
ar
X

iv
:2

01
1.

04
92

8v
2

 [
cs

.D
S]

 2
2

Ja
n

20
21

LinCbO: fast algorithm for computation of the

Duquenne-Guigues basis

Radek Janostik, Jan Konecny˚, Petr Krajča

Dept. Computer Science, Palacký University Olomouc

17. listopadu 12, CZ–77146 Olomouc

Czech Republic

Abstract

We propose and evaluate a novel algorithm for computation of the Duquenne-
Guigues basis which combines Close-by-One and LinClosure algorithms. This
combination enables us to reuse attribute counters used in LinClosure and
speed up the computation. Our experimental evaluation shows that it is the
most efficient algorithm for computation of the Duquenne-Guigues basis.

Keywords: non-redundancy; attribute implications; minimalization;
closures.

1. Introduction

Formal Concept Analysis [14, 12] (FCA) has two main outputs: (i) hier-
archy of formal concepts, called a concept lattice, in the input data and (ii) a
non-redundant system of attribute implications, called a basis, describing the
input data. For both of these outputs, closure systems are the fundamental
structures behind the related theory and algorithms.

Many algorithms for computing closure systems exist [12, 20]. Among
the most efficient algorithms are variants of Kuznetsov’s Close-by-One (CbO)
[18], namely Outrata & Vychodil’s FCbO [24] and Andrews’s In-Close family
of algorithms [1, 2, 3, 4, 5]. These are commonly used for enumeration of
formal concepts, as both their parts, extents and intents, form a closure
systems.

When considering systems of attribute implications, pseudo-intents play
an important role, since they derive the minimal basis, called the Duquenne-
Guigues basis or canonical basis [16]. The pseudo-intents, together with the

˚Corresponding author
Email addresses: radek.janostik@upol.cz (Radek Janostik),

jan.konecny@upol.cz (Jan Konecny), petr.krajca@upol.cz (Petr Krajča)

Preprint submitted to Elsevier January 25, 2021

http://arxiv.org/abs/2011.04928v2

intents of formal concepts, form a closure system. Enumerating all pseudo-
intents (together with intents) is more challenging as it requires a particular
restriction of the order of the computation and the results on complexity are
all but promising [19]. There are basically two main approaches for this task:
NextClosure by Ganter [15, 14], and the incremental approach by Obiedkov
and Duquenne [23].

We present a new approach based on the CbO algorithm and LinClosure
[21].1 Putting it simply, we enumerate members of the closure system (in-
tents and pseudo-intents) using CbO while each member is computed using
LinClosure. We show that in our approach, LinClosure is able to reuse at-
tribute counters from previous computations. This makes it work very fast,
as our experiments show.

The rest of the paper has the following structure: First, we recall ba-
sic notions of FCA (Section 2.1), closure operators (Section 2.2), bases of
attribute implications (Section 2.3), the algorithm CbO and NextClosure
(Section 2.4), and the algorithms LinClosure (Section 2.5) and Wild’s clo-
sure (Section 2.6) . Second, we introduce our approach, which includes CbO
with changed sweep order (Section 3.1) and improvements previously intro-
duced into NextClosure in [6] (Section 3.2). Most importantly, we describe
a feature which enables LinClosure to reuse the attribute counters (Section
3.3). Then, we experimentally evaluate the resulting algorithm (Section 4)
and discuss our observations (Section 4.3). Finally, we summarize our con-
clusions and present ideas for further research (Section 5).

2. Preliminaries

Here, we recall notions used in the rest of the paper.

2.1. Formal concept analysis

An input to FCA is a triplet xX, Y, Iy, called a formal context, where
X, Y are non-empty sets of objects and attributes respectively, and I is a
binary relation between X and Y . The presence of an object-attribute pair
xx, yy in the relation I means that the object x has the attribute y.

Finite contexts are usually depicted as tables, in which rows represent
objects in X , columns represent attributes in Y , ones in its entries mean
that the corresponding object-attribute pair is in I.

The formal context xX, Y, Iy induces so-called concept-forming operators:

1LinClosure is an algorithm for computation of the smallest model of a theory contain-
ing a given set of attributes. It uses so-called attribute counters to avoid set comparisons
and reach a linear time complexity. We recall this in Section 2.5.

2

Ò : 2X Ñ 2Y assigns to a set A of objects the set AÒ of all attributes
shared by all the objects in A.

Ó : 2Y Ñ 2X assigns to a set B of attributes the set BÓ of all objects
which share all the attributes in B.

Formally, for all A Ď X,B Ď Y we have

AÒ “ ty P Y | @x P A : xx, yy P Iu,

BÓ “ tx P X | @y P B : xx, yy P Iu.

Fixed points of the concept-forming operators, i.e. pairs xA,By P 2X ˆ2Y

satisfying AÒ “ B and BÓ “ A, are called formal concepts. The sets A and B

in a formal concept xA,By are called the extent and the intent, respectively.
The set of all intents in xX, Y, Iy is denoted by IntpX, Y, Iq.

An attribute implication is an expression of the form LñR where L,R Ď
Y are sets of attributes.

We say that LñR is valid in a set of attributes M Ď Y if

L Ď M implies R Ď M.

The fact that LñR is valid in M is written as }LñR}M “ 1.
We say that L ñ R is valid in a context xX, Y, Iy if it is valid in every

object intent txuÒ, i.e.

}LñR}txuÒ “ 1 @x P X.

A set of attribute implications is called a theory.
A set of attributes M is called a model of theory T if every attribute

implication in T is valid in M . The set of all models of T is denoted ModpT q,
i.e.

ModpT q “ tM | @LñR P T : }LñR}M “ 1u.

2.2. Closure systems and closure operators

A closure system in a set Y is any system S of subsets of Y which contains
Y and is closed under arbitrary intersections.

A closure operator on a set Y is a mapping c : 2Y Ñ 2Y satisfying for
each A,A1, A2 Ď Y :

A Ď cpAq (1)

A1 Ď A2 implies cpA1q Ď cpA2q (2)

cpAq “ cpcpAqq. (3)

3

The closure systems and closure operators are in one-to-one correspondence.
Specifically, for a closure system S in Y , the mapping cS : 2Y Ñ 2Y defined
by

cSpAq “
č

tB P S | A Ď Bu

is a closure operator. Conversely, for a closure operator c on Y , the set

Sc “ tA P 2Y | cpAq “ Au

is a closure system. Furthermore, ScS “ S and cSc
“ c.

For a formal context xX, Y, Iy, the set IntpX, Y, Iq of its intents is a clo-
sure system. The corresponding closure operator, cIntpX,Y,Iq, is equal to the
composition ÓÒ of concept-forming operators.

For any theory T , the set ModpT q of its models is a closure system. The
corresponding closure operator, cModpT q, is equal to the following operator
cT . For Z Ď Y and theory T , put

1. ZT “ Z Y
Ť

tR | LñR P T, L Ď Zu,

2. ZT0 “ Z,

3. ZTn “ pZTn´1qT .

Define operator cT : 2Y Ñ 2Y by

cT pZq “
8
ď

n“0

ZTn .

2.3. Bases, Duquenne-Guigues basis and its computation

A theory T is called

• complete in xX, Y, Iy if ModpT q “ IntpX, Y, Iq;

• a basis of xX, Y, Iy if no proper subset of T is complete in xX, Y, Iy.

A set P Ď Y of attributes is called a pseudo-intent if it satisfies the
following conditions:

(i) it is not an intent, i.e. P ÓÒ ‰ P ;

(ii) for all smaller pseudo-intents P0 Ă P , we have P
ÓÒ
0

Ă P .

Theorem 1. Let P be a set of all pseudo-intents of xX, Y, Iy. The set

tP ñP ÓÒ | P P Pu

is a basis of xX, Y, Iy. Additionally, it is a minimal basis in terms of the
number of attribute implications.

4

The basis from Theorem 1 is called the Duquenne-Guigues basis.
Let P be a set of all pseudo-intents of xX, Y, Iy. The union IntpX, Y, IqYP

is a closure system on Y .
The corresponding closure operator c̃T is given as follows. For Z Ď Y

and theory T , put

1. ZT “ Z Y
Ť

tR | LñR P T , L Ă Zu,

2. ZT0 “ Z,

3. ZTn “ pZTn´1qT .

Define operator c̃T : 2Y Ñ 2Y by

c̃T pZq “
8
ď

n“0

ZTn . (4)

The algorithm which follows the above definition is called the näıve algo-
rithm. There are more sophisticated ways to compute closures, like LinClo-
sure [21], Wild’s closure [26], and SL-closure [22].

Note that the definition of c̃T differs from the definition of cT in Section 2.2
only in the subsethood in item 1 – the operator cT allows equality in this
item while c̃T does not. In what follows, we use the shortcut Z‚ for c̃T pZq.

Let Z be a set of attributes and S be a subset of attribute implications
such that

• all implications LñR P T with L Ă Z‚ are in S,

• no attribute implication LñR P T with L “ Z‚ is in
S.

(5)

Then, we clearly have, cSpZq “ Z‚.
This gives a basic picture, how we compute the Duquenne-Guigues basis

T : starting with S “ H, we compute cSpZq for a set Z for which S satisfies
the conditions (5). If Z‚ is a pseudo-intent, we update S by adding the
attribute implication Z‚ ñ Z‚ÓÒ, and repeat for other sets Z. When all
plausible sets are processed, S is the Duquenne-Guigues basis T .

Therefore, the intents and pseudo-intents must be enumerated in an order
ď which extends the subsethood; i.e.

C1 Ď C2 implies C1 ď C2 for all C1, C2 P IntpX, Y, Iq Y P. (6)

NextClosure enumerates closed sets in so-called lectic order. We obtain the
lectic order of sets when we order their characteristic vectors as binary num-
bers. The lectic order satisfies (6); that is why NextClosure [14] (described
at the end of Section 2.4) is most frequently used for the computation of the
Duquenne-Guigues basis.

5

2.4. Close-by-One and NextClosure

We assume a closure operator c on set Y “ t1, 2, . . . , nu. Whenever we
write about lower attributes or higher attributes, we refer to the natural
ordering of the numbers in Y .

We start the description of CbO with a basic algorithm for generating
all closed sets (Algorithm 1). The basic algorithm traverses the space of
all subsets of Y , each subset is checked for closedness and is outputted.
This approach is quite inefficient as the number of closed subsets is typically
significantly smaller than the number of all subsets.

Algorithm 1: Basic algorithm to enumerate closed subsets

def GenerateFrom(B, y):
input : B – set of attributes

y – last added attribute

1 if B “ cpBq then

2 print(B)

3 for i P ty ` 1, . . . , nu do

4 D Ð B Y tiu
5 GenerateFrom(D, i)

6 return

GenerateFrom(H, 0)

The algorithm is given by a recursive procedure GenerateFrom, which
accepts two arguments:

‚ B – the set of attributes, from which new sets will be generated.

‚ y – the auxiliary argument to remember the highest attribute in B.

The procedure first checks the input set B for closedness and prints it if it is
closed (lines 1,2). Then, for each attribute i higher than y:

‚ a new set is generated by adding the attribute i into the set B (line 4);

‚ the procedure recursively calls itself to process the new set (line 5).

The procedure is initially called with an empty set and zero as its arguments.

The basic algorithm represents a depth-first sweep through the tree of all
subsets of Y (see Fig. 1) and printing the closed ones.

6

H

1 2 3 4

43 4

4

2 3 4

43 4

4

1

2 10 14 16

1511 13

12

3 7 9

84 6

5

Figure 1: Tree of all subsets of t1, 2, 3, 4u. Each node represents a unique set containing
all elements in the path from the node to the root. The dotted arrows and small numbers
represent the sweep performed by the CbO algorithm.

In the tree of all subsets (Fig. 1), each node is a superset of its predeces-
sors. We can use the closure operator ÓÒ to skip non-closed sets. In other
words, to make jumps in the tree to closed sets only. CbO can be seen as the
basic algorithm with closure jumps: instead of simply adding an element to
generate a new subset

D Ð B Y tiu,

CbO adds the element and then closes the set

D Ð cpB Y tiuq. (7)

We need to distinguish the two outcomes of the closure (7). Either

• the closure contains some attributes lower than i which are not included
in B, i.e.

Di ‰ Bi

where Di “ D X t1, . . . , i ´ 1u, Bi “ B X t1, . . . , i ´ 1u;

• or it does not, and we have

Di “ Bi.

The jumps with Di ‰ Bi are not desirable because they land on a closed
set which was already processed or will be processed later (depending on the
direction of the sweep). CbO does not perform such jumps. The check of
the condition Di “ Bi is called a canonicity test.

One can see the pseudocode of CbO in Algorithm 2.
We describe the differences from the basic algorithm:

7

Algorithm 2: Close-by-One

def CbOStep(B, y):
input : B – closed set

y – last added attribute

1 print(B)

2 for i P ty ` 1, . . . , nu zB do

3 D Ð cpB Y tiuq
4 if Di “ Bi then

5 CbOStep(D, i)

CbOStep(cpHq, 0)

• The argument B is a closed set, therefore, the procedure GenerateFrom
can print it directly without testing (line 1).

• In the loop, we skip elements already present in B (line 2).

• The recursive invocation is made only if the new closed set D passes
the canonicity test (lines 3,4).

• The initial invocation is made with the smallest closed set cpHq instead
of the empty set.

The algorithm NextClosure [14] is another algorithm for enumerating
closed sets.

NextClosure is represented by the procedure NextClosure (Algorithm 3)
which accepts a closed set B1 and returns another closed set, which is the
lectic successor of the input set.

It starts with a set B containing all attributes from B1. It processes
attributes in Y in descending order (line 2).

1. If the processed attribute is in B, it removes it (lines 3,4);

2. If the processed attribute is not in B, it computes the closure D of
B Y tiu (lines 5,6);

Note that the above effectively increases the binary number corresponding
to the characteristic vector of B by one and closes it; this corresponds to the
description of the lectic order via binary numbers. Then, the set D is tested
for canonicity the same way as in CbO. If D passes the test, it is returned as

8

the result (line 7). Otherwise, we continue processing the other attributes.
If we exhaust all attributes, we return Y as the lectically last closed set.

To enumerate all formal concepts, the NextClosure algorithm starts with
the least closed set cpHq and in consecutive steps applies this procedure to
obtain the next formal concepts. The algorithm stops if Y is obtained.

Algorithm 3: NextClosure

def NextClosure(B1):
input : B1 – set of attributes

1 B Ð B1

2 for all i P Y (in descending order) do

3 if i P B then

4 B Ð Bztiu
5 else

6 D Ð cpB Y tiuq
7 if Bi “ Di then return D

8 return Y

NextClosure can be seen as an iterative version of CbO with the right
depth-first sweep through the tree of all subsets. From this point of view,
the above item 1. is equivalent to backtracking in the tree of all subsets, and
item 2. is CbO’s adding and closing. The consequent test of canonicity is
the same as in CbO.

2.5. LinClosure

LinClosure (Algorithm 4) [7, 21] accepts a set B of attributes for which
it computes the T -closure cT pBq. The theory T is considered to be a global
variable. It starts with a set D containing all elements of B (line 1). If there
is an attribute implication in T with an empty left side, the D is united with
its right side (lines 2,3). LinClosure associates a counter countrLñRs with
each LñR P T initializing it with the size |L| of its left side (lines 4,5). Also,
each attribute y P Y is linked to a list of the attribute implications that have y
in their left sides (lines 6,7).2 Then, the set Z of attributes to be processed is
initialized as a copy of the set D (line 8). While there are attributes in Z, the
algorithm chooses one of them (min in the pseudocode, line 10), removes it
from Z (line 11) and decrements counters of all attribute implication linked

2This needs to be done just once and it is usually done outside the LinClosure procedure.

9

to it (lines 12,13). If the counter of any attribute implication L ñ R is
decreased to 0, new attributes from R are added to D and to Z.

Algorithm 4: LinClosure

def LinClosure(B):
input : B – set of attributes

1 D Ð B

2 if DHñR P T for some R then

3 D Ð D Y R

4 for all LñR P T do

5 countrLñRs Ð |L|
6 for all a P L do

7 add LñR to listras

8 Z Ð D

9 while Z ‰ H do

10 m Ð minpZq
11 Z Ð Zztmu
12 for all LñR P listrms do
13 countrLñRs Ð countrLñRs ´ 1
14 if countrLñRs “ 0 then

15 add Ð RzD
16 D Ð D Y add

17 Z Ð Z Y add

18 return D

We are going to use the algorithm LinClosure in CbO. CbO drops the
resulting closed set if it fails the canonicity test (Algorithm 2, lines 4,5).
Therefore, we can introduce a feature – early stop – which stops the compu-
tation whenever an attribute which would cause the fail is added into the set.
To do that, we add a new input argument, y, having the same role as in CbO;
i.e. the last attribute added into the set (Algorithm 5). Then, whenever new
attributes are added to the set, we check whether any of them is lower than
y. If so, we stop the procedure and return information that the canonicity
test would fail (lines 16–17).3

3This feature is also utilized in [6].

10

In the pseudocode of LinClosure with an early stop (Algorithm 5), we also
removed the two lines which handled the case for the attribute implication
in T with an empty left side (Algorithm 4, lines 2,3). In Section 3.2, we
introduce an improvement for CbO which makes the two lines superfluous.

Algorithm 5: LinClosure with an early stop

def LinClosureES(B, y):
input : B – set of attributes

y – last attribute added to B

1 D Ð B

2 if DHñR P T for some R then

3 D Ð D Y R

4 for all LñR P T do

5 countrLñRs Ð |L|
6 for all a P L do

7 add LñR to listras

8 Z Ð D

9 while Z ‰ H do

10 m Ð minpZq
11 Z Ð Zztmu
12 for all LñR P listrms do
13 countrLñRs Ð countrLñRs ´ 1
14 if countrLñRs “ 0 then

15 add Ð RzD
16 if minpaddq ă y then

17 return fail
18 else

19 D Ð D Y add

20 Z Ð Z Y add

21 return D

2.6. Wild’s closure

For the sake of completeness, we also describe Wild’s closure [26]. Our
algorithm does not use this closure; however, algorithms NC3 and NC`3,
which we use in the experimental evaluation (Section 4), do so.

11

Wild’s closure (Algorithm 6) accepts a set B of attributes for which it
computes the T -closure cT pBq. The theory T is considered to be a global
variable.

It starts with a set D containing all elements of B (line 1). First, it
handles the case for attribute implication with an empty left side, the same
way that LinClosure does (lines 2,3). Wild’s closure maintains implication
lists, similarly to LinClosure (lines 4-6). It keeps a set N of current attribute
implications, initially equal to T (line 7). It uses the attribute lists to find
a subset N1 Ď N of implications whose left-hand side has an attribute not
occurring in D (line 10). It uses the rest N zN1 of implications to extend
D. If D is extended, the process is repeated for N1 being the set of current
implications (loop at lines 8-15). Otherwise D is the resulting set and is
returned (line 16).

Algorithm 6: Wild’s closure

def WildClosure(B):
input : B – set of attributes

1 D Ð B

2 if DHñR P T for some R then

3 D Ð D Y R

4 for all LñR P T do

5 for a P L do

6 add LñR to listras

7 N Ð T

8 repeat

9 stable Ð true

10 N1 Ð
Ť

aRD listras

11 for all LñR P N zN1 do

12 D Ð D Y R

13 stable Ð false;

14 N Ð N1

15 until stable

16 return D

12

H

1 2 3 4

43 4

4

2 3 4

43 4

4

1

9 5 3 2

47 6

8

13 11 10

1215 14

16

Figure 2: Tree of all subsets of t1, 2, 3, 4u. Each node represents a unique set containing
all elements in the path from the node to the root. The dotted arrows and small numbers
represent the sweep performed by the CbO algorithm with right depth-first sweep.

3. LinCbO: CbO-based algorithm for computation of the Duquenne-

Guigues basis

In this section, we describe the algorithm LinCbO. Its foundation is CbO
(Algorithm 2) with LinClosure (Algorithm 4). We explain changes in the
CbO algorithm: a change of sweep order makes the algorithms work, and
the rest of the changes improve efficiency of the algorithms.

3.1. Sweep order

In the previous section, we presented CbO as the left first sweep through
the tree of all subsets. This is how it is usually described. In ordinary
settings, there is no need to follow a particular order of sweep. However,
our aim is to compute intents and pseudo-intents using the closure operator
c̃T (4), or more exactly, closure operator cS for S Ď T satisfying (5). For
this, we need to utilize an order which extends the subsethood, i.e. (6). The
right depth-first sweep through the tree of all subsets satisfies this condition
(see Fig. 2). Observe that with the right depth-first sweep, we obtain exactly
the lectic order, i.e. the same order in which NextClosure explores the search
space.

3.2. NextClosure’s improvements

The following improvements were introduced to NextClosure [6] and the
incremental approach [23] for computation of pseudo-intents. We incorpo-
rated them to the CbO algorithm.

After the algorithm computes B‚, the implication B‚ Ñ BÓÒ is added to
T , provided B‚ is a pseudo-intent, i.e. B‚ ‰ BÓÒ.

13

Note that there exists the smallest c̃T -closed set larger than B‚ and it is
the intent B‚ÓÒ (“ BÓÒ). Consider the following two cases:

(o1) This intent satisfies the canonicity test, i.e. pBÓÒqy “ pB‚qy, where y is
the last added attribute to B. Then we can jump to this intent.

(o2) This intent does not satisfy the canonicity test. Thus, we can leave the
present subtree.

Now, let us describe the first version of LinCbO (Algorithm 7), which
includes the above discussed improvements.4

The procedure LinCbO1Step works with the following global variables: an
initially empty theory T and an initially empty list of attribute implications
for each attribute. LinCbO1Step accepts two arguments: a set B of attributes
and the last attribute y added to B. The set B is not generally closed (which
was the case in Algorithm 2).

The procedure first applies LinClosure with an early stop (Algorithm 5) to
compute B‚ (line 1). If B‚ fails the canonicity test (recall that the canonicity
test is incorporated in LinClosure with an early stop), the procedure stops
(lines 2,3). Then, the procedure computes B‚ÓÒ to check whether B‚ is an
intent or pseudo-intent (line 4). If it is a pseudo-intent, a new attribute
implication B‚ ñ B‚ÓÒ is added to the initially empty theory T (line 5).
For each attribute in B‚, we update its list by adding the new attribute
implication (lines 6 and 7).

Now, as we computed the intent B‚ÓÒ, we can apply (o1) or (o2) based
on the result of the canonicity test pB‚ÓÒqy “ pB‚qy (line 8) – either we call
LinCbO1Step for B‚ÓÒ (line 9) or end the procedure. If B‚ is an intent, we
recursively call LinCbO1Step for all sets B‚ Y tiu where i is higher than the
last added attribute y and is not already present in B‚. To have lectic order,
we make the recursive calls in the descending order of is.

The procedure LinCbO1Step is initially called with empty set of attributes
and zero representing an invalid last added attribute.

Now we can explain why we removed the part of the code of LinClosure
which handles the case H ñ R P T (Algorithm 4, lines 2,3) from LinClo-
sure with an early stop. The presence of H ñ R in T means that H is a
pseudo-intent. This pseudo-intent is generated by the initial invocation of
LinCbO1Step. Since for the initial invocation, we have y “ 0, the intent

4As CbO with right depth-first sweep can be considered a recursive NextClosure, this
version of LinCbO can be considered a recursive version of the corresponding algorithm
from [6] (denoted NC`2 later in this paper).

14

Algorithm 7: LinCbO1 (CbO for the Duquenne-Guigues basis, first
version)

T Ð H
listris Ð H for each i P Y

def LinCbO1Step(B, y):
input : B – set of attributes

y – last attribute added to B

1 B‚ Ð LinClosureESpB, yq
2 if B‚ is fail then
3 return

4 if B‚ ‰ B‚ÓÒ then

5 T Ð T Y tB‚ ñB‚ÓÒu
6 for i P B‚ do

7 listris Ð listris Y tB‚ ñB‚ÓÒu

8 if pB‚ÓÒqy “ pB‚qy then

9 LinCbO1Step(B‚ÓÒ, y)

10 else

11 for i from n down to y ` 1, i R B‚ do

12 LinCbO1Step(B‚ Y tiu, i)

LinCbO1Step(H, 0)

15

B‚ÓÒ “ HÓÒ “ R trivially satisfies the condition Ry “ Hy (Algorithm 7, line
8) and LinCbO1Step is invoked with this intent (Algorithm 7, line 9). Con-
sequently, all the processed sets are supersets of R, and therefore the union
with R (Algorithm 4, line 3) does nothing.

3.3. LinClosure with reused counters

Consider theory T 1 and theory T which emerges by adding new attribute
implications to T 1, i.e. T 1 Ď T . When we compute T 1-closure B1, we can
store values of the attribute counters at the end of the LinClosure procedure.
Later, when we compute T -closure of a superset B of B1, we can initialize
the attribute counters of implications from T 1 to the stored values instead of
the antecedent sizes. Attribute counters for new implications, i.e. those in
T 1zT , are initialized the usual way. Then, we handle only the new attributes,
that is those in BzB1.

We can improve the LinClosure accordingly (Algorithm 8). We describe
only the differences from LinClosure with an early stop (Algorithm 5). It
accepts two additional arguments: Z 1 – the set of new attributes, i.e, those
which were not in the T -closed subset from which we reuse the counters;
and prevCount – the previous counters to be reused. We copy the previous
counters and new attributes Z 1 to local variables (lines 2,3). Furthermore,
we add new attribute implications (lines 4,5).

Note, that in CbO we always make the recursive invocations for supersets
of the current set (see Algorithm 7, lines 9 and 12). Therefore, we can easily
utilize the LinClosure with reused counters in LinCbO (Algorithm 9). The
only difference from the first version (Algorithm 7) is that the procedure
LinCbOStep accepts two additional arguments, which are passed to procedure
LinClosureRC (line 1). The two arguments are: the set of new attributes
and the previous attribute counters (both initially empty). Recall that the
attribute counters are modified by LinClosure. The corresponding arguments
are also passed to the recursive invocations of LinCbOStep (lines 9 and 12).

4. Experimental Comparison

We compare LinCbO with other algorithms, namely:

• NextClosure with näıve closure (NC1), LinClosure (NC2), and Wild’s
closure (NC3).

• NextClosure`, which is NextClosure with the improvements described
in Section 3.2, with the same closures (NC`1, NC`2, NC`3)5;

5NextClosure and NextClosure` are called Ganter and Ganter` in [6].

16

Algorithm 8: LinClosure with reused counters

def LinClosureRC(B, y, Z 1, prevCount):
input : B – set of attributes to be closed

y – last attribute added to B

Z 1 – set of new attributes
prevCount – previous attribute counters from

computation BzZ

1 D Ð B

2 count Ð copy of prevCount
3 Z Ð Z 1

4 for LñR P T not counted in prevCount do
5 countrLñRs Ð |LzB|

6 while Z ‰ H do

7 m Ð minpZq
8 Z Ð Zztmu
9 for LñR P listrms do

10 countrLñRs Ð countrLñRs ´ 1
11 if countrLñRs “ 0 then

12 add Ð RzD
13 if minpaddq ă y then

14 return fail

15 D Ð D Y add
16 Z Ð Z Y add

17 return xD, county

17

Algorithm 9: LinCbO (CbO for the Duquenne-Guigues basis, final
version)

T Ð H
listris Ð H for each y P Y

def LinCbOStep(B, y, Z, prevCount):
input : B – set of attributes

y – last attribute added to B

Z – set of new attributes
prevCount – attribute counters

1 xB‚, county Ð LinClosureRCpB, y, Z, prevCountq
2 if B‚ is fail then
3 return

4 if B‚ ‰ B‚ÓÒ then

5 T Ð T Y tB‚ ñB‚ÓÒu
6 for i P B‚ do

7 listris Ð listris Y tB‚ ñB‚ÓÒu

8 if pB‚ÓÒqy “ pB‚qy then

9 LinCbOStep(B‚ÓÒ, y, B‚ÓÒzB‚, count)

10 else

11 for i from n down to y ` 1, i R B‚ do

12 LinCbOStep(B‚ Y tiu, i, tiu, count)

LinCbOStep(H, 0,H,H)

18

• attribute incremental approach [23].

To achieve maximal fairness, we implemented LinCbO into the framework
made by Bazhanov & Obiedkov [6]6. It contains implementations of all the
listed algorithms. In Section 4.1, we also use the same datasets as used by
Bazhanov and Obiedkov [6].

All experiments have been performed on a computer with 64GB RAM,
two Intel Xeon CPU E5-2680 v2 (at 2.80GHz), Debian Linux 10, and GNU
GCC 8.3.0. All measurements have been taken ten times and the mean value
is presented.

4.1. Batch 1: datasets used in [6]

Bazhanov and Obiedkov [6] use artificial datasets and datasets from UC
Irvine Machine Learning Repository [13].

The artificial datasets are named as |X|x|Y |-d, where d is the number
of attributes of each object; i.e. |txuÒ| “ d for each x P X . The attributes
are assigned to objects randomly, with exception 18x18-17, where each ob-
ject misses a different attribute (more exactly, the incidence relation is the
inequality).

The datasets from UC Irvine Machine Learning Repository are: Breast-cancer,
Breast-w, dbdata0, flare, Post-operative, spect, vote, and zoo. See Ta-
ble 1 for properties of all the datasets.

In batch 1, LinCbO computes the basis faster than the rest of algorithms;
however in most cases the runtimes are very small and differences between
them are negligible (see Table 2).

4.2. Batch 2: our collection of datasets

As the runtimes in batch 1 often differ only in a few milliseconds, we
tested the algorithm on larger datasets. We used the following datasets from
UC Irvine Machine Learning Repository [13]:

• crx – Credit Approval (37 rows containing a missing value were re-
moved),

• shuttle – Shuttle Landing Control,

• magic – MAGIC Gamma Telescope,

• bikesharing (day|hour) – Bike Sharing Dataset,

6Available at https://github.com/yazevnul/fcai

19

https://github.com/yazevnul/fcai

Table 1: Properties of the datasets in batch 1

dataset |X| |Y | |I| # intents # ps.intents

100x30-4 100 30 400 307 557
100x50-4 100 50 400 251 1115
10x100-25 10 100 250 129 380
10x100-50 10 100 500 559 546
18x18-17 18 18 306 262,144 0
20x100-25 20 100 500 716 2269
20x100-50 20 100 1000 12,394 8136
50x100-10 50 100 500 420 3893
900x100-4 900 100 3600 2472 7994
Breast-cancer 286 43 2851 9918 3354
Breast-w 699 91 6974 9824 10,666
dbdata0 298 88 1833 2692 1920
flare 1389 49 18,062 28,742 3382
Post-operative 90 26 807 2378 619
spect 267 23 2042 21,550 2169
vote 435 18 3856 10,644 849
zoo 101 28 862 379 141

• kegg – KEGG Metabolic Reaction Network – Undirected.

We binarized the datasets using nominal (nom), ordinal (ord), and interor-
dinal (inter) scaling, where each numerical feature was scaled to k attributes
with k ´ 1 equidistant cutpoints. Categorical features were scaled nominally
to a number of attributes corresponding to the number of categories. Af-
ter the binarization, we removed full columns. Properties of the resulting
datasets are shown in Table 3. The naming convention used in Table 3 (and
Table 4) is the following: pscalingqkpdatasetq. For example, inter10shuttle
is the dataset ‘Shuttle Landing Control’ interordinally scaled to 10, using 9
equidistant cutpoints.

For this batch, we included LinCbO1 (Algorithm 7) to show how the reuse
of attribute counters influences the performance.

For most datasets, LinCbO works faster than the other algorithms. For
the remaining datasets, LinCbO is the second best after the attribute in-
cremental approach (see Table 4). However, we encountered limits of the
attribute incremental approach as it runs out of available memory in three
cases (denoted by the symbol ˚ in Table 4).

20

Table 2: Runtimes in seconds of algorithms generating Duquenne-Guigues basis in batch 1.

Dataset AttInc NC1 NC2 NC3 NC`1 NC`2 NC`3 LinCbO

100x30-4 0.008 0.007 0.007 0.01 0.004 0.003 0.005 0.002

100x50-4 0.028 0.037 0.024 0.05 0.013 0.008 0.016 0.005

10x100-25 0.015 0.015 0.023 0.033 0.007 0.01 0.014 0.004

10x100-50 0.037 0.052 0.087 0.112 0.038 0.063 0.081 0.015

18x18-17 0.337 0.096 0.143 0.134 0.111 0.157 0.151 0.148

20x100-25 0.099 0.281 0.165 0.484 0.094 0.061 0.172 0.026

20x100-50 0.94 5.457 3.047 8.898 3.809 2.31 6.481 0.675

50x100-5 0.454 0.778 0.253 1.064 0.126 0.047 0.164 0.029

900x100-4 2.061 3.315 0.91 3.936 1.15 0.317 1.333 0.172

Breast-cancer 0.121 0.295 0.236 0.325 0.231 0.184 0.251 0.055

Breast-w 2.856 4.674 3.128 9.61 2.526 1.67 5.155 0.516

dbdata0 0.109 0.254 0.312 0.43 0.158 0.208 0.263 0.049

flare 0.622 1.006 1.865 1.813 0.92 1.661 1.624 0.265

Post-operative 0.014 0.015 0.023 0.021 0.013 0.018 0.018 0.009

spect 0.142 0.407 0.584 0.397 0.388 0.556 0.377 0.097

vote 0.054 0.062 0.078 0.068 0.059 0.075 0.064 0.024

zoo 0.004 0.003 0.005 0.005 0.002 0.004 0.004 0.002

21

Table 3: Properties of the datasets in batch 2

dataset |X| |Y | |I| # intents # ps.intents

inter10crx 653 139 40,170 10,199,818 20,108
inter10shuttle 43,500 178 3,567,907 38,199,148 936
inter3magic 19,020 52 399,432 1,006,553 4181
inter4magic 19,020 72 589,638 24,826,749 21,058
inter5bike day 731 93 24,650 3,023,326 20,425
inter5crx 653 79 20,543 348,428 3427
inter5shuttle 43,500 88 1,609,510 333,783 346
inter6shuttle 43,500 106 2,002,790 381,636 566
nom10bike day 731 100 9293 52,697 29,773
nom10crx 653 85 8774 51,078 6240
nom10magic 19,020 102 209,220 583,386 154,090
nom10shuttle 43,500 97 435,000 2931 810
nom15magic 19,020 152 209,220 1,149,717 397,224
nom20magic 19,020 202 209,220 1,376,212 654,028
nom5bike day 731 65 9293 61,853 16,296
nom5bike hour 17,379 90 238,292 1,868,205 320,679
nom5crx 653 55 8774 29,697 2162
nom5keg 65,554 144 1,834,566 13,262,627 42,992
nom5shuttle 43,500 52 435,000 1461 319
ord10bike day 731 93 28,333 664,713 11,795
ord10crx 653 79 37,005 1,547,971 2906
ord10shuttle 43,500 88 1,849,216 97,357 279
ord5bike day 731 58 14,929 81,277 5202
ord5bike hour 17,379 83 457,578 2,174,964 99,691
ord5crx 653 49 19,440 139,752 973
ord5magic 19,020 42 535,090 821,796 1267
ord5shuttle 43,500 43 868,894 4068 119
ord6magic 19,020 52 662,177 2,745,877 2735

22

Table 4: Runtimes in seconds of algorithms generating Duquenne-Guigues basis in batch 2. The symbol ˚ means that the run could not
be completed due to insufficient memory

Dataset AttInc NC1 NC2 NC3 NC`1 NC`2 NC`3 LinCbO LinCbO1

inter10crx 400.292 2084.12 17,059.5 4256.41 2097.54 16,817.5 4193.46 508.551 23,842
inter10shuttle ˚ 18,038.1 21,268.1 20,211.9 17,664.5 21,035.4 20,171.9 15,852.9 28,373.5
inter3magic 109.178 106.341 136.738 109.133 107.357 136.842 109.428 26.156 74.98
inter4magic ˚ 4029.95 9998.74 4241.51 4027.48 10,023 4239.26 965.353 9258.53
inter5bike day 72.952 389.073 1409.69 680.789 383.537 1378.89 670.109 85.591 1589.58
inter5crx 5.863 16.357 56.977 25.08 16.257 56.669 24.995 3.176 75.205
inter5shuttle 207.323 137.211 144.747 144.125 137.596 145.491 144.957 120.003 143.4
inter6shuttle 253.166 164.355 181.19 177.138 164.924 182.664 178.474 133.288 181.967
nom10bike day 4.515 42.074 33.725 71.745 31.505 24.71 52.249 7.099 26.318
nom10crx 1.227 3.105 5.409 7.776 2.828 4.792 6.855 0.944 6.939
nom10magic 486.926 1503.38 977.612 1547.33 1322.62 790.61 1246.06 206.797 821.269
nom10shuttle 1.455 1.14 1.19 1.234 1.102 1.134 1.166 0.425 0.53
nom15magic 3358.44 10,499.8 6442.54 14,838.1 8620.79 5060.17 11,277 1509.86 5363.77
nom20magic 7882.15 32,600.2 16,779.1 46,609.8 23,129.5 10,754.4 33,369.5 4437.05 17,424
nom5bike day 2.58 13.064 11.32 17.572 10.855 9.383 14.517 2.219 9.251
nom5bike hour 1893.33 8083.01 8412.02 8402.16 7248.4 7055.42 7163.17 1410.11 8098.72
nom5crx 0.406 0.623 1.054 1.061 0.592 0.983 0.988 0.193 1.110
nom5keg ˚ 7707.54 16,584.8 13,154.5 7564.71 16,590.3 13,184.1 1936.7 15,305
nom5shuttle 0.693 0.493 0.511 0.511 0.481 0.497 0.5 0.309 0.320
ord10bike day 21.884 92.944 402.8 154.541 90.973 385.489 148.472 24.997 451
ord10crx 28.367 85.67 325.608 93.936 85.735 325.742 94.394 11.653 342.858
ord10shuttle 51.839 40.338 42.438 41.475 40.426 42.419 41.549 34.293 40.155
ord5bike day 2.08 4.688 12.498 7.34 4.412 11.501 6.812 0.936 12.454
ord5bike hour 1107.57 1749.29 5621.96 2304.73 1672.93 5173.36 2169.43 321.147 5694.64
ord5crx 1.468 2.7 6.696 3.071 2.701 6.68 3.062 0.61 6.957
ord5magic 99.92 93.845 108.648 94.28 93.93 108.733 94.437 46.982 71.721
ord5shuttle 1.676 1.382 1.408 1.41 1.38 1.403 1.404 1.319 1.417
ord6magic 345.392 335.947 447.37 337.462 336.4 447.353 338.321 158.227 277.617

23

dataset mushroom anonymous web adult internet ads
size 8124 ˆ 119 32,711 ˆ 296 48,842 ˆ 104 3279 ˆ 1557
fill ratio 19.33% 1.02% 8.65% 0.88%
#concepts 238,710 129,009 180,115 9192
NextClosure 53.891 243.325 134.954 114.493
CbO 0.508 0.238 0.302 0.332

Table 5: Runtimes of formal concept enumeration by NextClosure and CbO in seconds for
selected datasets (source: [24])

4.3. Evaluation

Based on the experimental evaluation in Section 4, we conclude that
LinCbO is the fastest algorithm for computation of the Duquenne-Guigues
basis. In some cases, it is outperformed by the attribute incremental ap-
proach. However, the attribute incremental approach seems to have enor-
mous memory requirements as it run out of memory for several datasets.

Originally, we believed that CbO itself can make the computation faster.
This motivation came from the paper by Outrata & Vychodil [24], where CbO
is shown to be significantly faster than NextClosure when computing intents
(see Table 5). The main reason for the speed-up is the fact that CbO uses set
intersection to efficiently obtain extents during the tree descent. This feature
cannot be exploited for computation of the Duquenne-Guigues basis. The
CbO itself rarely seems to have a significant effect on the runtime – this was
the case for datasets nom10shutle and nom5shutle. Sometimes, it lead to
worse performance, for example for datasets inter10crx, inter10shuttle,
and nom20magic.

However, the introduction of the reuse of attribute counters significantly
improves the runtime for most datasets (see Fig. 3).

5. Conclusions and further research

The algorithm LinClosure has been considered to be slow and even worse
than the näıve closure [26, 6]. In an experimental evaluation, we have shown
that it can perform very fast when it can reuse its attribute counters. The
reuse is enabled by using CbO.

As our future research, we want to further develop the present algorithm.

• One of the benefits of CbO is that it can be improved to avoid some
unnecessary closure computations. This improvement, called pruning,
is in various ways utilized in FCbO [24] and In-Close ver. 3 and higher

24

in
te
r1
0c
rx

in
te
r1
0s
hu
tt
le

in
te
r3
ma
gi
c

in
te
r4
ma
gi
c

in
te
r5
bi
ke
Dd
ay

in
te
r5
cr
x

in
te
r5
sh
ut
tl
e

in
te
r6
sh
ut
tl
e

104

105

106

107

no
m1
0b
ik
e
da
y

no
m1
0c
rx

no
m1
0m
ag
ic

no
m1
0s
hu
tt
le

no
m1
5m
ag
ic

no
m2
0m
ag
ic

no
m5
bi
ke
da
y

no
m5
bi
ke
ho
ur

no
m5
cr
x

no
m5
ke
g

no
m5
sh
ut
tl
e

102

103

104

105

106

107

or
d1
0b
ik
e
da
y

or
d1
0c
rx

or
d1
0s
hu
tt
le

or
d5
bi
ke
da
y

or
d5
bi
ke
ho
ur

or
d5
cr
x

or
d5
ma
gi
c

or
d5
sh
ut
tl
e

or
d6
ma
gi
c

103

104

105

106

107

NC`2 LinCbO1 LinCbO

Figure 3: Comparison of NextClosure with LinClosure with an early stop (NC`2,
LinCbO1, and LinCbO for datasets in batch 2; runtimes in milliseconds on a logarith-
mic scale (values are from Table 4).

25

[3, 4, 5]. In the case of the Duquenne-Guigues basis, the computation
of closure is much more time consuming than in the case of intents.
Therefore, it seems to be a good idea to apply pruning techniques in
our algorithm. Our preliminary results indicate a possible 20% speed-
up.

• Generalization of LinClosure is used to compute models in generalized
settings, like fuzzy attribute implications [8, 10, 11] and temporal at-
tribute implications [25]. We will explore potential uses of LinCbO in
these generalizations.

• Algorithms for enumeration of closed sets can be extended to handle a
background knowledge given as a set of attribute implications or as a
constraint closure operator [9]. Adding the background knowledge in
the computation of the Duquenne-Guigues basis was investigated by
Kriegel [17]. We will explore this possibility for LinCbO.

• The implementation used for experimental evaluation was made to be
at a similar level to the Bazhanov and Obiedkov implementations [6].
We will deliver an optimized implementation of LinCbO, possibly with
a pruning technique.

Acknowledgment

The authors acknowledge support by the grants

• IGA UP 2020 of Palacký University Olomouc, No. IGA PrF 2020 019,

• JG 2019 of Palacký University Olomouc, No. JG 2019 008.

References

References

[1] S. Andrews, In-Close, a fast algorithm for computing formal concepts,
in: International Conference on Conceptual Structures, Springer, 2009.

[2] S. Andrews, In-Close2, a high performance formal concept miner, in:
Proceedings of the 19th International Conference on Conceptual Struc-
tures for Discovering Knowledge, ICCS’11, Berlin, Heidelberg, Springer-
Verlag, 2011, pp. 50–62.

[3] S. Andrews, A ‘best-of-breed’ approach for designing a fast algorithm for
computing fixpoints of Galois connections, Inf. Sci. 295 (2015) 633–649.

26

[4] S. Andrews, Making use of empty intersections to improve the perfor-
mance of CbO-type algorithms, in: International Conference on Formal
Concept Analysis, Springer, 2017, pp. 56–71.

[5] S. Andrews, A new method for inheriting canonicity test failures in
Close-by-One type algorithms, in: Proceedings of the Fourteenth Inter-
national Conference on Concept Lattices and Their Applications, 2018,
pp. 255–266.

[6] K. Bazhanov and S. A. Obiedkov, Optimizations in computing the
Duquenne-Guigues basis of implications, Ann. Math. Artif. Intell. 70
(1-2) (2014) 5–24.

[7] C. Beeri and P. A. Bernstein, Computational problems related to the
design of normal form relational schemas. ACM Trans. Database Syst.
4 (1) (1979) 30–59.

[8] R. Belohlavek, V. Vychodil, Graded LinClosure and its role in relational
data analysis, in: Proceedings of the Fourth International Conference
on Concept Lattices and Their Applications, 2006, pp. 139–154.

[9] R. Belohlavek, V. Vychodil. Closure based constraints in formal concept
analysis. Discrete Applied Mathematics 161(13-14)(2013), 1894-1911.

[10] R. Belohlavek, V. Vychodil, Attribute dependencies for data with
grades I, Int. J. Gen. Syst. 45 (7-8) (2016) 864–888.

[11] R. Belohlavek, V. Vychodil, Attribute dependencies for data with
grades II, Int. J. Gen. Syst. 46 (1) (2017) 66–92.

[12] C. Carpineto, G. Romano, Exploiting the potential of concept lattices
for information retrieval with CREDO, J. UCS 10 (8) (2004) 985–1013.

[13] D. Dua, C. Graff, UCI Machine Learning Repository, 2017.

[14] B. Ganter, R. Wille, Formal Concept Analysis – Mathematical Founda-
tions, Springer, 1999.

[15] B. Ganter, K. Reuter, Finding all closed sets: A general approach, Order
8 (3) (1991) 283–290.

[16] J. L. Guigues, V. Duquenne, Familles minimales d’implications informa-
tives resultant d’un tableau de données binaires, Math. Sci. Humaines
95 (1986) 5–18.

27

[17] F. Kriegel, D. Borchmann, NextClosures: parallel computation of the
canonical base with background knowledge, Int. J. Gen. Syst. 46 (5)
(2017) 490–510.

[18] S. O. Kuznetsov, A fast algorithm for computing all intersections of
objects from an arbitrary semilattice, Nauchno-Tekhnicheskaya Infor-
matsiya Seriya 2-Informatsionnye Protsessy i Sistemy (1) (1993) 17–20.

[19] S. O. Kuznetsov, On the intractability of computing the Duquenne-
Guigues base, J. UCS 10 (8) (2004) 927–933.

[20] S. O. Kuznetsov, S. Obiedkov, Comparing performance of algorithms
for generating concept lattices, J. Exp. Theor. Artif. Intell. 14 (2002)
189–216.

[21] D. Maier, The theory of relational databases, volume 11, Computer
science press Rockville, 1983.

[22] A. Mora, P. Cordero, M. Enciso, I. Fortes, G. Aguilera, Closure via func-
tional dependence simplification, Int. J. Comput. Math. 89 (4) (2012)
510–526.

[23] S. Obiedkov, V. Duquenne, Attribute-incremental construction of the
canonical implication basis, Ann. Math. Artif. Intell. 49 (1-4) (2007)
77–99.

[24] J. Outrata, V. Vychodil, Fast algorithm for computing fixpoints of
Galois connections induced by object-attribute relational data, Inf. Sci.
185 (1) (2012) 114–127.

[25] J. Triska, V. Vychodil, Minimal bases of temporal attribute implications,
Ann. Math. Artif. Intell. 83 (1) (2018) 73–97.

[26] M. Wild, Computations with finite closure systems and implications,
in: International Computing and Combinatorics Conference, Springer,
1995, pp. 111–120.

28

	1 Introduction
	2 Preliminaries
	2.1 Formal concept analysis
	2.2 Closure systems and closure operators
	2.3 Bases, Duquenne-Guigues basis and its computation
	2.4 Close-by-One and NextClosure
	2.5 LinClosure
	2.6 Wild's closure

	3 LinCbO: CbO-based algorithm for computation of the Duquenne-Guigues basis
	3.1 Sweep order
	3.2 NextClosure's improvements
	3.3 LinClosure with reused counters

	4 Experimental Comparison
	4.1 Batch 1: datasets used in bazhanov2014
	4.2 Batch 2: our collection of datasets
	4.3 Evaluation

	5 Conclusions and further research

