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Abstract. In formal concept analysis, it is well-known that the number of

formal concepts can be exponential in the worst case. To analyze the average

case, we introduce a probabilistic model for random formal contexts and prove
that the average number of formal concepts has a superpolynomial asymptotic

lower bound.
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1. Introduction

How many formal concepts does a formal context have? This is one of the funda-
mental problems in the theory of formal concept analysis—an application area of
lattice theory which originates from Wille [6] to support data analysis and knowl-
edge processing. In the graph-theoretic language, the problem asks the number of
maximal bicliques of bipartite graphs. The problem of determining the number of
formal concepts is proved to be #P-complete by Kuznetsov [5, Theorem 1]. Even
though the counting problem is hard in general, it is of interest to get a general
idea of how large the number is.

It is well-known that the number of formal concepts can be exponential in the
worst case, and it can be one in the best case. Such extremal formal contexts
are obtained from contranomial scales and formal contexts defined by the empty
relation. Since these examples appear to be highly atypical, it is natural to study
the number of formal concepts in the average case. To this end, we introduce ran-
dom formal contexts (Definition 3.2) and present an exact formula for the average
number of formal concepts (Proposition 4.1). Lastly, we prove that the average
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number of formal concepts has a superpolynomial asymptotic lower bound (Theo-
rem 5.1), which is the main result of this article. Our theorem and its proof help
to understand why a “typical” formal context has numerous formal concepts.

2. Preliminaries

2.1. Formal concept analysis. We recall basic notions in formal concept analysis
which can be found in the textbook by Ganter and Wille [2, Chapter 1]. A (formal)
context is defined to be a triple K = (G,M, I) consists of two sets G, M , and a
subset I of G × M . An element g of G is called an object, an element m of M
is called an attribute, and I is called the incidence relation of the context K. An
object g is said to have an attribute m if a pair (g,m) belongs to I. A context is
often represented by a cross table whose rows and columns are indexed by objects
and attributes, and the incidence relation is indicated by crosses as in Figure 1.

m

g ×

Figure 1. The cross table of a context.

Let A be a set of objects and let B be a set of attributes. The set of attributes
that all objects in A have in common is denoted by

A′ =
⋂︂
g∈A

{m ∈ M | (g,m) ∈ I }.

Similarly, the set of objects that have all attributes in B is denoted by

B′ =
⋂︂

m∈B

{ g ∈ G | (g,m) ∈ I }.

A pair (A,B) is defined to be a (formal) concept if A′ = B and B′ = A; the first
and second components are called the extent and intent of the concept. The set of
concepts of a context K is denoted by B(K).

2.2. Asymptotic analysis. We recall two useful notations in asymptotic analysis:
the little-oh notation and the Vinogradov notation. Let (xn) and (yn) be real
sequences. For an arbitrary positive real number ε, if |xn| < ε|yn| for sufficiently
large n, then we write xn = o(yn). If there is some positive real number γ satisfying
|xn| ≤ γ|yn| for sufficiently large n, then we write yn ≫ xn.



ON CONCEPTS OF RANDOM CONTEXTS 3

3. Random contexts

In this section, we introduce a probabilistic model for random contexts. Al-
though we provide its measure-theoretic formalization later for completeness, the
randomness we consider might be best described by the following informal manner.

Let n be a positive integer and take an n-set, say U = {1, 2, . . . , n}. For each
element of U , we regard it as an object with probability p and as an attribute with
probability 1− p, independently. Subsequently, for each pair (g,m) of an object g
and an attribute m, we regard an object g has an attribute m with probability q,
independently. We add that the probabilities p and q are not necessarily constants
like p = 1/2 and may be functions of n like q = 1− 1/n.

A similar probabilistic model with a fixed number of objects and attributes is
used by Kovács in [4, §2.1] to estimate the number of concepts. Those who familiar
with random graph theory would instantly recognize that this is very much alike
to the model for binomial random graphs [3, p. 2], which is also known as the
Erdős-Rényi model. In this article, we content ourselves with this simplest model
for random contexts. The readers may wish to skim through the next notation and
definition if they are comfortable with this informal description of our probabilistic
model.

Throughout this article, we use a convention to write random variables in bold.
For basic concepts of probability theory, we refer the readers to a work by Bauer [1,
Chapter I], for example.

Notation 3.1. Let n be a positive integer and let p and q be real numbers be-
longing to the unit interval [0, 1]. Set U = {1, 2, . . . , n}. Write Ω for the set of
contexts (G,M, I) with G + M = U where + denotes the disjoint union. Define
the probability measure P = κn,p,q on the power set 2Ω by

P{(G,M, I)} = p|G|(1− p)|M | q|I|(1− q)|G×M−I|.

The probability space (Ω, 2Ω, P ) is our mathematical model for random contexts.

Definition 3.2. We call an Ω-valued random variable K a random context and
write K ∼ κn,p,q if the distribution of K equals κn,p,q.

For a real-valued function f on Ω and a random context K, we write

E(f ◦K) =

∫︂
f dP =

∑︂
K∈Ω

f(K)P{K}

for the expectation.

4. Average number of concepts

Based on the notion of random contexts that is introduced in the previous sec-
tion, we show an exact formula for the average number of concepts in this section.

Proposition 4.1. Let K be a random context with K ∼ κn,p,q. Then

(4.1) E(|B(K)|) =
∑︂

(a,b,c,d)

(︃
n

a b c d

)︃
pa+c(1− p)b+d qab(1− qa)d(1− qb)c

where the sum is taken over all non-negative integers with a+ b+ c+ d = n.



4 T. SAKURAI

Proof. Set K = (G,M , I). Let A and B be subsets of U . We write 1{(A,B)∈B(K)}
for the indicator variable of an event that a pair (A,B) is a concept of K. By the
linearity of expectation and the law of total probability, we may reduce the problem
as

E(|B(K)|) =
∑︂
(A,B)

E(1{(A,B)∈B(K)}) =
∑︂
(A,B)

P{(A,B) ∈ B(K)}

=
∑︂

(A,B,C,D)

P ({(A,B) ∈ B(K)} ∩ {G = A+ C} ∩ {M = B +D})

where the sums are taken over all tuples of subsets of U . Suppose that (A,B,C,D)
is an ordered partition of the set U . From the reduction, it is enough to show that

P ({(A,B) ∈ B(K)} ∩ {G = A+ C} ∩ {M = B +D})

= p|A+C|(1− p)|B+D| q|A×B|(1− q|A|)|D|(1− q|B|)|C|.

The cross table of a context in Figure 2 may help the readers to see why this claim
holds. First, every element of A+C must belong to G with probability p|A+C| (row

B D

A ×
...

C · · · ∗

Figure 2. When {(A,B) ∈ B(K)} ∩ {G = A+ C} ∩ {M = B +D} occurs.

header), and every element of B+D must belong toM with probability (1−p)|B+D|

(column header). Second, every pair of A × B must belong to I with probability
q|A×B| (upper-left corner). Next, every attribute in D must not be shared by all
objects in A with probability (1 − q|A|)|D| (upper-right corner), and every object
in C must not have all attributes in B with probability (1 − q|B|)|C| (lower-left
corner). Last, the rest entries (lower-right corner) do not affect the occurrence of
the event. The above argument establishes the claim and completes the proof. □

5. Asymptotic lower bound

In this section, we study random contexts with constant probabilities p = q = 1/2
in detail and prove that the average number of concepts has a superpolynomial
asymptotic lower bound. The following is the main result of this article.

Theorem 5.1. Let (Kn) be a sequence of random contexts with Kn ∼ κn, 12 ,
1
2
.

Then
E(|B(Kn)|) > nlogn

for sufficiently large n. In particular, E(|B(Kn)|) ≫ nlogn.
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For a real number x, the integer part and fractional part of x are denoted by [x]
and {x}. To obtain a lower bound for the average number of concepts of Kn, we
single out the specific term

tn =

(︃
n

an bn cn dn

)︃
pan+cn(1− p)bn+dn qanbn(1− qan)dn(1− qbn)cn(5.1)

in (4.1) for constant probabilities p = q = 1/2 where

an =

[︃
log n

log 2

]︃
, bn =

[︃
log n

log 2

]︃
+ 2

{︃
n

2

}︃
, and

cn = dn =

[︃
n

2

]︃
−

[︃
log n

log 2

]︃
.

(5.2)

Although this is just one term in the summation, it turns out to be large enough
for our purpose. The asymptotic behavior of tn is described as follows.

Lemma 5.2. With notation in (5.1),

log tn =
log2 n

log 2
(1 + o(1)) .

To prove this asymptotic equivalence, we need some lemmas.

Lemma 5.3. With notation in (5.2),

log

(︃
n

an bn cn dn

)︃
= n log 2 + 2

log2 n

log 2
+ o(log2 n).

Proof. By the Stirling formula and the Taylor formula,

log n! = n log n− n+ o(log2 n),

log an! = log

(︃
log n

log 2
−
{︃
log n

log 2

}︃)︃
! = o(log2 n),

log bn! = log

(︃
log n

log 2
−
{︃
log n

log 2

}︃
+ 2

{︃
n

2

}︃)︃
! = o(log2 n), and

log cn! = log dn! = log

(︃
n

2
−
{︃
n

2

}︃
− log n

log 2
+

{︃
log n

log 2

}︃)︃
!

= log

(︃
n

2
− log n

log 2
+ o(log n)

)︃
!

=

(︃
n

2
− log n

log 2
+ o(log n)

)︃
log

(︃
n

2
− log n

log 2
+ o(log n)

)︃
−
(︃
n

2
− log n

log 2
+ o(log n)

)︃
+ o(log2 n)

=

(︃
n

2
− log n

log 2

)︃
log

(︃
n

2
− log n

log 2
+ o(log n)

)︃
− n

2
+ o(log2 n)

=

(︃
n

2
− log n

log 2

)︃(︃
log n− log 2− 2

n

log n

log 2
+ o

(︃
log2 n

n

)︃)︃
− n

2
+ o(log2 n)

=
1

2
n log n− 1

2
(1 + log 2)n− log2 n

log 2
+ o(log2 n).
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Therefore

log

(︃
n

an bn cn dn

)︃
= n log n− n− 2

(︃
1

2
n log n− 1

2
(1 + log 2)n− log2 n

log 2

)︃
+ o(log2 n)

= n log 2 + 2
log2 n

log 2
+ o(log2 n). □

Lemma 5.4. With notation in (5.2),⃓⃓
log(1− 2−an)dn(1− 2−bn)cn

⃓⃓
< 2.

Proof. We may assume that n > 2. Note that cn = dn ≤ n/2 and

1− 2−bn ≥ 1− 2−an = 1− 2−
log n
log 2 +{ log n

log 2 } = 1− 2{
log n
log 2 }

n
> 1− 2

n
.

Hence⃓⃓
log(1− 2−an)dn(1− 2−bn)cn

⃓⃓
= −dn log(1− 2−an)− cn log(1− 2−bn) < −n log

(︃
1− 2

n

)︃
≤ 2. □

Proof of Lemma 5.2. By Lemmas 5.3 and 5.4,

log tn = log

(︃
n

an bn cn dn

)︃
−

(︃
n

2
−

{︃
n

2

}︃)︃
log 2−

(︃
n

2
+

{︃
n

2

}︃)︃
log 2

−
(︃
log n

log 2
−
{︃
log n

log 2

}︃)︃(︃
log n

log 2
−

{︃
log n

log 2

}︃
+ 2

{︃
n

2

}︃)︃
log 2

+ log(1− 2−an)dn(1− 2−bn)cn

= n log 2 + 2
log2 n

log 2
− n

2
log 2− n

2
log 2− log2 n

log 2
+ o(log2 n)

=
log2 n

log 2
+ o(log2 n) =

log2 n

log 2
(1 + o(1)) . □

Proof of Theorem 5.1. By Proposition 4.1, we have E(|B(Kn)|) ≥ tn. Set ε =
1− log 2 = 0.306 · · · . It follows from Lemma 5.2 that

logE(|B(Kn)|) ≥ log tn >
log2 n

log 2
(1− ε) = log2 n

for sufficiently large n, which proves the theorem. □

n 101 102 103 104 105 106 107 108 109 1010

δn 1.467 0.860 0.646 0.566 0.477 0.416 0.386 0.347 0.316 0.299

Table 1. How large n should be for the theorem?
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In the end, we make a short comment on how large n should be for the theorem.
Table 1 shows the rounded values of

δn =

⃓⃓⃓⃓
log tn

log2 n/ log 2
− 1

⃓⃓⃓⃓
for n = 101, . . . , 1010. The proof indicates that n > 1010 would be sufficient for the
theorem.

6. Conclusions

In this article, we addressed the problem of how large the average number of
concepts is. To this end, we introduced the distribution κn,p,q for random contexts
and presented an exact formula for the average number E(|B(K)|) of concepts of
a random context K ∼ κn,p,q. To establish a superpolynomial asymptotic lower
bound, random contexts with constant probabilities p = q = 1/2 were studied in
detail. For a sequence of random contexts (Kn) with Kn ∼ κn, 12 ,

1
2
, we proved that

E(|B(Kn)|) ≫ nlogn.
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