
Scalable Teacher Forcing Network for Semi-Supervised
Large Scale Data Streams

Mahardhika Pratama*a, Choiru Za’inb, Edwin Lughoferc, Eric Pardeded, Dwi
A.P. Rahayue

aSchool of Computer Science and Engineering, Nanyang Technological University, Singapore
bFaculty of Information Technology, Monash University, Australia

cDepartment of Knowledge-Based Mathematical Systems, Johannes Kepler University,
Linz, Austria

dDepartment of Computer Science and IT, La Trobe University, Australia
eInformatics Department, Faculty of Engineering, Universitas Muhammadiyah Malang

(UMM), Indonesia

Abstract

The large-scale data stream problem refers to high-speed information flow which

cannot be processed in scalable manner under a traditional computing platform.

This problem also imposes expensive labelling cost making the deployment of

fully supervised algorithms unfeasible. On the other hand, the problem of semi-

supervised large-scale data streams is little explored in the literature because

most works are designed in the traditional single-node computing environments

while also being fully supervised approaches. This paper offers Weakly Su-

pervised Scalable Teacher Forcing Network (WeScatterNet) to cope with the

scarcity of labelled samples and the large-scale data streams simultaneously.

WeScatterNet is crafted under distributed computing platform of Apache Spark

with a data-free model fusion strategy for model compression after parallel com-

puting stage. It features an open network structure to address the global and

local drift problems while integrating a data augmentation, annotation and auto-

correction (DA3) method for handling partially labelled data streams. The per-

formance of WeScatterNet is numerically evaluated in the six large-scale data

stream problems with only 25% label proportions. It shows highly competitive

performance even if compared with fully supervised learners with 100% label

?Corresponding Author

Preprint submitted to Information Sciences July 8, 2021

ar
X

iv
:2

10
7.

02
94

3v
1

 [
cs

.D
C

]
 2

6
Ju

n
20

21

proportions.

Keywords: Evolving Fuzzy Systems, Concept Drifts, Data Streams, Fuzzy

Classifiers

1. Introduction

Background: The problem of data streams [1] has attracted growing research

interest because of its importance to handle current real world problems where

data samples are collected continuously in never-ending and dynamic environ-

ments [2]. This issue requires not only fast data processing with limited memory

burden but also capability in handling distributional variations of data streams.

The problem of data streams have been addressed using different approaches in-

cluding rule-based approach [3], flexible decision tree [4], ensemble methods [5]

[6] [7] [8], evolving neural networks [9] or evolving neuro-fuzzy systems [10] [11]

and recently deep neural networks [12, 13, 14]. Typically, data stream mining

requires techniques in the field of drift detection and handling within reasonable

space, time and memory complexities [15] [16]. Nonetheless, the issue of data

streams deserves in-depth study because of the increasing challenges of data an-

alytics in practice such as limited access of ground truth and explosion of data

volumes [3]. The first one is known as the problem of semi-supervised learn-

ing while the second one is understood as the large-scale data stream learning

problem.

Large-scale data streams generate massive information flow which cannot

be efficiently handled in a single computing node [17]. Unlike conventional big

data problem where the size of information is constant and processed in the one-

shot fashion [18] [19], it refers to continuously growing information having to

be processed in the single scan [1]. It calls for a distributed computing strategy

being able to handle the never-ending information flow. Recently, there has

been also a trend to perform the distributed computing task under the GPU in

lieu of cloud-based infrastructure [20, 3]. The underlying challenge lies in the

fact where the model’s complexity grows exponentially if no proper complexity

2

reduction step is implemented properly after the distributed computing phase.

It should not suffer from accuracy loss. That is, the distributed computing

structure should induce a similar or even improved accuracy, compared to the

single node structure [21].

While massive information has to be executed in scalable fashion, annota-

tion of large-scale data stream is prohibitive. This issue leads to an availability

of only a small fraction of labelled samples (termed as scarcely labelled sam-

ples [16]), or, in the extreme case, labelled samples are only available during

the warm-up phase, termed as the infinite delay problem [22]. This issue

prohibits the use of fully supervised learning algorithm and requires a label en-

richment mechanism via pseudo-label generation [23] to self-annotate unlabelled

samples and the label augmentation approach to perturb labelled samples with-

out changing their labels. The underlying challenge exists in the accumulation

of own classification errors, which typically causes loss of generalization perfor-

mance, because wrong labels are fed into the model update algorithm, thereby

changing the shape of the decision boundary onto a wrong direction. On-line

active learning is another possibility to decrease the annotation effort, but still

it typically requires at least 10-20% of the whole stream to be labelled in or-

der to keep the model accuracy on a reasonable level [24] — that is too much

in large-scale streaming environments, where millions of samples are produced

during a day or even an hour. Moreover, the online active learning cannot deal

with partially labelled samples because true class labels of uncertain samples

might not be obtained.

Practical Scenario: The problem of large-scale data streams in semi-supervised

mode is exemplified in the monitoring problem of high-speed manufacturing

processes. A manufacturing process runs 24/7 without interruption where data

points are sampled from sensors in a high speed. Since data samples are gener-

ated in never-ending fashion, it creates streaming data environments in which a

model has to be updated quickly while imposing low memory footprint. That is,

a model is updated in a single scan where a data sample is discarded once used.

In addition, another challenge exists in the dynamic and evolving characteristics

3

of data streams [1] where data distributions rapidly change. This problem is

portrayed in a manufacturing process operating in several conditions to produce

a variety of products. Hence, a model is supposed to adapt to varying distri-

butions on the fly without a retraining process from scratch. This problem also

prohibits the use of a fixed model becoming outdated quickly. The large-scale

data stream problem refers to a practical case in which the size of data streams

is very large such that it is too demanding to be executed in a single node by

using traditional data stream algorithms. This problem is evident in the high-

speed manufacturing process producing a large amount of data samples in a

short period. This problem calls for high-end computing infrastructure such as

distributed computing paradigm under a cluster of computers [25] or GPUs [3]

to expedite model updates and thus innovative distributed learning algorithms.

The underlying goal is to attain comparable accuracy as that in the single com-

puting node while having significantly faster execution time than that in the

single computing node. The large-scale data stream also brings a concern for

the labelling cost because if not handled an operator has to annotate a massive

number of data points in a short period. This issue leads to an urgent need

to develop a semi-supervised algorithm which is capable of learning from few

labelled samples. This case is evident in the monitoring problem of manufac-

turing cases because defect or worn cases are identified from manual inspection

thus slowing down the process.

Our Contribution: Weakly Supervised Scalable Teacher Forcing Network

(WeScatterNet) is proposed in this paper. WeScatterNet addresses the large-

scale data stream problem by means of data augmentation, annotation, and

auto-correction (DA3) while being executed in the distributed computing envi-

ronment of Apache Spark to cope with massive information flow. WeScatterNet

is a flexible ensemble network where both ensemble configuration and base clas-

sifier feature an open network structure to cope with varying data distributions.

The base classifier can be dynamically added and pruned via the drift detection

method. Furthermore, its base classifier characterizes a self-organizing network

structure by growing and pruning mechanisms of fuzzy rules via the network

4

Figure 1: Distributed Computing Strategy of WeScatterNet: A large-size data batch is par-
titioned into P data partitions by the driver node. P data partitions are processed by No

worker nodes producing P local results or base learners. The P base models are consolidated
into a single model and compressed to generate a compact model by the model fusion phase.
Our work applies one executor per node where 6 worker nodes and 1 driver node are deployed.

significance (NS) method [13]. That is, it is capable of initiating its network

structure from scratch or a predefined configuration while its fuzzy rules can be

constructed or removed automatically with respect to varying data distributions.

To meet parallel computing demands of large-scale streams in real-time, the base

classifier is configured in the ensemble structure processed on distributed nodes,

i.e. each node has its own neuro-fuzzy system (base learner) self-evolved and

adapted over time on a specific data batch assigned to the corresponding com-

puting node. Model fusion via the rule merging process is carried out afterward

to compress the ensemble network into a single model.

DA3 is derived from the concept of MixMatch [26] where it is equipped with

a way to self-label unlabelled samples while labelled samples are enriched by per-

turbing them with controlled noise without changing their labels. In addition,

an auto-correction mechanism is integrated to resolve the problem of wrong la-

bel representations due to the absence of ground truth. The conventional fuzzily

weighted generalized recursive least square approach (FWGRLS) method is ex-

tended by incorporating the elastic weight configuration (EWC)-like regulariza-

tion strategy [27]. This is an improved L2−norm regularization method which

5

takes into account the deflection due to the noisy pseudo-label and integrates

a weight decay term to enhance generalization performance. This is different

from [28] where WeScatterNet is built upon the teacher-forcing principle and

the fuzzy neural network paradigm. It is capable of explaining its operation via

human-like linguistic fuzzy rules offering some sort of transparency.

The distributed computing strategy of Apache Spark is carried out in the

continual fashion in which a data-free model fusion mechanism is executed af-

ter the distributed computing phase (one evolving model per node). It merges

inconsequential rules in each of the base learners to those of high-quality rules

thereby reducing the model’s complexity without compromising predictive qual-

ity. It uses the concept of checking the distance and angle between the conse-

quent hyper-planes of two rules, as well as the support compared to domi-

nant rules. Fig. 1 pictorially illustrates the distributed computing strategy of

WeScatterNet. Major contributions of this paper are summed up as follows:

• WeScatterNet is proposed to handle a semi-supervised learning problem of

large-scale data streams. WeScatterNet is developed as a self-organizing

ensemble classifier where both base learner and ensemble structure pos-

sesses a self-evolving property to address concept drifts in the local level

and in the global level. The novel aspect is seen in the integration of for-

getting strategy in the NS method [28] allowing to adjust the probability

density function estimator in respect to the drift rate.

• Unlike existing ensemble classifiers for data streams, WeScatterNet is de-

signed in the distributed computing strategy of Apache Spark to address

the problem of large-scale data streams in scalable manner. That is, both

the testing process and the training process are in parallel executed in the

distributed computing nodes to speed up its computational time. Note

that Apache spark here is put forward to cope with continuous informa-

tion flow rather than a single-shot training process [25].

• The data-free model fusion method is designed to compress an aggregated

model after the distributed computing phase. It is capable of compressing

6

the model’s complexity during the distributed computing step without

loss of accuracy. This strategy can be perceived as an improvement of

the model fusion strategy in [21] where an online model selection phase is

integrated. This strategy selects the best number of rules for a compressed

model to retain predictive accuracy.

• Partially labelled data streams are handled by the DA3 method perform-

ing the label enrichment and regularization mechanisms, The new aspect

of DA3 method lies in the new regularization strategy in the FWGRLS

method to prevent the accumulation of errors as a result of noisy pseudo-

labels. This regularization strategy is inspired by the EWC method [27]

originally devised to prevent the catastrophic forgetting problem of con-

tinual learning. Our approach tackles loss of generalization power due to

noisy pseudo label where important rules are regularized such that they

do not move too far from their optimal locations when updated by noisy

pseudo labels.

• Our codes, data and raw numerical results are made publicly available

in WeScatterNetCodeLink to allow convenient reproduction of our nu-

merical results and further study.

Numerical results over six large-scale data streams coupled with the ablation

study and the study of different class proportions have demonstrated the ad-

vantage of the proposed approach where it is capable of producing competitive

performance using only 25% label proportions compared to its fully supervised

competitors having 100% access of true class labels. The rest of this paper is

structured as follows: Section 2 outlines related works; Section 3 discusses the

problem formulation of semi-supervised data streams in the large-scale environ-

ments; Section 4 outlines the learning procedure of WeScatterNet; Section 5

elaborates our numerical study; Some concluding remarks are drawn in the last

section of this paper.

7

https://github.com/ContinualAL/WeScatterNet.git

2. Related Works

The concept of evolving fuzzy system (EFS) is developed as a way to cope

with the data stream problem where the key idea lies in the combination of

parameter learning and structural learning under a single training phase. It

enables fuzzy rules to be automatically constructed on the fly while performing

a single-pass model update. It makes use of the local property of fuzzy rule

where an online clustering technique can be benefited for automatic fuzzy rule

generation while the rule consequent is updated using a local learning technique

via the fuzzily weighted recursive least square (FWRLS) method. EFS does not

utilize the evolutionary computing techniques for fuzzy rule construction [29, 30,

31]. This research area has started in the early 2000 where a pioneering work is

proposed in [32] introducing the concept of incremental unsupervised learning.

Another early work is proposed in [33] using the evolving clustering method

(ECM) for online identification of fuzzy rules. evolving takagi sugeno (eTS) is

proposed in [34] with the concept of rule potential being an evolving version of

mountain clustering method. [34] is extended for classification problem in [35]

and termed evolving classifier (eClass). EFS has grown rapidly where a high

number of works have been proposed in the literature. Recent survey of this

area can be found in [10].

The area of EFS has been extended from a single model to an ensemble

model in [36] using eTS as a base classifier. Nevertheless, this work is designed

under a static ensemble structure which does not adapt to concept drifts of

data streams. Parsimonious Ensemble (pENsemble) is proposed in [5] to ad-

dress data stream classification problems. pENsemble features a fully flexible

structure where the ensemble structure generation is automated using the drift

detection method and the ensemble pruning mechanism while a base learner

makes use of parsimonious classifier (pClass) having a self-evolving network

structure [37]. pENsemble+ is proposed in [38] where it extends pENsemble

with an online active learning method and an ensemble merging mechanism for

online tool condition monitoring problem. Recently, another variant of evolving

8

ensemble fuzzy neural network is proposed in [39] putting forward the idea of

online bagging for ensemble construction. The concept of ensemble classifier can

be implemented using the stacked generalization principle making possible to

configure an ensemble classifier in a deep structure. Such EFS work is realized in

[40] where it utilizes evolving stochastic configuration network (eSCN) as a base

learner while the network depth is adjustable using a drift detection technique.

This work is generalized in [41] using the feature augmentation technique for

construction of deep neuro fuzzy structure.

The data stream problem has also attracted research attention from the deep

learning community. In [13], the idea of autonomous deep learning (ADL) is pro-

posed where it offers a self-evolving deep neural network under a different-depth

network structure. In [14], similar concept is proposed but it is developed from

the framework of multi-layer perceptron network rather than the different-depth

network structure. Recurrent Neural Network (RNN) is put forward in [42] to

cope with the problem of data streams. The self-evolving concept is introduced

in a single-layer denoising autoencoder (DAE) [43] extending the incremental

feature learning concept in [44]. The concept of hedge back-propagation is

proposed in [45] to address the data stream problem using the different-depth

network structure. In [46], the internet traffic classification problem is solved

using the multi-layer perceptron network.

Although various solutions have been proposed to tackle the data stream

problem, the vast majority of these works are not designed to cope with the

large-scale data stream problem calling for distributed computing strategy to

expedite the execution time. Note that the large-scale data stream problem

differs from the conventional big data problem because it involves continuous

information flow. A scalable PANFIS algorithm is proposed in [25] in which it

implements PANFIS in [47] under the distributed computing of Apache Spark

and develops a model fusion technique. Nevertheless, Scalable PANFIS has not

addressed the problem of continual data streams where data batches stream

continuously. It is also not yet evaluated in the prequential test-then-train pro-

tocol as a standard evaluation procedure of data stream algorithms [1]. In [21],

9

a scalable teacher forcing network (ScatterNet) is proposed to overcome the bot-

tlenecks of scalable PANFIS. It proposes a flexible ensemble classifier built upon

a teacher-forcing fuzzy classifier and implemented under the distributed com-

puting platform of Apache spark. Nevertheless, ScatterNet is a fully supervised

algorithm imposing expensive labelling cost in the large-scale data stream envi-

ronments. This issue requires an innovative algorithm handling the large-scale

data stream problem under semi-supervised setting.

3. Problem Formulation

The large scale data stream problem is formalized as B1, B2, ..., BK where K

denotes the number of data batches unknown in practice while Bk labels the kth

data stream with the size of T . Because of the speed of data generation, T and

K are very large such that it is infeasible for a data stream to be processed under

a traditional computing platform. Bk comprises pairs of data points {xt, yt}Tt=1

where xt ∈ <u is an input data vector and yt ∈ {l1, l2, ..., lm} is a target class

vector formed as a one-hot vector. Our model is simulated in the prequential

test-then-train fashion [48] where it is forced to predict an unlabelled data batch

Xk ∈ <T×u while the predictive accuracy is measured independently per data

batch. Once the target label Yk is available, model update and evolution is

executed.

The semi-supervised learning problem should be addressed in a large-scale

data stream process due to the high manual labelling effort. That is, not all

input samples xt can be paired by a target label yt meaning that the number of

labels T ′ in a data batch is much smaller than that of the batch size T ′ << T .

This issue requires particular strategies to retain the predictive accuracy in the

case of scarcely labelled samples, while still being scalable to cope with the

problem size. Another issue is observed in the aspect of structural complexity

of the evolving models (base learners) which can become uncontrollably high

due to the continual environments of data streams. The model fusion phase is

needed after processing each data stream Bk without compromising the predic-

10

tive quality.

The Spark environment consists of two parts: 1. the Spark’s core; 2. the

programming interface core. The Spark core executes the instructions of the

programming interface core using its low level library. A large-scale data stream

Bk is processed in three steps. The first step is to store it in the memory cluster

in the form of Spark’s data frame. The second step is to divide it into P data

partitions and to distribute these to a number of computing nodes No. The last

step is the consolidation phase where the distributed results are aggregated into

a single result.

The large data stream Bk is partitioned into P data groups. A Bpk data

group is processed by the worker node while its distribution is controlled by the

driver node. It induces P distributed models having to be aggregated into a

single model to avoid the explosion of model’s parameters. The consolidation

phase plays a key role in the continual environments where a continuous arrival

of data streams Bk is expected. Furthermore, the consolidation phase should

not compromise the overall model accuracy. The learning framework of WeScat-

terNet is pictorially illustrated in Fig. 2 consisting of three sub figures. Fig.

2(A) shows the distributed testing procedure of WeScatterNet under Apache

spark, Fig. 2(B) portrays the distributed training procedure of WeScatterNet

under Apache spark and Fig. 2(C) depicts the distributed training and testing

procedures of WeScatterNet.

4. Learning Procedure

The learning procedure is described in Algorithm 1 and is pictorially shown

in Fig. 2 (A),(B),(C). WeScatterNet is capable of initiating its learning process

from scratch without any predefined network structure. Its structural learning

process encompasses the rule growing and pruning mechanisms based on the dis-

tributional variation of data streams [21]. It is simulated under the conventional

prequential test-then-train protocol [48] where a model is forced to predict the

incoming data batch Bk before utilizing it for model updates. It is worth noting

11

Process

𝐸𝑁!

ℱ! + 𝛽!

ℱ" +𝛽"

ℱ# + 𝛽#

…

𝑫𝒂𝒕𝒂 𝑺𝒕𝒓𝒆𝒂𝒎𝑩 = 𝑩𝟏, 𝑩𝟐, … , 𝑩𝒌, … , 𝑩𝑲, … ; 𝟏 ≤ 𝒌 ≤ 𝑲;

𝐖𝐞𝐒𝐜𝐚𝐭𝐭𝐞𝐫𝐍𝐞𝐭%𝐬 𝐥𝐚𝐫𝐠𝐞 − 𝐬𝐜𝐚𝐥𝐞 𝐝𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐞𝐝 𝐩𝐫𝐞𝐪𝐮𝐞𝐧𝐭𝐢𝐚𝐥 𝐭𝐞𝐬𝐭 − 𝐭𝐡𝐞𝐧 − 𝐭𝐫𝐚𝐢𝐧 𝐬𝐜𝐞𝐧𝐚𝐫𝐢𝐨
for weakly supervised classification task

Data Partition

Process
Distributed

Training

𝐵!
Data Annotation and

Enrichment using
𝑫𝑨𝟑module

Data Partition
using Spark

Platform
𝐵!"

𝐵!"#

𝐵!"$

𝐵!"%

𝐵!
"&

…
…

𝒌𝒕𝒉data
stream with
limited label

𝑷 data groups +
ℱ'() (winning
base classifier)

Accumulated
Data

(Annotated+ Augmented
+ Labeled) Data

𝑵𝟎computing
nodes

Model
Fusion

ℒ+

ℒ,

ℒ"

𝑷 sub local
models

ℒ!

…
…

ℒ"##(ℱ$%&)

Aggregated
model
(A base

classifier)

Tr1 Distributed
Training
Scheme

ℱ+,-modifies Ensemble Network
(𝐸𝑁). If drift occurs, ℱ+,- is

stacked as a new member
of 𝐸𝑁. Otherwise, ℱ+,-

replaces the winning
base classifier ℱ-.+

ℱ#$%
ProcessTr2 Tr3 Tr4

M Loop Distributed
Inference using M base

classifiers

𝐵! Data Partition

𝒌𝒕𝒉data stream
without Label

Final
Ensemble

Output

Distributed
testing/inference

Scheme

M loops
Distributed

Testing

𝐵!$

𝐵!#

𝐵!%

𝐵!
&

…
…

𝑷 data
groups 𝑵𝟎computing

nodes

ℱ((𝐵'()

ℱ$(𝐵-
,)

ℱ$(𝐵-")

𝑷 inference outputs
from each data group using

base classifier 𝓕𝒊

ℱ$(𝐵-!)

…
…

Ensemble Network
(EN) consists of 𝑴

base classifiers and
their voting weight

Previous
𝐸𝑁 is used to

infer 𝐵'

Group of
Prediction from M

different base
classifiers 𝓕𝟏,…
, 𝓕𝒎,…, 𝓕𝑴

𝐸𝑁,-.(𝐵-)ℱ$(𝐵-)

ℱ.(𝐵-)

ℱ/(𝐵-)

ℱ0(𝐵-)

single base
classifier

𝓕𝒊 prediction

Simple
Concatenation of P
output (M times)

…

Voting
Weight

Ts3 Ts4Ts1

𝐸𝑁!45

ℱ! + 𝛽!

ℱ" +𝛽"

ℱ# + 𝛽#

…

ProcessTs2

In the node level (Inference
partition and assess each

sample using one sigma rule
for classifier weight update) –

Fig. C.1

Ts2
Concatenation of
partition output

for each base
classifier 𝓕𝒎

Ts3
Update base

classifier voting
weight (𝛽) based
on one sigma rule

assessment

Obtain Ensemble
Output using
voting weight

(𝛽(-3!))

Ts4
Base Learner

Pruning
Mechanism,

Voting weight
normalization

Data Annotation and
Enrichment using
𝑫𝑨𝟑module on 𝑩𝒌 𝐵!"

Pseudolable from
Ensemble Output

𝐸𝑁!#$
Ts1

Tr1

Data Partition
using Spark

Platform

Distributed
Training using
winning base

classifier (ℱ'())

If any base classifiers are removed, EN is
updated. Winning base classifier is obtained

from the highest voting weight

Winning base
classifier ℱ#$%

Tr3Tr2

In the node level (Local
drift handling and

FWRLS)-Fig. C.2

Global drift
detection - using
one sigma rule

Information from
the winning base
classifier output

Model Fusion,
creating new
base classifier

ℱ)6'

Tr4

𝐸𝑁!

ℱ! + 𝛽!

ℱ" +𝛽"

ℱ# + 𝛽#

…

drift information

The next
prequential
Process 𝐵-7!

ℱ!"# + 𝛽!"#

…

A

B

…

Winning model ℒ,
ℱ1

𝐵!%

+

a data group of
unlabelled data

In the node level
Inference Partition and Penalty and
Reward Mechanism

ℱ%(𝐵!") A node

Inference Partition using a
base classifier ℱ' and Penalty

and reward mechanism

C.1.

Winning model ℒ,
ℱ#$%

𝐵-;+

+

a data group

a partition
model to be

merged

In the node level
Local drift handling (rule growing and pruning),

FWRLS (consequent parameter estimation)

ℱ&'((𝐵!$") A node

Base learner learning (evolving)C.2.

C

A. Distributed testing
scheme

B. Distributed training
scheme

C. Prequential test-then-
train scenario of
WeScatterNet which
makes use of distributed
training end testing
scheme

…

in the case of
drift illustration.
ℱ)6' is attached

𝐵!#$

𝐵!

𝐵!

𝐵!)$

Figure 2: WeScatterNet’s learning policy: WeScatterNet adopts a fully distributed training
and testing process where they are executed in the distributed computing strategy of Apache
spark. The distributed computing phase runs over M base learners leading to an individual
base learner prediction over a data batch Bk. Each base learner output is combined to produce
the final ensemble output. The distributed training strategy occurs when adjusting the voting
weight of a base learner (Step C.1) and fine-tuning the winning model (Step C.2) while DA3

mechanism, the drift detection strategy and the model fusion step are carried out in the single
node. The model fusion strategy combines P models delivered from the distributed computing
strategy into a compact model. The model is inserted as a new model if a drift is detected or
replaces the winning model if a stable phase is returned.

12

that only a small fraction of labelled data samples (see Tr1 process in algorithm

1) are made available for model updates.

Algorithm 1 Learning Policy of WeScatterNet

Input : Data Stream B = [B1, B2, ..., BK , ...]
Ouput : Evolution of Ensemble Network (EN1, EN2, ..., ENK , ...)
Initialization Process:
F1 : Generate first model using B1; EN1 ← F1

Loop Process:
for k = 2 to K do

I - Distributed Testing Fig. 2 part. A
Ts1: Partition Bk into P partition; Ts2+Ts3: Perform M loops dis-
tributed inference using ENk−1. For each loop, concatenate all P inference
output Fi(Bpk) as a base classifier’s prediction (Fi(Bk)) Ts4: Perform final

ensemble inference (Ŷ = ENk−1(Bk))
II- Update Base Classifier Weight (βk) using Penalty and Reward
Mechanism
III- Base Learner Pruning Mechanism
If Condition eq.(9) is met, prune inconsequential base learners
IV- Global Drift Detection
V - Distributed Training Fig. 2 part.B
Tr1: Form Data Annotation and Enrichment, B

′

k =

DA3(Blabelledk , Baugmentedk , Ŷ); Tr2: Data Partition of B
′

k using Spark;
Tr3: Distributed training using Fwin; Tr4: Model Fusion forming new
base classifier Fnew
VI - Update ENk
If drift is detected in IV, Fnew is added to ENk. Otherwise Fnew replaces
Fwin

end for

WeScatterNet’s learning protocol starts from the DA3 module performing

the self-labelling step of unlabelled samples and enriching the labelled samples.

The penalty-and-reward step is carried out based on the compatibility of a model

to the incoming sample. A reward is granted if a stream sample is sufficiently

covered by the model from the sigma rule perspective, whereas a penalty is

imposed if it is not sufficiently covered. In this sense, models representing an

older, currently non-adequate state are down-weighed in the aggregation process

for yielding the final model output. A drift detection method is executed to

determine the need for an addition of a new model (for representing the drifted

state). It is crafted from the Hoeffding’s bound examining the statistics of the

13

covariate. A drift leads to the insertion of a new model whereas the winning

model (that one closest to the current sample) is updated when no drift is

signalled. WeScatterNet presents an extension of ScatterNet [21] handling the

semi-supervised learning problem within large-scale data stream environments.

4.1. Inference Procedure of WeScatterNet

WeScatterNet makes use of the teacher forcing concept in which the hyper-

plane membership function is exploited. It differs from the common TS fuzzy

system [49] where the rule premise is parameterized. It enables the rule conse-

quent expressed in the form of a weighted linear combination of input attributes

to form the rule premise, thereby leading to substantial reduction of network

parameters. The membership degree of a data sample to the i−th rule is defined

in terms of the point-to-hyperplane distance [50] as follows:

doi,m =
|yot /ŷot−1 − xeW o

i,m|√
1 +

∑u+1
j=1 W

o
i,m,j

(1)

where eq.(1) labels a distance between a data point and the i − th rule of

the m − th base learner. ŷot−1, y
o
t of eq.(1) respectively denote the previously

predicted output and the desired output at the tth (the current) time instant.

W o
i,m ∈ <(u+1) stands for the oth hyperplane of ith rule of mth base learner while

xe = [1, x] is an extended input vector. Note that the symbol / describes yot or

ŷot−1 is applied alternately. The essence of the teacher forcing concept lies in the

fact that the target variable yot is injected in the training process but replaced

with ŷot−1 in the testing phase. The training process mixes both the desired

and previously predicted output with the equal proportion. The use of ŷot−1

functions as some sort of an internal memory guiding the current prediction. It

is perceived as a recurrent link as is also achieved in recurrent neural networks

[51, 50]. The firing strength of a rule is formalized by using the concept of the

hyper-plane membership function:

hoi,m = exp(−
γdoi,m

maxi=1,...,Rm
doi,m

) (2)

14

where eq.(2) denotes the firing strength of the i− th rule. Rm is the number of

rules of the m− th base learner. As with the conventional TS fuzzy system, the

defuzzification process is implemented using the weighted average operation.

ŷo =

∑Rm

i=1 h
o
i,mxeW

o
i,m∑Rm

i=1 h
o
i,m

(3)

where eq.(3) denotes the local output of a base learner. The predicted class

label of a base learner is resulted from the maximum output of O classes ô =

maxo=1,...,O ŷo. It can be seen as the MIMO architecture where every class

possesses its own local sub-model, according to the one-versus-rest classification

scheme [52] (leading to an indicator based regression task on {0, 1} (per class)

for the consequent parameters, estimable in incremental manner with RLS and

spin-offs, see below). Each base learner is assigned a specific voting weight

βm (see subsequent section for assignment), which influence the final predicted

output as being drawn from a weighted majority voting scheme across the M

base learners.

4.2. Penalty and Reward Mechanism of WeScatterNet

WeScatterNet is constructed from the ensemble concept in which each base

learner outputs its own local prediction. The weighted voting scheme is applied

to infer the final prediction of WeScatterNet in which the voting weight is ad-

justed using the penalty-and-reward technique. A reward is granted if a base

learner provides sufficient coverage of a data point and vice versa. That is, the

compatibility test is performed with respect to the one-sigma rule as follows:

max
i=1,...,Rm

hmi ≥ 0.6065 (4)

where eq.(4) exhibits a penalty and reward condition. Rm denotes the number

of fuzzy rules of the mth base learner while hmi stands for the firing strength of

the ith rule in the mth base learner. Note that 0.6065 comes from the normal

distribution assumption notably the one-sigma rule meaning that a sample lies

15

in very close proximity of the rule and a threshold selected from any unimodal

distribution covers the majority of data points. The one sigma rule is chosen

rather than the two sigma rule to avoid too lenient condition leading to excessive

rewards and to assure sufficient coverage of data samples. The m-th base learner

is assigned with a voting weight βm where a reward augments the voting weight:

βm = min (βm ∗ (1 + fac), 1) (5)

where eq.(5) is a reward mechanism augmenting the voting weight of a base

learner. fac ∈ [0, 1] is a predefined constant. Eq.(5) is triggered if eq.(4) is

satisfied. On the other hand, a penalty is carried out by diminishing the voting

weight βm, if eq.(4) is violated as follows:

βm = βm ∗ fac (6)

where eq.(6) denotes a penalty operation diminishing the voting weight of a

base learner. The penalty and reward mechanism is to mirror the relevance of

a base classifier to the current concept. An outdated base learner should have

a low voting weight, thereby being ignored during the final decision making

process. This is granted through the usage of eq.(6), as it decreases the influence

weight of the base learner βm in the final output prediction whenever eq.(4) is

violated, i.e. the base learner does not cover the sample well, hence the latter

reflects a kind of ’drifted situation’, which is not included as sub-model (rule)

in the base learner. Thus, this base learner is expected to deliver an inaccurate

prediction due to risk of extrapolation. The compatibility test is applied here

rather than the accuracy vector [13] due to the scarcity of labelled samples,

which makes an accumulated accuracy based on ahead-predictions of the base

learner insignificant, thus not well representative. This module is executed in

the distributed fashion across P data partitions. The voting weight of the m-th

base learner is aggregated from P sub-models induced by P data partitions of

Apache Spark βm =
∑P

p=1 β
p
m

P . Then the overall classification output over all

16

base learners is calculated as follows

Ŷo =

M∑
m=1

βmŶ
o
m; Ĉ = max

o=1,...,O
Ŷo (7)

where Ĉ of eq.(7) stands for the final predictive output of WeScatterNet while

Ŷm of eq.(7) denotes the predictive output of the mth base classifier.

4.3. Global Drift Handling Mechanism

WeScatterNet implements the global drift detection mechanism determining

the learning actions to be undertaken. A new base classifier is amalgamated

if a drifting distribution is identified while the stable case induces the adjust-

ment of a winning base classifier having the highest voting weight. The cut-

ting point cut is solicited and reveals the switching point of data distributions

X̂ + εX ≤ Â + εA, A ∈ <cut. Â, X̂ stand for the statistic of data partitions

A,X respectively. Only three candidates of the cutting point are considered

here, e.g., 25%, 50%, 75% to avoid false alarms. εA,X is the Hoeffding’s bound

formalized in eq.(8).

εA,X = (b− a)

√
size

2 ∗ cut ∗ T
ln(

1

δ
) (8)

where size stands for the size of data partition of interest and δ denotes the

significance level. Note that the significance level is inversely proportional to

the confidence level 1 − δ. a, b denote the minimum and maximum points of

input data samples Xk seen so far. The cutting point cut signifies the increase

of population mean and leads to the concept drift. Two data partitions, namely

A ∈ <cut, C ∈ <T−cut, are formed. A drift condition is signalled if the null

hypothesis, given by |A−C| < εA,C , is rejected (as then a significant difference in

the two partitions is observed). The concept drift condition calls for a new base

learner to cover a new concept. A new base classifier is created from scratch and

initialized with the winning base classifier. That is, the distributed computing

strategy to induce a new base classifier refines the winning base classifier to be

17

more fine-grained to describe the drift situation than it was before the model’s

update. The use of the winning base classifier as an initial classifier is reasonable

because it has the closest relationship to the new concept. On the other hand,

the stable concept occurs if the null hypothesis is not rejected. Such a case

requires the winning base classifier (that one which is closest to the current

sample) to be fine-tuned (following the conventional sequential, incremental

learning concept) without adding a new base classifier to an ensemble structure.

4.4. Base Learner Pruning Approach

The base learner pruning mechanism is incorporated in the WeScatterNet to

alleviate the structural complexity. This mechanism checks the voting weight of

a base learner where an inconsequential base learner having low voting weight

is removed. Note that the voting weight is adjusted via the penalty and reward

scheme where a low voting weight indicates low relevance to the current concept

(as sample is not well covered) thus the learner should play little role to the

final classification decision. The condition for removal of the ith base learner is

formalized as follows:

βi ≤ µβ − σβ (9)

where eq.(9) pinpoints the base learner pruning condition. µβ , σβ respectively

denote the mean and standard deviation of the voting weights across all M

base learners. This approach follows the statistical process control concept as

discussed in [1], looking for typically low weights among all learners. It is worth

mentioning that the base classifier weight is adjusted using the dynamic penalty

and reward mechanism meaning that learner’s importance is adjusted dynami-

cally in respect to the recent context. In other words, the voting weight of a base

learner reflects the importance of a base learner. Eq.(9) reveals an inconsequen-

tial base classifier which plays an insignificant role during its lifespan. Such

base classier should be discarded to suppress the complexity of the ensemble

classifier to a low level.

18

4.5. Base Learner Learning Approach

After the condition of the current data stream is examined, either the ad-

dition of a new base learner or the adjustment of the winning base learner is

performed in a distributed fashion — Both call for the base learner update pro-

cedure (including rule evolution and pruning), which autonomously addresses

drifts in a stream and is described in the following.

4.5.1. Local Drift Handling via Rule Growing and Pruning

The base learner of WeScatterNet adopts the self-evolving paradigm where

its rules are automatically generated and pruned with respect to variations of

the data distribution. It utilizes an extension of the network significance method

[13] derived from the bias variance decomposition. A new rule is added in the

case of a high bias (under-fitting) whereas an outdated node is removed in the

case of a high variance (over-fitting). The network bias and variance are crafted

from Bias = (y − E[ŷ])2 and V ar = (E[ŷ2]− E[ŷ]2).

The expected output E[ŷ] is defined as
∑R
i=1Wi

∫∞
−∞ hi(x;Wi)p(x)dx. Solv-

ing the integral of hyperplane membership function is difficult. We assume the

maximum membership degree of hi(x;Wi) = 1. Under the normal distribution

assumption, the expression of the expected output is established in eq.(10).

E[ŷ] =

R∑
i=1

µeWi (10)

where µe = [1, µ] ∈ <u+1 denotes the expanded mean over all input features.

Eq.(10) enables the establishment of network bias and variance. The term

E[ŷ2] is solved by assuming the i.i.d condition navigating to E[ŷ2] = E[ŷ]∗E[ŷ].

The evaluation of network bias and variance from the training and validation

errors is impossible here because of scarcely labelled samples. Furthermore,

this approach complicates the evaluation of network statistical contribution in

the streaming context because it depends on the testing error obtained in the

next data batch. The probability density function p(x) can be estimated by

Gaussian Mixture Model (GMM) [28] to cope with complex data distribution.

19

This approach is, however, computationally expensive while often being unstable

to handle the high input dimension. The forgetting factor here is integrated

instead to keep pace with rapidly changing data distributions p(x)k 6= p(x)k+1.

It is integrated in the recursive mean calculation as follows:

µt = µt−1 + (ft/Ft)(Xt − µt−1) (11)

where Ft = Ft−1 + ft. Ft = t,ft = 1 in the case of no forgetting while eq.(11)

reflects the mean of normal distribution. The forgetting factor ft is calculated

based on the drift rate of the data stream as ft = exp (−Ratek) and linearly

scaled to the range of ft ∈ [0.9, 1] to allow a smooth forgetting. The maximum

forgetting occurs in the case of 0.9 while no forgetting is applied at all in the

case of 1. The point of interest in eq.(11) is that drift handling is addressed in

the concept mean while leaving aside the drift in the concept variance. It aims

to keep pace with the core of changing data distributions rather than to enlarge

its zone of influence which may result in lack of specificity. In addition, the

expression of the expected output in eq.(10) is not a factor of concept variance

which can be safely ignored here. Ratek stands for the drift rate following the

definition of the drift rate in [53] where it is expressed in eq.(12).

Ratek = lim
∆→∞

∆D(k − 0.5/∆, k + 0.5/∆) (12)

where ∆D(.) stands for the total variation distance between two distributions.

It is worth mentioning that the two distributions result from the two non-

overlapping data groups. That is, Bpk is halved to form two data groups. The

use of forgetting factor here is to meet the so-called sweet path [53] where the

high-bias-low-variance model is generated in the case of high drift rate whereas

the low-bias-high-variance model is induced in the case of low drift rate.

The paradigm of statistical process control [1] is adopted in the rule growing

and pruning phases. The key difference lies in the use of bias and variance

directly rather than the conversion of binomial distribution while having flexible

20

confidence factor.

µbiast + σbiast ≥ µbiasmin + k1σ
bias
min → Growing (13)

µvart + σvart ≥ µvarmin + 2 ∗ k2σ
var
min → Pruning (14)

where eq.(13) and eq.(14) indicate the rule growing and pruning conditions.

µbiast , µvart , σbiast , σvart denote the average of the bias, the average of the variance,

the standard deviation of the bias, the standard deviation of the variance up to

the current t− th observation respectively, which can be recursively calculated.

On the other hand, µbiasmin, σ
bias
min, µ

var
min, σ

var
min denote the minimal values of the

average of the bias and variance error and of the standard deviation of the bias

and the variance error seen so far (over each update cycle). These are reset if

eq.(13) or eq.(14) is observed. The factor 2 is inserted in eq.(14) to prevent

direct pruning after adding since the network variance naturally increases with

the addition of new nodes but gradually reduces as the next observations come

across. Note that µbiast , µvart have nothing to do with (11).

The normal distribution assumption is sightly relaxed here by applying adap-

tive confidence factors k1 = 1.25 exp (−Bias2)+0.75 and k2 = 1.25 exp (−V ar2)+

0.75 thus leading to k1 = k2 = [1, 2]. That is, a new node is generated easily in

the case of high bias whereas the rule growing condition becomes tight in the

case of low bias. On the other hand, the rule pruning module is active if the

variance is high and vice versa,

if eq.(13) is met, a new rule is grown where its parameters are assigned:

WR+1 = k3 ∗ 1(u+1),m; SupR+1 = 1; ΩR+1 = ωI(u+1),(u+1) (15)

where k3, ω are predefined constant while WR+1, SupR+1, ΩR+1 of eq.(15)

are the hyperplane, support and covariance matrix of the new rule. Note that

ω is set as a positive large value to induce sufficient correction factor in the

21

covariance matrix. If eq.(14) holds, the weakest rule is pruned:

min
i=1,...,R

E[ŷ] = min
i=1,...,R

µeW (16)

where eq.(16) signifies the rule pruning mechanism. The weakest node is defined

as that having the smallest statistical contribution over past samples. In such a

case, the support of the inactive rule is transferred to the winning rule Supwin =

Supwin + Suppruned. If eq.(13) is violated, the support of the winning rule is

incremented Supwin = Supwin + 1, and its consequent parameters are updated

by the modified FWGRLS method (also to handle noisy pseudo labels properly)

as explained below.

4.5.2. Data Augmentation, Annotation and Auto-Correction (DA3)

WeScatterNet is developed to handle the semi-supervised learning scenario

of large-scale data streams via DA3 approach. DA3 approach governs the pa-

rameter learning phase using the label augmentation, the automatic labelling

of unlabelled samples and regularization. The overall cost function consists of

three components as follows:

Loverall = L(ŷ, y) + L(ŷps, yps) + L(ŷaug, yaug) (17)

where eq.(17) denotes the overall loss function. The first term denotes the

loss of originally labelled samples L(ŷ, y) followed by the loss of pseudo labels

L(ŷps, yps) and augmented labels L(ŷaug, yaug) respectively. The augmented la-

bel yaug is a variation of originally labelled samples using a controlled noise

while leaving the labels unaffected. That is, a small Gaussian noise with zero

mean N(0, 0.001) is injected to the originally labelled samples here thus pro-

ducing the corrupted version of original samples. Since the augmented samples

are generated from the originally labelled samples, they are deemed to be clean.

The pseudo label is generated by the self-labelling mechanism of unlabelled

samples elicited from the final predicted label of ensemble classifier. This step

ought to be carefully carried out because of the risk of noisy pseudo-label. That

22

is, a wrong label is fed thereby resulting in significant performance compro-

mise. A pseudo-label, yps, is generated if all base classifiers are confident with

their own predictions and have agreeable predictions meaning that all ensemble

members produce the same class label. This concept is formalised as follows:

min
m=1,...,M

confm ≥ 0.55 & ô1 = ô2 =, ...,= ôM (18)

where eq.(18) indicates the pseudo-label assignment condition. confm =
ŷm1

ŷm1 +ŷm2

denotes the confidence level of the mth base classifier while ôm labels the pre-

dicted class label of mth base classifier. ŷm1 , ŷ
m
2 respectively stand for the highest

predictive output and the second highest predictive output of the mth base clas-

sifier. confm exhibits whether or not a base classifier is certain to its prediction.

confm ≈ 0.5 implies confused prediction since its prediction is not conclusive to

a particular class. In other words, a prediction lies nearby the decision bound-

ary. By extension, eq.(18) requires agreeable base classifiers. One can envisage

each ensemble member describes local data space. This condition implies a data

point sitting in the overlapping area of all ensemble members. yps is assigned as

that ôm if eq.(18) is satisfied. The specific regularization method is in addition

integrated to address the noisy pseudo-label problem where the main goal is to

prevent important rules to move away from its ideal location as induced by the

original label while allowing less important rule to embrace the pseudo-label.

It is made possible with the use of local learning where each rule is adjusted

separately. Any changes to one rule incurs low influence on the convergence of

other rules.

4.5.3. Recursive Learning of Consequent Parameters with a modified version of

FWGRLS

The consequent parameters Wi are recursively estimated via the fuzzily

weighted generalized recursive least square (FWGRLS) method offering an ex-

tension of fuzzily weighted recursive least square (FWRLS) method with the

use of a weight decay term to enhance the generalization power. The FWGRLS

23

method has its root in the GRLS method [54] where the weight decay term is

introduced in the cost function of the RLS method. The key difference between

the FWGRLS method and the GRLS method exists in the local learning scheme

where the FWGRLS method updates each rule separately with its own inverse

Hessian matrix Ωi = (XTQiX)−1, with Qi the weighting matrix including the

membership degrees of the samples to the ith rule. These degrees makes the

matrix ’local’, as samples lying far from rule i receive low weights and are thus

hardly respected in the estimation of the consequents. The local learning scheme

is important in a self-evolving context since any growing, deletion and update

on one rule does not affect the consequent parameters of the other rules (no

disturbance of optimality etc.) (see Chapter 2 in [55] for a detailed analysis).

The FWGRLS method is written as follows:

W t
i = W t−1

i − αΩi∇φ(W t−1
i) +Kt

i (y
t −Wixe) (19)

Ωti = Ωt−1
i −Kt

ixeΩ
t−1
i (20)

Kt
i = Ωt−1

i xe(1 + xeΩ
t−1
i xTe)−1 (21)

where eq.(19), eq.(20) and eq.(21) signify the hyperplane update strategy of

the FWGRLS method. φ(W t−1
i) denotes the weight decay term of the ith rule

regularizing the model update while α labels the predefined constant controlling

the intensity of regularization and is assigned an extremely small value (α ≈

3∗10−7). Kt
i is the Kalman gain of the ith rule. The weight decay term φ(W t−1

i)

steers the magnitude of the weight vector W t−1
i , trying to keep them in a small

range. This typically improves the generalization power [56] [57] while achieving

implicit dimension reduction affecting the consequent hyper-planes. A quadratic

weight decay function is used here since it is one of the most widely used weight

decay terms.

φ(W t−1
i) =

1

2
(W t−1

i)2; ∇φ(W t−1
i) = Wi (22)

24

where eq.(22) stands for the quadratic weight decay term and its gradient. The

quadratic weight decay term is capable of reducing the magnitude of the hyper-

plane proportionally to its current values.

The original FWGRLS method is only applied for originally labelled samples

and augmented samples. The FWGRLS is modified to handle the noisy pseudo

label samples. That is, the weight update formula is expressed:

W t
i = W t−1

i − αΩi

∑t
n=1 hn,i
t− t′

∇φ(W t−1
i −Wi∗) +Kt

i (y
t −W t−1xe) (23)

where eq.(23) denotes the hyperplane update strategy when dealing with pseudo

label. t′ stands for the time index where a rule is added in the rule base. The

term
∑t

n=1 hn,i

t−t′ aims to take into account the importance of ith rule in the model

update. The higher the importance of a rule, the higher the regularization

intensity becomes, which is in accordance to the weighted sampling strategy

as integrated in the original FWGRLS following the local learning spirit. In

other words, an important rule is hindered to accept the noisy pseudo label.

Furthermore, the weight decay term here is defined as follows:

φ(W t−1
i −Wi∗) =

1

2
(W t−1

i −Wi∗)2;∇φ(W t−1
i −Wi∗) = (W t−1

i −Wi∗) (24)

where eq.(24) denotes the modified weight decay term and its gradient when

handling the pseudo label. Wi∗ stands for the weight vector before receiving

pseudo label. (W t−1
i −Wi∗) functions as auto-correction mechanism in the case

of noisy pseudo labels. That is, it forces the weight vector to be as close as

possible to its prior values before receiving pseudo labels. It is seen from the

negative sign of the update formula in (23). In other words, the regularization

strategy freezes the parameters of important rules. This strategy is inspired by

that in [27] where it is extended to the fuzzy rule level rather than the synaptic

level. Moreover, this strategy is incorporated in the realm of FWGRLS method

rather than the back propagation method. It is worth noting that FWGRLS is

an exact approximation of Least Square (LS) solution assuring convergence in

25

a single update, because LS is a convex parabola function and eq.(19) denotes

a Gauss-Newton step, which converges in a single iteration for such parabolas.

Eq.(23) and eq.(24) are applied only when seeing the pseudo label.

4.6. Data Free Model Fusion

The model fusion step is designed to keep the structural complexity at a

reasonable level which might go to untenable level in the continual environments.

It is a factor of the number of data streams K which might be unbounded in

practise. Specifically, the number of rules can go to the level of P ∗K ∗R where

P,K,R respectively denote the number of data partitions, streams and rules in

the distributed node. Furthermore, there exists the issue of accuracy where the

model fusion step must produce at least the comparable level of accuracy as that

in the single node environment. The local learning property of WeScatterNet

provides flexibility in the distributed environment where every rule possesses

its own inverse Hessian matrix and consequent vector (separately updated by

the modified FWGRLS algorithm) which does not incur substantial accuracy

degradation during the model fusion phase — an issue which becomes apparent

in the case of conventional global learning (most commonly used in literature).

4.6.1. Similarity Analysis

The model fusion strategy is derived from the hyper-plane merging concept

where similar hyper-planes can be merged into one without suffering from any

accuracy drop. The similarity is calculated based on the distance Dist and the

dihedral angle Φ spanned by the two hyper-planes as follows:

Sim1(i, i′) = Dist(i, i′) = (||Wi −Wi′ ||)/(||Wi +Wi′ ||) (25)

Sim2(i, i′) = Φ/π; Φ = arccos(
aT b

|a||b|
) (26)

where eq.(25) and eq.(26) respectively stand for the normalized distance of

two hyperplanes and the dehideral angle between the two normal vectors a =

26

[Wi,1,Wi,2, ...,Wi,u,−1] and b = [−Wi′,1,−Wi′,2, ...,−Wi′,u, 1]. The vector a

is represented by the coefficient of the hyper-planes with respect to the input

variables and −1 ∗ y because of Wi,1x1 +Wi,2x2 + ...+Wi,uxu − y = −Wi,0. It

reflects the normal vector of a hyperplane with Wi,0 as the intercept. Another

vector b is set to the opposite direction in order to correctly obtain the dehideral

angle. A rule is merged to another rule if the following condition is met.

Sim1 ≤ k4 & Sim2 ≥ k5 (27)

where eq.(27) denotes the rule merging condition. k4 and k5 denote the pre-

defined similarity thresholds and govern the intensity of merging process. The

smaller the values of k4 the less frequent the merging process is carried out and

vice versa. On the other side, the higher the values of k5 the less frequent the

merging process is undertaken.

4.6.2. Merging Process

The merging process is carried out by first removing inconsequential rules

deteriorating the model’s generalization if it is merged with other rules. In-

consequential rules are those possessing minor supports thus representing low

variance direction of data distribution. The minimum support is capped at 2%

of the batch size T .

The merging process is implemented in the Z − best − rules fashion. That

is, the best Z rules are extracted with respect to the training accuracy in which

other rules are merged to these Z nodes by examining their angle and distance

(27). That is, other rules are coalesced to one of those Z rules having the

highest similarity. In other words, the merging process is carried out in the

greedy fashion rather than the one-to-one fashion. An online model selection is

carried out to determine Z here.

4.6.3. Online Model Selection

The online model selection strategy aims to select the best Z rules attaining

tradeoff between accuracy and simplicity. Z is not left as a hyper-parameter

27

here leading WeScatterNet to be ad-hoc. Note that Z plays vital role since it

determines the number of rules in the rule base where other rules are blended

into the best Z rules. The candidate of Z is selected as 3, 5, 8, 10. The underlying

objective of the model selection is to obtain Z minimizing both network bias

and variance simultaneously while attaining the best classification performance.

min
Z=3,5,8,10

|BiasBsample
∗ V arBsample

|
AccBsample

(28)

where eq.(28) labels the condition of model selection. The candidate minimiz-

ing eq.(28) is selected. Furthermore, eq.(28) is evaluated using Bsample. That

is, one data point per partition is drawn at random from labelled samples to

form Bsample. Note that there are P data partitions in total. (28) avoids the

underfitting and overfitting conditions while attaining low empirical error at the

same time. The model fusion approach is described in Algorithm 2.

5. Numerical Study

The efficacy of WeScatterNet is numerically validated in two scenarios: large-

size-small-number and small-size-large-number. The latter case refers to a large

number of data batches while having small-size per batch. It aims to evalu-

ate the advantage of model fusion scenario whether or not it remains scalable

and retains high accuracy since it is triggered frequently in this case. The

former one captures a case where a data stream is large in size whereas the

number of stream is limited. It tests the scalability of the distributed training

policy. Furthermore, the effect of label’s proportion is studied here where the

performance of WeScatterNet is evaluated under four label proportions, namely

10%, 25%, 50%, 75% as depicted in the Table 5. Ablation study is conducted

to investigate the individual contribution of each learning module to the final

numerical results. We also study the performance of WeScatterNet when imple-

mented in the single node environment. This study is designed to evaluate the

performance gap with the distributed implementation. Our numerical study is

simulated under the prequential-test-then-train fashion where numerical results

28

Algorithm 2 Model Fusion of WeScatterNet

Input : (1) Initial Model (Linit - P base learners): generated from the win-
ning base learner Fwin using the training dataset B

′

k; (2) Bsample: Collection
of instances, where each instance is taken randomly from labelled data parti-
tion Bp,labelledk , (Bsample ⊂ Bk)
Ouput : Aggregated model Fnew
Initialization Process:
I - Rules extraction-extract all rules from Linit.
Lextract = (L1, ...,Lp, ...,LP), where Lp = (Rules1, ..., RulesR), forming
O number of rules extracted from Linit.

II - Assign all rules with the classification training performance
This value, Classificationtraining, is obtained from
performance of each rule in Lp to the training dataset B′k

III - Rules elimination
if Supi < 0.02 ∗

∑O
i=1 Supi then rules/nodesi are deleted

IV - Sorting Lextract; Lsort = Sorting(Lextract, classificationtraining)
Obtain rules ranking by sorting Lextract using
classification training performance classificationtraining

V - Online Model Selection
Initialization:
candidateZV alue = 3, 5, 8, 10;
candidateModel; listPerformance = []; count = 0
for iV ar in candidateZV alue do
count = count+ 1
I - Obtain the dominant rules (Ldom = Lsort[1 : iV ar])
II - Obtain the candidate rules (Lcand = Lsort[(iV ar + 1) : O])
III - Merging candidate rules into dominant rules

candidateModel[count] = Lmerged
(a) Compare each rule in Lcand and calculate sim1 and sim2 with
all dominant rules in Ldom
(b) If condition eq.(27) is met, merge candidate rule into
the most minimum (sim1)

IV - Calculate Score for each Lmerged
[AccBsample

, BiasBsample
, V arBsample

] = Lmerged(Bsample)
PerformanceV alue = BiasBsample

∗ V arBsample
/AccBsample

listPerformance[count] = PerformanceV alue
end for
VI - Select the best model for updating the Ensemble Network(EN)

Zindexselected = min listPerformance
Aggregated Model: Fnew = candidateModel[Zindexselected]

29

are calculated independently per data stream.

5.1. Dataset

Six popular big data problems, namely Higgs [58], Susy [58], Hepmass [58],

RLCPS [59], KDDCup [60] and PokerHand [61], are utilized to evaluate the

performance of WeScatterNet where their properties are summed up in Table 1

Detailed characteristics of these problems are outlined as follows:

Table 1: Dataset properties and their prequential setting

Dataset #IA #C #Instances Setting Nbatch NSampleBatch

Higgs 28 2 11,500K
Large 66 166.7K
Small 198 55.6K

Hepmass 28 2 11,000K
Large 63 166.7K
Small 189 55.6K

Susy 18 2 5,000K
Large 30 166.7K
Small 90 55.6K

RLCPS 9 2 5,000K
Large 30 166.7K
Small 90 55.6K

KDDCup 2 2 4,898K
Large 29 168.8K
Small 87 56.29K

Pokerhand 10 10 1,025K
Large 6 170.8K
Small 18 56.9K

Higgs: it is an artificial classification problem whose goal is to classify a sig-

nal process leading to Higgs Boson particle. This problem is generated from

the monte carlo simulation where the first 21 features describe the kinematic

properties measured by the particle detectors in the accelerator. The last seven

features are the high level features used to discriminate the Higgs Boson parti-

cles.

SUSY: it is similar to the Higgs problem but the goal is to identify the signal

process generating supersymmetric particles. It is generated by the Monte Carlo

simulation where the first 8 features are the kinematic attributes while the last

10 features are the function of the first 8 features.

Hepmass: the goal of this problem is to find an exotic particles via a large

number of collisions. The point of interest is a particle with an unknown mass. It

consists of 28 input attributes where 22 features are low-level features while the

30

rests are high-level features. It is a binary classification problem to distinguish

between the signal process from the background.

PokerHand: this problem is a multi-class classification problem with 10 classes

where each record describes a hand comprising five playing cards drawn from a

standard deck of 52. This problem has 10 input attributes where each attribute

outlines a card to be either suit or rank. This problem is well-known for its

non-stationary characteristic because of its dependencies on the card’s orders.

KDDCup: this problem describes intrusion detection problem whether or not

an attack has occurred. It presents non-stationary properties because it simu-

lates various types of network intrusion in the military environments and consists

of 41 input attributes.

RLCPS: This problem is comparison problem of individual data collected in the

course of several years from 2005 to 2008. It is a binary classification problem

between ’match’ or ’not match’. This problem presents 11 input attributes and

over 5 million instances. Only around 20 K samples come from match category

thereby leading to the skewed class distribution problem.

5.2. Baseline

WeScatterNet is compared against two baselines, Scalable PANFIS [25] and

ScatterNet [21] featuring the fully supervised learning approaches. Scalable

PANFIS is a generalized version of PANFIS [47] for big data stream problem.

It features an open structure under a single base classifier framework. Scat-

terNet is an ensemble classifier based on the teacher-forcing concept akin to

WeScatterNet. It is, however, devised for the fully supervised learning environ-

ment. All algorithms are run under the Apache spark platform under the same

computational resources. The hyper-parameters of WeScatterNet and baseline

algorithms are selected as Table 2 and fixed for all simulations in this paper.

All algorithms are executed in the same computational environments in order

for execution time to be compared. Numerical results are produced by execut-

ing their published codes. The Source code of WeScatterNet can be completely

downloaded from the following link : WeScatterNetCodeLink .

31

https://github.com/ContinualAL/WeScatterNet.git

Table 2: Hyper-parameters of WeScaterNet and the Baseline algorithms
Algorithm parameters Value Module Descripition

WeScatterNet
/ScatterNet

fac 0.3/0.3 Penalty and follows eq (5) in the reward case,
Reward Mechanism and eq(6) in the penalty case.

αdrift 10(̂-3)/10(̂-3) Drift Detection controls the drift rate of the output
in the global level

k4(dist) 0.4/0.4 Merging maximum distance two rules can be merged
k5(angle) 0.6/0.6 Merging minimum angles two rules can be merged
γ 0.7/1.4 local learning control parameter which steers

the degree of membership function
k3 0.2/0.4 local learning coefficient for weight initialization

of the first sample

Scalable PANFIS

kfs 0.05 local learning safety width
kgrow 1 local learning growing node threshold
kprune 0.25 local learning pruning node threshold

5.3. Computational Environments

The computational environments are configured under Nimbus Pawsey Su-

percomputing Centre Australia. The Spark cluster is constructed by using seven

computing nodes consisting of one master node and six worker nodes. Each node

has an identical specification as follows: 8VCPUs(cores), 32GB of RAM, and

40GB of hard-disk capacity, where Pawsey version of Ubuntu 20.04 Focal Fossa

is installed. For software specification, we use Apache Spark version 3.0.0 and

R version 3.6.3. Of 32 GB of RAM in each worker node, 24 GB of RAM is used

for the Spark process, whereas the remaining RAM capacity is used for other

background processes. Thus, for six worker nodes, the Spark cluster utilizes a

total of 144 GB of RAM. For a driver node, we allocate only 8 GB of RAM.

Since the traffic optimization is beyond the scope of our paper, we simply apply

one executor per node for our distributed computing strategy. We start from

one master node and one worker node to determine a suitable number of worker

nodes and then increase the number of worker nodes until a point where reason-

able execution time is attained, i.e., one master node and six worker nodes. We

find that execution time decreases by increasing the number of worker nodes up

to a point where reduction of execution time is no longer significant.

5.4. Numerical Results

Table 3 exhibits numerical results of all consolidated algorithms where they

are run in two settings: large setting and small setting. The first one is directed

32

Table 3: Numerical Results of Consolidated Algorithms under Large Setting and Small Set-
ting: it is presented that our algorithm presents comparable result despite constrained by low
number of labelled samples.

Algorithm Dataset
Average

accuracy per
batch (%)

Avarage
Training Time
per batch (s)

Avarage
Testing Time
per batch (s)

Average
Number of

Model

WeScatterNet with
Regularization

using 25 percent
of labeled data

LARGE SETTING

Higgs 63.60 19.57 17.51 2.51
Hepmass 83.44 40.59 7.44 1
Susy 75.67 32.07 11.27 2
RLCPS 99.64 52.66 4.79 1
KDDCup 99.53 65.53 9.01 1
PokerHand 50.13 8.59 8.33 1

ScatterNet
LARGE SETTING

Higgs 63.75 8 16.57 2.48
Hepmass 83.43 8.04 14.09 2.32
Susy 75.43 6.7 12.86 2.55
RLCPS 99.65 5.56 4.23 2.01
KDDCup 99.59 10.04 8.13 1
PokerHand 50.13 9.76 7.73 1

Scalable PANFIS
LARGE SETTING

Higgs 63.29 76.19 5.33 1
Hepmass 83.26 74.20 5.67 1
Susy 75.68 36.77 3.88 1
RLCPS 99.78 15.53 2.92 1
KDDCup 99.46 147.44 7.03 1
PokerHand 50.04 31.57 4.25 1

WeScatterNet with
Regularization

using 25 percent
of labeled data

SMALL SETTING

Higgs 63.26 6.43 5.1 2.01
Hepmass 83.45 9.24 2.748 1
Susy 75.7 7.01 2.25 1
RLCPS 99.64 9.19 1.95 1
KDDCup 99.41 13.6 3.23 1
PokerHand 50.11 4.67 3.07 1

ScatterNet
SMALL SETTING

Higgs 63.09 3.46 5.48 2.3
Hepmass 83.22 3.51 3.7 1.57
Susy 74.95 3 4.41 2.29
RLCPS 99.64 2.63 1.82 1
KDDCup 99.28 4.24 3.04 1
PokerHand 50.09 5.25 2.97 1

Scalable PANFIS
SMALL SETTING

Higgs 61.97 25.37 2.09 1
Hepmass 82.86 24.52 2.21 1
Susy 75.51 12.89 1.64 1
RLCPS 99.70 5.65 1.21 1
KDDCup 99.46 147.44 7.03 1
PokerHand 49.96 10.11 1.67 1

33

Table 4: Comparison with Single Node Algorithms: it is presented that our algorithm produces
competitive results although it is constrained by lack of labelled samples and distributed
computing strategy. It produces much faster execution time.

Algorithm Dataset
Average

accuracy per
batch (%)

Avarage
Training Time
per batch (s)

Avarage
Testing Time
per batch (s)

Average
Number of

Model

WeScatterNet with
Regularization

using 25 percent
of labeled data

LARGE SETTING

Higgs 63.60 19.57 17.51 2.51
Hepmass 83.44 40.59 7.44 1
Susy 75.67 32.07 11.27 2
RLCPS 99.64 52.66 4.79 1
KDDCup 99.53 65.53 9.01 1
PokerHand 50.13 8.59 8.33 1

DEVFNN
LARGE SETTING

Higgs20% 65.28 6157.3 N/A 1
Hepmass20% 84.12 5387.9 N/A 1
Susy10% 78.96 2901.8 N/A 1
RLCPS10% 99.97 1730.6 N/A 1
KDDCup10% 99.79 5766.1 N/A 1
PokerHand50% 50.08 2945.4 N/A 1

pENsemble+
LARGE SETTING

Higgs20% 47.05 7476.6 170.96 1
Hepmass20% 80.73 2984.5 255.37 1
Susy10% 76.96 3178.4 185.93 1
RLCPS10% 99.8 1342.2 167.05 1
KDDCup10% 99.77 253.41 168.24 1
PokerHand50% 50.12 1062.8 219.03 1

DSSCN
LARGE SETTING

Higgs20% 65.27 213.72 45.52 1
Hepmass20% 60.41 371.25 54.30 1.82
Susy10% 78.85 183.71 47.71 1
RLCPS10% 99.90 135.49 47.37 1
KDDCup10% 99.77 206.19 49.74 1
PokerHand50% 50.35 558.46 69.52 1

pEnsemble
LARGE SETTING

Higgs20% 62.53 926.40 41.81 1
Hepmass20% 81.09 983.08 47.84 1
Susy10% 67.11 374.60 30.41 1
RLCPS10% 99.98 210.53 29.53 1
KDDCup10% 99.79 1316.87 34.06 1
PokerHand50% 33.42 799.09 33.50 1

WeScatterNet with
Regularization

using 25 percent
of labeled data

SMALL SETTING

Higgs 63.26 6.43 5.1 2.01
Hepmass 83.45 9.24 2.748 1
Susy 75.7 7.01 2.25 1
RLCPS 99.64 9.19 1.95 1
KDDCup 99.41 13.6 3.23 1
PokerHand 50.11 4.67 3.07 1

DEVFNN
SMALL SETTING

Higgs20% 65.21 499.96 N/A 1
Hepmass20% 84.1 441.55 N/A 1
Susy10% 78.92 405.09 N/A 1
RLCPS10% 99.91 182.89 N/A 1
KDDCup10% 99.78 712.65 N/A 1
PokerHand50% 50.11 407.55 N/A 1

pENsemble+
SMALL SETTING

Higgs20% 47.07 2677.1 96.41 1.97
Hepmass20% 82.88 554.52 115.63 1
Susy10% 78.39 711.76 112.83 1.11
RLCPS10% 99.91 116.23 120.12 1
KDDCup10% 99.63 64.46 100.95 1
PokerHand50% 50.10 962.49 107.4 1

DSSCN
SMALL SETTING

Higgs20% 65.22 64.72 15.63 1
Hepmass20% 84.15 67.06 15.61 1
Susy10% 78.81 53.74 14.81 1
RLCPS10% 99.87 45.07 16.19 1
KDDCup10% 99.74 57.02 15.73 1
PokerHand50% 50.84 126.28 25.43 1

pEnsemble
SMALL SETTING

Higgs20% 63.47 494.15 16.07 1
Hepmass20% 82.24 305.21 15.04 1
Susy10% 73.92 53.59 13.22 1
RLCPS10% 99.90 68.01 14.93 1
KDDCup10$ 99.71 540.56 14.74 1
PokerHand50% 46.76 213.71 15.01 1

34

to test the performance of an algorithm to handle large data streams while

having low number of streams whereas the second one is arranged to evaluate

the algorithm’s performance in handling small data streams while having high

number of data streams. WeScatterNet exploits only 25% of labelled samples

while other two algorithms utilize fully labelled training samples.

Referring to Table 3, WeScatterNet’s performance is competitive against its

counterparts, ScattarNet and ScalablePANFIS in realm of large data stream. It

outperforms other algorithms in Hepmass and Pokerhand while its performance

is comparable to other two algorithms in the other two datasets. Note that

WeScatterNet only utilizes 25% label compared to other algorithms guided by

fully labelled samples. This finding clearly shows that DA3 method functions

properly in preventing performance’s drop due to the scarcity of labelled sam-

ples. On the other side, WeScatterNet beats other algorithms in four datasets

in the small stream case: Higgs, Hepmass, Susy, PokerHand. Its performance

in the other two datasets are comparable to other two algorithms. In addi-

tion to DA3 method, this result demonstrates the advantage of data-free model

fusion since it is carried out frequently in realm of small data streams, mean-

while, it still produces stable results. In the context of runtime, WeScatterNet

is slower than ScalablePANFIS but enjoys semi-supervised environments rather

than full supervision. It is caused by additional learning modules of WeScatter-

Net retarding its execution time. The execution time of WeScatterNet remains

competitive compared to that ScatterNet. It is also observed that WeScatterNet

and ScatterNet are implemented under an ensemble configuration while Scal-

able PANFIS works in the single node setting. Hence, Scalable PANFIS is faster

than the two algorithms but its accuracy is worse than the two algorithms.

An open structure characteristic of WeScatterNet is visualized in Fig. 3

where a base classifier is flexibly added and removed in accordance with their

performance during the training process. This figure also portrays the advan-

tage of the base learning pruning strategy and the dynamic penalty and reward

mechanism to identify an inactive base learner. The two mechanisms are ca-

pable of correcting false alarms to insert a new base learner triggered by the

35

drift detection mechanism. The addition of the third and fourth base classifiers

are responded by directly pruning these base classifiers since they possess a low

voting weight. A low voting weight is resulted from the penalty mechanism low-

ering the influence of a base classifier in the weighted voting mechanism because

they do not sufficiently cover data samples. In other words, a newly added base

learner does not represent the majority of data points. The number of base

learner converges to two base learners ultimately. This aspect is confirmed

by Fig. 4 where WeScatterNet’s accuracy in overall shows an increasing trend.

That is, the classification rates improves as the increase of observation while the

standard deviation of the classification rates decreases. One can also observe

that pruning the third and fourth base classifiers affect little to the classification

performance of WeScatterNet. It is also portrayed in Fig. 4 that the trace of

classification rate hovers around a small range - less than 1%. The false alarm

and small fluctuation of classification rates are related to the drift-free charac-

teristic of the Higgs dataset. Fig. 3 and Fig. 4 refer to the WeScatterNet’s

performance in the Higgs dataset.

Fig.5 exhibits the evolution of WeScatterNet ensemble structure in the susy

dataset. It differs from Fig. 3 where the ensemble structure is stable at two

base learners. The third base learner is incorporated at the 18th data batch but

an extra base learner does not improve the model’s generalization as indicated

in Fig. 6. One base learner is pruned where the ensemble structure converges

at two base learners afterward. The pruning process is caused by an outdated

base learner which does not cover the current concept well because it has a

low voting weight. The trace of WeScatterNet’s classification rates in the susy

dataset is depicted in Fig. 6. It is perceived that the classification rates of

WeScatterNet fluctuates in a small range. This observation supports the local

nature of the ensemble structure where the structural learning process does not

harm the model’s generalization. Small fluctuation of classification rates can be

also linked to the fact that the susy dataset is drift-free.

36

1

2

3

4

0 20 40 60
Iteration

N
um

be
r

of
 M

od
el

s
 o

ve
r

tim
e

Evolution of ensemble models of WeScatterNet
 on Higgs dataset using large setting and 25 percent portion

 of labeled data

Figure 3: The evolution of ensemble structure: this figure depicts the efficacy of the ensemble
pruning mechanism and the dynamic penalty and reward mechanism. The two mechanisms
are capable of correcting the false drift alarms signalled by the drift detection mechanism.
When the third and the fourth base learners are integrated into the ensemble structure, they
are immediately discarded because they possess low voting weight. A low voting weight is
caused by the penalty mechanism as a result of insufficient coverage of data samples. The
number of base learners are consistent at two base learners.

0.6325

0.6350

0.6375

0.6400

0 20 40 60
Iteration

A
cc

ur
ac

y
 o

ve
r

tim
e

Accuracy of WeScatterNet on Higgs dataset
 using large setting and 25 percent

 portion of labeled data

Figure 4: The trace of classification rates: it is illustrated that the classification rate shows
an increasing trend. Furthermore, the standard deviation also decreases as the increase of
observations. The structural learning mechanism does not harm the ensemble generalization
performance as the classification rates are relatively stable in a small range.

37

1.0

1.5

2.0

2.5

3.0

10 20 30
Iteration

N
um

be
r

of
 M

od
el

s
 o

ve
r

tim
e

Evolution of ensemble models of WeScatterNet
 on Susy dataset using large setting and 25 percent portion

 of labeled data

Figure 5: The evolution of ensemble structure: it is portrayed that the ensemble structure is
relatively stable with 2 base classifiers. The introduction of the third base classifier occurs
around 18th data batch. This base learner does not help model’s generalization and is thus
pruned to improve the compactness of ensemble structure.

0.7550

0.7575

0.7600

10 20 30
Iteration

A
cc

ur
ac

y
 o

ve
r

tim
e

Accuracy of WeScatterNet on Susy dataset
 using large setting and 25 percent

 portion of labeled data

Figure 6: The trace of classification rates: it is observed that the classification rates of WeScat-
terNet fluctuate in a small range. The addition of the third base classifier contributes little to
classifier’s generalization. Pruning an inactive classifier does not undermine the classification
rate of WeScatterNet.

38

5.5. Additional Comparisons

The performance of WeScatterNet is also compared against four prominent

algorithms: pENsemble+ [38], DSSCN [40], DEVFNN [41] and pENsemble [5].

The four algorithms are implemented under a single node setting. This com-

parison is to study whether WeScatterNet’s performance remains competitive

against popular fully-supervised data stream algorithms under the single node

configuration. Nevertheless, the four algorithms are run through partial datasets

because of their slow execution times as a result of the single node implementa-

tion. As with previous section, comparison is performed for both large setting

and small setting while numerical results are produced by executing their pub-

lished codes. Numerical results are reported in Table 4.

In realm of accuracy, DEVFNN and DSSCN produce the most encourag-

ing result in both large and small settings but are not statistically significant

to WeScatterNet only benefiting from 25% labelled samples. Note that DE-

VFNN, DSSCN, pENsemble, pENsemble+ are executed only for a fraction of

the overall datasets because of their execution times and in the single-node set-

ting. WeScatterNet demonstrates obvious advantage over other four algorithms

in the context of execution time where its training time and testing time are

significantly faster than the four algorithms,i.e., its execution times are at least

10 times faster than other algorithms. It is worth mentioning that the success

of a distributed algorithm can be declared if it delivers comparable accuracy to

single-node algorithms while enjoying much faster execution time than those in

the single node. WeScatterNet benefits from the distributed computing strategy

of Apache spark for both training and testing processes where both processes

can be executed in parallel across a number of worker nodes. By extension, the

feasibility of WeScatterNet in the semi-supervised learning condition is also sub-

stantiated here because WeScatterNet deliver competitive accuracy compared

to fully supervised algorithms with only 25% labelled samples.

39

Table 5: Numerical Results of WeScatterNet on six datasets using different label proportions
for both large and small settings: it is observed that performance of our algorithm is stable
across different label proportions.

Dataset
Proportion of
labeled data

Performance (average per batch)
NPseu

(per batch)
NLabel

(per batch)
NAug

(per batch)
NSampleBatch

(per batch)Accuracy (%) TrTime (s) TsTime (s) Nmodels

Higgs
LARGE SETTING

0.1 63.27±0.32 15±1.63 16.02±4.49 2.32±0.66 (55.8±4.6)K 16.7K 16.7K 166.7K
0.25 63.60±0.18 19.57±1.42 17.51±4.37 2.51±0.64 (52.3±2.5)K 41.7K 41.7K 166.7K
0.5 63.69±0.15 24.45±1.77 16.74±4.65 2.42±0.66 (36.2±1.2)K 83.3K 83.3K 166.7K
0.75 63.66±0.15 32.68±2.17 28.25±10.02 3.78±1.39 (19±1)K 125K 125K 166.7K

Hepmass
LARGE SETTING

0.1 83.46±0.1 33.16±2.38 7.35±0.36 1±0 (105.6±4.1)K 16.7K 16.7K 166.7K
0.25 83.44±0.09 40.59±1.83 7.44±0.38 1±0 (96.6±1.2)K 41.7K 41.7K 166.7K
0.5 83.48±0.1 46.85±1.96 7.92±0.47 1±0 (66.9±0.3)K 83.3K 83.3K 166.7K
0.75 83.58±0.09 52.95±3.31 8±0.44 1±0 (33.9±0.1)K 125K 125K 166.7K

Susy
LARGE SETTING

0.1 75.8±0.15 25.03±3.57 6.03±0.26 1±0 (91.5±7.1)K 16.7K 16.7K 166.7K
0.25 75.67±0.17 32.07±2.21 11.27±2.08 2±0.38 (87±2.3)K 41.7K 41.7K 166.7K
0.5 75.59±0.17 36.6±2.24 10.52±2.42 1.79±0.41 (60.3±0.9)K 83.3K 83.3K 166.7K
0.75 75.35±0.15 41.05±2.36 6.37±0.21 1±0 (30.8±0.3)K 125K 125K 166.7K

RLCPS
LARGE SETTING

0.1 99.64±0.01 51.31±1.42 4.73±0.17 1±0 (150±0.1)K 16.7K 16.7K 166.7K
0.25 99.64±0.01 52.32±1.21 4.77±0.19 1±0 (124.9±0.2)K 41.7K 41.7K 166.7K
0.5 99.64±0.01 53.93±1.93 4.87±0.32 1±0 (83.1±0.1)K 83.3K 83.3K 166.7K
0.75 99.64±0.01 55.58±2.19 5.16±0.28 1±0 (41.7±0)K 125K 125K 166.7K

KDDCup
LARGE SETTING

0.1 99.54±0.06 62.67±2.69 9.82±0.48 1±0 (150.9±0.2)K 16.9K 16.9K 168.9K
0.25 99.53±0.06 64.04±2.88 9.11±0.58 1±0 (125.9±0.1)K 42.2K 42.2K 168.9K
0.5 99.68±0.03 69.04±3.45 16.68±3.39 1.82±0.39 (84±0.1)K 84.5K 84.5K 168.9K
0.75 99.6±0.06 73.86±4.3 10.26±0.57 1±0 (42±0)K 126.7K 126.7K 168.9K

Poker Hand
LARGE SETTING

0.1 50.13±0.09 5.3±1.26 8.69±0.22 1±0 (0±0)K 17.1K 17.1K 170.8K
0.25 50.13±0.09 9.12±2.76 9.66±0.32 1±0 (0±0)K 42.7K 42.7K 170.8K
0.5 50.13±0.09 13.04±4.35 7.89±0.25 1±0 (0±0)K 85.4K 85.4K 170.8K
0.75 50.13±0.09 20.2±7.74 9.26±0.1 1±0 (0±0)K 128.1K 128.1K 170.8K

Higgs
SMALL SETTING

0.1 62.5±0.42 4.75±0.4 5.5±1.63 2.11±0.63 (19.3±1.2)K 5.6K 5.6K 55.6K
0.25 63.26±0.35 6.43±0.4 5.1±0.6 2.01±0.24 (18.6±1)K 13.9K 13.9K 55.6K
0.5 63.47±0.24 8.72±0.52 5.67±0.77 1.99±0.25 (12.8±0.5)K 27.8K 27.8K 55.6K
0.75 63.59±0.28 10.23±0.79 6.14±1.4 2.07±0.39 (6.3±0.2)K 41.7K 41.7K 55.6K

Hepmass
SMALL SETTING

0.1 83.36±0.18 7.41±0.4 5.17±0.33 1.99±0.1 (35±1.1)K 5.6K 5.6K 55.6K
0.25 83.45±0.16 9.24±0.42 2.74±0.13 1±0 (31.9±0.3)K 13.9K 13.9K 55.6K
0.5 83.48±0.16 11.32±0.56 2.91±0.18 1±0 (22.3±0.1)K 27.8K 27.8K 55.6K
0.75 83.49±0.16 12.73±0.57 5.79±0.41 1.99±0.1 (11.3±0)K 41.7K 41.7K 55.6K

Susy
SMALL SETTING

0.1 75.7±0.23 5.57±0.42 2.24±0.15 1±0 (29.6±1.8)K 5.6K 5.6K 55.6K
0.25 75.7±0.22 7.01±0.42 2.25±0.13 1±0 (28.4±0.6)K 13.9K 13.9K 55.6K
0.5 75.29±0.22 9.38±0.52 2.39±0.13 1±0 (20.3±0.2)K 27.8K 27.8K 55.6K
0.75 75.24±0.27 10.25±0.6 4.63±0.54 1.98±0.21 (10.2±0.1)K 41.7K 41.7K 55.6K

RLCPS
SMALL SETTING

0.1 99.64±0.02 8.88±0.44 1.83±0.13 1±0 (50±0.1)K 5.6K 5.6K 55.6K
0.25 99.64±0.02 9.19±0.58 1.89±0.55 1±0 (41.7±0)K 13.9K 13.9K 55.6K
0.5 99.64±0.02 10.32±0.52 2.07±0.15 1±0 (27.8±0)K 27.8K 27.8K 55.6K
0.75 99.64±0.02 10.5±0.55 1.92±0.1 1±0 (13.9±0)K 41.7K 41.7K 55.6K

KDDCup
SMALL SETTING

0.1 99.18±0.06 13.21±0.63 3.75±0.16 1±0 (50.3±0)K 5.6K 5.6K 56.3K
0.25 99.41±0.05 13.97±0.75 3.68±0.27 1±0 (41.9±0)K 14.1K 14.1K 56.3K
0.5 99.5±0.05 15.51±0.94 3.44±0.2 1±0 (28±0)K 28.2K 28.2K 56.3K
0.75 99.58±0.04 16.53±1.05 3.55±0.23 1±0 (14±0)K 42.2K 42.2K 56.3K

Poker Hand
SMALL SETTING

0.1 50.13±0.17 3.66±0.34 3.44±0.15 1±0 (0±0)K 5.7K 5.7K 56.9K
0.25 50.11±0.17 4.78±0.71 3.39±0.19 1±0 (0±0)K 14.2K 14.2K 56.9K
0.5 50.13±0.17 7.66±1.06 3.48±0.18 1±0 (0±0)K 28.5K 28.5K 56.9K
0.75 50.11±0.17 9.68±1.61 3.4±0.15 1±0 (0±0)K 42.7K 42.7K 56.9K

TrTime: Training Time; TsTime: Testing Time; Nmodels: Number of models/base classifiers;
NPseu: Average number of pseudolable processed in each batch

NLabel: Number of labeled data; NAug: Number of augmented label;
NSampleBatch: Number of samples processed in each batch (in fully supervised learning condition)

40

5.6. Effect of Labelled Samples

This section analyzes different quantities of labelled samples to the perfor-

mance of WeScatterNet tested in two settings: small stream and large stream.

WeScatterNet’s performance is evaluated with four different label proportions:

10%, 25%, 50%, 75% where the numerical results are offered in Table 5.

It is perceived that different numbers of labels do not vary the performance

of WeScatterNet significantly. The increase of labelled samples only provides

minor effect on the performance of WeScatterNet. It is seen that the maximum

difference in performance between 10% and 75% labels is less than 0.75%. This

fact demonstrates the advantage of WeScatterNet in achieving decent perfor-

mance despite low label quantity. In other words, DA3 algorithm is capable of

compensating the loss of generalization power as a result of low labelled samples.

It is observed that the increase of labelled samples slows down the training

time of WeScatterNet. This finding is reasonable because it means the increase

of data instances to be processed in the base learner training process. On the

other side, the increase of label proportion automatically decreases the number

of pseudo label. Note that the self-labelling mechanism to generate pseudo-

labels focuses only on unlabelled samples. It is also perceived that the number

of pseudo labels is significant in which some of them might be noisy. The noisy

pseudo labels are handled using the regularization method to circumvent the

loss of generalization. The generation of augmented labels is also illustrated

here in which it is produced by injecting a controlled noise to labelled samples

without changing its label. As a result, the number of augmented label is akin

to the number of original label.

5.7. Ablation Study

This section studies the effect of each learning modules to the resultant

performance. WeScatterNet is simulated under three learning configurations: A.

WeScatterNet is set with the absence of regularization method; B. WeScatterNet

is arranged with the absence of augmented label, C. WeScatterNet is run in the

centralized learning setting in the single node. Table 6 sums up the performance

41

Table 6: Ablation Study : Numerical Results of WeScatterNet on three conditional settings
using 25 percent of labeled data. Each learning module contributes positively to the perfor-
mance of our algorithm.

Dataset
Conditional

Settings

Performance (average per batch)
NPseu

(per batch)
NLabel

(per batch)
NAug

(per batch)
NSampleBatch

(per batch)Accuracy (%) TrTime (s) TsTime (s) Nmodels

Higgs
LARGE SETTING

Reg 63.6±0.18 19.57±1.42 17.51±4.37 2.51±0.64 (52.3±2.5)K 41.7K 41.7K 166.7K
NoReg 55.42±3.42 46.95±14.69 16.18±5.22 2.34±0.8 (106.4±27.2)K 41.7K 41.7K 166.7K
NoAug 63.54±0.23 14.75±1.01 14.33±4.02 2.15±0.62 (48.3±2.1)K 41.7K 0 166.7K

Higgs
SMALL SETTING

Reg 63.26±0.35 6.43±0.4 5.1±0.6 2.01±0.24 (18.6±1)K 13.9K 13.9K 55.6K
NoReg 53.36±1.23 11.06±0.74 5.01±0.52 1.99±0.19 (40.9±2.5)K 13.9K 13.9K 55.6K
NoAug 63.01±0.29 5.03±0.33 5.52±0.71 2.04±0.26 (17.9±1.5)K 13.9K 0 55.6K

Hepmass
LARGE SETTING

Reg 83.44±0.09 39.64±1.65 7.12±0.31 1±0 (96.6±1.2)K 41.7K 41.7K 166.7K
NoReg 83.39±0.1 32.38±2.62 13.79±1.53 1.98±0.22 (83.9±3.8)K 41.7K 41.7K 166.7K
NoAug 83.48±0.09 33.87±1.72 7.16±0.28 1±0 (92.1±2.4)K 41.7K 0 166.7K

Hepmass
SMALL SETTING

Reg 83.45±0.16 8.63±0.36 2.58±0.1 1±0 (31.9±0.3)K 13.9K 13.9K 55.6K
NoReg 81.87±1.94 7.46±0.4 5.1±0.31 1.99±0.1 (27.2±0.8)K 13.9K 13.9K 55.6K
NoAug 83.29±0.19 7.35±0.34 5.06±0.28 1.99±0.1 (30.3±0.7)K 13.9K 0 55.6K

Reg: WeScatterNet using regularization; NoReg: WeScatterNet without using regularization;
NoAug: WeScatterNet using regularization in the absence of augmented label

of WeScatterNet in two learning configurations, whereas Table 7 shows the

performance of WeScatterNet in two different environmental settings (single

and distributed). Our ablation study is performed by exploiting 25% labelled

samples while two simulation conditions, namely small stream and large stream,

are explored. Our numerical study is performed in the Higgs, Hepmass and Susy

problems.

Table 7: Ablation Study : Numerical Results of WeScatterNet for both single node and
distributed nodes (with Regularization using 25 percent of labeled data). It is demonstrated
that there exist subtle differences between single node and distributed node.

Dataset
Environment

Settings

Performance (average per batch)
NPseu

(per batch)
NLabel

(per batch)
NAug

(per batch)
NSampleBatch

(per batch)Accuracy (%) TrTime (s) TsTime (s) Nmodels

Higgs
LARGE SETTING

Single Node 63.78±0.14 2253.07±71.69 151.06±5.38 1±0 (48±1.8)K 41.7K 41.7K 166.7K
Distributed 63.6±0.18 19.57±1.42 17.51±4.37 2.51±0.64 (52.3±2.5)K 41.7K 41.7K 166.7K

Higgs
SMALL SETTING

Single Node 63.78±0.22 265.4±12.8 29.54±0.85 1±0 (15.9±0.6)K 13.9K 13.9K 55.6K
Distributed 63.26±0.35 6.43±0.4 5.1±0.6 2.01±0.24 (18.6±1)K 13.9K 13.9K 55.6K

Hepmass
LARGE SETTING

Single Node 83.47±0.1 2430.17±78.75 148.43±5.29 1±0 (96.5±1.1)K 41.7K 41.7K 166.7K
Distributed 83.44±0.09 39.64±1.65 7.12±0.31 1±0 (96.6±1.2)K 41.7K 41.7K 166.7K

Hepmass
SMALL SETTING

Single Node 83.46±0.17 303.72±14.57 27.7±1.13 1±0 (32±0.3)K 13.9K 13.9K 55.6K
Distributed 83.45±0.16 8.63±0.36 2.58±0.1 1±0 (31.9±0.3)K 13.9K 13.9K 55.6K

Susy
LARGE SETTING

Single Node 75.85±0.12 1415.22±110.07 151.01±8.78 1±0 (83.2±2.3)K 41.7K 41.7K 166.7K
Distributed 75.67±0.17 32.07±2.21 11.27±2.08 2±0.38 (87±2.3)K 41.7K 41.7K 166.7K

Susy
SMALL SETTING

Single Node 75.91±0.19 176.73±11.05 27.77±0.97 1±0 (27.3±0.5)K 13.9K 13.9K 55.6K
Distributed 75.7±0.22 7.01±0.42 2.25±0.13 1±0 (28.4±0.6)K 13.9K 13.9K 55.6K

It is seen that the performance of WeScatterNet suffers from the absence

of regularization approach where 3 − 8% performance degradation is observed

if the regularization method is deactivated. This fact is understood from the

auto-regularization mechanism plays key role in protecting WeScatterNet from

performance’s degradation due to noisy pseudo label. The use of augmented

42

label also contributes positively to the performance of WeScatterNet. The ab-

sence of such mechanism brings the performance of WeScatterNet down as a

result of the consistency regularization. That is, a sample is varied by injecting

controlled perturbation without changing its class label. Furthermore, WeScat-

terNet performs comparably to its single node variant where almost identical

performance is resulted. This case demonstrates the advantage of the model

fusion strategy where it does not cause any performance’s compromise. On

the other hand, the advantage of distributed processing for data streams is

clearly demonstrated where its run time significantly reduces. The advantage

of distributed computing strategy is clearly demonstrated in Table 7 in which

it expedites the execution time by over 200 times. This observation is more

evident in the large setting than in the small setting in which the size of data

stream is large thus confirming the scalability of distributed computing strat-

egy of Apache spark. The single node configuration affects little to the number

of pseudo label and augmented label since the generation of pseudo label and

augmented label are done in the centralized fashion.

6. Conclusion

This paper presents Weakly Supervised Scalable Teacher Forcing Network

(WeScatterNet) as a solution of large-scale data streams under semi-supervised

mode where only small fractions of data samples in streams are annotated.

WeScatterNet is developed under a distributed computing platform of Apache

Spark making possible for parallel execution of large streams in an efficient man-

ner. This implementation is underpinned by a data-free model fusion method

performing model compression after the parallel computing stage. The prob-

lem of partially labelled data instances (semi-supervised learning) is addressed

by the DA3 method performing the label enrichment mechanism followed by

the dynamic regularization step to overcome noisy pseudo labels. The issue

of non-stationary distribution is overcome by having the global and local drift

handling mechanisms where the global drift handling mechanism controls the

43

growing and pruning processes of base learners while the local drift handling

mechanism is carried out by the growing and pruning processes of fuzzy rules

of a base learner thereby actualizing a fully dynamic network structure in both

ensemble level and the base learner level. The base learner of WeScatterNet

is built upon a simplified TS fuzzy model where both rule premise and rule

conclusion share the same parameter, i.e., a linear hyperplane enabled by the

hyperplane clustering concept. The teacher forcing principle is adopted to ad-

dress the dependence on the target variable when performing inferences.

The advantage of WeScatterNet has been numerically validated in six large-

scale data stream problems with only 25% labelled samples. It is demonstrated

that WeScatterNet delivers highly competitive accuracy in both large setting

and small setting even compared to fully supervised algorithms and those run-

ning in the single computing node environments. Our numerical study also in-

vestigates different proportions of labelled samples, 10%,25%,50%,75% in which

surprisingly these variations do not affect the performance of WeScatterNet. As

analyzed in the ablation study, the regularization principle plays significant role

in underpinning the performance of WeScatterNet while the use of augmented

label slightly improves the accuracy. Another important finding is in the subtle

difference in performance between the distributed performance of WeScatterNet

and the single node performance of WeScatterNet. This fact signifies the success

of distributed implementation of Apache spark including the model compres-

sion stage. Our future work is directed to study the multistream classification

problem. That is, a model is supposed to handle many data streams running

simultaneously. This issue not only demands algorithm’s competence in han-

dling data streams but also in performing domain adaptation thereby leading

to a domain-invariant network.

7. Acknowledgement

This work is supported by Ministry of Education Republic of Singapore Tier

1 research grant. The second author acknowledges that this work was supported

44

by Pawsey Supercomputing Centre through the use of advanced computing re-

sources. The third author acknowledges the support by the ’LCM — K2 Center

for Symbiotic Mechatronics’ within the framework of the Austrian COMET-K2

program.

.

References

[1] J. Gama, Knowledge Discovery from Data Streams, Chapman & Hall/CRC,

Boca Raton, Florida, 2010.

[2] E. Lughofer, M. Sayed-Mouchaweh, Predictive Maintenance in Dynamic

Systems — Advanced Methods, Decision Support Tools and Real-World

Applications, Springer, New York, 2019.

[3] A. Cano, B. Krawczyk, Evolving rule-based classifiers with genetic pro-

gramming on gpus for drifting data streams, Pattern Recognition 87 (2019)

248–268.

[4] P. Domingos, G. Hulten, Mining high-speed data streams, in: Proceedings

of the Sixth ACM SIGKDD International Conference on Knowledge Dis-

covery and Data Mining, KDD ’00, ACM, New York, NY, USA, 2000, pp.

71–80.

[5] M. Pratama, W. Pedrycz, E. Lughofer, Evolving ensemble fuzzy classifier,

IEEE Transactions on Fuzzy Systems 26 (5) (2018) 2552–2567.

[6] P. Sidhu, M. Bathia, An online ensembles approach for handling concept

drift in data streams: diversified online ensembles detection, International

Journal of Machine Learning and Cybernetics 6 (6) (2015) 883–909.

[7] Y. Jiang, Q. Zhao, Y. Lu, Ensemble based data stream mining with recall-

ing and forgetting mechanisms, in: Proceedings of the 11th International

Conference on Fuzzy Systems and Knowledge Discovery, IEEE press, Xia-

men, China, 2014, pp. 430–435.

45

[8] J. Ding, H. Wang, C. Li, T. Chai, J. Wang, An online learning neural

network ensembles with random weights for regression of sequential data

stream, Soft Computing 21 (2017) 5919–5939.

[9] N. Kasabov, Evolving Connectionist Systems: The Knowledge Engineering

Approach - Second Edition, Springer Verlag, London, 2007.

[10] I. Skrjanc, J. Iglesias, A. Sanchis, E. Lughofer, F. Gomide, Evolving fuzzy

and neuro-fuzzy approaches in clustering, regression, identification, and

classification: A survey, Information Sciences 490 (2019) 344–368.

[11] E. Lughofer, Evolving fuzzy systems — fundamentals, reliability, inter-

pretability and useability, in: P. Angelov (Ed.), Handbook of Computa-

tional Intelligence, World Scientific, New York, 2016, pp. 67–135.

[12] C. Aggarwal, Neural Networks and Deep Learning: A Textbook, Springer,

New York, U.S.A., 2018.

[13] A. Ashfahani, M. Pratama, Autonomous deep learning: Continual learning

approach for dynamic environments, in: Proceedings of the 2019 SIAM

International Conference on Data Mining, SIAM, 2019, pp. 666–674.

[14] M. Pratama, C. Za’in, A. Ashfahani, Y. S. Ong, W. Ding, Automatic con-

struction of multi-layer perceptron network from streaming examples, in:

W. Zhu, D. Tao, X. Cheng, P. Cui, E. A. Rundensteiner, D. Carmel, Q. He,

J. X. Yu (Eds.), Proceedings of the 28th ACM International Conference on

Information and Knowledge Management, 2019, pp. 1171–1180.

[15] I. Khamassi, M. Sayed-Mouchaweh, M. Hammami, K. Ghedira, Discussion

and review on evolving data streams and concept drift adapting, Evolving

Systems 9 (1) (2017) 1–23.

[16] E. Lughofer, E. Weigl, W. Heidl, C. Eitzinger, T. Radauer, Recognizing

input space and target concept drifts with scarcely labelled and unlabelled

instances, Information Sciences 355–356 (2016) 127–151.

46

[17] A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, MOA: Massive online anal-

ysis, Journal of Machine Learning Research 11 (2010) 1601–1604.

[18] J. Dean, Big Data, Data Mining, and Machine Learning: Value Creation

for Business Leaders and Practitioners, John Wiley and Sons, Hoboken,

New Jersey, 2012.

[19] X. Wu, X. Zhu, G. Wu, W. Ding, Data mining with big data, IEEE Trans-

actions on Knowledge and Data Engineering 26 (1) (2014) 97–107.

[20] T. Erl, R. Puttini, Z. Mahmood, Cloud Computing: Concepts, Technology

and Architecture, Prentice Hall Service Technology Series, Upper Saddle

River, New Jersey, 2013.

[21] C. Za’in, A. Ashfahani, M. Pratama, E. Lughofer, E. Pardede, Scalable

teacher-forcing networks under spark environments for large-scale stream-

ing problems, in: 2020 IEEE Conference on Evolving and Adaptive Intelli-

gent Systems (EAIS), IEEE, 2020, pp. 1–8.

[22] V. Souza, D. Silva, G. Batista, J. Gama, Classification of evolving data

streams with infinitely delayed labels, in: Proceedings of the 2015 IEEE

14th International Conference on Machine Learning and Applications

(ICMLA), IEEE press, 2015.

[23] E. R. Núñez-Valdéz, V. K. Solanki, S. Balakrishna, M. Thirumaran, In-

cremental hierarchical clustering driven automatic annotations for unifying

iot streaming data, Int. J. Interact. Multim. Artif. Intell. 6 (2) (2020) 1–15.

doi:10.9781/ijimai.2020.03.001.

URL https://doi.org/10.9781/ijimai.2020.03.001

[24] E. Lughofer, On-line active learning: A new paradigm to improve practical

useability of data stream modeling methods, Information Sciences 415–416

(2017) 356–376.

[25] C. Za’in, M. Pratama, E. Pardede, Evolving large-scale data stream analyt-

ics based on scalable panfis, Knowledge-Based Systems 166 (2019) 186–197.

47

https://doi.org/10.9781/ijimai.2020.03.001
https://doi.org/10.9781/ijimai.2020.03.001
https://doi.org/10.9781/ijimai.2020.03.001
https://doi.org/10.9781/ijimai.2020.03.001
https://doi.org/10.9781/ijimai.2020.03.001

[26] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, C. A.

Raffel, Mixmatch: A holistic approach to semi-supervised learning, in:

Advances in Neural Information Processing Systems, Vol. 32, Curran

Associates, Inc., 2019, pp. 5049–5059.

URL https://proceedings.neurips.cc/paper/2019/file/

1cd138d0499a68f4bb72bee04bbec2d7-Paper.pdf

[27] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A.

Rusu, K. Milan, J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis,

C. Clopath, D. Kumaran, R. Hadsell, Overcoming catastrophic forgetting

in neural networks (2016). arXiv:1612.00796.

[28] M. Pratama, A. Ashfahani, A. Hady, Weakly supervised deep learning ap-

proach in streaming environments, in: 2019 IEEE International Conference

on Big Data (Big Data), IEEE, 2019, pp. 1195–1202.

[29] E. Ontiveros, P. Melin, O. Castillo, Comparative study of interval type-2

and general type-2 fuzzy systems in medical diagnosis, Information Sciences

525 (2020) 37–53. doi:https://doi.org/10.1016/j.ins.2020.03.059.

URL https://www.sciencedirect.com/science/article/pii/

S0020025520302401

[30] F. Olivas, F. Valdez, O. Castillo, P. Melin, Dynamic parameter adaptation

in particle swarm optimization using interval type-2 fuzzy logic, Soft Com-

put. 20 (3) (2016) 1057–1070. doi:10.1007/s00500-014-1567-3.

URL https://doi.org/10.1007/s00500-014-1567-3

[31] P. Melin, F. Olivas, O. Castillo, F. Valdez, J. Soria, M. Valdez, Optimal de-

sign of fuzzy classification systems using pso with dynamic parameter adap-

tation through fuzzy logic, Expert Systems with Applications 40 (8) (2013)

3196–3206. doi:https://doi.org/10.1016/j.eswa.2012.12.033.

URL https://www.sciencedirect.com/science/article/pii/

S0957417412012742

48

https://proceedings.neurips.cc/paper/2019/file/1cd138d0499a68f4bb72bee04bbec2d7-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/1cd138d0499a68f4bb72bee04bbec2d7-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/1cd138d0499a68f4bb72bee04bbec2d7-Paper.pdf
http://arxiv.org/abs/1612.00796
https://www.sciencedirect.com/science/article/pii/S0020025520302401
https://www.sciencedirect.com/science/article/pii/S0020025520302401
https://doi.org/https://doi.org/10.1016/j.ins.2020.03.059
https://www.sciencedirect.com/science/article/pii/S0020025520302401
https://www.sciencedirect.com/science/article/pii/S0020025520302401
https://doi.org/10.1007/s00500-014-1567-3
https://doi.org/10.1007/s00500-014-1567-3
https://doi.org/10.1007/s00500-014-1567-3
https://doi.org/10.1007/s00500-014-1567-3
https://www.sciencedirect.com/science/article/pii/S0957417412012742
https://www.sciencedirect.com/science/article/pii/S0957417412012742
https://www.sciencedirect.com/science/article/pii/S0957417412012742
https://doi.org/https://doi.org/10.1016/j.eswa.2012.12.033
https://www.sciencedirect.com/science/article/pii/S0957417412012742
https://www.sciencedirect.com/science/article/pii/S0957417412012742

[32] P. Angelov, R. Buswell, Identification of evolving fuzzy rule-based models,

IEEE Transactions on Fuzzy Systems 10 (5) (2002) 667–677. doi:10.1109/

TFUZZ.2002.803499.

[33] N. Kasabov, Q. Song, Denfis: dynamic evolving neural-fuzzy inference sys-

tem and its application for time-series prediction, IEEE Transactions on

Fuzzy Systems 10 (2) (2002) 144–154. doi:10.1109/91.995117.

[34] P. Angelov, C. Xydeas, D. Filev, On-line identification of mimo evolving

takagi- sugeno fuzzy models, in: 2004 IEEE International Conference on

Fuzzy Systems (IEEE Cat. No.04CH37542), Vol. 1, 2004, pp. 55–60 vol.1.

doi:10.1109/FUZZY.2004.1375687.

[35] P. P. Angelov, X. Zhou, Evolving fuzzy-rule-based classifiers from data

streams, IEEE Transactions on Fuzzy Systems 16 (6) (2008) 1462–1475.

doi:10.1109/TFUZZ.2008.925904.

[36] J. A. Iglesias, A. Ledezma, A. Sanchis, Ensemble method based on in-

dividual evolving classifiers, in: 2013 IEEE Conference on Evolving and

Adaptive Intelligent Systems (EAIS), 2013, pp. 56–61. doi:10.1109/EAIS.

2013.6604105.

[37] M. Pratama, S. G. Anavatti, M. Joo, E. D. Lughofer, pclass: An effective

classifier for streaming examples, IEEE Transactions on Fuzzy Systems

23 (2) (2015) 369–386. doi:10.1109/TFUZZ.2014.2312983.

[38] M. Pratama, E. Dimla, T. Tjahjowidodo, W. Pedrycz, E. Lughofer, Online

tool condition monitoring based on parsimonious ensemble+, IEEE Trans-

actions on Cybernetics 50 (2) (2020) 664–677. doi:10.1109/TCYB.2018.

2871120.

[39] E. Lughofer, M. Pratama, I. Škrjanc, Online bagging of evolving

fuzzy systems, Information Sciences 570 (2021) 16–33. doi:https:

//doi.org/10.1016/j.ins.2021.04.041.

49

https://doi.org/10.1109/TFUZZ.2002.803499
https://doi.org/10.1109/TFUZZ.2002.803499
https://doi.org/10.1109/91.995117
https://doi.org/10.1109/FUZZY.2004.1375687
https://doi.org/10.1109/TFUZZ.2008.925904
https://doi.org/10.1109/EAIS.2013.6604105
https://doi.org/10.1109/EAIS.2013.6604105
https://doi.org/10.1109/TFUZZ.2014.2312983
https://doi.org/10.1109/TCYB.2018.2871120
https://doi.org/10.1109/TCYB.2018.2871120
https://www.sciencedirect.com/science/article/pii/S0020025521003686
https://www.sciencedirect.com/science/article/pii/S0020025521003686
https://doi.org/https://doi.org/10.1016/j.ins.2021.04.041
https://doi.org/https://doi.org/10.1016/j.ins.2021.04.041

URL https://www.sciencedirect.com/science/article/pii/

S0020025521003686

[40] M. Pratama, D. Wang, Deep stacked stochastic configuration networks for

lifelong learning of non-stationary data streams, Information Sciences 495

(2019) 150–174. doi:https://doi.org/10.1016/j.ins.2019.04.055.

URL https://www.sciencedirect.com/science/article/pii/

S0020025519303755

[41] M. Pratama, W. Pedrycz, G. I. Webb, An incremental construction of deep

neuro fuzzy system for continual learning of nonstationary data streams,

IEEE Transactions on Fuzzy Systems 28 (7) (2020) 1315–1328. doi:10.

1109/TFUZZ.2019.2939993.

[42] M. Das, M. Pratama, S. Savitri, J. Zhang, MUSE-RNN: A multilayer

self-evolving recurrent neural network for data stream classification, in:

J. Wang, K. Shim, X. Wu (Eds.), 2019 IEEE International Conference on

Data Mining, ICDM 2019, Beijing, China, November 8-11, 2019, IEEE,

2019, pp. 110–119. doi:10.1109/ICDM.2019.00021.

URL https://doi.org/10.1109/ICDM.2019.00021

[43] A. Ashfahani, M. Pratama, E. Lughofer, Y. Ong, DEVDAN: deep evolv-

ing denoising autoencoder, Neurocomputing 390 (2020) 297–314. doi:

10.1016/j.neucom.2019.07.106.

URL https://doi.org/10.1016/j.neucom.2019.07.106

[44] G. Zhou, K. Sohn, H. Lee, Online incremental feature learning with de-

noising autoencoders, in: N. D. Lawrence, M. Girolami (Eds.), Proceed-

ings of the Fifteenth International Conference on Artificial Intelligence and

Statistics, Vol. 22 of Proceedings of Machine Learning Research, PMLR,

La Palma, Canary Islands, 2012, pp. 1453–1461.

URL http://proceedings.mlr.press/v22/zhou12b.html

[45] D. Sahoo, Q. Pham, J. Lu, S. C. H. Hoi, Online deep learning: Learning

deep neural networks on the fly, in: Proceedings of the Twenty-Seventh

50

https://www.sciencedirect.com/science/article/pii/S0020025521003686
https://www.sciencedirect.com/science/article/pii/S0020025521003686
https://www.sciencedirect.com/science/article/pii/S0020025519303755
https://www.sciencedirect.com/science/article/pii/S0020025519303755
https://doi.org/https://doi.org/10.1016/j.ins.2019.04.055
https://www.sciencedirect.com/science/article/pii/S0020025519303755
https://www.sciencedirect.com/science/article/pii/S0020025519303755
https://doi.org/10.1109/TFUZZ.2019.2939993
https://doi.org/10.1109/TFUZZ.2019.2939993
https://doi.org/10.1109/ICDM.2019.00021
https://doi.org/10.1109/ICDM.2019.00021
https://doi.org/10.1109/ICDM.2019.00021
https://doi.org/10.1109/ICDM.2019.00021
https://doi.org/10.1016/j.neucom.2019.07.106
https://doi.org/10.1016/j.neucom.2019.07.106
https://doi.org/10.1016/j.neucom.2019.07.106
https://doi.org/10.1016/j.neucom.2019.07.106
https://doi.org/10.1016/j.neucom.2019.07.106
http://proceedings.mlr.press/v22/zhou12b.html
http://proceedings.mlr.press/v22/zhou12b.html
http://proceedings.mlr.press/v22/zhou12b.html
https://doi.org/10.24963/ijcai.2018/369
https://doi.org/10.24963/ijcai.2018/369

International Joint Conference on Artificial Intelligence, IJCAI-18, Inter-

national Joint Conferences on Artificial Intelligence Organization, 2018, pp.

2660–2666. doi:10.24963/ijcai.2018/369.

URL https://doi.org/10.24963/ijcai.2018/369

[46] N. Manju, B. S. Harish, N. Nagadarshan, Multilayer feedforward neural

network for internet traffic classification, Int. J. Interact. Multim. Artif.

Intell. 6 (1) (2020) 117–122. doi:10.9781/ijimai.2019.11.002.

URL https://doi.org/10.9781/ijimai.2019.11.002

[47] M. Pratama, S. G. Anavatti, P. P. Angelov, E. Lughofer, Panfis: A novel

incremental learning machine, IEEE Transactions on Neural Networks

and Learning Systems 25 (1) (2014) 55–68. doi:10.1109/TNNLS.2013.

2271933.

[48] A. Bifet, G. Holmes, R. Kirkby, B. Pfahringer, Data stream mining — a

practical approach, Tech. rep., Department of Computer Sciences, Univer-

sity of Waikato, Japan (2011).

[49] T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications

to modeling and control, IEEE Transactions on Systems, Man and Cyber-

netics 15 (1) (1985) 116–132.

[50] M. M. Ferdaus, M. Pratama, S. G. Anavatti, M. A. Garratt, Palm: An

incremental construction of hyperplanes for data stream regression, IEEE

Transactions on Fuzzy Systems 27 (11) (2019) 2115–2129. doi:10.1109/

TFUZZ.2019.2893565.

[51] D. Mandic, Recurrent Neural Networks for Prediction: Learning Algo-

rithms, Architectures and Stability (Adaptive and Learning Systems for

Signal Processing, Communications, and Control.), John Wiley & Sons,

Chichester, 2001.

[52] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning:

51

https://doi.org/10.24963/ijcai.2018/369
https://doi.org/10.24963/ijcai.2018/369
https://doi.org/10.9781/ijimai.2019.11.002
https://doi.org/10.9781/ijimai.2019.11.002
https://doi.org/10.9781/ijimai.2019.11.002
https://doi.org/10.9781/ijimai.2019.11.002
https://doi.org/10.1109/TNNLS.2013.2271933
https://doi.org/10.1109/TNNLS.2013.2271933
https://doi.org/10.1109/TFUZZ.2019.2893565
https://doi.org/10.1109/TFUZZ.2019.2893565

Data Mining, Inference and Prediction - Second Edition, Springer, New

York Berlin Heidelberg, 2009.

[53] G. I. Webb, R. Hyde, H. Cao, H. Nguyen, F. Petitjean, Characterizing

concept drift, Data Min. Knowl. Discov. 30 (4) (2016).

[54] M. Pratama, S. G. Anavatti, E. Lughofer, Genefis: toward an effective

localist network, IEEE Transactions on Fuzzy Systems (2013).

[55] E. Lughofer, Evolving Fuzzy Systems — Methodologies, Advanced Con-

cepts and Applications, Springer, Berlin Heidelberg, 2011.

[56] D. Mackay, A practical bayesian framework for backpropagation networks,

Neural Computation 4 (1992) 448–472.

[57] C. Leung, K.-W. Wong, Y. Xu, The local true weight decay recursive least

square algorithm, in: Lecture Notes in Neural Information Processing, Vol.

4984 of LNCS, Springer, 2008, pp. 456–465.

[58] P. Baldi, P. D. Sadowski, D. Whiteson, Searching for exotic particles in

high-energy physics with deep learning., Nature communications 5 (2014)

4308.

[59] M. Sariyar, A. Borg, K. Pommerening, Controlling false match rates in

record linkage using extreme value theory, J. of Biomedical Informatics

44 (4) (2011) 648–654. doi:10.1016/j.jbi.2011.02.008.

[60] S. J. Stolfo, W. Fan, W. Lee, A. Prodromidis, P. K. Chan, Cost-based

modeling for fraud and intrusion detection: Results from the jam project,

IEEE Computer Press, 2000, pp. 130–144.

[61] D. Dua, C. Graff, UCI machine learning repository (2017).

URL http://archive.ics.uci.edu/ml

52

https://doi.org/10.1016/j.jbi.2011.02.008
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

	1 Introduction
	2 Related Works
	3 Problem Formulation
	4 Learning Procedure
	4.1 Inference Procedure of WeScatterNet
	4.2 Penalty and Reward Mechanism of WeScatterNet
	4.3 Global Drift Handling Mechanism
	4.4 Base Learner Pruning Approach
	4.5 Base Learner Learning Approach
	4.5.1 Local Drift Handling via Rule Growing and Pruning
	4.5.2 Data Augmentation, Annotation and Auto-Correction (DA3)
	4.5.3 Recursive Learning of Consequent Parameters with a modified version of FWGRLS

	4.6 Data Free Model Fusion
	4.6.1 Similarity Analysis
	4.6.2 Merging Process
	4.6.3 Online Model Selection

	5 Numerical Study
	5.1 Dataset
	5.2 Baseline
	5.3 Computational Environments
	5.4 Numerical Results
	5.5 Additional Comparisons
	5.6 Effect of Labelled Samples
	5.7 Ablation Study

	6 Conclusion
	7 Acknowledgement

