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Abstract 

Cloud computing has become a popular technology for executing scientific workflows. However, with a 

large number of hosts and virtual machines (VMs) being deployed, the cloud resource failures, such as 

the permanent failure of hosts (HPF), the transient failure of hosts (HTF), and the transient failure of 

VMs (VMTF), bring the service reliability problem. Therefore, fault tolerance for time-consuming  

scientific workflows is highly essential in the cloud. However, existing fault-tolerant (FT) approaches 

consider only one or two above failure types and easily neglect the others, especially for the HTF. This 

paper proposes a Real-time and dynamic Fault-tolerant Scheduling (ReadyFS) algorithm for scientific 

workflow execution in a cloud, which guarantees deadline constraints  and improves resource utilization  

even in the presence of any resource failure. Specifically, we first introduce two FT mechanisms, i.e., the 

replication with delay execution (RDE) and the checkpointing with delay execution (CDE), to cope with  

HPF and VMTF, simultaneously. Additionally, the rescheduling (ReSC) is devised to tackle the HTF that 

affects the resource availability of the entire cloud datacenter. Then, the resource adjustment (RA) 

strategy, including the resource scaling-up (RS-Up) and the resource scaling-down (RS-Down), is used 

to adjust resource demands and improve resource utilization dynamically. Finally, the ReadyFS algorithm 

is presented to schedule real-time scientific workflows by combining all the above FT mechanisms with  

RA strategy. We conduct the performance evaluation with real-world scientific workflows and compare 

ReadyFS with five vertical comparison algorithms and three horizontal comparison algorithms. 

Simulation results confirm that ReadyFS is indeed able to guarantee the fault tolerance of scientific 

workflow execution and improve cloud resource utilization.  
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1. Introduction 

Cloud computing platform leverages virtualization technology to provide flexible, scalable, and 

unlimited virtual machine (VM) resources for external customers  [1,2]. Hence, more and more institutes 

and enterprises conduct their large-scale applications in the cloud platforms to produce high-quality 

service and low cost. For example, scientific workflow applications (e.g., physics, bioinformatics , 

astronomy, numerical weather forecast, etc.) prefer to be deployed on the clouds to decrease execution 

time and cost [3-5].  

Although cloud computing brings great benefits for executing scientific workflows, the cloud 

suffers from multiple types of resource failure, such as the permanent failure of hosts (HPF) [6,7], the 

transient failure of hosts (HTF) [8,9], and the transient failure of VM (VMTF) [10,11]. It is reported that 

0.01% of reliable hosts will be failed every day, and about 1-5% of hard disks die and 2-4% of physical 

servers crash each year [6]. The above hardware problems cause the HPF. Due to human errors, all the 

cloud hosts may experience HTF. As an example, the power failure of the datacenter level impacts the 



power supply of the hosts [9]. In addition, the participant faults, i.e., the conflict between cloud 

participants (e.g., resource provider and administrator), influence the host availability [8]. VMTF mainly  

results from the software problem, since VM is a type of middleware and hence has a probability of 

arising failure [12].  

All the failures can trigger the premature termination of task execution, directly impacting the 

makespan of the scientific workflow. This is because the task failure inevitably elongates its execution  

time, causing the delay of the entire workflow. However, some workflows are real-time scientific 

applications that demand an effective completion time. Consequently, developing fault-tolerant (FT) 

mechanisms for scientific workflow execution is essential in a cloud.  

Resubmission and replication are two fundamental FT mechanisms that have been effectively 

applied in the cluster [13,14], grid [15-17], and cloud [6,18,19]. Resubmission resubmits a task after a 

failure happens, which can effectively reduce resource consumption. However, it introduces a longer task 

execution time, resulting in hardly satisfying the deadline constraint [19]. Alternatively, replication  

duplicates multiple task copies and allocates them to different computational units [18]. For example, the 

primary-backup (PB) model is one of the replication methods, where only two task copies are scheduled 

[6,13,20]. Essentially, the more task copies, the higher FT ability but, the lower resource utilization.  

Rescheduling is usually applied in the service delay caused by resource dynamics and failures  

[21,22]. The key idea of rescheduling is to readjust sub-makespans and recompute optimal mapping  

strategies for unexecuted tasks. For example, if HTF occurs, rescheduling is utilized to adjust the original 

scheduling scheme for unfinished tasks to compensate for the host and VM downtime. Thus, it has the 

potential to guarantee the completion time of workflow execution.  

HPF, HTF, and VMTF are the three main and common resource failure types. To the best of our 

knowledge, none of the related work considers all the above resource failures for scientific workflows  

scheduling in the cloud simultaneously. In order to overcome the resource failure problem, this work 

presents a Real-time and dynamic Fault-tolerant Scheduling algorithm, called ReadyFS, for scientific 

workflows in the cloud. ReadyFS is devised to guarantee workflow completion time and improve cloud 

resource utilization even in the presence of host and VM failures. More specifically, the replication with  

delay execution (RDE) and checkpointing with delay execution (CDE) are devised to tolerate HPF and 

VMTF. The rescheduling FT mechanism, ReSC, is introduced to cope with HTF when all the cloud 

resources are unavailable. In addition, the resource adjustment (RA) strategy, including resource scaling-

up (RS-Up) and resource scaling-down (RS-Down), is developed to adjust resource demands  and 

improve resource utilization. By integrating the above FT mechanisms with RA strategy, ReadyFS is 

presented to implement the real-time FT workflow scheduling. We evaluate the ReadyFS with real-world  

scientific workflows and compare it with five vertical comparison algorithms and three horizontal 

comparison algorithms. Simulation results show that ReadyFS is indeed able to guarantee fault-tolerance 

and improve resource utilization. The main contributions of this paper are listed as follows:  

 By incorporating the cloud characteristics and scientific workflow, FT scheduling architecture is 

established to guarantee fault tolerance and improve resource utilization.  

 A sub-makespan allocation is designed to divide the workflow deadline into multiple sub-

makespans. Based on the allocated sub-makespan, we propose three FT mechanisms, i.e., RDE, 

CDE, and ReSC, to guarantee the fault tolerance of scientific workflow execution. Moreover, 

according to the theoretical proof, RDE and CDE outperform the traditional replication and 

resubmission methods, respectively.  

 We design a dynamic RA strategy, including the RS-Up and RS-Down, to adjust resource demands 



and achieve high cloud resource utilization, which is applied during the process of workflow 

execution and scheduling.  

 We compare ReadyFS with five vertical and three horizontal comparison algorithms based on real-

world scientific workflows. The corresponding experimental results prove the feasibility and 

effectiveness of our ReadyFS.  

The rest of this paper is organized as follows: Section 2 reviews the related work. Section 3 describes 

scheduling architecture and system models. Section 4 introduces the implementation of the proposed 

ReadyFS algorithm. Section 5 discusses performance evaluation. Finally, Section 6 gives the conclusions 

and future work.  

 

2. Related Work 

Cloud workflow scheduling has been extensively studied. Zhao et al. [3] propose a cloud workflow 

management system by bringing cloud and workflow together. Wang et al. [23] introduce an attack-

defense game model-based scientific workflow scheduling method to improve the security of workflow 

execution. Rodriguez and Buyya [24] present a resource provisioning method to minimize the workflow 

execution cost under the pre-defined deadline constraint. Based on the VM pre-allocation scheme and 

three resource optimization strategies, Li et al. [25] introduce a cost and energy-aware scheduling (CEAS) 

algorithm for cloud scientific workflows. Tong et al. [26] propose a deep Q-learning-based workflow 

scheduling algorithm in the cloud. Zhang et al. [5] devise an efficient priority and relative distance (EPRD) 

algorithm for workflow scheduling to minimize the finish time with the deadline constraint. Many mult i-

objective algorithms for workflow scheduling have been proposed, as well. For example, Durillo et al. 

[27] present a Pareto-based list multi-objective workflow scheduling algorithm. Zhu et al. [28] propose 

an evolutionary algorithm-based multi-objective scheduling method. Kalra and Singh [29] apply the 

Intelligent Water Drops Algorithm and Genetic Algorithm jointly to implement multi-objective workflow 

scheduling, i.e., optimizing makespan, cost, and energy consumption. However, all the above algorithms  

neglect the FT problem that has a direct impact on the quality of service (QoS) of the workflow execution.  

Resource failure is unpredictable, and many FT methods have been developed due to their 

importance for time-critical applications. Resubmission and replication are two basic FT mechanisms in 

the distributed computing environment [14]. Replication submits multiple task copies to different  

processing units simultaneously to guarantee that at least one task copy executes successfully. This 

mechanism can obtain the minimum task completion time. For example, Plankensteiner and Prodan [14] 

propose a heuristic method for scheduling scientific workflows to tolerate resource failures in the grid. 

However, this scheduling method cannot be applied in the cloud environment since the resource 

paradigm of the cloud is distinct from that of the grid. Pandey et al. [30] use the task replication method 

to enhance the robustness of mobile device clouds when orchestrating mobile workflow applications. 

However, it considers the failure of the mobile environment that is different from the cloud resource 

failures. Marahatta et al. [31] propose an energy-aware fault-tolerant dynamic scheduling scheme, called  

EFDTS, to improve resource utilization and reduce energy consumption for the cloud data center. 

However, EFDTS is devised for parallel task scheduling and cannot be applied to schedule workflow 

applications. To make the best use of idle time and surplus budget, Calheiros and Buyya [32] introduce 

an enhanced IC-PCP with a replication (EIPR) algorithm to improve the likelihood of workflow 

execution. Nevertheless, EIPR considers  only VMTF and cannot tackle other cloud resource failures.  

The PB model, using only the primary copy and backup copy, has gained its popularity. Zhu et al. 

[13] present a QoS-aware fault-tolerant (QAFT) strategy to tolerate the permanent failure of the 



heterogeneous cluster. Zheng and Veeravalli [15] design two FT scheduling methods to prevent the 

impact of processor failure and communication delay in the grid. Nevertheless, the above methods cannot 

be directly adopted in the cloud environment as the cloud has different resource characteristics from the 

cluster and grid. Considering the performance volatility of cloud resources, Yan et al. [7] propose a PB-

based dynamic fault-tolerant elastic scheduling (DEFT) algorithm for real-time tasks. However, DEFT 

is devised for parallel tasks, not for workflow tasks. Ding et al. [33] propose a fault-tolerant elastic 

scheduling algorithm, called FTESW, for scientific workflows in the cloud. The PB model is used in 

FTESW to achieve both the fault tolerance of scientific workflows and the high resource utilization of 

the cloud system. However, FTESW considers only the host failure, neglecting the other resource failures  

in the cloud. Zhu et al. [6] construct a real-time FT scheduling framework for scientific workflow by 

incorporating the traditional PB model and cloud features. However, this FT framework takes only the 

host failure into consideration. Fan et al. [34] develop a PB-based dynamic fault-tolerant strategy for 

workflow scheduling with the deadline constraint, where a Petri nets -based technique is applied to 

analyze and validate the feasibility of the proposed FT method. However, it focuses only on the VM 

failure, neglecting the host failure.  

The resubmission method resubmits or re-executes the failed tasks on the same or another 

processing unit. Olteanu et al. [35] design a FT algorithm with resubmission and exception handling in  

large-scale distributed systems. However, this FT algorithm considers the task level failure, not resource 

level failure, and it is orthogonal to our FT scheduling approach. Chen et al. [36] introduce an efficient  

resubmission heuristic method to address multi-workflow scheduling problems by task rearrangement  

and rescheduling. However, this method is used for service delays caused by resource contention and 

performance prediction instead of resource failure. Yao et al. [11] present a FT scheduling algorithm, 

called ICFWS, with resubmission and replication methods for cloud scientific workflow. However, 

ICFWS does not consider the host failure aspects. Wu et al. [37] propose a spatial and temporal re-

execution-based dynamic FT workflow scheduling scheme, DFTWS, to cope with resource failures. 

However, the transient failure of all the hosts in the cloud is ignored in DFTWS.  

The checkpoint rollback recovery is another form of resubmission by saving the task execution state 

at different stages. When a failure occurs, it resumes the failed task from the latest checkpointing state. 

Bougeret et al. [38] provide a checkpointing-based FT scheduling strategy for parallel applications to 

minimize the job execution time in large-scale and failure-prone computing systems. Wang et al. [39] 

devise a temporal checkpointing selection method for business and scientific workflow to verify the 

temporal property. Aupy et al. [40] use the rollback and recovery mechanism to optimize the workflow 

completion time. Setlur et al. [41] introduce a FT workflow scheduling approach using heuristic 

replication and checkpointing mechanisms. However, this approach takes the task-level or workflow 

level failure into account, not the resource-level. Considering VM coordination for executing the parallel 

application in the cloud, Liu et al. [42] propose a proactively coordinated fault tolerance (PCFT) 

algorithm to tolerate the physical machine failure in the cloud, reducing network resource usage and 

energy consumption. However, PCFT is only suitable for parallel applications, not for workflows. In a 

word, the checkpointing mechanism is indeed able to address the transient failure, but it is not amenable 

to permanent resource failure, such as HPF.  

The VM faults should be concerned as well. Mondal and Muppala [43] apply the checkpointing for 

scientific workflows to eliminate the impact of VMTF. Sobhanayak et al. [12] propose a VMTF analysis 

model to achieve load balancing and high resource utilization. Due to the threat of deliberate security 

intrusions and malicious attacks, Zheng et al. [44] present a queuing theory analysis for quantifying a 



security attribute in the VM-based FT architecture. Das et al. [45] introduce a hierarchical model by 

considering the performance degradation of web applications  to cope with the VM failures . However, 

these FT algorithms consider only the VMTF, irrespective of other resource failures.  

There also exist several rescheduling efforts for workflow scheduling in grid and cloud [21,22,46-

48]. In [21], a runtime rescheduling approach is proposed for dynamic service delay and failure by 

recomputing the optimal scheduling schemes. In [46], rescheduling is applied to increase the job 

completion reliability when the resource performance fluctuates. In [47], a workflow rescheduling is 

proposed to merge the processors as much as possible to realize energy efficiency. In [48], a delay 

minimizat ion algorithm for scientific workflow execution in the cloud is introduced, which uses the 

rescheduling to optimize the execution cost and time. Although rescheduling has been used for improving 

reliability and reducing cost and time, this work is the first attempt to apply the core idea of rescheduling 

to cope with the HTF.  

The main distinctions between the above existing works and our work are two-fold: 1) the existing  

approaches consider only one or two failure types at most. For example, the works in [6,7,33] consider 

only the HPF, the works in [11,32] take only the VMTF into account, and the work in [10] focuses on 

the HPF and VMTF, 2) as far as we know, none of the existing works concentrates on the HTF of cloud 

resources. In order to overcome the VMTF, HPF, and HTF simultaneously, this paper brings RDE, CED, 

and ReSC together to form an effective FT scheduling mechanism to guarantee the reliability of scientific 

workflow execution. Moreover, we devise a RA strategy, including RS-Up and RS-Down, to adjust 

resource demands and improve resource utilization dynamically.  

 

3. Architecture and Models 

This section first describes the FT scheduling architecture. Then, some models are presented. The basic 

notations used in this paper are given in Table 1.  

Table 1. Major notations. 

Symbols Semantics 

𝑡𝑖 The task 𝑡𝑖 of workflow 

𝑛 The number of workflow tasks  

𝑉𝑀 (𝑘) The type of VM 𝑘 in the cloud 

𝐶(𝑘) The processing capacity of 𝑉𝑀 (𝑘) 

𝑇(𝑡𝑖 , 𝑉𝑀 (𝑘)) The service time of 𝑡𝑖 on 𝑉𝑀 (𝑘) 

𝑇𝑒𝑥(𝑡𝑖 , 𝑉𝑀(𝑘)) The execution time of task 𝑡𝑖 on 𝑉𝑀 (𝑘) 

𝑇𝑟𝑥
(𝑡𝑖

) The data receiving time of task 𝑡𝑖 

𝑇𝑡𝑥
(𝑡𝑖

) The data transmission time of task 𝑡𝑖 

𝑇𝑀𝑆  The makespan of workflow 

𝑇𝑠𝑢𝑏𝑀𝑆
(𝑡𝑖

) The sub-makespan of task 𝑡𝑖 

𝑇𝐷𝐿  The deadline constraint of workflow 

𝜆 𝑊𝐹 The arrival rate of scientific workflows 

𝜆 𝑉𝑀 The arrival rate of VMTF 

𝜆 𝐻 The arrival rate of HTF 

3.1 Scheduling Architecture 

The FT scheduling architecture is depicted in Fig. 1. The scheduler mainly performs deadline analysis, 

RDE, CDE, ReSC, and RA. Moreover, it is also responsible for monitoring resource status and the 

running status of hosts and VMs. It is worth pointing out that the status information is the small data; 



hence, the communication delay is neglected [7].  

When a batch of scientific workflows submitted by cloud users arrives at the cloud, all of them first 

enter the workflow queue and will be processed by the first -come-first-service (FCFS) policy. In the 

deadline analysis, the workflow structure, parameters , and QoS requirements are analyzed. If the 

deadline can be satisfied, the sub-makespan of each task is computed. Otherwise, this workflow will be 

rejected. RDE and CDE are then used to compute each task's theoretical resource requirement according 

to the assigned sub-makespan. When the cloud system’s workload is light, some hosts will be scaled 

down to improve resource utilization. While the workload is heavy, the scheduler scales up new hosts 

and creates new VMs to meet resource demands. This is the RA strategy that dynamically provides 

computing resources based on the resource status information. According to the delay execution 

mechanism, if one of the primary copies of a task finishes successfully, the VM resources occupied by 

the backup copies will be reclaimed. Moreover, if the HTF happens, ReSC is triggered to reschedule all 

the unfinished and unexecuted workflows.  

 

 

Fig. 1. The FT scheduling architecture.  

 

3.2 Workflow Model 

A workflow is defined as 𝑊𝐹 = (𝒯, ℰ) , where 𝒯 = {𝑡0 , 𝑡1, … , 𝑡𝑖 , … , 𝑡𝑛−1}  is the task set, and ℰ =

{(𝑡𝑖 , 𝑡𝑗)|𝑡𝑖 , 𝑡𝑗 ∈ 𝒯} is the edge set that represents the dependency structure of all the tasks. Let 𝑝𝑟𝑒(𝑡𝑖) 

and 𝑠𝑢𝑐(𝑡𝑖) denote the predecessor set and the successor set of task 𝑡𝑖, respectively. A successor task 

can be executed if and only if all of its predecessors have been finished. If a task has no predecessor, we 

call it entry task 𝑡𝑒𝑛𝑡𝑟𝑦 ; on the contrary, if a task has no successor, we name it exit task 𝑡𝑒𝑥𝑖𝑡 . 𝐷 𝑖𝑛(𝑡𝑖) 

and 𝐷𝑜𝑢𝑡(𝑡𝑖
)  are regarded as the size of input data and output data, respectively. Each task has a 

workload 𝑊(𝑡𝑖
) , generally, which consists of sequential workload 𝑊𝑠 (𝑡𝑖

)  and parallel workload  

𝑊𝑝 (𝑡𝑖). Note that 𝑊𝑠 (𝑡𝑖
) and 𝑊𝑝 (𝑡𝑖 ) can be processed only by the single-core CPU and by the mult i-

core CPU, respectively. Let 𝜂  denote the parallel workload ratio. Then, 𝑊𝑝 (𝑡𝑖
) = 𝜂𝑊(𝑡𝑖

) , and 

𝑊𝑠 (𝑡𝑖
) = (1 − 𝜂)𝑊 (𝑡𝑖

).  

 

3.3 Cloud Model 

A commercial cloud usually possesses thousands of physical hosts, and we assume that the scale of cloud 

computing resources is infinite [6,25]. Let 𝐻 = {𝐻(1), … , 𝐻(𝑚), … 𝐻(𝑀)} define the set of host types 

in cloud. Actually, a host can be abstracted into several heterogeneous VMs by virtualization technology. 

Thus, VM is the fundamental processing unit in the cloud. Let 𝑉𝑀 = {𝑉𝑀(1), … , 𝑉𝑀(𝑘), … , 𝑉𝑀(𝐾)} 

represent the set of VM types. For example, as shown in Table 2, Amazon EC2 offers six types of m4 

series VM instances [49]. Specifically, the 𝑉𝑀 (𝑘) has the computation capacity 𝐶(𝑘) and the price 



per hour. However, as stated in Section 3.2, only the parallel workload 𝑊𝑝 (𝑡𝑖) can be processed by a 

multi-core CPU. Hence, the execution time of task 𝑡𝑖 on 𝑉𝑀 (𝑘) can be expressed as  

𝑇𝑒𝑥(𝑡𝑖 , 𝑉𝑀(𝑘)) = 𝑊𝑠 (𝑡𝑖)/𝐶 + 𝑊𝑝 (𝑡𝑖)/𝐶(𝑘)                  (1) 

where 𝐶  represents the computing capacity of the single-core CPU.  

 

Table 2. The m4 series of VMs in Amazon EC2. 

Number: 𝑘 VM Type: 𝑉𝑀(𝑘) CPU: 𝐶(𝑘) Cost per Hour ($) 

1 m4.large 2 0.1 

2 m4.xlarge 4 0.2 

3 m4.2large 8 0.4 

4 m4.4large 16 0.8 

5 m4.10large 40 2.0 

6 m4.16large 64 3.2 

 

3.4 Fault Model 

Let 𝜆 𝐻  denote the arrival rate of HTF, which follows the Poisson distribution. Then, the reliable 

probability follows the Exponential distribution, which is represented by  

𝑃𝐻 (𝑇) = exp  (−𝜆 𝐻 𝑇)                                (2) 

where 𝑇 is the task service time.  

Moreover, the cloud will suffer from HPF. Let 𝜆 𝐻
′  be the failure arrival rate, and then the reliability  

is measured by  

𝑃𝐻
′ (𝑇) = exp  (−𝜆 𝐻

′ 𝑇)                               (3) 

The minimum MTTF (mean time to failure) of the cloud hosts is always greater than or equal to the 

maximum service time of all the tasks [6,11,13]. Hence, the probability that two hosts happen HPF 

simultaneously is close to zero, i.e., (1 − 𝑃𝐻
′ (𝑇))𝑁 → 0, 𝑁 ≥ 2. This explains the reason why the PB 

model can be used for FT scheduling.  

Similar to the host reliability, the VM reliability is also modeled by the Exponential distribution. 

𝑃𝑉𝑀 (𝑇) = exp (−𝜆 𝑉𝑀𝑇)                              (4) 

where 𝜆 𝑉𝑀 means the arrival rate of VMTF.  

The features of fault tolerance are summarized as follows [6,10,13].  

 HPF and HTF both can cause VM and task failures, i.e., all the cloud services are lost.  

 Host failures are independent and follow the Poisson distribution. The repair process is initiated  

immediately when HTF happens. However, HPF is viewed as unrecoverable in a short time.  

 VMTF is independent and obeys the Poisson distribution as well. Moreover, all the VMs can be 

recovered in a short time when VMTF occurs.  

 All the VM and host failures can be detected immediately by the available fail-signal test.  

 

4. Fault-tolerant Scheduling 

This section first presents the RDE, CDE, and ReSC mechanisms, respectively. Then, the RA strategy is 

introduced, which includes the RS-Up and RS-Down. Finally, the ReadyFS algorithm is summarized in 

terms of the above FT scheduling mechanisms and RA strategy. Regardless of any failure, the computing 

resources required by each task and the sub-makespan of each task are computed through the following  

steps.  

Let 𝑇𝑠𝑡𝑎𝑟𝑡 (𝑡𝑖 ) and 𝑇𝑒𝑛𝑑 (𝑡𝑖) denote the start time and the end time of task 𝑡𝑖, respectively, and 



𝑇𝑠𝑡𝑎𝑟𝑡 (𝑡𝑖 ) is calculated by  

𝑇𝑠𝑡𝑎𝑟𝑡
(𝑡𝑖

) = max  𝑡𝑗∈𝑝𝑟𝑒(𝑡𝑖) {𝑇𝑒𝑛𝑑 (𝑡𝑗)}                        (5) 

If 𝑡𝑖 = 𝑡𝑒𝑛𝑡𝑟𝑦 , then 𝑇𝑠𝑡𝑎𝑟𝑡
(𝑡𝑖

) = 0. The task 𝑡𝑖 cannot start only when receiving all the predecessors’ 

output data. Thus, the data receiving time is given by 

𝑇𝑟𝑥
(𝑡𝑖

) = 𝐷 𝑖𝑛(𝑡𝑖)/𝐵                              (6) 

where 𝐷 𝑖𝑛(𝑡𝑖
) = ∑ 𝐷𝑜𝑢𝑡(𝑡𝑗 )𝑡𝑗∈𝑝𝑟𝑒(𝑡𝑖 ) , and 𝐵 is the network bandwidth between VMs. After that, the 

execution time of task 𝑡𝑖 mapped on 𝑉𝑀(𝑘)  is 𝑇𝑒𝑥 (𝑡𝑖 , 𝑉𝑀 (𝑘)), which has been given in Eq. (1). The 

transmission time, i.e., sending output data to the successors, is computed by  

𝑇𝑡𝑥
(𝑡𝑖

) = |𝑠𝑢𝑐(𝑡𝑖)|𝐷𝑜𝑢𝑡(𝑡𝑖)/𝐵                         (7) 

where |𝑠𝑢𝑐 (𝑡𝑖 )| is the number of the successors of task 𝑡𝑖. Then, the service time of task 𝑡𝑖, including  

data receiving time, task execution time, and data transmission time, is given by 

𝑇(𝑡𝑖 , 𝑉𝑀(𝑘) ) = 𝑇𝑟𝑥
(𝑡𝑖

) + 𝑇𝑒𝑥 (𝑡𝑖 , 𝑉𝑀(𝑘)) + 𝑇𝑡𝑥
(𝑡𝑖

)               (8) 

Thus, the end time of task 𝑡𝑖 is calculated by  

𝑇𝑒𝑛𝑑
(𝑡𝑖

) = 𝑇𝑠𝑡𝑎𝑟𝑡
(𝑡𝑖

) + 𝑇(𝑡𝑖 , 𝑉𝑀(𝑘) )                     (9) 

The makespan of a workflow is the end time of the exit task, i.e., 

𝑇𝑀𝑆 = 𝑇𝑒𝑛𝑑
(𝑡𝑒𝑥𝑖𝑡

)                             (10) 

We define the sub-makespan of task 𝑡𝑖  as 𝑇𝑠𝑢𝑏𝑀𝑆
(𝑡𝑖

)  [11,25], representing the pre-assigned 

service time of each task. The sub-makespans of all the workflow tasks can be obtained by dividing the 

makespan of workflow into multiple time spans . Obviously, if every task can be completed within its 

individual sub-makespan, then the whole workflow will be finished within the deadline constraint.  

The minimum service time of task 𝑡𝑖 can be obtained from Eq. (8) by mapping this task to 𝑉𝑀(𝐾) . 

In this case, the minimum makespan 𝑇𝑀𝑆
𝑚𝑖𝑛  of the workflow can be computed according to Eq. (10). 

Thus, the sub-makespan of task 𝑡𝑖 is calculated by  

𝑇𝑠𝑢𝑏𝑀𝑆
(𝑡𝑖

) = 𝑇(𝑡𝑖 , 𝑉𝑀(𝐾))𝑇𝐷𝐿 /𝑇𝑀𝑆
𝑚𝑖𝑛                      (11) 

where 𝑇𝐷𝐿  is the deadline constraint. Generally, the specified deadline 𝑇𝐷𝐿  must be not less than the 

minimum makespan 𝑇𝑀𝑆
𝑚𝑖𝑛 , i.e., 𝑇𝐷𝐿 ≥ 𝑇𝑀𝑆

𝑚𝑖𝑛 .  

 

4.1 Replication with Delay Execution (RDE) 

This section presents the RDE to cope with VMTF and HPF. Let a small positive number 𝜀 denote the 

replication coefficient for RDE. Then, we have  

(1 − 𝑃𝑉𝑀 (𝑇))𝑁𝑟𝑒𝑝(𝑡𝑖) ≤ 𝜀                            (12) 

where 𝑁𝑟𝑒𝑝 (𝑡𝑖) is the number of the copies duplicated by task 𝑡𝑖. Also, the execution of a task may fail 

because of the HPF, and hence an extra copy is required. Then, the total number of the copies of task 𝑡𝑖 

is required as follows: 

𝑁(𝑡𝑖
) = 𝑁𝑟𝑒𝑝 (𝑡𝑖) + 1                             (13) 

Eqs. (12) and (13) can be explained as follows: 𝑁𝑟𝑒𝑝 (𝑡𝑖) copies of task 𝑡𝑖 are used for the VMTF, and 

an extra copy is added to cope with HPF. Thus, the probability of at least one task copy executes 

successfully is 1 − 𝜀 .  

Unlike the traditional replication method that executes all task copies simultaneously, RDE divides 

𝑁(𝑡𝑖
)  task copies into two groups: primary copies and backup copies . In this case, primary copies 

execute first, and then backup copies execute, which is called the delay execution. The number of primary  

copies of task 𝑡𝑖 is represented by 𝑁𝑝
(𝑡𝑖

), i.e., 

𝑁𝑝
(𝑡𝑖

) = 𝑁(𝑡𝑖 )/2                                 (14) 

The number of backup copies is represented by 𝑁𝑏
(𝑡𝑖

), i.e., 



𝑁𝑏
(𝑡𝑖

) = 𝑁(𝑡𝑖
) − 𝑁𝑝

(𝑡𝑖
)                             (15) 

Fig. 2 shows the two cases of RDE. Case 1: 𝑇(𝑡𝑖 , 𝑉𝑀 (𝑘)) ≤ 𝑇𝑠𝑢𝑏𝑀 𝑆(𝑡𝑖) < 2𝑇(𝑡𝑖 , 𝑉𝑀 (𝑘)), the 

execution of backup copies start during the execution process of primary copies and stop immediately if 

one of the primary copies executes successfully; Case 2: 𝑇𝑠𝑢𝑏𝑀𝑆 (𝑡𝑖) ≥ 2𝑇(𝑡𝑖 , 𝑉𝑀 (𝑘)), the execution  

of backup copies start only when all the primary copies have failed.  

Intuitively, RDE requires fewer resources than the traditional replication method. This is because 

we do not need to execute the backup copies entirely. In general, the number of VM resources occupied 

by one task copy is computed by the form “time × 𝐶(𝑘)’’, i.e.,  

𝑅(𝑡𝑖
) = 𝑇(𝑡𝑖 ,𝑉𝑀(𝑘))𝐶(𝑘)                            (16) 

Thus, the number of resources required by the traditional replication method is  

𝑅𝑇𝑅
(𝑡𝑖

) = 𝑁(𝑡𝑖)𝑅(𝑡𝑖
)                               (17) 

 

 

(1) Case 1 of RDE (2) Case 2 of RDE 

Fig. 2. Two cases of RDE. 

 

Next, we compute the expected number of resources required by RDE and prove that the traditional 

replication method will consume more resources  than RDE.  

Case 1 has two scenarios:  

(1.1) At least one of the primary copies executes successfully, the probability of which is given by  

𝑃11 = 1 − [1 − 𝑃𝑉𝑀 (𝑇(𝑡𝑖 , 𝑉𝑀(𝑘)))]𝑁𝑝(𝑡𝑖)
                    (18) 

Hence, there is no need to execute backup copies, and the resource required in this case is calculated by 

 𝑅𝑅𝐷𝐸
11 (𝑡𝑖

) = 𝑁𝑝 (𝑡𝑖)𝑇(𝑡𝑖 , 𝑉𝑀(𝑘))𝐶(𝑘) + 𝑁𝑏
(𝑡𝑖

)[2𝑇(𝑡𝑖 , 𝑉𝑀(𝑘)) − 𝑇𝑠𝑢𝑏𝑀𝑆 (𝑡𝑖))]𝐶(𝑘)    (19) 

(1.2) If all the primary copies fail, the probability is  

𝑃12 = [1 − 𝑃𝑉𝑀 (𝑇(𝑡𝑖 , 𝑉𝑀(𝑘)))]𝑁𝑝(𝑡𝑖)
                     (20) 

Then, backup copies need to be executed completely. The number of resources  is computed by  

𝑅𝑅𝐷𝐸
12 (𝑡𝑖

) = 𝑁(𝑡𝑖
)𝑇(𝑡𝑖 , 𝑉𝑀(𝑘))𝐶(𝑘)                       (21) 

Therefore, the total resources required for fault tolerance is represented by  

𝔼{𝑅𝑅𝐷𝐸
1 (𝑡𝑖

)} = 𝑃11 𝑅𝑅𝐷𝐸
11 (𝑡𝑖

) + 𝑃12 𝑅𝑅𝐷𝐸
12 (𝑡𝑖

)                   (22) 

Case 2 also has two scenarios:  

(2.1) At least one of the primary copies executes successfully, and the corresponding probability is 

𝑃21 = 𝑃11 . So, we do not need to execute backup copies, and the number of resources is calculated by 

 𝑅𝑅𝐷𝐸
21 (𝑡𝑖

) = 𝑁𝑝 (𝑡𝑖)𝑇(𝑡𝑖 , 𝑉𝑀(𝑘) )𝐶(𝑘)                      (23) 

(2.2) If all the primary copies fail, the probability is 𝑃22 = 𝑃12. Then, backup copies are required 

to be executed completely. The number of computing resources required in this case is computed by  

𝑅𝑅𝐷𝐸
12 (𝑡𝑖

) = 𝑁(𝑡𝑖
)𝑇(𝑡𝑖 , 𝑉𝑀(𝑘))𝐶(𝑘)                       (24) 

Therefore, the total number of resources is represented as  



𝔼{𝑅𝑅𝐷𝐸
2 (𝑡𝑖

)} = 𝑃21 𝑅𝑅𝐷𝐸
21 (𝑡𝑖

) + 𝑃22𝑅𝑅𝐷𝐸
22 (𝑡𝑖

)                  (25) 

We give Theorem 1 to prove that RDE outperforms the traditional replication method on resource 

consumption.  

Theorem 1. The total number of resources required by RDE is less than that of the traditional 

replication method, i.e., 

𝑅𝑇𝑅
(𝑡𝑖

) > 𝔼{𝑅𝑅𝐷𝐸
1 (𝑡𝑖)}                           (26) 

𝑅𝑇𝑅
(𝑡𝑖

) > 𝔼{𝑅𝑅𝐷𝐸
2 (𝑡𝑖)}                           (27) 

Proof. According to Eq. (22) and using the fact that 𝑃11 + 𝑃12 = 1, we have 

𝔼{𝑅𝑅𝐷𝐸
1 (𝑡𝑖

)} = 𝑃11𝑅𝑅𝐷𝐸
11 (𝑡𝑖

) + 𝑃12𝑅𝑅𝐷𝐸
12 (𝑡𝑖

)  

= 𝑁(𝑡𝑖
)𝑇(𝑡𝑖 , 𝑉𝑀(𝑘))𝐶(𝑘) + 𝑁𝑏

(𝑡𝑖
)[𝑇(𝑡𝑖 , 𝑉𝑀(𝑘)) − 𝑇𝑠𝑢𝑏𝑀𝑆

(𝑡𝑖
)]𝑃11 𝐶(𝑘)     (28) 

We know that 𝑇(𝑡𝑖 , 𝑉𝑀 (𝑘)) < 𝑇𝑠𝑢𝑏𝑀 𝑆
(𝑡𝑖

), and  𝑃11 > 0, and hence we get 

𝑁𝑏
(𝑡𝑖

)[𝑇(𝑡𝑖 , 𝑉𝑀(𝑘)) − 𝑇𝑠𝑢𝑏𝑀𝑆
(𝑡𝑖

)]𝑃11 𝐶(𝑘) < 0                (29) 

Then, we get 

𝔼{𝑅𝑅𝐷𝐸
1 (𝑡𝑖

)} < 𝑁 (𝑡𝑖
)𝑇(𝑡𝑖 , 𝑉𝑀(𝑘) )𝐶(𝑘) = 𝑅𝑇𝑅

(𝑡𝑖
)                (30) 

This proves Eq. (26). Using the same analysis process can prove Eq. (27).   

The pseudocode of RDE is outlined in Algorithm 1. Let 𝑉𝑀𝑅𝐷𝐸
𝑜𝑝𝑡

(𝑘)  and 𝑅𝑅𝐷𝐸
𝑜𝑝𝑡

(𝑡𝑖)  denote the 

optimal VM type and the optimal number of resources for task 𝑡𝑖, respectively (lines 1-2). Then, we go 

through all the VM types and select some of them that meet the sub-makespan constraint (lines 3-5). If 

Case 1 is satisfied, the number of resources 𝔼{𝑅𝑅𝐷𝐸
1 (𝑡𝑖

)} is calculated (lines 6-8); or 𝔼{𝑅𝑅𝐷𝐸
2 (𝑡𝑖

)} is 

calculated (lines 9-11). Finally, 𝑅𝑅𝐷𝐸
𝑜𝑝𝑡 (𝑡𝑖

)  and 𝑉𝑀𝑅𝐷𝐸
𝑜𝑝𝑡

(𝑘)  are updated (lines 12-14). The time 

complexity of RDE is 𝑂(𝐾), which mainly depends on the number of VM types.  

 

Algorithm 1. Replication with Delay Execution (RDE) 

1.  𝑉𝑀𝑅𝐷𝐸
𝑜𝑝𝑡 (𝑘) ← 0;  

2.  𝑅𝑅𝐷𝐸
𝑜𝑝𝑡 (𝑡𝑖

) ← ∞;  

3.  foreach 𝑉𝑀 (𝑘) ∈ 𝑉𝑀 do 

4.       if 𝑇𝑠𝑢𝑏𝑀𝑆 (𝑡𝑖 ) ≥ 𝑇(𝑡𝑖 , 𝑉𝑀(𝑘)) then 

5.           Calculate 𝑁(𝑡𝑖
);  

6.           if Case 1 then 

7.               Calculate 𝔼{𝑅𝑅𝐷𝐸
1 (𝑡𝑖

)}; 

8.               𝑅(𝑡𝑖
) ← 𝔼{𝑅𝑅𝐷𝐸

1 (𝑡𝑖
)}; 

9.           else if Case 2 then 

10.               Calculate 𝔼{𝑅𝑅𝐷𝐸
2 (𝑡𝑖

)}; 

11.               𝑅(𝑡𝑖
) ← 𝔼{𝑅𝑅𝐷𝐸

2 (𝑡𝑖
)}; 

12.           if 𝑅(𝑡𝑖
) < 𝑅𝑅𝐷𝐸

𝑜𝑝𝑡
(𝑡𝑖) then 

13.               𝑅𝑅𝐷𝐸
𝑜𝑝𝑡 (𝑡𝑖

) ← 𝑅(𝑡𝑖
); 

14.               𝑉𝑀𝑅𝐷𝐸
𝑜𝑝𝑡

(𝑘) ← 𝑉𝑀(𝑘); 

 

4.2 Checkpointing with Delay Execution (CDE) 

Checkpointing is the technique that stores task execution information on the disk periodically. This 

section introduces the CDE for coping with VMTF and HPF. The implementation process is as follows : 

we split a task into several chunks, and the status  of each chunk is preserved after executing successfully. 

If VMTF happens during the chunk execution process, this chunk needs to be re-executed.  

The CDE also has two cases, which are shown in Fig. 3. Case 1: 𝑇𝔼 (𝑡𝑖 , 𝑉𝑀(𝑘)) ≤ 𝑇𝑠𝑢𝑏𝑀 𝑆(𝑡𝑖) <



2𝑇𝔼 (𝑡𝑖 , 𝑉𝑀(𝑘)); Case 2: 𝑇𝑠𝑢𝑏𝑀 𝑆 (𝑡𝑖) ≥ 2𝑇𝔼 (𝑡𝑖 , 𝑉𝑀(𝑘)), where 𝑇𝔼 (𝑡𝑖 , 𝑉𝑀(𝑘)) is the expected service 

time of task 𝑡𝑖 by using checkpointing approach. Similar to the well-known PB model, CDE needs  only 

two task copies. Note that both the primary copy and backup copy can tackle the VMTF, and the backup 

copy is also used to cope with the HPF.  

 

 

(1) Case 1 of CDE (2) Case 2 of CDE 

Fig. 3. Two cases of CDE. 

 

Let 𝑇(𝑊) and 𝑇(𝑊𝑙 ) denote the execution time of task 𝑡𝑖 and the chunk execution time of task 

𝑡𝑖, respectively. Hence, we have 

𝑇(𝑊) = ∑ 𝑇(𝑊𝑙 )𝐿
𝑙=1 = 𝑇𝑒𝑥 (𝑡𝑖 , 𝑉𝑀(𝑘))                        (31) 

where 𝑊  and 𝑊𝑙   represent the task workload and chunk workload, respectively. Let 𝑇(𝑊|𝜏) 

represent the random variable that measures the time required for the successful execution of workload  

𝑊, and let 𝑊1  denote the first chunk. Then, the recursion equation can be written by  

𝑇(𝑊|𝜏) = {
𝑇(𝑊1) + 𝑇𝑐ℎ𝑘 + 𝑇(𝑊 − 𝑊1

|𝜏 + 𝑇(𝑊1) + 𝑇𝑐ℎ𝑘
), 𝑃𝑐ℎ𝑘

𝔼{𝑇(𝑊1
) + 𝑇𝑐ℎ𝑘 } + 𝑇𝑤𝑠𝑡

𝑉𝑀 + 𝑇(𝑊|𝑇𝑤𝑠𝑡
𝑉𝑀),      1 − 𝑃𝑐ℎ𝑘  

             (32) 

where 𝑃𝑐ℎ𝑘 =  𝑃𝑉𝑀  (𝑇(𝑊1 ) + 𝑇𝑐ℎ𝑘), and  𝑇𝑐ℎ𝑘 denotes the time overhead to perform a checkpointing. 

𝑇𝑤𝑠𝑡
𝑉𝑀 = 𝑇𝑑𝑛

𝑉𝑀 + 𝑇𝑟𝑒𝑐
𝑉𝑀  indicates the time wasted by VM failure, including VM downtime 𝑇𝑑𝑛

𝑉𝑀   and 

recovery time 𝑇𝑟𝑒𝑐
𝑉𝑀  . The explanation of Eq. (32) is that: if the VM normally runs during the time 

𝑇(𝑊1) + 𝑇𝑐ℎ𝑘 with probability 𝑃𝑐ℎ𝑘 , there remains to execute a workload of size 𝑊 − 𝑊1 , and then the 

start time of the next chunk is 𝜏 + 𝑇(𝑊1 ) + 𝑇𝑐ℎ𝑘 ; 2) If the VM fails during the execution process of the 

first chunk with probability 1 − 𝑃𝑐ℎ𝑘 , then the extra time 𝔼{𝑇(𝑊1
) + 𝑇𝑐ℎ𝑘 } is produced and there still 

remains 𝑊 units of workload to be processed, and hence the start time of current chunk is 𝑇𝑤𝑠𝑡
𝑉𝑀 . Next , 

we analyze the task execution time under the assumption that all the resource failure probabilities follow 

the Arbitrary distribution and Exponential distribution, respectively.  

 

4.2.1 Execution time on Arbitrary Distribution 

The goal is to minimize the theoretical execution time 𝔼{𝑇(𝑊|𝜏)}  by setting the optimal number of 

task chunks. In this case, the execution time minimization problem is equivalent to finding a solution to 

minimize the following formula:  

min 𝔼{𝑇(𝑊|𝜏)} = 𝑃𝑐ℎ𝑘
(𝑇(𝑊1

) + 𝑇𝑐ℎ𝑘 + 𝔼{𝑇(𝑊 − 𝑊1
|𝜏 + 𝑇(𝑊1

) + 𝑇𝑐ℎ𝑘
)}) 

 +(1 − 𝑃𝑐ℎ𝑘
)(𝔼{𝑇(𝑊1

) + 𝑇𝑐ℎ𝑘} + 𝑇𝑤𝑠𝑡
𝑉𝑀 + 𝔼{𝑇(𝑊|𝑇𝑤𝑠𝑡

𝑉𝑀)})         (33) 

where the probabilities of all the resource failures follow the arbitrary distributions (e.g., Exponential, 

Gamma, Weibull, or Lognormal distributions). Solving min 𝔼{𝑇(𝑊|𝜏)} for an arbitrary distribution is 

difficult because there is no specific distribution function. However, we know that the optimal solution 

is to find the number of chunks and the size of each chunk. In other words, to minimize 𝔼{𝑇(𝑊|𝜏)}, we 

need to determine how many chunks are associated with each task and  the size of each chunk.  



We propose a dynamic programming (DP) based approximation algorithm, called DPminExT ime, 

to minimize 𝔼{𝑇(𝑊|𝜏)}  [38]. The pseudocode of DPminExTime is shown in Algorithm 2. Let 𝑤 

denote the unit workload, meaning that each chunk size 𝑊𝑙  is the integer multiples of 𝑤. The execution  

time for this unit workload 𝑤 is represented by 𝑇𝑤 . To minimize 𝔼{𝑇(𝑊|𝜏)}, we define a function 

𝐷𝑃𝑚𝑖𝑛𝐸𝑥𝑇𝑖𝑚𝑒  (𝑥, 𝜏), where 𝑥  is initialized to 𝑊/𝑤. This function can be viewed as the remaining  

number of unit workload needed to be processed (line 1). We also define two symbols 𝑐ℎ𝑢𝑛𝑘𝑆𝑖𝑧𝑒  and 

𝑇𝑒𝑥, denoting the chunk size and task execution time, respectively (line 2). We use the ergodic search 

method to find the optimal chunk size (lines 3-11). We can see from line 4 that if the task chunk with the 

size 𝑘𝑤  is executed successfully, the remaining workload is (𝑥 − 𝑘)𝑤, and the time since the last 

failure is 𝜏 + 𝑘𝑇𝑤 + 𝑇𝑐ℎ𝑘  . Thus, we can compute 𝔼{𝑇(𝑥𝑤 − 𝑘𝑤|𝜏 + 𝑘𝑇𝑤 + 𝑇𝑐ℎ𝑘
)}  (lines 4-5). 

Otherwise, we can obtain 𝔼{𝑇(𝑥𝑤|𝑇𝑤𝑠𝑡
𝑉𝑀)} , where the remaining workload is still 𝑥𝑤 , and the next  

failure time starts from 𝑇𝑤𝑠𝑡
𝑉𝑀  (lines 6-7). Based on the above analysis, the current execution time 𝑇 can 

be derived (line 8), which is used to compare with 𝑇𝑒𝑥 and record the optimal execution time and chunk 

size (9-11). The time complexity of DPminExTime largely depends on the granularity of unit workload , 

i.e., a smaller 𝑤 can get a more accurate solution but incurs higher time complexity.  

    DPminExTime is the general algorithm for the arbitrary distributions to find the min imum 

𝔼{𝑇(𝑊 |𝜏)}. In the next section, we assume the resource failure probabilities follow the Exponential 

distribution, where the numerical solutions can be obtained by directly deducing.  

 

Algorithm 2. Minimize Execution Time by DP (DPminExTime) 

1.  Define the function 𝐷𝑃𝑚𝑖𝑛𝐸𝑥𝑇𝑖𝑚𝑒  (𝑥, 𝜏);  

2.  𝑐ℎ𝑢𝑛𝑘𝑆𝑖𝑧𝑒 ← 0, 𝑇𝑒𝑥 ← ∞;  

3.  for 𝑘 = 1 to 𝑥  do 

4.      if chunk 𝑘𝑤  is successful then 

5.          𝔼{𝑇(𝑥𝑤 − 𝑘𝑤 |𝜏 + 𝑘𝑇𝑤 + 𝑇𝑐ℎ𝑘
)} ← 𝐷𝑃𝑚𝑖𝑛𝐸𝑥𝑇𝑖𝑚𝑒  (𝑥 − 𝑘, 𝜏 + 𝑘𝑇𝑤 + 𝑇𝑐ℎ𝑘); 

6.      else 

7.          𝔼{𝑇(𝑥𝑤|𝑇𝑤𝑠𝑡
𝑉𝑀)} ← 𝐷𝑃𝑚𝑖𝑛𝐸𝑥𝑇𝑖𝑚𝑒  (𝑥, 𝑇𝑤𝑠𝑡

𝑉𝑀); 

8.      𝑇 ← 𝔼{𝑇(𝑊|𝜏)};  

9.      if 𝑇 < 𝑇𝑒𝑥 then 

10.          𝑇𝑒𝑥 ← 𝑇; 

11.          𝑐ℎ𝑢𝑛𝑘𝑆𝑖𝑧𝑒 ← 𝑘𝑤 ; 

 

4.2.2 Execution time on Exponential Distribution 

One property of the Exponential distribution is “memoryless”. So, we can write 𝑇(𝑊 − 𝑊1 ) instead of 

𝑇(𝑊 − 𝑊1
|𝜏 + 𝑇(𝑊1) + 𝑇𝑐ℎ𝑘

) and 𝑇(𝑊) instead of 𝑇(𝑊|𝜏) and 𝑇(𝑊|𝑇𝑤𝑠𝑡
𝑉𝑀). According to Eq. (33), 

the expected execution time is computed by 

𝔼{𝑇(𝑊)} = 𝑃𝑐ℎ𝑘 (𝑇(𝑊1
) + 𝑇𝑐ℎ𝑘 + 𝔼{𝑇(𝑊 − 𝑊1

)})   

+(1 − 𝑃𝑐ℎ𝑘 )(𝔼{𝑇(𝑊1 ) + 𝑇𝑐ℎ𝑘 } + 𝑇𝑤𝑠𝑡
𝑉𝑀 + 𝔼{𝑇(𝑊)})                (34) 

Rearranging terms yields the following equation:  

 𝔼{𝑇(𝑊)} = 𝔼{𝑇(𝑊 − 𝑊1
)} + 𝑇(𝑊1) + 𝑇𝑐ℎ𝑘 + (𝔼{𝑇(𝑊1 ) + 𝑇𝑐ℎ𝑘} + 𝑇𝑤𝑠𝑡

𝑉𝑀)
1−𝑃𝑉𝑀 (𝑊1 +𝑇𝑐ℎ𝑘)

𝑃𝑉𝑀
(𝑊1 +𝑇𝑐ℎ𝑘

)
   (35) 

where 𝑃𝑉𝑀
(𝑇(𝑊1 ) + 𝑇𝑐ℎ𝑘

) = exp (−𝜆𝑉𝑀
(𝑇(𝑊1

) + 𝑇𝑐ℎ𝑘
)). According to Lemma 1 in [38], we get 

𝔼{𝑇(𝑊1 ) + 𝑇𝑐ℎ𝑘
} =

1

𝜆𝑉𝑀
−

𝑇(𝑊1)+𝑇𝑐ℎ𝑘

exp(𝜆𝑉𝑀 (𝑇(𝑊1)+𝑇𝑐ℎ𝑘))−1
                     (36) 



Then, we have  

𝔼{𝑇(𝑊)} = 𝔼{𝑇(𝑊 − 𝑊1
)} + (

1

𝜆𝑉𝑀
+ 𝑇𝑤𝑠𝑡

𝑉𝑀)(exp(𝜆 𝑉𝑀
(𝑇(𝑊1

) + 𝑇𝑐ℎ𝑘
)) − 1)          (37) 

Summing the above over all the chunks yields  

∑ 𝔼{𝑇(𝑊 )}𝐿
𝑙=1 = ∑ 𝔼{𝑇(𝑊 − 𝑊𝑙

)}𝐿
𝑙=1 + ∑ [(

1

𝜆𝑉𝑀
+ 𝑇𝑤𝑠𝑡

𝑉𝑀)(exp (𝜆 𝑉𝑀
(𝑇(𝑊𝑙

) + 𝑇𝑐ℎ𝑘
)) − 1)]𝐿

𝑙=1   (38) 

where ∑ 𝔼{𝑇(𝑊 − 𝑊𝑙
)}𝐿

𝑙=1 = (𝐿 − 1) 𝔼{𝑇(𝑊)}, and plunge it into Eq. (38) yields 

𝔼{𝑇(𝑊)} = ∑ [(
1

𝜆𝑉𝑀
+ 𝑇𝑤𝑠𝑡

𝑉𝑀)(exp(𝜆 𝑉𝑀
(𝑇(𝑊𝑙

) + 𝑇𝑐ℎ𝑘
)) − 1)]𝐿

𝑙=1             (39) 

Define 𝑓(𝑧) = exp  (𝜆 𝑉𝑀𝑧), where 𝑧 = 𝑇(𝑊1 ) + 𝑇𝑐ℎ𝑘. As 0 < 𝑊𝑙 ≤ 𝑊 and 𝑇𝑐ℎ𝑘 > 0, and hence 

𝑧 > 0. Then, we have the first derivative and second derivative of 𝑓(𝑧). 

𝑓′ (𝑧) = 𝜆 𝑉𝑀 exp (𝜆 𝑉𝑀𝑧)                              (40) 

𝑓′′ (𝑧) = 𝜆 𝑉𝑀
2 exp(𝜆 𝑉𝑀𝑧)                              (41) 

As 𝜆 𝑉𝑀 > 0, the second derivative is nonnegative, i.e., 𝑓′′ (𝑧) > 0. So, 𝑓(𝑧) is a convex function, and 

then we have 𝔼{𝑓(𝑧)} ≥ 𝑓{𝔼(𝑧)}. Applying this inequality yields  

𝔼{𝑇(𝑊)} = ∑ [(
1

𝜆𝑉𝑀
+ 𝑇𝑤𝑠𝑡

𝑉𝑀)(exp(𝜆 𝑉𝑀
(𝑇(𝑊𝑙

) + 𝑇𝑐ℎ𝑘
)) − 1)]𝑛

𝑙=1   

≥ 𝐿(
1

𝜆𝑉𝑀
+ 𝑇𝑤𝑠𝑡

𝑉𝑀)(exp (𝜆 𝑉𝑀

∑ (𝑇(𝑊𝑙)+𝑇𝑐ℎ𝑘)𝐿
𝑙=1

𝐿
) − 1                       (42) 

We know that 𝑇(𝑊) = ∑ 𝑇(𝑊𝑙 )𝐿
𝑙=1 . In order to minimize 𝔼{𝑇(𝑊) }, all the chunks should have the 

same size, i.e., 𝑇(𝑊𝑙 ) = 𝑇(𝑊)/𝐿. Then, we get  

   𝔼{𝑇(𝑊)} = 𝐿(
1

𝜆𝑉𝑀
+ 𝑇𝑤𝑠𝑡

𝑉𝑀)(exp (𝜆 𝑉𝑀(
𝑇(𝑊)

𝐿
+ 𝑇𝑐ℎ𝑘)) − 1)                (43) 

Next, we find the value of 𝐿 to minimize 𝔼{𝑇(𝑊)}. We need to solve the following equation 

𝛦{𝑇(𝑊)} ′ = exp (𝜆 𝑉𝑀(
𝑇(𝑊)

𝐿
+ 𝑇𝑐ℎ𝑘 ))(1 −

𝜆𝑉𝑀𝑇(𝑊)

𝐿
) = 0                 (44) 

According to Theorem 1 in [38], we have 

𝐿 =
𝜆𝑉𝑀 𝑇(𝑊)

1+𝕃(−exp (−𝜆𝑉𝑀𝑇𝑐ℎ𝑘−1))
                              (45) 

where 𝕃 is the Lambert function, i.e., 𝕃(𝑧) exp(𝕃(𝑧) ) = 𝑧. Moreover, the optimal value is obtained by 

one of the two integers surrounding the 𝐿, and 𝐿 ≥ 1. Hence, we have 

𝐿∗ = max{1, ⌊𝐿⌋} 𝑜𝑟 ⌈𝐿⌉                               (46) 

Thus, the expected service time 𝑇𝔼  (𝑡𝑖 ,𝑉𝑀 (𝑘)) of task 𝑡𝑖 is given as below. 

𝑇𝔼 (𝑡𝑖 , 𝑉𝑀(𝑘) ) = 𝔼{𝑇(𝑊 )} + 𝑇𝑟𝑥
(𝑡𝑖

) + 𝑇𝑡𝑥
(𝑡𝑖

)                   (47) 

 

4.2.3 CDE on Exponential Distribution 

Here we discuss the number of resources required by CDE under the Exponential distribution assumption, 

which can be calculated as follows: 

Case 1 has two scenarios:  

(1.1) If the primary copy of the task 𝑡𝑖 executes successfully, the probability is given by  

𝑃𝐻
11 = 𝑃𝐻

′ (𝑇𝔼 (𝑡𝑖 , 𝑉𝑀(𝑘) )) = exp (−𝜆 𝐻
′ 𝑇𝔼 (𝑡𝑖 ,𝑉𝑀(𝑘)))                 (48) 

Yielding the resource requirement, i.e.,  

 𝑅𝐶𝐷𝐸
11 (𝑡𝑖

) = 𝑇𝔼 (𝑡𝑖 , 𝑉𝑀(𝑘))𝐶(𝑘) + (2𝑇𝔼 (𝑡𝑖 , 𝑉𝑀(𝑘) ) − 𝑇𝑠𝑢𝑏𝑀𝑆
(𝑡𝑖

))𝐶(𝑘)           (49) 

(1.2) If the primary copy fails with probability 𝑃𝐻
12 = 1 − 𝑃𝐻

11 , the backup copy should be executed 



completely.  

𝑅𝐶𝐷𝐸
12 (𝑡𝑖

) = 2𝑇𝔼 (𝑡𝑖 , 𝑉𝑀(𝑘))𝐶(𝑘)                          (50) 

The number of resources consumed by CDE in Case 1 is represented by  

𝔼{𝑅𝐶𝐷𝐸
1 (𝑡𝑖

)} = 𝑃𝐻
11 𝑅𝐶𝐷𝐸

11 (𝑡𝑖
) + 𝑃𝐻

12 𝑅𝐶𝐷𝐸
12 (𝑡𝑖

)                     (51) 

Case 2 has two scenarios as well: 

(1) Similarly, if the primary copy of the task 𝑡𝑖 executes successfully, the probability is 𝑃𝐻
21 = 𝑃𝐻

11 . 

the number of resources is  

𝑅𝐶𝐷𝐸
21 (𝑡𝑖

) = 𝑇𝔼 (𝑡𝑖 , 𝑉𝑀(𝑘) )𝐶(𝑘)                           (52) 

(2) If the primary copy fails with probability 𝑃𝐻
22 = 1 − 𝑃𝐻

21 , the backup copy should be executed 

completely. In this case, the number of resources is 𝑅𝐶𝐷𝐸
22 (𝑡𝑖

) = 𝑅𝐶𝐷𝐸
12 (𝑡𝑖

).  

The number of resources consumed by CDE in Case 2 is expressed as  

𝔼{𝑅𝐶𝐷𝐸
2 (𝑡𝑖

)} = 𝑃𝐻
21 𝑅𝐶𝐷𝐸

21 (𝑡𝑖
) + 𝑃𝐻

22 𝑅𝐶𝐷𝐸
22 (𝑡𝑖

)                   (53) 

 

Algorithm 3. Checkpointing with Delay Execution (CDE) 

1.  𝑉𝑀𝐶𝐷𝐸
𝑜𝑝𝑡 (𝑘) ← 0 

2.  𝑅𝐶𝐷𝐸
𝑜𝑝𝑡 (𝑡𝑖

) ← ∞  

3.  foreach 𝑉𝑀 (𝑘) ∈ 𝑉𝑀 do 

4.      Calculate 𝑇𝔼  (𝑡𝑖 , 𝑉𝑀(𝑘) ); 

5.      if 𝑇𝑠𝑢 𝑏𝑀𝑆 (𝑡𝑖) ≥ 𝑇𝔼 (𝑡𝑖 , 𝑉𝑀(𝑘)) then 

6.          if Case 1 then 

7.              Calculate 𝔼{𝑅𝐶𝐷𝐸
1 (𝑡𝑖

)};  

8.              𝑅(𝑡𝑖
) ← 𝔼{𝑅𝐶𝐷𝐸

1 (𝑡𝑖
)};  

9.          else if Case 2 then  

10.              Calculate 𝔼{𝑅𝐶𝐷𝐸
2 (𝑡𝑖

)};  

11.              𝑅(𝑡𝑖
) ← 𝔼{𝑅𝐶𝐷𝐸

2 (𝑡𝑖
)};  

12.          if 𝑅(𝑡𝑖
) < 𝑅𝐶𝐷𝐸

𝑜𝑝𝑡
(𝑡𝑖) then 

13.              𝑅𝐶𝐷𝐸
𝑜𝑝𝑡 (𝑡𝑖

) ← 𝑅(𝑡𝑖
);  

14.              𝑉𝑀𝐶𝐷𝐸
𝑜𝑝𝑡

(𝑘) ← 𝑉𝑀(𝑘); 

 

We can also prove that CDE needs less resources than the traditional replication method. Similar to 

Theorem 1, the proof process is omitted in this section. The pseudocode of CDE is shown in Algorithm 

3. Let 𝑉𝑀𝐶𝐷𝐸
𝑜𝑝𝑡

(𝑘) and 𝑅𝐶𝐷𝐸
𝑜𝑝𝑡

(𝑡𝑖 ) denote the optimal VM type and the optimal number of resources of 

task 𝑡𝑖, respectively (lines 1-2). Then, we go through all the VM types and select some of them that meet 

the sub-makespan constraint (lines 3-5). If Case 1 is satisfied, the number of resources 𝔼{𝑅𝐶𝐷𝐸
1 (𝑡𝑖

)} is 

calculated (lines 6-8); or 𝔼{𝑅𝐶𝐷𝐸
2 (𝑡𝑖

)} is obtained (lines 9-11). Finally, 𝑅𝐶𝐷𝐸
𝑜𝑝𝑡 (𝑡𝑖

) and 𝑉𝑀𝐶𝐷𝐸
𝑜𝑝𝑡

(𝑘) are 

updated (lines 12-14). The time complexity of CDE is 𝑂(𝐾), depending on the number of VM types.  

 

4.3 Rescheduling (ReSC) for HTF 

All the task execution and cloud services will be interrupted by HTF. Thus, re-executing the unfinished 

and unexecuted tasks by the original scheduling scheme may fail to satisfy the deadline constraint. 

Therefore, rescheduling is essentially deployed for this service interruption.  

Fig. 4 depicts the ReSC process applied to a simple workflow 𝑊𝐹 . When HTF happens, the cloud 

needs to take a certain amount of wasted time, 𝑇𝑤𝑠𝑡
𝐻 + 𝑇𝑤𝑠𝑡

𝑉𝑀  , where 𝑇𝑤𝑠𝑡
𝐻   is the host waste time , 

consisting of host downtime 𝑇𝑑𝑛
𝐻   and recovery time 𝑇𝑟𝑒𝑐

𝐻  . We can recalculate the residual deadline 



𝑇𝐷𝐿
𝑟𝑒𝑠 = 𝑇𝐷𝐿 − 𝑇𝑤𝑠𝑡

𝐻 − 𝑇𝑤𝑠𝑡
𝑉𝑀 − 𝑇𝐷𝐿

𝑢𝑠𝑑 , where 𝑇𝐷𝐿
𝑢𝑠𝑑  is the already used time for workflow execution. Then, 

for this unfinished workflow, a dummy task 𝑡0 is connected to the unfinished and executable tasks, 

forming a new workflow 𝑊𝐹′ . The following process is equivalent to the cloud accepts a workflow 

𝑊𝐹′  with deadline constraint 𝑇𝐷𝐿
𝑟𝑒𝑠 and schedule this workflow with fault tolerance guarantee.  

 

𝑇𝐷𝐿  

𝑇𝐷𝐿
𝑟𝑒𝑠  𝑇𝐷𝐿

𝑢𝑠𝑑  

𝑇𝑤𝑠𝑡
𝐻 + 𝑇𝑤𝑠𝑡

𝑉𝑀  
𝑡0 

 

Fig. 4. The ReSC process. 

 

The pseudocode of ReSC is given in Algorithm 4. First, the original scheduling scheme for all the 

workflows is cleared up (line 1). Then, we construct a new workflow 𝑊𝐹′   for each uncompleted 

workflow and calculate the corresponding residual deadline 𝑇𝐷𝐿
𝑟𝑒𝑠 (lines 2-4). However, if the deadline 

is larger than its minimal execution time 𝑇𝑀𝑆
𝑚𝑖𝑛 , i.e., 𝑇𝐷𝐿

𝑟𝑒𝑠 < 𝑇𝑀𝑆
𝑚𝑖𝑛 , 𝑊𝐹′  will be rejected (lines 5-6). 

Otherwise, 𝑇𝐷𝐿
𝑟𝑒𝑠 is divided into multiple sub-makespans (line 7). Next, RDE and CDE are used to ensure 

the successful execution of the tasks and get the optimal VM type for each task (lines 8-11). If the 

resources of the current active hosts and VMs are enough, we map all the task copies to the optimal VMs. 

Otherwise, RS-Up is applied to start hosts for resource demand. The RS-Up will be introduced in the 

next section. The worst time complexities of RDE, CDE, and RS-Up are 𝑂(𝐾) , 𝑂(𝐾) , and 

𝑂(|𝐻𝑎𝑐𝑡
|log|𝐻𝑎𝑐𝑡

|) , respectively. So, the worst time complexity of ReSC is 

𝑂(∑ 𝑛𝑊𝐹′𝑊𝐹′ |𝐻𝑎𝑐𝑡
|log|𝐻𝑎𝑐𝑡

|), where |𝐻𝑎𝑐𝑡
| is the number of active hosts in cloud, and 𝑛𝑊𝐹′ is the 

number of tasks in 𝑊𝐹′ .  

 

Algorithm 4. Rescheduling (ReSC) 

1.  Clear up the original scheduling scheme; 

2.  foreach 𝑊𝐹  in Cloud do 

3.      Construct a new workflow 𝑊𝐹′ ; 

4.      Calculate the residual deadline 𝑇𝐷𝐿
𝑟𝑒𝑠;  

5.      if 𝑇𝐷𝐿
𝑟𝑒𝑠 < 𝑇𝑀𝑆

𝑚𝑖𝑛  then  

6.          Reject 𝑊𝐹′  and Continue; 

7.      Divide 𝑇𝐷𝐿
𝑟𝑒𝑠 into sub-makespans; 

8.      foreach 𝑡𝑖 in 𝑊𝐹′  do 

9.          𝑅𝑅𝐷𝐸
𝑜𝑝𝑡

(𝑡𝑖) ← Call RDE; 

10.          𝑅𝐶𝐷𝐸
𝑜𝑝𝑡

(𝑡𝑖 ) ← Call CDE; 

11.          𝑅𝑜𝑝𝑡(𝑡𝑖
) ← min{𝑅𝑅𝐷𝐸

𝑜𝑝𝑡 (𝑡𝑖
), 𝑅𝐶𝐷𝐸

𝑜𝑝𝑡
(𝑡𝑖)}; 

12.          if VM resources are enough then  

13.              Map copies of tasks to 𝑉𝑀𝑜𝑝𝑡(𝑘) ; 

14.          else  

15.              Call RS-Up;  

 

4.4 Resource Adjustment 



The dynamic RA strategy is presented in this section to  adjust computing resources and improve resource 

utilization, consisting of RS-Up and RS-Down.  

 

4.4.1 Resource Scaling Up (RS-Up) 

If primary copies or backup copies of a task cannot be mapped to the existing active VMs, the 

corresponding RS-Up strategy is applied by creating new VMs from current active hosts. If no such hosts 

can satisfy the resource requirement, a sleeping host will be started.  

The pseudocode of RS-Up is shown in Algorithm 5. Let 𝐻𝑎𝑐𝑡 represent the set of active hosts in 

the cloud, and let 𝐻𝑖𝑛𝑠   denote the host instance in 𝐻𝑎𝑐𝑡 . All the hosts in 𝐻𝑎𝑐𝑡  are ordered by the 

number of remaining CPUs, i.e., 𝐶 𝑟𝑒𝑠 (line 1). If 𝐻𝑖𝑛𝑠. 𝐶 𝑟𝑒𝑠 ≥ 𝐶(𝑘), a new VM is created on 𝐻𝑖𝑛𝑠 , and 

one task copy is mapped to this VM (lines 2-6). Otherwise, a new host should be started, and the new 

VM tries to be created on this new host (lines 7-11). Note that the cloud has multiple host types. For 

improving resource utilization, it is preferable to start a host with low performance. The time complexity  

of RS-Up is 𝑂(|𝐻𝑎𝑐𝑡
|log|𝐻𝑎𝑐𝑡

|), which mainly depends on sorting 𝐻𝑎𝑐𝑡.  

 

Algorithm 5. Resource Scaling-Up (RS-Up) 

1.  Sort 𝐻𝑎𝑐𝑡 in increasing order by residual CPUs; 

2.  foreach 𝐻𝑖𝑛𝑠  in 𝐻𝑎𝑐𝑡 do  

3.      if 𝐻𝑖𝑛𝑠 . 𝐶 𝑟𝑒𝑠 ≥ 𝐶(𝑘) then 

4.          Create a new VM on 𝐻𝑖𝑛𝑠 ; 

5.          Allocate the task copy to this new VM;  

6.          Return true;  

7.  foreach 𝐻(𝑚) in H do 

8.      if 𝐻 (𝑚). 𝐶 𝑟𝑒𝑠 ≥ 𝐶(𝑘) then  

9.          Create a new VM on 𝐻(𝑚);  

10.          𝐻𝑎𝑐𝑡 ← 𝐻𝑎𝑐𝑡 + {𝐻(𝑚)}; 

11.          Return true; 

 

4.4.2 Resource Scaling Down (RS-Down)  

The RS-Down is devised to reduce the idle VMs when the cloud workload is light. For example, when a 

VM instance is idle for a short time, the scheduler can decrease its CPU frequency by the DVFS technique 

[25]. However, if a VM will be idle for a relatively long time, it will be canceled. Moreover, if more than 

one primary copy executes successfully, the VM resources assigned for backup copies will be recycled. 

All the above methods, i.e., decreasing CPU frequency, removing idle VMs, and reclaiming VM 

resources, can improve cloud resource utilization.  

Algorithm 6 gives the pseudocode of RS-Down. Let 𝑇𝑡ℎ  denote the time threshold. When the idle 

time of a VM is less than 𝑇𝑡ℎ , its working frequency will be decreased to the minimum value (lines 1-

3). Otherwise, this VM will be canceled (lines 4-5). Then, we check the resource utilization for current 

active hosts. If the utilization of a host is less than the self-defined threshold 𝑈𝑡ℎ , the scheduler tries to 

migrate its VMs to the other hosts (lines 6-11). When all the VMs of a host are migrated successfully, 

this host will be shut down (lines 12-14). The worst time complexity of RS-Down is 

𝑂(𝑛𝑉𝑀 (𝑘) 𝑛𝑉𝑀(𝑗)
|𝐻𝑎𝑐𝑡

|), which depends on three-loop statements in line 1, line 7, and line 8, where 

𝑛𝑉𝑀 (𝑘), 𝑛𝑉𝑀 (𝑗), and |𝐻𝑎𝑐𝑡
| represent the number of VMs in the cloud, the number of VMs in host 

𝐻(𝑚), and the number of active hosts in the cloud, respectively.  



 

Algorithm 6. Resource Scaling Down (RS-Down) 

1. foreach 𝑉𝑀(𝑘) in Cloud do 

2.    if 𝑇𝑖𝑑𝑙𝑒 (𝑉𝑀(𝑘)) < 𝑇𝑡ℎ  then 

3.       Decrease CPU frequency to the lowest level;  

4.    else if 𝑇𝑖𝑑𝑙𝑒 (𝑉𝑀(𝑘) ) ≥ 𝑇𝑡ℎ  then 

5.       Cancel 𝑉𝑀 (𝑘) from its host 𝐻𝑖𝑛𝑠 ;  

6.       if 𝐻𝑖𝑛𝑠 . 𝑈 ≤ 𝑈𝑡ℎ  then  

7.          foreach 𝑉𝑀 (𝑗) in 𝐻𝑖𝑛𝑠  do 

8.             foreach 𝐻𝑖𝑛𝑠
′  in 𝐻𝑎𝑐𝑡 − {𝐻𝑖𝑛𝑠 |𝐻𝑖𝑛𝑠 . 𝑈 ≤ 𝑈𝑡ℎ } do 

9.                if 𝐻𝑖𝑛𝑠
′ . 𝐶 𝑟𝑒𝑠 ≥ 𝐶(𝑗) then 

10.                   Migrate 𝑉𝑀(𝑗) to 𝐻𝑖𝑛𝑠
′ ;  

11.                   Cancel 𝑉𝑀 (𝑗) from 𝐻𝑖𝑛𝑠 ;  

12.          if 𝐻𝑖𝑛𝑠  is idle then  

13.             Shut down 𝐻𝑖𝑛𝑠 ;  

14.             𝐻𝑎𝑐𝑡 ← 𝐻𝑎𝑐𝑡 − {𝐻𝑖𝑛𝑠}; 

 

4.5 ReadyFS Algorithm 

Algorithm 7 gives the pseudocode of ReadyFS. Let 𝑊𝐹 (𝜏) denote the set of scientific workflows that 

arrived at time slot 𝜏, which follows the Poisson distribution with arrival rate 𝜆 𝑊𝐹. These workflows  

will be scheduled based on the FCFS policy. For each workflow, if its deadline constraint cannot  be met, 

it will be rejected (lines 1-3). Otherwise, the sub-makespan of each task is calculated (line 4). Then, the 

RDE and CDE are used to ensure the successful execution of the task (lines 5-8). If the resource demand 

can be met, all the task copies are mapped to the optimal VMs. Otherwise, RS-Up is applied to start new 

hosts (lines 9-12). Finally, if HTF happens, ReSC is applied to reschedule the unfinished workflows  

(lines 13-14). If VM resources are idle, RS-Down is applied to improve resource utilization (lines 15-

16). Note that all the task copies are executed on different VMs and hosts.  

As discussed above, the time complexities of RDE, CDE, ReSC, RS-Up, and RS-Down are 𝑂(𝐾), 

𝑂(𝐾), 𝑂(∑ 𝑛𝑊𝐹′𝑊𝐹′ |𝐻𝑎𝑐𝑡
|log|𝐻𝑎𝑐𝑡

|), 𝑂(|𝐻𝑎𝑐𝑡
|log|𝐻𝑎𝑐𝑡

|), and 𝑂(𝑛𝑉𝑀 (𝑘) 𝑛𝑉𝑀(𝑗)
|𝐻𝑎𝑐𝑡

|), respectively. 

Therefore, the worst time complexity of Algorithm 7 from lines 1 to 12 is 𝑂(∑ 𝑛𝑊𝐹𝑊𝐹
|𝐻𝑎𝑐𝑡

|log|𝐻𝑎𝑐𝑡
|), 

where 𝑛𝑊𝐹  is the number of tasks in 𝑊𝐹 , and we assume that 𝐾 < |𝐻𝑎𝑐𝑡
|log|𝐻𝑎𝑐𝑡

|. Let 𝑁𝑊𝐹
𝑚𝑎𝑥 and 

𝑛𝑊𝐹
𝑚𝑎𝑥  represent the maximum number of workflows and the maximum number of tasks in 𝑊𝐹 (𝜏) and 

𝑊𝐹  , respectively. Thus, the time complexity of ReadyFS is 

max {𝑂(𝑁𝑊𝐹
𝑚𝑎𝑥𝑛𝑊𝐹

𝑚𝑎𝑥 |𝐻𝑎
|log|𝐻𝑎

|), 𝑂(𝑛𝑉𝑀 (𝑘) 𝑛𝑉𝑀(𝑗) |𝐻𝑎𝑐𝑡
|)}.   

 

Algorithm 7. ReadyFS Algorithm 

1.  foreach 𝑊𝐹  in 𝑊𝐹  (𝜏) do 

2.      if 𝑇𝐷𝐿  < 𝑇𝑀𝑆
𝑚𝑖𝑛  then 

3.          Reject 𝑊𝐹  and Continue; 

4.      Divide the deadline into sub-makespans; 

5.      foreach ti  in WF do 

6.          𝑅𝑅𝐷𝐸
𝑜𝑝𝑡

(𝑡𝑖) ← Call RDE; 

7.          𝑅𝐶𝐷𝐸
𝑜𝑝𝑡

(𝑡𝑖 ) ← Call CDE; 

8.          𝑅𝑜𝑝𝑡 (𝑡𝑖
) ← min{𝑅𝑅𝐷𝐸

𝑜𝑝𝑡 (𝑡𝑖
), 𝑅𝐶𝐷𝐸

𝑜𝑝𝑡
(𝑡𝑖)}; 



9.          if VM resources are enough then  

10.              Map copies of tasks to 𝑉𝑀𝑜𝑝𝑡(𝑘) ; 

11.          else  

12.              Call RS-Up; 

13.  if HTF then 

14.      Call ReSC; 

15.  if Reclaim 𝑉𝑀 (𝑘) then  

16.      Call RS-Down; 

 

The performance comparisons of RDE and CDE are shown in Fig. 5. All of them can guarantee the 

successful execution of tasks in the presence of VMTF and HPF. The advantage of RDE is that it can 

reduce the task execution time but cause more resources. In contrast, CDE can enhance resource 

utilization but incur longer task execution time. In the real-world scenario, the cloud users submit 

scientific workflow applications with different structures, parameters, and deadline constraints. Hence, 

RDE and CDE should be combined to ensure fault tolerance and improve resource utilization. For 

example, if a workflow deadline is very tight, RDE will be selected because CDE may not meet the 

deadline constraint; while the deadline becomes loose, CDE can be adopted to save resources.  

 

Fig. 5. The comparison of RDE and CDE. 

 

5. Performance Evaluation 

To demonstrate the feasibility and effectiveness of our ReadyFS, we simulate five vertical and three 

horizontal comparison algorithms to compare with ReadyFS on three performance metrics, namely  

workflow guarantee rate, resource consumption of tasks, and cloud resource utilization.  

 

 

5.1 Simulation Setup  

An open-source workflow scheduling simulator, WorkflowSim toolkit [50], is adopted and extended to 

simulate our FT scheduling experiments , which has been widely used in many works [11,18]. Hosts in 

WorkflowSim are modeled with 8, 16, 32, and 64-core CPUs connected to 10Gbps Ethernet. The VM 

types are listed in Table 2. We simulate 𝑁 = 2000 batches of scientific workflows arrived at the cloud, 

and the length of each time slot 𝜏 is 1 hour. The deadline of each workflow is a random variable in  

[𝑇𝑀𝑆
𝑚𝑖𝑛 , 𝑇𝑀𝑆

𝑚𝑎𝑥 ]  follows the uniform distribution, where 𝑇𝑀𝑆
𝑚𝑖𝑛   and  𝑇𝑀𝑆

𝑚𝑎𝑥   are the minimum and 
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maximum workflow makespan, respectively. Then, the workflow deadline is 𝑇𝐷𝐿 = 𝑇𝑀𝑆
𝑚𝑖𝑛 + 𝜌(𝑇𝑀𝑆

𝑚𝑎𝑥 −

𝑇𝑀𝑆
𝑚𝑖𝑛), where 𝜌 ∈ [0,1] is called the deadline ratio. For saving the idle resources, 𝑇𝑡ℎ  is set to 15 

minutes, and 𝑈𝑡ℎ = 25%  . We set 𝑇𝑑𝑛
𝐻 = 5  and 𝑇𝑟𝑒𝑐

𝐻 = 3  minutes and 𝑇𝑑𝑛
𝑉𝑀 = 3  and  𝑇𝑟𝑒𝑐

𝑉𝑀 = 1 

minutes. The Poisson arrival rate of HPF is 𝜆 𝐻
′ = 0.005. Like [40], the checkpointing time is 𝑇𝑐ℎ𝑘 =

0.1𝑇(𝑡𝑖 , 𝑉𝑀(𝑘)).  

We conduct the simulations on five real-world scientific workflows, i.e., Montage, CyberShake, 

Epigenomics, LIGO, and SIPHT, which have been widely applied in the performance evaluation of 

workflow scheduling. The structures of these workflows can be found in Fig. 6. Moreover, we adopt the 

trace-based workflow datasets, i.e., the characteristics of the above scientific workflows (such as task 

count, average data size and average task runtime), which are given in Table 3. These traces are collected 

from the real running processes of five scientific workflows [50].  

 

 

(a) Montage           (b) CyberShake        (c) Epigenomics  

 

(c) LIGO                    (d) SIPHT 

Fig. 6. The structures of five real-world scientific workflows. 

 

The performance metrics are as follows:  

 Workflow Guarantee Ratio (WGR): the percentage of workflows finished successfully with the 

deadline constraints among all the arrived workflows, i.e., 𝑊𝐺𝑅 = ∑ 𝑛𝑊𝐹 (𝜏)
′𝑁

𝜏=1 / ∑ 𝑛𝑊𝐹 (𝜏)
𝑁
𝜏=1  , 

where 𝑛𝑊𝐹 (𝜏)
′   and 𝑛𝑊𝐹 (𝜏)  are the number of finished workflows and the number of arrived  

workflows, respectively.  

 Resource Consumption of Tasks (RCT): the total resources used for processing tasks, i.e., 𝑅𝐶𝑇 =

∑ ∑ ∑ [𝑇(𝑡𝑖
) + 𝑇𝑖𝑑𝑙𝑒 (𝑡𝑖)]𝐶(𝑘)

𝑛𝑊𝐹(𝑛)

𝑖=1

𝑛𝑊𝐹(𝜏)

𝑛=1
𝑁
𝜏=1 , where the time terms include the actual task service 

time 𝑇(𝑡𝑖
) and the idle time 𝑇𝑖𝑑𝑙𝑒 (𝑡𝑖). RCT is measured by counting “time × 𝐶”. For example, if 

a task runs on the VM with 𝐶(𝑘) = 8 (CPUs) for 1 hour, the RCT is 8 × 1 = 8 CPU∙hour. 

 Cloud Resource Utilization (CRU): the ratio of RCT over the total computing resources, reflecting  

the resource utilization of the cloud, i.e., 𝐶𝑅𝑈 = ∑ ∑ ∑ 𝑇(𝑡𝑖
)𝐶(𝑘)

𝑛𝑊𝐹(𝑛)

𝑖=1

𝑛𝑊𝐹(𝜏)

𝑛 =1
𝑁
𝜏 =1 /𝑅𝐶𝑇.  

To show the effects of ReadyFS, in vertical comparison, ReadyFS is compared with its five stripped 

versions (see Section 5.2). Moreover, in horizontal comparison, three state-of-the-art FT scheduling 



algorithms are performed to compare with ReadyFS (see Section 5.3).  

Table 3. The characteristics of five scientific workflows. 

Workflows 

(Task count) 

Average data 

size (MB) 

Average task 

runtime (s) 

Montage (25) 5.77 9.11 

Montage (50) 8.64 10.17 

Montage (100) 8.61 10.24 

Montage (1000) 8.83 11.38 

Epigenomics (24) 146.72 738.34 

Epigenomics (46) 188.22 880.89 

Epigenomics (100) 582.72 4034.26 

Epigenomics (997) 648.94 3866.37 

CyberShake (30) 467.77 27.62 

CyberShake (50) 481.08 26.46 

CyberShake (100) 488.11 22.37 

CyberShake (1000) 242.68 23.32 

SIPHT (30) 3.42 191.26 

SIPHT (60) 6.65 201.19 

SIPHT (100) 8.54 179.17 

SIPHT (1000) 10.52 179.42 

LIGO (30) 14.61 220.57 

LIGO (50) 18.35 235.24 

LIGO (100) 12.15 210.24 

LIGO (1000) 16.71 227.70 

 

5.2 Vertical Comparison 

This section shows the evaluation results on three performance metrics with a variety of different 

parameters, such as 𝜌, 𝜆 𝑊𝐹, 𝜆 𝑉𝑀, 𝜆 𝐻, and 𝜀. Note that we fix 𝜂 = 0.7 in this section. Five vertical 

comparison algorithms are introduced as follows:  

 Only-RDE: this algorithm applies  only the RDE to guarantee the VMTF and HPF, i.e., removing  

the CDE from ReadyFS.  

 Only-CDE: this algorithm contains  only the CDE to ensure the fault tolerance of VMTF and HPF, 

i.e., removing the RDE from ReadyFS.  

 No-DE: this algorithm does not adopt the delay execution mechanism, i.e., all the primary copies 

or backup copies are executed simultaneously.  

 No-ReSC: this algorithm does not employ the ReSC when the HTF happens. All the workflow tasks 

continue using the original scheduling scheme after the hosts  and VMs recover from HTF.  

 No-FT: it does not have any FT scheduling mechanism.  

 

5.2.1 Performance Impact of Deadline ratio 𝜌 

The simulation results on three performance metrics, such as WGR, RCT, and CRU, by varying the 

deadline ratio 𝜌 from 0.1 to 1 are given in Fig. 7, where we keep the other parameters fixed, i.e., 𝜀 =

0.0001 , 𝜆 𝐻 = 0.05, 𝜆 𝑉𝑀 = 0.05, and 𝜆 𝑊𝐹 = 3. Note that the larger 𝜌 means the larger deadline 𝑇𝐷𝐿  

and the larger sub-makespan 𝑇𝑠𝑢𝑏𝑀𝑆 (𝑡𝑖).  

From Fig. 7a, we can observe that the WGRs of ReadyFS, No-DE, Only-RDE, and Only-CDE 

increase with 𝜌. In particular, when 𝜌 = 0.1, the WGR of Only-CDE is 0%. This is because, in this case, 

the deadline constraint is hardly satisfied, i.e., Only-CDE cannot be implemented due to the tight deadline, 

resulting in rejecting all the workflows. When 𝜌 goes up, more workflows can be scheduled by CDE, 



and then the WGR of Only-CDE becomes larger. We notice that ReadyFS and No-DE have the same and 

highest WGR, since both of them adopt the same FT scheduling mechanisms. Moreover, ReadyFS and 

No-DE keep the same pace with Only-CDE when 𝜌 increases. Only-RDE has a slightly lower WGR 

than ReadyFS. The rationale is that when the HTF happens, the replication strategy needs extra time to 

re-execute the failed tasks, leading to a small number of workflows  that cannot be finished with the 

deadline constraints. We also find that No-FT and No-ReSC have the least and second least WGR, 

respectively. Moreover, when 𝜌 increases, their WGRs decrease. This is because, without the ReSC, 

more workflows will be rejected by No-ReSC. As to No-FT, due to lack of the FT scheduling mechanism, 

a task with a longer execution time is much more likely to suffer from resource failures.  

Fig. 7b shows that the RCTs of all the algorithms decrease when 𝜌 increases (except Only-CDE at 

𝜌 = 0.1). For ReadyFS, No-DE, Only-RDE, and Only-CDE, the main reason behind this phenomenon 

is that the workflow tasks can be scheduled to the lower performance VMs when the deadline is larger, 

resulting in saving VM resources. For Only-ReSC, the above explanation is one of the reasons, and 

another reason is that the lower WGR also leads to less resource usage. Due to the impact of WGR, the 

RCT of No-FT goes down when 𝜌 goes up. We can also observe that Only-RDE has the highest RCT, 

which indicates that the replication indeed requires more resources. No-DE has more RCT than ReadyFS. 

This is reasonable since we have already proved in Theorem 1, i.e., delay execution mechanism demands 

fewer resources than No-DE. Because of adopting only the checkpointing mechanism, Only-CDE 

exhibits lower RCT than ReadyFS. No-FT has the lowest RCT among all the algorithms. This is due to 

the fact that all the workflow tasks in No-FT are executed only once. No-ReSC has the second-lowest 

RCT, as a large number of workflows are rejected due to deadline constraints , leading to less resource 

usage.  

Fig. 7c shows the results of CRU. We can see that except No-FT, all the algorithms almost have the 

same results (except Only-CDE at 𝜌 = 0.1), because they use the same RA strategy. No-FT has a slightly 

lower CRU than the other algorithms. The rationale is that with more failed tasks, No-FT will generate 

more idle resources. Moreover, some idle resources cannot be utilized and consolidated  efficiently. All 

the curves are almost flat, indicating that the CRU is independent of 𝜌.  

 

  

           (a) WGR                     (b) RCT                     (c) CRU 

Fig. 7. Performance impact of 𝜌 on the vertical comparison.  

5.2.2 Performance Impact of Replication Coefficient 𝜀  

This section discusses the performance impact of the replication coefficient 𝜀 . Fig. 8 shows the 

corresponding results by varying 𝜀 from 10−5  to 10−2, where 𝜌 ∈ [0,1], 𝜆 𝐻 = 0.05, 𝜆 𝑉𝑀 = 0.05, 

and 𝜆 𝑊𝐹 = 3. Note that the larger 𝜀, the fewer task copies needed by RDE.  

As shown in Fig. 8a, the WGRs of ReadyFS, No-DE, Only-RDE, and No-ReSC decrease with the 

increase of 𝜀. This is because, under the fixed VM and host failure probabilities, these algorithms execute  

fewer task copies, leading to more workflows  will be failed. We also notice that the WGR of Only-RDE 



decreases rapidly when 𝜀 increases, which suggests that the variation of 𝜀 has a great impact on Only-

RDE. The WGRs of No-FT and Only-CDE are independent of 𝜀. This is because varying 𝜀 affects only  

the RDE. However, No-FT and Only-CDE do not adopt the RDE.  

Fig. 8b shows the RCTs of all the algorithms. We find that as 𝜀 increases, the RCTs of ReadyFS, 

No-DE, Only-RDE, and No-ReSC decrease. This is because the larger 𝜀, the fewer task copies are 

required, resulting in less resource consumption. We also see that the RCT of Only-RDE reduces rapidly  

when 𝜀 goes up, which indicates that the 𝜀 causes a significant impact on Only-RDE. In contrast, the 

curves of No-FT and Only-CDE are flat because they are independent of 𝜀 on RCT.  

The CRUs of all the algorithms are independent with 𝜀, which are shown in Fig. 8c. No-FT has the 

lowest CRU as it generates more idle resources that cannot be utilized and consolidated efficiently. The 

rest of the algorithms almost have the same CRU because all of them adopt the RA strategy.  

 

 

            (a) WGR                     (b) RCT                     (c) CRU 

Fig. 8. Performance impact of 𝜀 on the vertical comparison. 

 

5.2.3 Performance Impact of HTF Arrival Rate 𝜆 𝐻 

This section inspects the performance impact of HTF arrival rate 𝜆 𝐻. We conduct the experiments with 

𝜆 𝐻 varying from 0.01 to 0.1, where we keep the other parameters fixed, i.e., 𝜀 = 0.0001 , 𝜌 ∈ [0,1], 

𝜆 𝑉𝑀 = 0.05, and 𝜆 𝑊𝐹 = 3. The related results are shown in Fig. 9. Note that the larger 𝜆𝐻 , the higher 

probability of HTF.  

From Fig. 9a, we can see that the WGRs of all the algorithms decrease when 𝜆 𝐻  goes up. 

Particularly, the WGR of No-ReSC goes down faster than that of the other algorithms. The reason is that 

when 𝜆𝐻  increases, the cloud will suffer from more HTFs. Without the ReSC, No-ReSC tends to reject 

more workflows. Although with the ReSC, the WGRs of ReadyFS, No-DE, Only-RDE, and Only-CDE 

still go down. The reason can be explained as follows: The deadline ratio 𝜌 of each arrived workflow is 

uniformly generated in [0, 1]; therefore, if a workflow’s deadline is too tight, it is more likely to be 

rejected when the HTF happens. Due to the lack of FT scheduling mechanisms, No-FT has the lowest 

WGR, which slightly goes down with 𝜆 𝐻.  

From Fig. 9b, we can observe that the RCTs of ReadyFS, No-DE, and Only-RDE increase with 𝜆𝐻 . 

This is because these algorithms adopt ReSC to tackle the HTF. So, the larger 𝜆 𝐻, the more tasks need 

to be re-executed, resulting in more resource consumption. However, the RCT of No-ReSC decreases 

rapidly when 𝜆 𝐻 increases, since No-ReSC has the fastest decreasing rate of WGR. The more rejected 

workflows, the less resource usage. The RCT of Only-CDE slightly goes down with the increase of 𝜆 𝐻. 

This is because when the HTF occurs, all the tasks in Only-CDE restart from the latest checkpointing 

state, leading to significant resource-saving. Furthermore, with the lowest WGR, Only-CDE consumes 

the least resources. Similarly, due to the factor of WGR, the RCT of No-FT decreases slowly.  

The performance impact of 𝜆 𝐻 on CRU is shown in Fig. 9c. We find that the CRUs of all the 



algorithms are independent of 𝜆 𝐻. All the algorithms except No-FT almost have the same CRU, since 

all of them adopt the RA strategy. No-FT has a slightly lower CRU than the other algorithms as it 

produces more idle resources.  

 

            (a)WGR                     (b) RCT                     (c) CRU 

Fig. 9. Performance impact of 𝜆 𝐻 on the vertical comparison. 

 

5.2.4 Performance Impact of VMTF Arrival Rate 𝜆𝑉𝑀   

To investigate the impact of VMTF arrival rate 𝜆 𝑉𝑀, we perform the experiments with 𝜆 𝑉𝑀 varying 

from 0.01 to 0.1. The related results are shown in Fig. 10, where we keep the other parameters fixed, for 

example, 𝜀 = 0.0001  , 𝜌 ∈ [0,1] , 𝜆 𝐻 = 0.05 , and 𝜆 𝑊𝐹 = 3 . Note that the larger 𝜆 𝑉𝑀  indicates a 

higher VMTF probability. Thus, more task copies are required to tackle VMTF by using RDE.  

As shown in Fig. 10a, except Only-CDE and No-FT, all the algorithms are not affected by  𝜆 𝑉𝑀, i.e., 

the WGR curves of them are flat when 𝜆 𝑉𝑀 goes up. This indicates that these algorithms can effectively 

deal with the VMTF even under different 𝜆 𝑉𝑀. However, the WGRs of Only-CDE and No-FT decrease 

with 𝜆 𝑉𝑀. For Only-CDE, the reason is that with the larger 𝜆 𝑉𝑀, more checkpoints will be set, resulting 

in longer task execution time. Moreover, the 𝜌 is randomly selected in [0,1]. Thus, the workflows with 

tighter deadline constraints are much more likely to be rejected. We can  also see that with the increase 

of 𝜆 𝑉𝑀, the WGR of No-FT decreases significantly, indicating that varying 𝜆 𝑉𝑀 has a great influence 

on No-FT.  

Fig. 10b shows that with the increase of 𝜆 𝑉𝑀, the RCTs of all the algorithms, except Only-CDE and 

No-FT, increase at the same pace. The reason is that although the WGRs of ReadyFS, No-DE, Only-

CDE, and No-ReSC are independent of 𝜆 𝑉𝑀, with the larger 𝜆 𝑉𝑀, more resources will be used to cope 

with VMTF. The RCT of Only-CDE slightly goes down as all the tasks in Only-CDE are resumed from 

the latest checkpoints when the VMTF occurs, resulting in significant resource-saving. Moreover, with  

more workflows rejected by the deadline constraints, Only-CDE consumes fewer resources. Due to the 

factor of WGR, No-FT has less RCT when 𝜆 𝑉𝑀 increases.  

We can see from Fig. 10c that the CRU curves of all the algorithms except No-FT are flat, which 

indicates that these algorithms are independent of 𝜆 𝑉𝑀. Thanks to the RA strategy, these algorithms  

almost have the same CRU. However, the CRU of No-FT decreases with the increase of 𝜆 𝑉𝑀. This is 

because, with the larger 𝜆 𝑉𝑀, No-FT rejects more workflows due to VMTF. Then, more VMs will be 

idle and hardly be reused, thus resulting in lower CRU.  

 



 

            (a) WGR                     (b) RCT                     (c) CRU 

Fig. 10. Performance impact of 𝜆 𝑉𝑀 on the vertical comparison. 

 

5.2.5 Performance Impact of Workflow Arrival Rate 𝜆 𝑊𝐹  

To reveal the performance impact of workflow arrival rate 𝜆 𝑊𝐹, we vary 𝜆 𝑊𝐹 from 1 to 5 with an 

increment of 0.5. The related simulation results are given in Fig. 11, where we keep the other parameters 

fixed, i.e., 𝜀 = 0.0001, 𝜌 ∈ [0,1], 𝜆 𝐻 = 0.05, and 𝜆 𝑉𝑀 = 0.05.  

We can see from Fig. 11a that all the algorithms keep the stable WGRs for different 𝜆𝑊𝐹  because 

of infinite cloud resources. Moreover, when 𝜆𝑊𝐹  increases, the RA strategy is used to deploy new VMs 

and hosts for arrived workflows dynamically.  

With a larger 𝜆 𝑊𝐹, more workflows arrive at the cloud. As shown in Fig. 11b, the RCTs of all the 

algorithms are almost linear in shape, which indicates that the RCTs grow linearly with 𝜆𝑊𝐹 . We can 

also notice that Only-RDE and No-DE have the highest and second-highest RCT; ReadyFS has more 

RCT than No-ReSC; No-FT and Only-CDE have the lowest and second-lowest RCT.   

Fig. 11c shows that the CRUs of all the algorithms slightly increase with 𝜆𝑊𝐹  . With more 

workflows arrived at the cloud, more VM resources will be utilized. Thus, the idle resources have the 

opportunity to be allocated and utilized, leading to a higher CRU. However, No-FT has the lowest CRU. 

This is because No-FT produces more idle resources that cannot be utilized sufficiently.  

 

 

           (a) WGR                     (b) RCT                      (c) CRU 

Fig. 11. Performance impact of 𝜆 𝑊𝐹 on the vertical comparison. 

 

5.3 Horizontal Comparison 

In this section, we compare our ReadyFS with three state-of-the-art FT scheduling algorithms, namely  

FASTER [6], ICFWS [11], and EIPR [32]. The comparison algorithms are introduced as follows:  

 FASTER [6]: this algorithm applies the PB model to tolerate resource failures. However, the PB 

model can effectively tackle the HPF but cannot cope with the other failures. Note that FASTER 

has the RA capability.  

 EIPR [32]: this algorithm uses the replication approach to deal with resource failures. However, 

EIPR cannot dynamically adjust resource demands. To make the comparison fair, we slightly 



modify EIPR by adding the RA strategy.  

 ICFWS [11]: this algorithm combines resubmission with replication to cope with resource failures. 

A reasonable FT scheduling strategy is selected by the soft deadline constraint. Also, ICFWS is 

capable of dynamically adjusting resource demands.  

However, the above peer algorithms generate only two task copies, and all of them fail to cope with 

the HPF. Note that we fix 𝜀 = 0.0001  in this section.  

 

5.3.1 Performance Impact of Deadline Ratio 𝜌  

The simulation results on three performance metrics by varying 𝜌 from 0.1 to 1 with the increment  

of 0.1 are given in Fig. 12, where we keep the other parameters fixed, for example, 𝜆 𝐻 = 0.05, 𝜆 𝑉𝑀 =

0.05, 𝜆 𝑊𝐹 = 3, and 𝜂 = 0.7.  

We can see from Fig. 12a that the WGR of ReadyFS increases with 𝜌. This is because when 𝜌 is 

too small, many workflows scheduled by CDE will be rejected due to tight deadlines. So, ReadyFS keeps 

the same pace with 𝜌 . However, the WGRs of EIPR and ICFWS decrease when 𝜌  grows. This is 

because the larger 𝜌, the larger deadline, and hence a longer task execution time. A task with a longer 

execution time is more likely to experience various  resource failures. Moreover, ICFWS has a higher 

WGR than EIPR under different 𝜌 because it combines resubmission with replication. We also find that 

when 0.1 ≤ 𝜌 ≤ 0.5, the WGR of FASTER is 0%. The main reason is that FASTER employs the PB 

model to ensure the successful execution of the task. Nevertheless, In PB model, the start time of the 

backup copy must be greater than or equal to the end time of the primary copy. So, the smaller 𝜌 cannot 

satisfy this constraint, causing all the workflows are rejected. Since FASTER, EIPR, and ICFWS produce 

only two task copies, the WGRs of them are less than that of ReadyFS.  

Fig. 12b shows that the RCTs of all the algorithms except FASTER decrease when 𝜌 increases. 

The reason is that the workflow tasks can be scheduled to the lower performance VM under the larger 

deadline, resulting in more VM resources are saved. For FASTER, because its WGR is 0% when 0.1 ≤

𝜌 ≤ 0.5, the RCT is 0. However, when 𝜌 grows from 0.6 to 1, the RCT decreases with 𝜌.  

It can be observed from Fig. 12c that except FASTER, all the algorithms keep the same and stable 

CRU when the 𝜌 varies. However, the CRU of FASTER increases when 𝜌 goes up from 0.6 to 1. 

This can be explained that the PB model cannot be implemented until 𝜌 ≥ 0.6. For example, when 𝜌 =

0.6, FASTER just meets the condition of PB method. In this case, each task may be mapped to the VM 

type with the highest performance. So, the residual VM resources cannot be utilized, resulting in a low 

CRU. However, when 𝜌 grows, this resource waste phenomenon can be alleviated.  

 

           (a) WGR                      (b) RCT                    (c) CRU 

Fig. 12. Performance impact of 𝜌 on the horizontal comparison. 

 

5.3.2 Performance Impact of HTF Arrival Rate 𝜆 𝐻  

This section discusses the performance impact of 𝜆 𝐻. We run experiments on the variation of 𝜆 𝐻 from 



0.01 to 0.1. The corresponding results are plotted in Fig. 13, where we keep the other parameters fixed , 

i.e., 𝜌 ∈ [0,1], 𝜆𝑉𝑀 = 0.05, 𝜆 𝑊𝐹 = 3, and 𝜂 = 0.7.  

From Fig. 13a, we find that the WGRs of all the algorithms decrease when 𝜆 𝐻 grows. For ReadyFS, 

the reason is that the 𝜌 is uniformly selected in the range [0,1]; therefore, if the workflow deadline is 

too tight, this workflow is more likely to be rejected when the HTF happens. We know that the larger  

𝜆 𝐻, the higher probability of HTF. Without the FT scheduling mechanism for HTF, the WGRs of FASTER, 

EIPR, and ICFWS go down with the increase of 𝜆 𝐻. We also observe that ReadyFS always has the 

highest WGR, ICFWS has a higher WGR than EIPR, and FASTER has the lowest WGR because it is 

mainly designed for coping with HPF.  

As observed in Fig. 13b, the RCT of ReadyFS slightly increases when 𝜆𝐻  goes up. This is due to 

the fact that ReadyFS adopts the ReSC to handle the HTF. So, the larger 𝜆𝐻 , the more tasks need to be 

re-executed, resulting in more resource consumption. However, the RCTs of FASTER, EIPR and ICFW S 

decrease with 𝜆𝐻  . The reason for this phenomenon results from their WGRs, i.e., rejecting more 

workflows leads to less resource usage.  

From Fig. 13c, the CRU curves of all the algorithms are flat when 𝜆 𝐻 goes up, which indicates that 

the CRUs of these algorithms are independent of 𝜆 𝐻. ReadyFS, EIPR, and ICFWS nearly exhibit the 

same behavior. Specifically, EIPR and ICFWS have the same CRU, and ReadyFS achieves a slightly 

better CRU than EIPR and ICFWS. However, FASTER has a lower CRU than the other algorithms , 

resulting from its idle resources cannot be utilized efficiently.  

 

 

            (a) WGR                     (b) RCT                     (c) CRU 

Fig. 13. Performance impact of 𝜆 𝐻 on the horizontal comparison. 

 

5.3.3 Performance Impact of VMTF Arrival Rate 𝜆𝑉𝑀   

We examine the performance impact of 𝜆 𝑉𝑀. The results with 𝜆 𝑉𝑀 varying from 0.01 to 0.1 are 

shown in Fig. 14, where we keep the other parameters fixed, for example, 𝜌 ∈ [0,1], 𝜆 𝐻 = 0.05, 𝜆 𝑊𝐹 =

3, and 𝜂 = 0.7. Note that the larger 𝜆 𝑉𝑀 indicates a higher probability of VMTF.  

According to Fig. 14a, the WGR curve of ReadyFS is flat when 𝜆 𝑉𝑀 increases. This is because 

ReadyFS can effectively deal with the VMTF under various 𝜆 𝑉𝑀. For example, when 𝜆 𝑉𝑀 goes up, 

RDE and CDE guarantee the successful completion of the task by adding more task copies and setting 

more checkpoints, respectively. However, the WGRs of the other algorithms decrease with 𝜆 𝑉𝑀. This is 

because FASTER, EIPR and ICFWS deploy only two task copies, which cannot effectively tackle the 

VMTF. We also find that the WGRs of EIPR and ICFWS decrease rapidly, which indicates that their 

WGRs are highly sensitive to the variation of 𝜆 𝑉𝑀.  

Fig. 14b shows that with the increase of 𝜆 𝑉𝑀, the RCT of ReadyFS increases. The reason is that the 

larger 𝜆𝑉𝑀  , the more task copies and the more checkpoints are required, bringing more resource 



consumption. However, since FASTER, EIPR, and ICFWS have only two task copies, the RCTs of them 

decrease with 𝜆𝑉𝑀 .  

From Fig. 14c, we can see that the CRUs of all the algorithms are stable when 𝜆 𝐻  goes up. 

Specifically, EIPR and ICFWS have the same CRU, and ReadyFS achieves a slightly better CRU than 

EIPR and ICFWS. FASTER has a lower CRU than the others, since its idle resources cannot be utilized  

efficiently.  

 

            (a) WGR                     (b) RCT                     (c) CRU 

Fig. 14. Performance impact of 𝜆 𝑉𝑀 on the horizontal comparison. 

5.3.4 Performance Impact of Workflow Arrival Rate 𝜆 𝑊𝐹  

We discuss the performance impact of 𝜆 𝑊𝐹 by varying it from 1 to 5 with an increment of 0.5. The 

corresponding results are given in Fig. 15. Similarly, we keep the other parameters fixed, for example, 

𝜌 ∈ [0,1], 𝜆 𝐻 = 0.0, 𝜆 𝑉𝑀 = 0.05, and 𝜂 = 0.7.  

From Fig. 15a, we can observe that the WGRs of all the algorithms are stable under different 𝜆 𝑊𝐹. 

This is because the cloud can provide infinite computing resources, i.e., when 𝜆 𝑊𝐹 goes up, the RA 

strategy can dynamically adjust real-time resource requirements.  

With the increase of 𝜆𝑊𝐹 , more workflow requests will be received by the cloud. Therefore, the 

RCTs of all the algorithms are almost linear in shape and grow with 𝜆 𝑊𝐹, which is shown in Fig. 15b. 

We also find that ReadyFS spends much more RCT than the other algorithms since it processes more 

workflows. EIPR and ICFWS have lower RCTs than ReadyFS. Due to the lowest WGR, FASTER has 

the lowest RCT.  

Fig. 15c shows that the CRUs of all the algorithms slightly increase with 𝜆 𝑊𝐹 . With more  

workflows arrived at the cloud, more VM resources will be consumed. Thus, idle resources have the 

opportunity to be reused, leading to a higher CRU. However, FASTER has a lower CRU than the other 

algorithms. The reason is that the idle time between the primary copy and the backup copy is hardly 

utilized by the other tasks.  

 

            (a) WGR                    (b) RCT                      (c) CRU 

Fig. 15. Performance impact of 𝜆 𝑊𝐹 on the horizontal comparison. 

 

5.3.5 Performance Impact of Parallel Workload Ratio 𝜂  



This section discusses the performance impact of parallel workload ratio 𝜂 by varying it from 0 to 1. 

Fig. 16 shows the corresponding results, where we fix the other parameters, i.e., 𝜌 ∈ [0,1], 𝜆 𝐻 = 0.05, 

𝜆 𝑉𝑀 = 0.05, and 𝜆 𝑊𝐹 = 3. Note that the larger 𝜂, the more parallel workload 𝑊𝑝 (𝑡𝑖) and the less 

sequential workload 𝑊𝑠 (𝑡𝑖
) . Particularly, when 𝜂 = 0 , 𝑊𝑠 (𝑡𝑖

) = 𝑊(𝑡𝑖
) ; when 𝜂 = 1 , 𝑊𝑝 (𝑡𝑖

) =

𝑊(𝑡𝑖
).  

Fig. 16a gives the WGR results. We can observe that with the increase o f 𝜂, the WGRs of all the 

algorithms increase. When 𝜂 = 0, because of the deadline constraint, all the algorithms have the 0 WGR. 

For FASTER, when 𝜂 ∈ [0,0.6], the WGR is also 0. This is because it is very difficult for FASTER to 

meet the deadline constraint by using only the PB strategy. However, with larger 𝜂 and hence more 

𝑊𝑝 (𝑡𝑖), the multi-core CPU can be sufficiently utilized, resulting in the shorter execution time of the 

task. Thus, more workflows can be finished under the deadline constraints, causing a larger WGR.  

Fig. 16b shows the results of varying 𝜂 on RCT. We find that each RCT first increases and then 

decreases with 𝜂 . There are two factors  that cause this phenomenon. First, with a larger 𝜂 , more 

workflows will be processed and hence more computing resources are consumed. Second, the VMs with  

multi-core CPUs are fully utilized with larger 𝜂 , leading to less resource waste. So, there exists a 

resource offset between the above two factors. Taking ReadyFS as an example, when 𝜂 ∈ [0,0.3], the 

RCT mainly depends on the number of finished workflows; when 𝜂 ∈ [0.4,1.0], the dominating factor 

for RCT is the parallel workload.  

The results on CRU by varying 𝜂 can be found in Fig. 16c. Due to the 0 WGR, the CRUs of all the 

algorithms are also 0 when 𝜂 = 0. Nevertheless, their CRUs increase when 𝜂 goes up. The reason is 

that when 𝜂  is a small value, although the DVFS technique can save resources, the idle resources 

generated by sequential workload 𝑊𝑠 (𝑡𝑖
) are still wasted. When 𝜂 goes up, we can make full use of 

the capability of the multi-core CPU, resulting in a higher CRU.  

 

 

            (a) WGR                     (b) RCT                     (c) CRU 

Fig. 16. Performance impact of 𝜂 on the horizontal comparison. 

 

5.4 Results Summary 

We find that none of the algorithms can get the highest performance in all the metrics in the vertical 

comparison. ReadyFS achieves the best on WGR and CRU in all the cases. However, its RCT is easily 

affected by the parameters varying as it adopts the dynamic RA strategy. Compared with ReadyFS, No-

DE has comparable WGR and CRU, but it always exhibits a higher RCT. No-FT almost exhibits the 

lowest WGR, RCT, and CRU because it cannot complete too many workflow applications  successfully 

due to the lack of FT scheduling mechanism. Only-CDE employs only the CDE that leads to lower RCT. 

However, when the workflow deadline is too tight, it cannot find the proper VM to process workflows  

and hence exhibit the lowest WGR. In contrast, Only-RDE uses only the RDE to guarantee the successful 

execution of the scientific workflows. It adapts to any deadline but needs more computing resources than 



ReadyFS and Only-CDE. No-ReSC almost performs equally well on CRU compared with ReadyFS. 

However, it shows a lower WGR than all the algorithms except No-FT, and it is easily affected by 𝜆𝐻 .  

    Our proposed ReadyFS performs noticeably better than all the comparison algorithms on WGR, but 

with a higher RCT in the horizontal comparison. All the algorithms except the FASTER exhibit the same 

CRU as FASTER's idle resources are not easily consolidated. ICFWS always has a higher WGR and 

hence a higher RCT than EIPR. This is because ICFWS combines res ubmission with replication, and 

EIPR adopts only replication. FASTER almost performs the lowest performance on all the metrics . 

Especially, FASTER has the worst WGR when the deadline is too tight (𝜌 ≤ 0.5).  

In a word, our proposed ReadyFS is more stable, especially on WGR, which indicates that it can 

effectively cope with all the resource failures in the cloud computing environment.  

 

6. Conclusions and Future work 

This paper proposes the ReadyFS for scientific workflow execution in the cloud. This algorithm aims to 

ensure the successful execution of real-time arrived scientific workflows while tolerating the HPF, HTF, 

and VMTF. Specifically, three FT scheduling mechanisms, namely RDE, CDE, and ReSC, are proposed 

to guarantee the fault tolerance of workflow scheduling. We also develop a RA strategy (i.e., including 

the RS-Up and RS-Down) to adjust resource requirements and improve resource utilization.  

Five vertical comparison algorithms and three horizontal comparison algorithms are simulated to 

compare with our ReadyFS. The simulation results show that ReadyFS has the highest WGR and CRU 

performance and has the acceptable RCT performance.  

In the future, we first conduct workflow scheduling research by executing practical use-cases on the 

real-world cloud platform. Moreover, we will research how to deploy security services to address the 

secure FT scheduling problem due to malicious attacks in the cloud.  
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