterogeneous features. Orthogonal to current work, we propose to

fuse multi-view information in a partition space, which enhances the robustness

of Multi-view clustering. Specifically, we generate multiple partitions and in-

tegrate them to find the shared partition. The proposed model unifies graph

learning, generation of basic partitions, and view weight learning. These three

components co-evolve towards better quality outputs. We have conducted com-

prehensive experiments on benchmark datasets and our empirical results verify

the effectiveness and robustness of our approach.

Keywords: Multi-view learning, subspace clustering, Partition

space, Information fusion

1. Introduction

In many real-world problems, data are collected from different sources in

diverse domains or described by various feature collectors [1, 2, 3, 4, 5]. For in-
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stance, human activities can be captured by RGB video cameras, depth cameras,

or on-body sensors [6, 7]; pictures shared on websites are usually surrounded

by textual tags and descriptions; the same news is reported in various countries

with different languages. To process these kinds of data, a number of multi-

view learning algorithms have been developed [8, 9, 10, 11, 12]. These methods

are based on two fundamental assumptions: consistency and complementarity

across views. That is to say, there exists consistent information which is shared

by all views and complementary knowledge that is not contained in all views.

Therefore, it is crucial for learning algorithms to make good use of the multi-

view information. For example, instead of relying on a single view, multi-view

clustering, attempts to achieve a better performance by integrating compatible

and complementary information from different views [13, 14, 15, 16].

In recent years, plenty of multi-view clustering techniques have been pro-

posed [17, 18, 19, 20, 21, 22]. They can be roughly divided into the following

categories. First, the co-training style algorithms intend to maximize the mutual

agreement across all views and arrive at their broadest consensus [23, 24, 25].

Second, kernel-based methods use pre-defined kernels corresponding to different

views and then combine these kernels either linearly or non-linearly in order to

improve the clustering performance[26, 27, 28, 29]. Third, graph-based meth-

ods have been derived from traditional spectral clustering with the help of some

similarity measures[30, 31, 32, 12]. Fourth, subspace clustering based methods.

Subspace clustering tries to find underlying subspaces such that all data points

can be segmented correctly and each group fits into one of the low-dimensional

subspaces [33, 34, 35, 36, 37, 38, 39]. Due to its promising performance, varieties

of multi-view subspace clustering methods have been proposed in the last few

years [40, 41, 42].

Most multi-view subspace clustering methods learn the sample affinity graph

matrix of each view by deploying features of different views, and then build a

consensus graph S [40, 41, 43]. Some other approaches directly learn a com-

mon graph matrix S [44]. Subsequently, spectral clustering algorithm [45, 46]

is implemented on the graph Laplacian constructed by S to obtain the final
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clustering result. Therefore, these methods ahopt a two-steps procedure. Since

data are often noisy or corrupted in practice, one critical issue with these ap-

proaches is that the learned graph is often noisy, inaccurate, and fails to reveal

the true relationships between data points [47, 48]. In return, this fixed graph

will deteriorate the downsteam clustering task, which makes the entire learning

procedure suboptimal.

Orthogonally to integrating the multi-view information into a single graph,

in this paper, we propose to fuse partitions to improve the model robustness.

Note that the underlying assumption for multi-view clustering is that there

exists a unique clustering pattern shared by all views. Hence, the partition

space should be more robust to noise. On the one hand, even if the graphs are

contaminated, the cluster structure might be slightly influenced or even remain

intact. On the other hand, even if some of the partitions are severely damaged,

one could still obtain a reasonable performance based on our partition fusion

technique. In specific, we adaptively learn a weight for each view to control its

contribution to the final clustering. The final clustering is achieved through a

purposely designed weighting mechanism imposed on basic partitions.

In summary, the main contributions of this work are three-fold:

1. We propose to fuse multi-view information in a partition space. A novel

fusion mechanism is further developed to find the consensus clustering.

2. We present a unified multi-view subspace clustering model which itera-

tively learns a graph for each view, a partition for each view, a weight

for each pratition, and a consensus clustering. By leveraging the inherent

interactions between these four subtasks, they enhance each other.

3. Extensive experiments on benchmark data sets validate the effectiveness

of our model. Experiments on noisy data demonstrate the robustness of

our approach.

The rest of this paper is organized as follows. After a review of the related work

in Section 2, we introduce our proposed framework for multi-view subspace

learning in Section 3. In Section 4, we evaluate the clustering performance of
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our algorithm. The robustness evaluation of the proposed framework on noisy

data sets is presented in Section 5. Finally, we conclude the paper in Section 6.

Notation Summary In this paper, we represent the matrix with capital

letter and vector with lower case letter. For a matrix A ∈ Rm×n, Ai,: and A:,j

represent the i-th row and j-th column of A, respectively. The `2-norm of vector

x is denoted by ‖x‖2 =
√
x> · x, where > stands for the transpose operation.

The trace operator is written as Tr(·). The definition of Frobenius norm of A is

‖A‖F =
√∑m

i=1

∑n
j=1A

2
ij . A ≥ 0 indicates all elements of A are nonnegative.

I is the identity matrix with a proper size.

2. Related Work

Multi-view Subspace Clustering (MVSC) is developed on the basis of sub-

space clustering. We denote the multi-view data X with [X1, X2, · · · , Xt] ∈

Rm×n, where Xv ∈ Rmv×n represents the v-th view data with mv features and

m =
∑

vmv. Basically, [40, 49] propose to learn a graph on individual view by

solving

min
Sv

t∑
v=1

‖Xv −XvSv‖2F + αf(Sv) s.t. Sv ≥ 0, (1)

where Sv ∈ Rn×n denotes the graph for the v-th view, f(·) represents a certain

regularizer function, and α is a regularization parameter to balance the model

complexity and the fitting loss. Sv is also called the self-expression coefficient

matrix, which expresses each sample as a linear combination of other samples.

Hence, it can measure the similarities between samples. Based on it, subspace

clustering implements spectral clustering algorithm [45].

In [40], the authors enforce that all graphs share a unique cluster indicator

matrix, i.e.,

min
F

∑
v

Tr(F>LvF ) s.t. F>F = I, (2)

where graph Laplacian Lv = Dv − Sv with diagonal matrix Dv defined as

dvii =
∑

j s
v
ij , F ∈ Rn×c is the cluster indicator matrix, and c is number of
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clusters. It is obvious that F is negotiated across different graphs, i.e., different

Lv’s correspond to the unique F . Therefore, the final F might not be optimal.

Different from the above approach, the authors in [43, 49] first calculate the

consensus graph S based on averaging, i.e.,
t∑

v=1
Sv/t. Then, spectral clustering

is applied. This simple approach fails to distinguish the different contributions

of various views. Afterwards, we can obtain the final cluster indicators by

performing k-means on F .

Another class of methods just consider the consistent graph of all views and

their objective function can be written as [44, 50]

min
S

t∑
v=1

‖Xv −XvS‖2F + αR(S) s.t. S ≥ 0, (3)

where R(Z) is some regularization function which varies in different algorithms.

For instance, researchers in [44] use popular low-rank and sparse regularizers

simultaneously. It is easy to see that just one graph can not preserve the flexible

local mannifold structure of different views [43].

We can observe that above approaches integrate multi-view information in

the data space and their performance totally depends on the quality of graph.

Once the graph is fixed, the rest of MVSC process reduces to spectral cluster-

ing, which is not subject to change. In real-world applications, data are often

contaminated due to noise or outliers, which deteriorates the resulting graph.

Consequently, the clustering performance will degrade. Therefore, we argue

that direct manipulation on graphs might not be a good idea to make use of

multi-view information.

Instead, we propose to integrate multi-view knowledge by fusing partitions.

Concretely, we generate one partition for each view, which forms the basic

partitions. Then, we seek for a consensus clustering from them based on our

purposely designed weighting mechanism. This change in operation domain

accompanies a number of advantages. First, each partition will capture the

intrinsic cluster structure, so it is easy to find an agreement among all partitions.

Second, even if one partition is heavily distorted, its contribution can be reduced
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by assigning a small weight, so as to prevent it from adversely affecting consensus

clustering. As a result, this approach could be robust to noise.

Note that the proposed approach is different from ensemble clustering [51, 52]

in several aspects. First, only one partition is generated for each view. On the

contrary, many partitions are often produced for ensemble clustering. Second,

the basic partitions are integrated differently. For example, Tao et al.[52] adopt

a low-rank and sparse decomposition strategy to discover the connection among

views and detect noises. Third, a unified framework is utilized, i.e., the gener-

ation of basic partitions and their integration are joint performed. In contrast,

basic partitions are input of ensemble clustering.

3. Proposed Methodology

In this section, we will introduce our novel model and its solution.

3.1. Formulation

As in aforementioned MVSC [40, 53], we combine graph construction and

spectral clustering together. Different from it, we generate one partition for

each view. Multiple partitions allow us to manipulate multi-view information

in a partition space, which enhances the model robustness. In specific, we have

min
Sv,Fv

t∑
v=1

‖Xv −XvSv‖2F +αTr(F>v L
vFv) + β‖Sv‖2F

s.t. F>v Fv = I, Sv ≥ 0,

(4)

where Fv ∈ Rn×c is the partition result for view v. We can see that Eq. (4)

will provides multiples partitions. For multi-view clustering, all views share a

unique cluster pattern. Due to noises in defferent views or the heterogeneity of

features, these partition matrices are not identical in general. Therefore, our

next goal is to find a consensus clustering from them.

To treat each view discriminatively, we propose a weighting mechanism.

To this end, we introduce a variable wv for view v which characterizes the
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importance of view v. Larger value means more contribution of this partition to

consensus clustering. It is reasonable to propose the following objective function

min
wv,Sv,Fv

t∑
v=1

wv

{
‖Xv−XvSv‖2F +αTr(F>v L

vFv)+β‖Sv‖2F
}

s.t.
∑
v

wv = 1, wv ≥ 0, F>v Fv = I, Sv ≥ 0

(5)

If the loss in the bracket is small, weight wv will have a large value; vice versa.

After we obtain the weight for each view, how can we reach the consensus

clustering, i.e., a partition that fits all views? Unlike classification or regression,

the cluster indicator matrix for each view is not unique. In general, for each

unique clustering with c clusters, there are c! (c factorial) equivalent represen-

tations [54]. So the popular Euclidean distance is not applicable to measure the

distance between indicator matrices any more and we need to figure out how to

define the distances between partitions.

To address above challenge, we propose to use inner product FvF
>
v , which

actually represents the similarities among all data points in the v-th view. It is

easy to understand that it is invariant with respect to c! permutations. Hence,

we can measure the partition distance in terms of FvF
>
v . Specifically, we develop

the following partition fusion objective function

min
Y ∈Rn×c,Y >Y=I

‖Y Y > −
t∑

v=1

wvFvF
>
v ‖2F , (6)

where Y is the consensus cluster indicator matrix. If wv has a large value, the

v-th partition will contribute a lot to final Y .

Finally, we can combine Eqs. (5) and (6) to form a unified objective function,

so that each variable can be iteratively updated. Our proposed Partition Fusion
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multi-view Subspace Clustering (PFSC) can be formulated as

min
Sv,Fv,wv,Y

t∑
v=1

wv

{
‖Xv −XvSv‖2F + αTr(F>v L

vFv) + β‖Sv‖2F
}

+ ‖Y Y > −
t∑

v=1

wvFvF
>
v ‖2F

s.t.

t∑
v=1

wv = 1, wv ≥ 0, Sv ≥ 0

F>v Fv = I, Y >Y = I.

(7)

With input data X, PFSC will output cluster indicator matrix Y . Hence, it is

an end-to-end clustering method. Compared to existing work in the literature,

it enjoys the following properties.

• Orthogonal to existing multi-view clustering methods, our proposed model

integrates multi-view information in a partition space. Since all partitions

admit a unique cluster pattern, it is natural to implement information

fusion in a partition space.

• A weight is dynamically learned for each view, which can identify the

importance of each view.

• This unified framework seamlessly integrates the graph learning, spectral

clustering, weight learning, and partition fusion. By iteratively updating

S, F,w, Y , they can be repeatly improved. This joint learning strategy

facilitates to obtain a better solution.

3.2. Optimization

Since Eq.(7) involves several coupled variables, it is difficult to solve it.

Therefore, we divide the original problem into four subproblems and develop an

alternating and iterative algorithm. Sv, Fv, wv, Y can be solved effectively and

individually by fixing the others.

Sv-subproblem: By fixing Fv, wv, and Y , we update Sv by solving:

min
Sv

∑
v

{
‖Xv −XvSv‖2F + αTr(F>v L

vFv) + β‖Sv‖2F
}
. (8)
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Note that Sv’s are independent for each view, hence we can solve them sepa-

rately. For convenience, we ignore the subscript/superscript tentatively and get

min
S
Tr(−2X>XS + S>X>XS) + αTr(F>LF ) + βTr(S>S). (9)

Setting the the derivative of Eq. (9) with respect to S to zero, and noting that∑
i,j

1
2‖Fi,: −F:,j‖22sij = Tr(F>LF ), we obtain the analytical solution for S:,i,

S:,i = (X>X + βI)−1(X>X:,i −
α

4
di), (10)

where di ∈ Rn×1 is a vector with the j-th element as dij = ‖Fi,: − Fj,:‖22. Note

that once parameter α is given, the inverse is fixed in each iteration. In other

words, we can calculate it in advance to save computing time. After obtaining

S, we can set its negative elements to zero to ensure its nonegative.

Fv-subproblem: Omitting all other unrelated terms with respect to Fv, we

obtain

min
Fv,F>v Fv=I

α
∑
v

wvTr(F
>
v L

vFv) + ‖Y Y > −
∑
v

wvFvF
>
v ‖2F . (11)

Similarly, Fv can be solved separately for each view. Then, we have:

min
Fv,F>v Fv=I

Tr(F>v MFv), (12)

where M = αLv +wvI − 2Y Y >− 2
∑

j 6=v FjF
>
j . Then, the optimal solution Fv

is the c eigenvectors of M corresponding to the c smallest eigenvalues.

wv-subproblem: Our problem can be simplified as

minw>Pw − qw

s.t.
∑
v

wv = 1, wv ≥ 0,
(13)

where P ∈ Rn×n with Pij = Tr[FiF
>
i × FjF

>
j ] and q is a vector with

qi = −gi + 2Tr(Y Y >FiF
>
i ),

gi = ‖Xi −XiSi‖2F + αTr(F>i L
iFi) + β‖Si‖2F .

(14)

It is a standard quadratic programming problem, which can be solved efficiently.
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Y -subproblem: As for Y , we have the following equivalent formulation

min
Y,Y >Y=I

Tr[Y >(I − 2
∑
v

wvFvF
>
v )Y ], (15)

which can be solved by singular value decomposition (SVD).

The entire optimization procedure for (7) is summarized in Algorithm 11.

The main computational burden lies in the matrix inversion (line 2) and SVD

(line 6). Since we just consider the top c eigenvectors, the complexity of SVD

is O(n2c). Therefore, the overall time complexity of Algorithm 1 is O(n3).

Algorithm 1: Optimization for PFSC

Input: multi-view data matrix X1, · · · , Xt, cluster number c,

parameters α, β.

Output: Sv, Fv, wv, Y .

Initialize: Random matrix Fv, wv = 1/t.

REPEAT

1: for view 1 to v do

2: Update each column of S according to (10);

3: S=max(S,0);

4: Solve the subproblem (12);

5: Update wv via (13).

6: end for

7: Solve the subproblem (15).

UNTIL stopping criterion is met.

4. Experiments on Benchmark Data

4.1. Data sets

To fully assess the effectiveness of our proposed method, we conduct exper-

iments on three widely used data sets with six types of features.

1Our source code will be released later.

10



Table 1: Description of the datasets. The feature number for each view is shown in parenthesis.

View HW Caltech7 Caltech20

1 Profile correlations (216) Gabor(48) Gabor (48)

2 Fourier coefficients (76) Wavelet moments (40) Wavelet moments (40)

3 Karhunen coefficients (64) CENTRIST (254) CENTRIST (254)

4 Morphological (6) HOG (1984) HOG (1984)

5 Pixel averages (240) GIST (512) GIST (512)

6 Zernike moments (47) LBP (928) LBP (928)

Data points 2000 1474 2386

Classes 10 7 20

Handwritten numerals (HW) 2 data set is selected from UCI machine

learning repository. It is comprised of 2000 data points for 0 to 9 digit classes,

and each class has 200 data points.

Caltech7 3 is an object recognition data set with 7 categories, includ-

ing “Face, Snoopy, Garfield, Motorbikes, Dolla-Bills, Stop-sign, and Windsor-

chairs”.

Caltech20 contains 20 classes ”Brain, Camera, Face, Ferry, Rhino, Pagoda,

Snoopy, Wrench, Stapler, Leopards, Hedgehog, Garfield, Binocular, Motorbikes,

Windsor Chair, Car-Side, Dolla-Bill, Stop-Sign, Yin-yang, and Water-Lilly”.

The specific characteristics of these data sets are summarized in Table 1.

Figure 1: Sensitivity analysis of parameters for our method over Caltech7 dataset evaluated

with F-Score, Precision, and NMI.

2http://archive.ics.uci.edu/ml/datasets.html.
3http://www.vision.caltech.edu/Image Datasets/Caltech101/.
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4.2. Comparison Methods

To evaluate the performance of the presented method, we compare it with

several state-of-the-art clustering methods.

• The classic k-means clustering algorithm (KM): The KM clustering on

concatenated features is used as a baseline algorithm.

• Co-regularized multi-view spectral clustering (Co-reg) [25]: A co-regularization

mechnism is utilized to ensure that partitions from different views are close

to each other.

• Co-trained multi-view spectral clustering (Co-train) [24]: A co-training

approach is used to learn multiple Laplacian eigenspace.

• Multi-view kernel k-means clustering (MKKM) [29]: In MKKM, data are

first mapped into high-dimensional space by kernel trick. Then, kernels

from different views are combined based on a weighting principle.

• Robust multi-view k-means clustering (RMKM) [55]: To cope with out-

liers, this method adopts structured sparsity-inducing norm to integrate

multi-view information.

• Multi-view subspace clustering (MVSC) [40]: This method simultaneously

learns multiple graphs and forces them generate the same cluster structure.

• Multi-manifold regularized nonnegative matrix factorization (MNMF) [56]:

Based on NMF, this method preserves the local geometrical structure of

multi-view data.

• Auto-weighted multiple graph learning (AMGL) [32]: Different from Eq.

(2), a weight is assigned for each view.

• Multi-View Ensemble Clustering (MVEC) [52]: Solve multi-view cluster-

ing in an ensemble clustering way.

• Multiple Partitions Aligned Clustering (mPAC) [57]: This recent method

uses a different approach to combine basic partitions.
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Table 2: Clustering performance on Caltech7 data.

Method F-Score Precision Recall NMI Adj-RI

KM 0.4688(0.0327) 0.7868(0.0080) 0.3618(0.0371) 0.4278(0.0120) 0.3172(0.0297)

Co-train 0.4678(0.0172) 0.7192(0.0136) 0.3550(0.0168) 0.3235(0.0226) 0.3342(0.0157)

Co-reg 0.4981(0.0092) 0.7014(0.0076) 0.3622(0.0098) 0.3738(0.0061) 0.2894(0.0046)

MKKM 0.4804(0.0059) 0.7659(0.0178) 0.3663(0.0040) 0.4530(0.0132) 0.3053(0.0096)

RMKM 0.4514(0.0409) 0.7491(0.0277) 0.3236(0.0376) 0.4220(0.0197) 0.2865(0.0429)

MVSC 0.3341(0.0102) 0.5387(0.0271) 0.2427(0.0130) 0.1938(0.0185) 0.1242(0.0140)

MNMF 0.4414(0.0303) 0.7587(0.0330) 0.3115(0.0262) 0.4111(0.0175) 0.3456(0.0576)

AMGL 0.6422(0.0139) 0.6638(0.0125) 0.6219(0.0164) 0.5711(0.0149) 0.4295(0.0208)

MVEC 0.5862(0.0244) 0.4523(0.0114) 0.8363(0.0654) 0.5924(0.0285) 0.4318(0.0409)

mPAC 0.6763 0.6306 0.7292 0.5741 0.4963

PFSC 0.7627(0.0117) 0.8687(0.0656) 0.6836(0.0280) 0.4388(0.0119) 0.5832(0.0035)

Following [55], we pre-process the data based on normalization, i.e., all val-

ues range from -1 to 1. For a fair comparison, we adopt five popular evaluation

metrics as shown in [24]: F-Score, Precision, Recall, normalized mutual informa-

tion (NMI) and Adjusted Rand Index (Adj-RI). For all of them, a larger value

indicates a better clustering performance. For all methods, we either adopt

the default parameter values given by the respective authors or tune them to

achieve the best performance. Each method is repeated 10 times and the mean

and standard deviation (std) values are reported.

4.3. Experimental Result

Tables 2-4 show the clustering results on the three benchmark data sets. For

each measure, the best two methods are highlighted in boldface. In most cases,

our proposed method achieves the best clustering performance in comparison

with other state-of-the-art multi-view clustering methods. In particular,

1. Our proposed PFSC often performs much better than current MVSC algo-

rithm. Recall that both MVSC and PFSC learn multiple graphs. MVSC

forces each graph to generate the same cluster, which is too restrictive
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Table 3: Clustering performance on Caltech20 data.

Method F-Score Precision Recall NMI Adj-RI

KM 0.3697(0.0071) 0.6235(0.0212) 0.2583(0.0095) 0.5578(0.0133) 0.2850(0.0063)

Co-train 0.3750(0.0287) 0.6375(0.0253) 0.2749(0.0238) 0.4895(0.0117) 0.3085(0.0281)

Co-reg 0.3719(0.0087) 0.6245(0.0137) 0.2882(0.0070) 0.5615(0.0042) 0.2751(0.0084)

MKKM 0.3583(0.0114) 0.6724(0.0158) 0.2865(0.0092) 0.5680(0.0142) 0.3039(0.0110)

RMKM 0.3955(0.0113) 0.6307(0.0144) 0.2712(0.0096) 0.5899(0.0092) 0.2952(0.0112)

MVSC 0.5417(0.0239) 0.4100(0.0245) 0.7994(0.0110) 0.4875(0.0113) 0.3800(0.0246)

MNMF 0.3643(0.0157) 0.6509(0.0119) 0.2530(0.0136) 0.5367(0.0132) 0.3128(0.0042)

AMGL 0.4017(0.0248) 0.3503(0.0479) 0.4827(0.0450) 0.5656(0.0387) 0.2618(0.0453)

MVEC 0.5229(0.0377) 0.4366(0.0412) 0.7187(0.0499) 0.5841(0.0114) 0.4517(0.0416)

mPAC 0.5645 0.4350 0.8035 0.5986 0.5083

PFSC 0.5163(0.0396) 0.4337(0.0492) 0.6432(0.0402) 0.5790(0.0178) 0.4437(0.0415)

considering the heterogeneous nature of views. PFSC produces a parti-

tion for each graph and fuses them to reach a consensus which allows for

greater flexibility to deal with heterogeneous data.

2. With respect to AMGL, another representative spectral clustering based

method, PFSC outperforms it considerably in most cases. Though it

assigns a weight for each graph, a common clustering is still assumed for

all graphs. Moreover, its weight is empirically determined, which might

not be correct for complex data. These factors make AMGL impossible

to perform well in all cases.

3. Compared to the multi-view ensemble clustering method MVEC, our method

PFSC performs better in most cases. As we mention previously, they are

different in several key aspects that are responsible for our improvements.

4. In general, graph-based methods perform better than k-means and NMF

approaches, which is due to the efficiency of graph representation for the

data in a non-Euclidean space [58]. Graphs also provide a convenient way

to explore supplementary information from multiple views.

5. With respect to mPAC, our method gives competitive performance. In
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Table 4: Clustering performance on Handwritten numerals data.

Method F-Score Precision Recall NMI Adj-RI

KM 0.6671(0.0105) 0.6550(0.0154) 0.6889(0.0180) 0.7183(0.0106) 0.6443(0.0122)

Co-train 0.6859(0.0172) 0.6634(0.0281) 0.7109(0.0252) 0.7222(0.0149) 0.6498(0.0227)

Co-reg 0.6840(0.0269) 0.6360(0.0336) 0.6413(0.0198) 0.7583(0.0197) 0.6266(0.0314)

MKKM 0.6756(0.0000) 0.6501(0.0000) 0.7050(0.0000) 0.7526(0.0000) 0.7009(0.0000)

RMKM 0.6542(0.0258) 0.6218(0.0350) 0.6915(0.0158) 0.7431(0.0209) 0.6013(0.0300)

MVSC 0.6753(0.0335) 0.6193(0.0537) 0.7537(0.0215) 0.7566(0.0186) 0.6079(0.0419)

MNMF 0.7068(0.0272) 0.6957(0.0294) 0.7183(0.0250) 0.7431(0.0227) 0.6407(0.0056)

AMGL 0.7404(0.1070) 0.6650(0.1372) 0.8457(0.0560) 0.8392(0.0543) 0.7066(0.1235)

MVEC 0.7196(0.0313) 0.8082(0.0157) 0.6501(0.0437) 0.8166(0.0142) 0.6847(0.0361)

mPAC 0.7473 0.7348 0.7200 0.7370 0.7069

PFSC 0.7263(0.0249) 0.7549(0.0176) 0.7001(0.0326) 0.7666(0.0148) 0.6948(0.0281)

some cases, our performance is even better.

Figure 2: Sensitivity analysis of parameters for our method over Caltech20 dataset evaluated

with F-Score, Precision, and NMI.

To sum up, PFSC obtains competitive performance with respect to state-of-

the-art techniques. This validates the effectiveness of partition fusion strategy.

4.4. Parameter Sensitivity Analysis

There are two tuning parameters, α and β in our model (7). Taking Cal-

tech20 and Caltech7 as examples, we empirically examine their influence on

F-score, Precision, and NMI, as shown in Figures 1 and 2. It can be observed

that the performance of PFSC is relatively stable for a wide range of parameters.
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5. Experiments on Noisy Data

Figure 3: The first column is some COIL20 images. They are corrupted by Gaussian noise

with different variance: 0.01, 0.03, 0.05 (from 2nd to 4th column).

Figure 4: The first column is some COIL20 images. They are corrupted by Salt & Pepper

noise with different density: 0.05, 0.1, 0.2 (from 2nd to 4th column).

In practice, images are usually liable to suffer from noises. To examine the

robustness of our model, we contaminate clean images by adding two commonly

seen noises: Gaussian noise and Salt & Pepper noise. We first construct a single-

view data set by randomly sampling 24 images for each class from COIL20 [59]

which is a data set of 20 toy images. This results in a data set with size

1024×480. Then, we add three levels of noise to obtain three noise data. Based

on them, we form a three-view data set. In specific, we corrupt the images

with Gaussian noise with zero mean and variance 0.01, 0.03, and 0.05; Salt &

Pepper noise with density 0.05, 0.1, and 0.2. Some sample images are displayed

in Figures 3 and 4. We can observe that those images are heavily corrupted.

Here, we run k-means on all partitions from our model (7), i.e., F1, F2,

F3, Y , and report their results as PFSC-F1, PFSC-F2, PFSC-F3, PFSC-Y ,

16



Table 5: Clustering performance on noisy data.

Noise Method F-Score Precision Recall NMI Adj-RI

Gaussian

MVSC 0.3467(0.0321) 0.5194(0.0195) 0.2294(0.0347) 0.5615(0.0229) 0.2677(0.0373)

AMGL 0.4240(0.0734) 0.3076(0.0696) 0.7036(0.0340) 0.7754(0.0343) 0.3822(0.0820)

PFSC-F1 0.5156(0.0528) 0.6439(0.0366) 0.4469(0.0629) 0.7506(0.0239) 0.4908(0.0576)

PFSC-F2 0.5200(0.0558) 0.6595(0.0364) 0.4312(0.0632) 0.7525(0.0279) 0.4902(0.0605)

PFSC-F3 0.5086(0.0267) 0.6613(0.0232) 0.4143(0.0338) 0.7483(0.0163) 0.4777(0.0293)

PFSC-Y 0.5226(0.0395) 0.6257(0.0216) 0.4508(0.0529) 0.7590(0.0200) 0.4943(0.0431)

Salt & Pepper

MVSC 0.3510(0.0363) 0.5034(0.0240) 0.2710(0.0397) 0.5709(0.028) 0.3076(0.0408)

AMGL 0.3954(0.0464) 0.2800(0.0451) 0.6836(0.0189) 0.7539(0.0175) 0.3509(0.0520)

PFSC-F1 0.5065(0.0459) 0.6042(0.0336) 0.4290(0.0566) 0.7493(0.0230) 0.4765(0.0502)

PFSC-F2 0.5218(0.0583) 0.6105(0.0489) 0.4575(0.0651) 0.7516(0.0291) 0.4939(0.0629)

PFSC-F3 0.5016(0.0398) 0.6118(0.0393) 0.4284(0.0539) 0.7443(0.0212) 0.4717(0.0436)

PFSC-Y 0.5325(0.0345) 0.6190(0.0222) 0.4683(0.0429) 0.7593(0.0175) 0.5055(0.0373)

respectively. We compare PFSC with two most relevant gragh-based multi-

view clustering method: MVSC and AMGL. In addition, we choose them since

they produce very competitive performance in Tables 3-4. In fact, MVSC is a

robust learning algorithm, in which an error variable Ev is purposely introduced

to characterize noise for each view, and then `1-norm regularization is imposed

to Ev to enforce the sparsity for the outlying entries.

Table 5 summarizes the learning performances of the algorithms on noisy

data, and it can be observed that PFSC-Y outperforms MVSC and AMGL

significantly by more than 10% in terms of F-Score, Precision, and Adj-RI.

Though MVSC is designed to resist noise, it is inferior to PFSC-Y in all cases.

This is due to the fact that MVSC treats each view equally and assumes that

all graphs share the same partition matrix. To reach the overall minimum of

objective function, the final cluster pattern could be deteriorated. On the other
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(a) The 1st View (b) The 2nd View

(c) The 3rd View

Figure 5: The learned graphs S corrupted by Gaussian noise.
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(a) Partition F1
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(b) Partition F2
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(c) Partition F3
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(d) Final clustering Y

Figure 6: Visualization of partitions corrupted by Gaussian noise.

hand, both AMGL and PFSC-Y adopt a weighting strategy, hence they can

assign more weight to high quality view. Different from AMGL, which uses the

same partition for all views, PFSC-Y finds the final clustering through fusing

multiple basic partitions. Since all views admit the same cluster pattern, it

becomes easy for PFSC to search for the best one.

Furthermore, we can observe that our final clustering PFSC-Y often out-

performs PFSC-F1, PFSC-F2, and PFSC-F3. This validates the effectiveness

of our fusion strategy. Based on those partitions from each single view, we can

eventually achieve a better clustering. The learned graphs and partitions are

also displayed in Figures 5-8. To obtain Figures 6 and 8, t-SNE is implemented

[60]. We can see that the learned graphs can not present the cluster structure.

Ideally, they should be block-diagonal. On the other hand, the partitions can

explicitly display the cluster structure. This demonstrates the robustness of our

model.
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(a) The 1st View (b) The 2nd View

(c) The 3rd View

Figure 7: The learned graphs S corrupted by Salt & Pepper noise.
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(a) Partition F1

-25 -20 -15 -10 -5 0 5 10 15 20 25
-40

-30

-20

-10

0

10

20

30

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

(b) Partition F2
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(c) Partition F3
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(d) Final clustering Y

Figure 8: Visualization of partitions corrupted by Salt & Pepper noise.

6. Conclusion

In this paper, we develop a novel multi-view subspace clustering method,

aiming to exploring multi-view information in a partition space to enhance

model robustness. The proposed model integrates graph learning, spectral clus-

tering, weight learning, and partition fusion into a unified framework, in which

each component is optimized. Experimental results on widely adopted bench-

mark data sets validate the effectiveness and robustness of the proposed method.
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