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Abstract

The identification of important nodes in complex networks is an area of

exciting growth due to its applications across various disciplines like disease

controlling, community finding, data mining, network system controlling, just

to name a few. Many measures have thus been proposed to date, and these

measures are either based on the locality of nodes or the global nature of the

network. These measures typically use distance based on the concept of tra-

ditional Euclidean Distance, which only focus on the local static geographic

distance between nodes but ignore the interaction between nodes in real net-

works. However, a variety of factors should be considered for the purpose of

identifying influential nodes, such as degree, edge, direction and weight. Some

methods based on evidence theory have also been proposed. In this paper, we

have proposed an original and novel gravity model with effective distance for

identifying influential nodes based on information fusion and multi-level pro-

cessing. Our method is able to comprehensively consider the global and local

information of the complex network, and also utilize the effective distance to

replace the Euclidean Distance. This allows us to fully consider the complex
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topological structure of the real-world network, as well as the dynamic inter-

action information between nodes. In order to validate the effectiveness of our

proposed method, we have utilized the susceptible infected (SI) model to carry

out a variety of simulations on eight different real-world networks using six exist-

ing well-known methods. The experimental results indicate the reasonableness

and effectiveness of our proposed method.

Keywords: Complex networks, Influential nodes, Gravity model, Effective

distance, SI model

1. Introduction

In recent years, the study of complex network[1, 2] has attracted immense

attention[3]. Many real-world problems[4, 5] can be analyzed as part of network

science[6, 7] for further research[8], such as Internet security, network control

system[9, 10] and social network. Hence, the identification of influential nodes in

complex networks play an important role[11] in both structural and functional

aspects[12, 13], and is an important area of research[14]. The identification

of influential nodes can be applied across various fields[15] such as disease[16],

network system[17], biology[18], social system[19, 20, 4], time series[21], infor-

mation propagation[22] and Parrondo’s paradox[23, 24, 25, 26, 27]. Besides,

identifying the vital nodes[28] can allow us to discover and address real-world

problems[29, 30] such as transportation hubs identifying, influence maximiz-

ing, rumor controlling[31], disease controlling[32], advertising and community

finding[33, 34].

Many methods have been proposed to assess the influence of nodes[35, 36].

These methods can be classified under two broad categories: locality of nodes

and the global nature of the network. One view is that the influence of nodes

often depends on its neighbors, such as degree centrality (DC)[14], K-shell de-

composition method (KS)[32], semi-local centrality[14] and PageRank[37]. For

DC, the influence of nodes is determined by the number of neighbors; a node

with many neighbors is of high influence. The KS suggests that the influence
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of nodes is related to their topological properties in the local area. The more

central the node is in the local structure, the more influential the node is. PageR-

ank, the algorithm for random walking[38] states that the influence of nodes is

not only dependent on the number of neighbors, but also related to the quality

of neighbors[12]. It works by simulating the process of browsing the web. In

general, it has good performance on directed network, but does not perform

very well on undirected network.

Another view is that the influence of nodes mainly depends on paths in the

network. For example, closeness centrality (CC)[39] and betweenness centrality

(BC)[12] are representatives of such algorithm. CC suggests that the shorter the

average distance between a node and other nodes, that is, the closer the node

is located to the center, the more influential the node is. However, BC claims

that the influence of a node is mainly determined by the number of shortest

paths through it. Although BC and CC algorithms can often give better results

than other algorithms, they are very sensitive to network structure[40] and the

complexity of these algorithms is high with many limitations as well. The above

algorithms are either neighborhood-based local method, or the path-based global

method.

Recently, inspired by the law of gravity, Li et al. proposed an algorithm based

on the gravity model, called gravity model (GM)[12]. Liu et al. further pro-

posed a more generalized weighted gravity model, called generalized mechanics

model (GMM)[41]. The two models take into account both the neighborhood-

based local information and the path-based global information. They are also

applicable on both directed and undirected networks, and have proven to be

effective and feasible. However, the distance in the algorithm based on the

gravity model mainly utilizes the traditional Euclidean Distance[42], focusing

only on the local static geographical location between nodes, while ignoring the

interaction between nodes in the actual network. In order to address this crit-

ical gap, we propose an original and novel method called the effective distance

gravity model. On the basis of GM, the original Euclidean Distance[43] is now

replaced by the effective distance proposed by Brockmann et al. Effective dis-
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tance is an abstract concept of distance derived from the idea of probability.

It mainly pays attention to the interaction of nodes in the network and uses it

as the main basis for judging. The core of effective distance is to discover the

most probable path between two points by calculating the probability through

the adjacency matrix. The effective distance fully considers the potential dy-

namic information interaction between nodes in the actual network. Therefore,

our proposed effective distance gravity model takes into account not only the

network local and global information, but also the potential dynamic interac-

tion between nodes, such that a node with more neighbors and shorter effective

distance between the other nodes is more influential. Based on our proposed

method, we have carried out a variety of experiments on eight real networks

using the susceptible infected (SI) model[44], and compared it with six exist-

ing well-known identification methods. Our experimental results indicate the

robustness and reasonableness of our proposed method over existing methods.

The paper is organized as follows. In Section 2, we describe the parameters used

in this paper, an overview of several well-known node identification measures

is given. The concept of effective distance will also be introduced. In Section

3, a new identification of influential nodes measure: effective distance gravity

model is proposed. In Section 4, a variety of experiments and comparisons with

other measures are then illustrated to show the feasibility and effectiveness of

our proposed method. We conclude our study in Section 5.

2. Preliminaries

In an undirected graph G = (V,E),where the V represents the set of nodes

and E represents the set of links[45]. And the number of nodes in the graph is

denoted as n, where n = |V |. The adjacency matrix of graph G is A = {aij},

where aij = 1 if there is an edge between node i and node j.

2.1. Centrality measures

Definition 2.1. Degree centrality(DC) identifies the importance of a node by

comparing degree of the node. The node with large degree is of high influence[46].

4



DC(i) of each node i can be obtained by the following formula.

DC(i) =

N∑
j

aij = ki (1)

Where ki is the degree of node i[47].

Definition 2.2. The definition of Betweenness centrality(BC)[41] is as fol-

lows. BC measures the importance of a node by the number of shortest paths

through it. The more the number of shortest paths through node i, the more

important node i is in the network.

BC(i) =
∑
j,k 6=i

Njk(i)

Njk
(2)

Where Njk represents the number of shortest paths from node j to node k, and

Njk(i) is the number of Njk through node i.

Definition 2.3. Closeness centrality(CC)[39] evaluates the influence of nodes

by the reciprocal of the sum of shortest path between nodes. The higher the CC(i)

is, the more important the node i is.

CC(i) =
1∑N
j dij

(3)

where dij denotes the length of shortest path between node i and node j.

Definition 2.4. Eigenvector centrality(EC)[41] is a complex method, which

claims the influence of a node is determined not only by the number of neighbors,

but also by the importance of the them. EC(i), the centrality scores of node i,

can be calculated by the formula below.

EC(i) =
1

λ

n∑
j=1

(aijxj) (4)

The largest eigenvalue of A is be represanted by λ and xj is the value of jth

entry of the eigenvector corresponding to λ.
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Definition 2.5. PageRank(PC) uses an iterative approach to obtain the in-

fluence of nodes, and it is very effective to calculate the importance of nodes in

the directed network. PC(i) of node i[37] can be obtained by following formula.

PC(i)q =

n∑
j=1

(aij
PC(j)q−1

kj
) (5)

The influence score of node i in step q is denoted as PC(i)q. The higher the

PC score when the PC finally converges is, the more vital the node is.

2.2. Gravity model (GM)

The GM is defined by the gravity formula. The influence of a node can be

estimated by GM[12] as follows.

C(i) =
∑
i6=j

ki × kj
(dij)2

(6)

C(i) represents the centrality score of node i,the degree of the node j is denoted

as kj . The shortest path between node i and node j can be represented as dij .

In particular, the distance here uses Euclidean Distance.

2.3. Effective distance (ED)

Effective distance[43] is an abstract distance based on probability, which

mainly focuses on the potential information interaction between nodes in the

real complex networks. The definition of ED is as follows.

Dmn = min {1− log2(P ∗mn)} (7)

Where Dmn is the value of effective distance from node m to node n and Pmn

is the probability from node m to node n, which can also be obtained by the

product of multiple probabilities in the graph. For example P ∗mn can be calcu-

lated by P ∗mn = Pml × Pls × ...× Pkn , which is similar to Markov Chain. The
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Pmn is calculated as follows.

Pmn =
amn

km
(m 6= n) (8)

Where km is the degree of node m, amn is the element in the adjacency matrix

of graph G.

3. Proposed method

3.1. Effective distance gravity model (EffG)

In reality, many problems can be analyzed as part of network science for

further research. The structure and function of these actual networks are of-

ten more complicated than we think. Thus, for the identification of influential

nodes, only use neighborhood-based local properties of the network but ignore

the global connectivity are unadvisable. Similarly, it is not feasible to only con-

sider the path-based globality of the network but ignore the local properties

of the node. Individually speaking, the two properties should be considered to-

gether in order to achieve a good effect. Therefore, we consider a comprehensive

consideration of the degree of nodes and the path of the network.

At the same time, considering the complex structure and the evolution of

the complex network, the structure of network is likely to be unstable. There-

fore, there may be some errors for the node identification. However, multiple

cumulative summing can effectively solve this problem.

In addition, since the distance of most of the measures is conventional Eu-

clidean Distance, which is the static geographic distance between two points.

However, considering the multiple complexity fusion of complex networks, we

cannot simply think that the true structure of the network is the exhibited ge-

ometry structure currently. The potential interaction of information and energy

between nodes may lead to changes in the network structure. Therefore, we be-

lieve that complex networks are likely to have a potential geometric structure,

which often drives many dynamics propagation processes, such as the spread
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of epidemics and rumors. In this situation, it is obviously inadequate to use

a simple static geometric metric such as Euclidean distance. Dirk Brockmann

and Dirk Helbing claimed that if probability is used to construct a new distance

metric to replace conventional geographic distance, then the complex space-time

patterns can be reduced to surprisingly simple, homogeneous wave propagation

patterns. Their experimental results showed that the effective distance can re-

liably predict the arrival time of the disease. Thus, we believe that the effective

distance fully takes into account a potential topology of complex network due

to the dynamic information interaction between nodes[43], which has certain

significance for the identification of influential node in the complex network.

Consequently, we consider replacing the conventional Euclidean Distance with

the effective distance proposed by Brockmann to further optimize the algorithm.

In summary, we proposed an effective distance gravity model, which not only

comprehensively considers the local and global network structural indicators,

but also reduces the identification error caused by the unstable structure of

the complex network through cumulative summation. At the same time, by

replacing Euclidean Distance with effective distance, the dynamic interaction

between nodes and the potential complex topology of the network are fully

considered. Therefore, the influence of the node can be estimated as

CEffG(i) =
∑
i 6=j

ki × kj
D2

ij

(9)

Where ki and kj are the degree of node i and node j, Dij is the effective distance

from node i to node j. And CEffG(i) represents the centrality scores of node

i. The whole steps and calculation process of proposed method are shown in

Fig.1.

3.2. An example

In order to better explain our proposed identification method EffG, here a

simple example is given to help understand how EffG works in the network. We

take node2 as an example to calculate the EffG scores of it. The Fig.2(a) is the
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Figure 1: The flow chart of our proposed method. The first step is to build a net-
work.The second step is to calculate the degree of each node. The third and fourth steps are
combined to obtain the effective distance between the nodes. Finally, the fifth step calculates
the centrality scores of each node.

graph of a network, which adjacency matrix is the Fig.2(b).

(a) The graph of a simple
network

(b) The adjadency matrix of
network

Figure 2: A simple network with seven nodes

The degree of each node is presented in the Table I.

Table 1: The degree of each node in Fig.2.

Node node1 node2 node3 node4 node5 node6 node7
degree 6 2 2 3 4 2 1

First, we calculate the effective distance between nodes by the Function (7).
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Table 2: Effective Distance (ED) between nodes in Fig.2.

Dij D21 D22 D23 D24 D25 D26 D27

ED 2.0000 +∞ 4.0000 4.0000 2.0000 4.5850 4.5850

In particularly, Under normal circumstances , the Pij 6= Pji and Dij 6= Dji.

Besides, because Pii, the probability from node i to itself is often zero, the

distance from node i to itself which denoted as Dii is also infinite.

The effective distance between node2 and node7 is calculated as:

D27 = min {1− log2(P ∗27)}

= 1− log2(max {P ∗27})

= 1− log2(max {P27, P21 × P17, P25 × P51 × P57, ...})

= 1− log2(P21 × P17)

= 1− log2(
1

2
× 1

6
)

= 4.5850

D72 = min {1− log2(P ∗72)}

= 1− log 2(max {P ∗72})

= 1− log2(P71 × P12)

= 1− log2(
1

1
× 1

6
)

= 3.5850

(10)

Using the same method of D27 and D72, the effective distance between other

nodes and node2 can be calculated. The result is in the Table II.

Then, the EffG scores of node 2 can be calculated as follows:

CEffG(2) =
∑

j 6=2
k2×kj

D2
2j

= 5.9104

The EffG scores of the other nodes can be calculated by the same method,

which are showed as follows:
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CEffG(1) =
∑

j 6=1
k1×kj

D2
1j

= 6.5358

CEffG(3) =
∑

j 6=3
k3×kj

D2
3j

= 5.9104

CEffG(4) =
∑

j 6=4
k4×kj

D2
4j

= 6.0704

CEffG(5) =
∑

j 6=5
k5×kj

D2
5j

= 6.2865

CEffG(6) =
∑

j 6=6
k6×kj

D2
6j

= 5.5981

CEffG(7) =
∑

j 6=7
k7×kj

D2
7j

= 1.0115

From the Fig2.(a). we can see that the node1 is the central of the network

which has the most strong connection with others and covers the most shortest

paths in the network. Without node1, the network will be broken into multiple

isolated parts. Thus, it is reasonable that the node1 is the most influential node

in this network. Besides, the node7 can be seen that is the least influential in the

network, and the EffG score that matches it is the lowest. And the importance

of node2 and node3 in this network is basically the same, they also have the

same EffG score. This simple example shows that our proposed method EffG

is practical and objective.

4. Application

To verify the feasibility and effectiveness of our proposed method, six experi-

ments were performed on eight actual networks, in comparison with six existing

well-known methods.

4.1. Datasets

The experiment was conducted on eight real-world networks, Jazz, NS[48],

GrQc, Email, EEC, Facebook[41], PB[49] and USAir[12], including two commu-

nication networks (Email, EEC), one transportation network (USAir), two social

networks (Facebook, PB) and three cooperative networks (Jazz, NS, GrQc).

Among them, Email is a network where users send emails and communicate

with each other. EEC is a network where European researchers do exchange of

emails. USAir represents a US air transportation network. Facebook describes

a social network derived from Facebook. PB is a blog network. Jazz describes a
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practical network of Jazz musician collaborations. NS is a network where scien-

tists collaborate and work together. GrQc is a network published on preprint.

Other relevant information about the network is displayed on Table III.

Table 3: The basic topology information of the eight actual networks. n and m are
the number of nodes and edges of the network, < k > and < d > are the average degree
and average distance of the network. C and r are the network’s clustering coefficient[50] and
assortative coefficient[51].

Networks n m < k > < d > C r
Jazz 198 2472 27.6970 2.2350 0.6334 0.0202
NS 379 914 4.4832 6.0419 0.7981 -0.0817

GrQc 4158 13422 6.4560 6.0494 0.6648 0.6392
EEC 986 16064 32.5842 2.5869 0.4505 -0.0257
Email 1133 5451 9.6222 3.7160 0.1101 0.0782

PB 1222 16714 27.3553 2.7375 0.3600 -0.2213
Facebook 4039 88234 43.6910 3.6925 0.6170 0.0636

USAir 332 2126 12.8072 2.7381 0.7494 -0.2079

4.2. Centrality scores of nodes

In this experiment, our proposed method (EffG)was used to calculate cen-

trality scores in six real-world networks we provided. Five existing well-known

methods (DC, CC, BC, PC, Gravity) were used in the same networks for com-

parison. The experimental results are shown in Figs.3-8. The importance of the

node is reflected by the color of the node in the heat map. The darker the color

of node is, the more influential the node is.

As can be seen, the distribution of relative importance of nodes is basically

consistent, although the centrality scores calculated by CC and EffG are higher

and the value of BC is lower. Besides, it can be easily found in figs.4-8. that

the centrality scores calculated by BC, DC and PC are difficult to distinguish in

the figures because the scores are all quite low. However, the centrality scores

calculated by CC, Gravity model and EffG are well distinguished, especially CC

and EffG. Moreover, the distribution of relative importance of nodes in CC and

EffG is more similar. Consequently, our proposed method, EffG, can be found

to be convenient for us to distinguish the relative importance of nodes with high

accuracy.
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Figure 3: This figure compares the centrality scores of different measures in Jazz. The distri-
bution of Gravity model, CC and our proposed method is similar.

Figure 4: This figure compares the centrality scores of different measures in NS. DC, Gravity,
BC and PC are basically the same. Our method and CC are similar in the distribution of
cital node.
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Figure 5: This figure compares the centrality scores of different measures in EEC. The value
of proposed method and CC is higher, and BC is difficult to distinguish the different nodes.

Figure 6: This figure compares the centrality scores of different measures in Email. DC and
PC is almost the same, and the distribution of CC and proposed method is similar although
the value of our method is higher.
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Figure 7: This figure compares the centrality scores of different measures in PB. The value
of CC is highest, the value of BC is lowest. The distribution of our method is little different
from the others except for CC.

Figure 8: This figure compares the centrality scores of different measures in USAir. DC and
PC is basically the same, and CC can clearly be seen the difference in global influence of
nodes.
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4.3. Evaluating with susceptible infected (SI) model

The susceptible infected (SI) model[44] can be used to estimate the node’s

capability of transmission in the network, which indirectly reflects the influence

of the node. In the SI model, there are two compartments deserve our attention:

(1) susceptible state (2) infection state. In the process, the infected nodes infect

the surrounding susceptible nodes with a certain probability. The parameters

utilized in the SI model are t, F (t), β and N. The experimental simulation time

of the susceptible infected model is denoted by t. β represents the probability

of nodes infection. N is the number of experiments. The average number of

infected nodes at time t, denoted by F(t). It can be easily understood that the

more important the node has the greater the influence. And under the condition

that the infection time t and the infection probability B are both the same, the

more influential node will cause more surrounding nodes to be infected. Hence,

F(t) reflects the influence of the initial infected node. The node with higher

F(t) is of greater importance.

In order to estimate the capability of different measures in identifying the

vital nodes, the SI model was applied on eight different real-world networks. In

the experiments, the top-100 nodes ranked by different methods was selected

firstly. After that, the top-100 nodes were used as the initial infection nodes

in the SI model separately. Finally, the average number of infected nodes F(t)

was calculated for each method respectively. In particular, the SI model in

experiments is given the same propagation probabilityβ to control the variables,

and the β was set to be 0.2 in our experiment.

The experimental results are shown in Figs.9-16. The node with more final

infected nodes is of greater importance. Hence, the faster the curve rises and

the higher the curve is, the more influential the nodes in the initial infection set

are. That is to say, the more effective the identification method is.

It can be seen that the curves corresponding to our proposed method and

CC are always at the highest or second highest position. In addition, the slope

of the curve corresponding to them is also very large in all networks mentioned,

which means that the initial node set selected by the two has a stronger infection
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Figure 9: The figure compares the infection ability of the top-100 nodes selected by different
methods in Jazz. All methods except for BC are basically the same and our method is the
highest and the curve rises faster than others.

Figure 10: The figure compares the infection ability of the top-100 nodes selected by different
methods in EEC. All methods performance is similar while BC curve is sightly lower than
other curves.
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Figure 11: The figure compares the infection ability of the top-100 nodes selected by different
methods in Email. The performance of our method is better than others slightly.

Figure 12: The figure compares the infection ability of the top-100 nodes selected by different
methods in GrQc. All methods performed different significantly. The top-100 nodes of CC
and EC are the most influential, our method is the second.
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Figure 13: The figure compares the infection ability of the top-100 nodes selected by different
methods in NS. Our method’s curve rises fastest but PC’s curve rises slowly.

Figure 14: The figure compares the infection ability of the top-100 nodes selected by different
methods in PB. The difference among these methods are not obvious, which means they are
basically consistent.
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Figure 15: The figure compares the infection ability of the top-100 nodes selected by different
methods in Facebook. The trends of our method and DC are consistent. The CC curve rises
fastest and BC rises slowly.

Figure 16: The figure compares the infection ability of the top-100 nodes selected by different
methods in USAir. Our method, EC, CC and DC performed similarly. The BC and PC rise
more slowly than other methods.
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ability. That is to say, CC and our proposed method EffG can select influential

nodes more accurately.

4.4. Comparison ranking results

The top-20 vital nodes in the Jazz network ranked by different methods,

our proposed method (EffG), DC, BC, CC, PC, EC, Gravity and SI model in

which the β=0.2,t=20,N=50, are listed in Table IV. The number of overlapping

nodes in the set of the top-20 nodes sorted by our proposed method and the

top-20 nodes set sorted by other methods are shown in Table V. The number

of coincident nodes demonstrates the effectiveness of our method to a certain

extent. As can be seen, in the Jazz network, the number of nodes that are

consistent with the top-20 nodes obtained by our method and the top-20 nodes

obtained by other methods are high. The high number of coincidences with

other measures confirms the justifiability of our method and the unity with

other methods.

4.5. Relation of proposed method with other centrality methods

The Kendall coefficient, Kendall Tau[52], is used to measure the correlation

of two sequences. The absolute value of the Kendall coefficient is between 0

and 1. The larger the Kendall coefficient’s absolute value, the stronger the cor-

relation between the two sequences. If the Kendall coefficient between the two

sequences is 0, it means the two sequences have no correlation. In this experi-

ment, Kendall coefficient is used to measure the correlation between sequences

generated by different identification methods and the sequence generated by

the SI model, thereby inferring the effectiveness of the identification method.

The greater the absolute value of the Kendall coefficient is, the more valid the

identification method is.

Given two sequences with N elements, X = (x1, x2, x3, . . . , xn) and Y =

(y1, y2, y3, . . . , yn). Let (xi, yi) by a set of sequence pairs. For any pairs (xi, yi)

and (xj , yj) that i 6= j, if both xi > xj and yi > yj or both xi < xj and

yi < yj , they are classified as concordant sequence pairs. While if both xi > xj
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Table 4: Top-20 ranking of influential nodes in Jazz network by our proposed method (EffG),
DC, BC, CC, PC, EC, Gravity and SI model.

our method DC CC BC PC EC SI Gravity
8 8 8 8 8 100 8 28

100 100 100 155 100 4 100 186
4 4 131 100 131 8 4 136

131 131 194 186 4 131 194 175
194 194 69 131 186 80 53 98
80 80 4 136 136 129 131 158
69 69 53 60 69 194 111 113
162 162 111 28 28 69 133 33
53 77 162 69 175 53 162 23
5 5 129 175 155 32 67 9
77 53 59 194 162 84 5 87
59 32 67 9 129 85 59 86
32 59 80 32 80 130 80 4
67 186 186 111 59 162 129 77
133 67 133 4 77 77 32 131
111 133 77 59 53 133 115 38
84 28 5 79 32 115 77 178
85 111 55 113 5 89 151 72
9 9 79 151 113 59 28 16

Table 5: The number of same nodes between other methods and EffG.

DC CC BC PC EC SI Gravity
18 17 10 14 17 17 4
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and yi < yj or both xi < xj and yi > yj , they are classified as the discordant

sequence pairs. The Kendall’s Tau of two sequences X and Y , is defined as

follows.

tau =
n+ − n−

N × (N − 1)
(10)

Where n+ and n− are the number of concordant sequence pairs and discordant

sequence pairs respectively, N is the total number of sequence pairs.

In this experiment, the evaluation of the effectiveness of the method is based

on the correlation with the SI model. In all data sets, the different infec-

tion probability β was given to the SI model respectively to obtain a stan-

dard centralized sequence. Then Kendall′sTau of SI model sequence and other

method’s sequence was calculated. In the experiment, the infection probability

β changed from 0.2 to 1.6, and the SI model was independently work 50 times

with the infection time t = 5 to take the average on different networks. The

experimental results are shown in Figs.17-22, where tau represents the value of

Kendall′sTau. Higher tau value indicates stronger positive correlation between

centrality method and SI model.

As can be seen that CC has the strongest correlation with SI and CC is

gradually close to SI as β increases, which means that it has a strong positive

correlation with the SI model. Our proposed method performs well in general

although the correlation is a little weak on some networks. For instance, the

tau of our method is the second highest when β > 0.8 in Figs.20-21.

4.6. Compare the correlations between proposed method and SI model.

In this experiment, four real-world networks were used to evaluate the feasi-

bility of our method, including Jazz, NS, Email and USAir. First, the ranking

of nodes on each network is derived by different methods, DC, BC, CC, EC and

our proposed method. Then, each node will be used as the initial infected node

in the SI model, and the final number of infected nodes will be calculated by t

= 20. Finally, the correlation between the node ranking and the final number

of nodes infected by them, denoted as < N >, will be established. The results
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Figure 17: The figure compares the tau of SI model sequence and other method’s sequence in
Jazz. CC has the strongest correlation with SI and CC is gradually close to SI as β increases.

Figure 18: The figure compares the tau of SI model sequence and other method’s sequence in
NS. The tau of BC is the highest while the tau of our method is the lowest when β > 0.24.
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Figure 19: The figure compares the tau of SI model sequence and other method’s sequence in
GrQc. The tau of our method is in the middle basically, and as β increases, all methods have
large fluctuations in tau value.

Figure 20: The figure compares the tau of SI model sequence and other method’s sequence in
PB. The tau of our method is highest when β > 0.8 while when β < 0.6 it is lowest. And tau
of DC is lowest when β > 0.9.
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Figure 21: The figure compares the tau of SI model sequence and other method’s sequence in
Facebook. The tau of our method, PC and EC are the lowest when β = 0.6. As β changes,
CC and tau are gradually close to the SI and the tau of our method is the second highest
when β > 0.9.

Figure 22: The figure compares the tau of SI model sequence and other method’s sequence in
USAir. The tau of our method and BC are lower.

26



are shown in Figs.23-26.

The node with higher ranking is of stronger capability to infect other nodes,

which means the node is more influential. That is to say, the higher the ranking

of a node is, the greater the number of nodes eventually infected by it should be.

The lower the node ranking is, the smaller the final number of infected nodes

should be. Hence, the curve corresponding to a good identification method

should basically continue to decline. As can be seen in Figs.23-26, the curve

corresponding to our method is continuously declining, and has little fluctuation

compared with other methods. However, it can be easily found that the curve

corresponding to BC fluctuates greatly during the decline and does not clearly

show a downward trend. Therefore, it can be inferred that our proposed method

EffG is valid and reasonable compared to other methods to some extent.

Figure 23: The figure describes the correlation between different methods and SI model in
Jazz. As the ranking of nodes changes, the N value of BC fluctuates greatly. And our method
continues to decline and is most stable

5. Conclusion

In this paper, an original and novel method for identifying the influence

node is proposed: an effective distance gravity model. Instead of considering
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Figure 24: The figure describes the correlation between different methods and SI model in
NS. The curves of CC, BC, EC and DC fluctuates greatly. While our method continues to
decline and is stable.

Figure 25: The figure describes the correlation between different methods and SI model in
Email. Overall trend of these curves is declining. And the curve of BC fluctuates the most
greatly. While our method and CC are more stable.
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Figure 26: The figure describes the correlation between different methods and SI model in
USAir. Overall trend of these curves is declining. The curve of BC fluctuates greatly. While
our method and EC are more stable than the others

single-dimensional factors, our proposed EffG comprehensively considers the lo-

cal information of the node and global information of the network based on the

idea of multi-source information fusion. An important contribution is that the

EffG uses the effective distance to replace traditional static Euclidean Distance.

EffG is able to take full advantage of the dynamic information exchange be-

tween nodes in the real-world network. In addition, EffG can help us unravel

the topology of the network that drives many dynamic information propagation

processes. Importantly, the identification of influential nodes by EffG is aligned

to real-world conditions. In order to verify the effectiveness and feasibility of

this method, a variety of experiments were conducted on eight real-world net-

works and compared with six existing well-known methods. The experimental

results indicated that our method performs well under dynamic information

propagation and across several test-examples, thereby demonstrating its poten-

tial applications in network science, biological and social system, time series and

information propagation.
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